
ISBN 0-321—49362-1

Chapter 6

Data Types
part 2
(updated to 11th

edition)

2

Record Types

• A record is a possibly heterogeneous aggregate
of data elements in which the individual
elements are identified by names

• Design issues:
– What is the syntactic form of references to the field?
– Are elliptical references allowed

3

Definition of Records in COBOL

• COBOL uses level numbers to show nested
records; others use recursive definition
– 01 EMP-REC.
– 02 EMP-NAME.
– 05 FIRST PIC X(20).
– 05 MID PIC X(10).
– 05 LAST PIC X(20).
– 02 HOURLY-RATE PIC 99V99.

4

Definition of Records in Ada
• Record structures are indicated in an orthogonal

way (nested example)
type Emp_Name_Type is record

First: String (1..20);

Mid: String (1..10);
Last: String (1..20);

end record;
type Emp_Rec_Type is record

Emp_Name: Emp_Name_Type;
Hourly_Rate: Float;

end record;

5

Definition of Records in C++
• Nested example (more similar to Ada)
struct Emp_Name_Type {

string first;

string middle;

string last;

};

struct Emp_Rec_Type {

Emp_Name_Type Emp_name;

float hourly_rate;

}

6

References to Records
• Record field references

– 1. COBOL
– field_name OF record_name_1 OF ... OF record_name_n
– 2. Others (dot notation)
– record_name_1.record_name_2. ... record_name_n.field_name

• Fully qualified references must include all record names

• Elliptical references allow leaving out record names as long as
the reference is unambiguous, for example in COBOL

• FIRST, FIRST OF EMP-NAME, and FIRST of EMP-REC are
elliptical references to the employee’s first name

7

Operations on Records

• Assignment is very common if the types are
identical

• Ada allows record comparison
• Ada records can be initialized with aggregate

literals
• COBOL provides MOVE CORRESPONDING

– Copies a field of the source record to the
corresponding field in the target record

8

Evaluation and Comparison to Arrays

• Records are used when collection of data values
is heterogeneous

• Access to array elements is much slower than
access to record fields, because subscripts are
dynamic (field names are static)

• Dynamic subscripts could be used with record
field access, but it would disallow type checking
and it would be much slower

9

Implementation of Record Type

Offset address relative to the
beginning of the records is
associated with each field

10

Unions Types

• A union is a type whose variables are allowed to
store different type values at different times
during execution

• Design issues
– Should type checking be required?
– Should unions be embedded in records?

11

Discriminated vs. Free Unions

• Fortran, C, and C++ provide union constructs in
which there is no language support for type
checking; the union in these languages is called
free union

• Type checking of unions require that each union
include a type indicator called a discriminant
– Supported by Ada

12

Ada Union Types

• type Shape is (Circle, Triangle, Rectangle);
• type Colors is (Red, Green, Blue);
• type Figure (Form: Shape) is record
• Filled: Boolean;
• Color: Colors;
• case Form is
• when Circle => Diameter: Float;
• when Triangle =>
• Leftside, Rightside: Integer;
• Angle: Float;
• when Rectangle => Side1, Side2: Integer;
• end case;
• end record;

13

Ada Union Type Illustrated

• A discriminated union of three shape variables

14

Evaluation of Unions

• Free unions are unsafe
– Do not allow type checking

• Java and C# do not support unions
– Reflective of growing concerns for safety in

programming language

• Ada’s discriminated unions are safe

15

Pointer and Reference Types

• A pointer type variable has a range of values
that consists of memory addresses and a special
value, nil

• Provide the power of indirect addressing
• Provide a way to manage dynamic memory
• A pointer can be used to access a location in the

area where storage is dynamically created
(usually called a heap)

16

Design Issues of Pointers

• What are the scope of and lifetime of a pointer
variable?

• What is the lifetime of a heap-dynamic variable?
• Are pointers restricted as to the type of value to

which they can point?
• Are pointers used for dynamic storage

management, indirect addressing, or both?
• Should the language support pointer types,

reference types, or both?

17

Pointer Operations

• Two fundamental operations: assignment and
dereferencing

• Assignment is used to set a pointer variable’s
value to some useful address

• Dereferencing yields the value stored at the
location represented by the pointer’s value
– Dereferencing can be explicit or implicit
– C++ uses an explicit operation via *
– j = *ptr
– sets j to the value located at ptr

18

Pointer Assignment Illustrated

• The assignment operation j = *ptr

19

Problems with Pointers

• Dangling pointers (dangerous)
– A pointer points to a heap-dynamic variable that has been

deallocated
• Lost heap-dynamic variable

– An allocated heap-dynamic variable that is no longer
accessible to the user program (often called garbage)

