Chapter 6

Data Types
part 2

(updated to 11th
edition)

Robert W. Sebesta

concepts of

Programming
Languages

Record Types

- A record is a possibly heterogeneous aggregate
of data elements in which the individual

elements are identified by names
- Design issues:

- What is the syntactic form of references to the field?
- Are elliptical references allowed

Definition of Records in COBOL

- COBOL uses level numbers to show nested
records; others use recursive definition
- 01 EMP-REC.
- 02 EMP-NAME.
- 05 FIRST PIC X(20).
- 05 MID PIC X(10).
- 05 LAST PIC X(20).
- 02 HOURLY-RATE PIC 99V99.

Definition of Records in Ada

- Record structures are indicated in an orthogonal
way (nested example)

type Emp_Name_Type is record
First: String (1..20);
Mid: String (1..10);
Last: String (1..20);

end record;

type Emp_Rec_Type is record
Emp_Name: Emp_Name_Type;
Hourly_Rate: Float;

end record;

Definition of Records in C++

- Nested example (more similar to Ada)

struct Emp_Name_Type {
string first;
string middle;
string last;

}i

struct Emp Rec Type {
Emp Name Type Emp name;

float hourly rate;

References to Records

- Record field references
- 1. COBOL
- field_name ofF record_name_1 OF ... OF record_name_n
- 2. Others (dot notation)
- record_name_1l.record_name_2. ... record_name_n.field_name

- Fully qualified references must include all record names

- Elliptical references allow leaving out record names as long as
the reference is unambiguous, for example in COBOL

FIRST, FIRST OF EMP-NAME, and FIRST of EMP-REC are
elliptical references to the employee’s first name

Operations on Records

- Assignment is very common if the types are
identical

- Ada allows record comparison

- Ada records can be initialized with aggregate
literals

- COBOL provides MOVE CORRESPONDING

- Copies a field of the source record to the
corresponding field in the target record

Evaluation and Comparison to Arrays

- Records are used when collection of data values
is heterogeneous

- Access to array elements is much slower than
access to record fields, because subscripts are
dynamic (field names are static)

- Dynamic subscripts could be used with record
field access, but it would disallow type checking
and it would be much slower

Implementation of Record Type

Offset address relative to the
beginning of the records is
associated with each field

Field1 <

Record

Name

Fieldn <

Offset

Name

Type

Offset

Address

Unions Types

- A union is a type whose variables are allowed to

store different type values at different times
during execution

- Design issues

- Should type checking be required?
- Should unions be embedded in records?

10

Discriminated vs. Free Unions

- Fortran, C, and C++ provide union constructs in

which there is no language support for type
checking; the union in these languages is called

free union

- Type checking of unions require that each union
include a type indicator called a discriminant

- Supported by Ada

1

Ada Union Types

type Shape is (Circle, Triangle, Rectangle);
type Colors is (Red, Green, Blue);
type Figure (Form: Shape) is record
Filled: Boolean;
Color: Colors;
case Form is
when Circle => Diameter: Float;
when Triangle =>
Leftside, Rightside: Integer;
Angle: Float;
when Rectangle => Sidel, Side2: Integer;
end case;
end record;

12

Ada Union Type lllustrated

rectangle: sidel, side2
A

r \
circle:diameter
A
r \
N J
[Y
triangle: leftside, rightside, angle
iscriminant (form)
color

filled

- A discriminated union of three shape variables

Evaluation of Unions

- Free unions are unsafe
- Do not allow type checking

- Java and C# do not support unions

- Reflective of growing concerns for safety in
programming language

- Ada’s discriminated unions are safe

14

Pointer and Reference Types

- A pointer type variable has a range of values
that consists of memory addresses and a special
value, nil

- Provide the power of indirect addressing
- Provide a way to manage dynamic memory

- A pointer can be used to access a location in the
area where storage is dynamically created
(usually called a heap)

15

Design Issues of Pointers

- What are the scope of and lifetime of a pointer
variable?

- What is the lifetime of a heap-dynamic variable?

- Are pointers restricted as to the type of value to
which they can point?

- Are pointers used for dynamic storage
management, indirect addressing, or both?

- Should the language support pointer types,
reference types, or both?

16

Pointer Operations

- Two fundamental operations: assignment and
dereferencing

- Assignment is used to set a pointer variable’s
value to some useful address

- Dereferencing yields the value stored at the
location represented by the pointer’'s value

- Dereferencing can be explicit or implicit
- C++ uses an explicit operation via *

- J = "ptr

- sets j to the value located at ptr

17

Pointer Assignment lllustrated

7080

An anonymous
206 dynamic variable

l |
ptr 7080 !
|

\

- The assignment operation j = *ptr

18

Problems with Pointers

- Dangling pointers (dangerous)

- A pointer points to a heap-dynamicvariable that has been
deallocated

- Lost heap-dynamic variable
- An allocated heap-dynamic variable that is no longer
accessible to the user program (often called garbage)