• Pointer p1 is set to point to a newly created heap-dynamic
variable

• Pointer p1 is later set to point to another newly created heap-
dynamic variable

• The process of losing heap-dynamic variables is called
memory leakage

20

Pointers in Ada

• Some dangling pointers are disallowed because
dynamic objects can be automatically
deallocated at the end of pointer's type scope

• The lost heap-dynamic variable problem is not
eliminated by Ada (possible with
UNCHECKED_DEALLOCATION)

21

Pointers in C and C++

• Extremely flexible but must be used with care
• Pointers can point at any variable regardless of

when or where it was allocated
• Used for dynamic storage management and

addressing
• Pointer arithmetic is possible
• Explicit dereferencing and address-of operators

22

Pointer Arithmetic in C and C++

• float list[100];
• float *p;
• p = list;

• *(p+5) is equivalent to list[5] and p[5]
• *(p+i) is equivalent to list[i] and p[i]

• Domain type need not be fixed (void *)
• void * can point to any type and can be type
• checked (cannot be de-referenced)

23

Reference Types

• C++ includes a special kind of pointer type
called a reference type that is used primarily for
formal parameters
– Advantages of both pass-by-reference and pass-by-

value
• Java extends C++’s reference variables and

allows them to replace pointers entirely
– References are references to objects, rather than

being addresses
• C# includes both the references of Java and the

pointers of C++, must include ‘unsafe’modifier
• Smalltalk, Python, Ruby, Lua: all variables are

references; always implicitly dereferenced

24

Evaluation of Pointers

• Dangling pointers and dangling objects are
problems as is heap management

• Pointers are like goto's--they widen the range of
cells that can be accessed by a variable

• Pointers or references are necessary for dynamic
data structures--so we can't design a language
without them

25

Representations of Pointers

• Large computers use single values
• Intel microprocessors use segment and offset

26

Dangling Pointer Problem
• Tombstone: extra heap cell that is a pointer to the

heap-dynamic variable
– The actual pointer variable points only at tombstones
– When heap-dynamic variable de-allocated, tombstone

remains but set to nil
– Costly in time and space – no popular languages use this..

• Locks-and-keys: Pointer values are represented as
(key, address) pairs
– Heap-dynamic variables are represented as variable plus

cell for integer lock value
– When heap-dynamic variable allocated, lock value is

created and placed in lock cell and key cell of pointer.
Used in UW-Pascal (compiler of Pascal)

• Best solution: out of hands of programmer
(implicit deallocation: Java; C# references)

27

Heap Management

• One of design goals of LISP was that reclamation
of unused cells not task of programmer (most
LISP data consists of cells in linked list)

• A very complex run-time process
• Single-size cells vs. variable-size cells
• Fundamental design question: When should

deallocation be performed?

28

Heap Management

• Fundamental design question: When should
deallocation be performed?

• Two approaches to reclaim garbage
– Reference counters (eager): reclamation is gradual
– Mark-sweep (lazy approach): reclamation occurs

when the list of variable space becomes empty

29

Reference Counter

• Reference counters: maintain a counter in every
cell that store the number of pointers currently
pointing at the cell
– Disadvantages: space required, execution time

required to change counters, complications for cells
connected circularly

– Advantage: it is intrinsically incremental, so
significant delays in the application execution are
avoided

30

Mark-Sweep
• The run-time system allocates storage cells as

requested and disconnects pointers from cells as
necessary; mark-sweep then begins to gather
garbage

31

Mark-Sweep
• The run-time system allocates storage cells as

requested and disconnects pointers from cells as
necessary; mark-sweep then begins to gather
garbage
– Every heap cell has an extra bit used by collection

algorithm
– All cells initially set to garbage
– All pointers traced into heap, and reachable cells

marked as not garbage
– All garbage cells returned to list of available cells
– Disadvantages: in its original form, it was done too

infrequently. When done, it caused significant delays in
application execution.
Contemporary mark-sweep algorithms avoid this by
doing it more often—called incremental mark-sweep

32

Marking Algorithm

Cartoon from https://www.ibm.com/developerworks/library/j-jtp10283/

33

Variable-Size Cells

• All the difficulties of single-size cells plus more
• Required by most programming languages,

since cells store values of variables of any type
• If mark-sweep is used, additional problems

occur
– The initial setting of the indicators of all cells in the

heap is difficult (one solution: each cell has cell size
as first field)

– The marking process in nontrivial
– Maintaining the list of available space is another

source of overhead

34

Summary

• The data types of a language are a large part of
what determines that language’s style and
usefulness

• The primitive data types of most imperative
languages include numeric, character, and Boolean
types

• The user-defined enumeration and subrange types
are convenient and add to the readability and
reliability of programs

• Arrays and records are included in most languages
• Pointers are used for addressing flexibility and to

control dynamic storage management