- Pointer pl is set to point to a newly created heap-dynamic
variable

- Pointer pl is later set to point to another newly created heap-
dynamic variable

- The process of losing heap-dynamic variables is called
memory leakage

19

Pointers in Ada

- Some dangling pointers are disallowed because
dynamic objects can be automatically
deallocated at the end of pointer's type scope

- The lost heap-dynamic variable problem is not
eliminated by Ada (possible with
UNCHECKED _DEALLOCATION)

20

Pointers in C and C++

- Extremely flexible but must be used with care

- Pointers can point at any variable regardless of
when or where it was allocated

- Used for dynamic storage management and
addressing

- Pointer arithmetic is possible
- Explicit dereferencing and address-of operators

21

Pointer Arithmetic in C and C++

- float list[100];
- float *p;
- p = list;

. *(p+5) is equivalent to list[5] and p[5]
- *(p+i) is equivalent to list[i] and pli]

- Domain type need not be fixed (void ¥)

void * can pointto any type and can be type
checked (cannot be de-referenced)

22

Reference Types

- C++ includes a special kind of pointer type
called a reference type that is used primarily for
formal parameters

- Advantages of both pass-by-reference and pass-by-
value

- Java extends C++’s reference variables and
allows them to replace pointers entirely

- References are references to objects, rather than
being addresses

- C# includes both the references of Java and the
pointers of C++, must include ‘unsafe’ modifier

- Smalltalk, Python, Ruby, Lua: all variables are
references; always implicitly dereferenced

23

Evaluation of Pointers

- Dangling pointers and dangling objects are
oroblems as is heap management

- Pointers are like goto's--they widen the range of
cells that can be accessed by a variable

- Pointers or references are necessary for dynamic
data structures--so we can't design a language

without them

24

Representations of Pointers

- Large computers use single values
- Intel microprocessors use segment and offset

25

Dangling Pointer Problem

- Tombstone: extra heap cell that is a pointer to the
heap-dynamic variable

- The actual pointer variable points only at tombstones

- When heap-dynamicvariable de-allocated, tombstone
remains but set to nil

- Costly in time and space - no popular languages use this..
- Locks-and-keys: Pointer values are represented as
(key, address) pairs

- Heap-dynamicvariables are represented as variable plus
cell for integer lock value

- When heap-dynamicvariable allocated, lock value is
created and placed in lock cell and key cell of pointer.
Used in UW-Pascal (compiler of Pascal)

- Best solution: out of hands of programmer
(implicit deallocation: Java; C# references) 2

Heap Management

- One of design goals of LISP was that reclamation
of unused cells not task of programmer (most
LISP data consists of cells in linked list)

- A very complex run-time process

- Sing
- Func

e-size cells vs. variable-size cells
amental design question: When should

deal

ocation be performed?

27

Heap Management

- Fundamental design question: When should
deallocation be performed?
- Two approaches to reclaim garbage
- Reference counters (eager): reclamation is gradual

- Mark-sweep (lazy approach): reclamation occurs
when the list of variable space becomes empty

28

Reference Counter

- Reference counters: maintain a counter in every
cell that store the number of pointers currently
pointing at the cell
- Disadvantages: space required, execution time

required to change counters, complications for cells
connected circularly

- Advantage: it is intrinsically incremental, so
significant delays in the application execution are

avoided

29

Mark-Sweep

- The run-time system allocates storage cells as
requested and disconnects pointers from cells as

necessary; mark-sweep then begins to gather
garbage

30

Mark-Sweep

- The run-time system allocates storage cells as
requested and disconnects pointers from cells as
necessary; mark-sweep then begins to gather
garbage

- Every heap cell has an extra bit used by collection
algorithm

- All cells initially set to garbage

- All pointers traced into heap, and reachable cells
marked as not garbage

- All garbage cells returned to list of available cells

- Disadvantages: in its original form, it was done too
infrequently. When done, it caused significant delays in
application execution.

Contemporary mark-sweep algorithms avoid this by
doing it more often—called incremental mark-sweep

31

Marking Algorithm

Cartoon from https://www.ibm.com/developerworks/library/}-jtp10283/

HEAP
garbage
Root set of /
references V / -
h\’
garbage

garbage \ v /

Variable-Size Cells

- All the difficulties of single-size cells plus more
- Required by most programming languages,
since cells store values of variables of any type

- If mark-sweep is used, additional problems
occur

- The initial setting of the indicators of all cells in the

heap is difficult (one solution: each cell has cell size
as first field)

- The marking process in nontrivial

- Maintaining the list of available space is another
source of overhead

33

Summary

- The data types of a language are a large part of

what determines that language’s style and
usefulness

- The primitive data types of most imperative
languages include numeric, character, and Boolean

types

- The user-defined enumeration and subrange types
are convenient and add to the readability and
reliability of programs

- Arrays and records are included in most languages

- Pointers are used for addressing flexibility and to
control dynamic storage management

34

