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Chapter 3 Topics

• Introduction
• The General Problem of Describing Syntax
• Formal Methods of Describing Syntax
• Attribute Grammars
• Describing the Meanings of Programs:    

Dynamic Semantics
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Static semantics

• Context-free grammars (CFGs) cannot describe all 
of the syntax of programming languages 

• Categories of constructs that are trouble:
    - Context-free, but cumbersome (e.g.,
        types of operands in expressions; Java floating-
        point value cannot be assigned to integer type, 
        but opposite legal)
    - Non-context-free (e.g., variables must
        be declared before they are used)
• These type of needed specification checks are 

referred to as Static Semantics
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Attribute Grammars

• Attribute grammars are used to describe 
more of the structure of PL than we can do 
with CFG, e.g. to address static semantics 
such as type compatibility 

• Attribute grammars (AGs) have additions to 
CFGs to carry some semantic info on parse 
tree nodes 

• Primary value of AGs:
– Static semantics specification
– Compiler design (static semantics checking)
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Attribute Grammars : Definition

• Def: An attribute grammar is a context-free 
grammar with the following additions:
– For each grammar symbol x there is a set A(x) of 

attribute values
– Each rule has a set of functions that define certain 

attributes of the nonterminals in the rule
– Each rule has a (possibly empty) set of predicates, 

which state the static semantic rules, to check for 
attribute consistency  
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Attribute Grammars: Definition

• Let   X0 → X1 ... Xn  be a rule
• Synthesized attributes - up the parse tree from 

children
• Inherited attributes - down and across parse 

tree
• Initially, there are intrinsic attributes on the 

leaves (such as actual types of variables, int or 
real)
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Attribute Grammars (continued)

• How are attribute values computed?
– If all attributes were inherited, the tree could be 

decorated in top-down order.
– If all attributes were synthesized, the tree could be 

decorated in bottom-up order.
– In many cases, both kinds of attributes are used, and 

it is some combination of top-down and bottom-up 
that must be used.
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Attribute Grammars: An Example

• Syntax
<assign> -> <var> = <expr> 
<expr> -> <var> + <var> | <var> 
<var> -> A | B | C 

• actual_type: synthesized for <var> 
and <expr> 

• expected_type: inherited for <expr>  
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Attribute Grammar (continued)

• Syntax rule:  <expr> → <var>[1] + <var>[2] 

 Semantic rules: 
 <expr>.actual_type ← <var>[1].actual_type 

    Predicate: 
 <var>[1].actual_type == <var>[2].actual_type 

 <expr>.expected_type == <expr>.actual_type 

• Syntax rule:  <var> → id 

    Semantic rule:
 <var>.actual_type ← lookup (<var>.string)
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Attribute Grammars (continued)

<expr>.expected_type ← inherited from parent 

<var>[1].actual_type ← lookup (A) 

<var>[2].actual_type ← lookup (B) 

<var>[1].actual_type =? <var>[2].actual_type 

<expr>.actual_type ← <var>[1].actual_type 

<expr>.actual_type =? <expr>.expected_type
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Attribute Grammars (continued)
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• checking static semantic rules of a language is 
an essential part of all compilers.

• main problems of contemporary languages?



Attribute Grammars (continued)
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• checking static semantic rules of a language is 
an essential part of all compilers.

• main problems of contemporary languages?
    size and complexity



Semantics

• There is no single widely acceptable notation or 
formalism for describing semantics (or dynamic 
semantics; meaning while executing program)

• Operational Semantics
– Describe the meaning of a program by executing its 

statements on a machine, either simulated or actual.  
The change in the state of the machine (memory, 
registers, etc.) defines the meaning of the statement

– Many of you have written a test program to determine 
the meaning of some PL construct… essentially 
operational semantics
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Operational Semantics

• Design an appropriate intermediate level language 
that describes the high level language, where the 
primary goal is clarity

• A virtual machine (interpreter) must be constructed 
for the intermediate language

• Basic idea of translating to simpler, intermediate 
form, often used in textbooks or manuals to explain 
a language
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Operational Semantics

Example: C for statement: 
 
for (expr1; expr2; expr 3) {…} 
for (a=1; a<10; a++) {…} 

• Intermediate/meaning: 
         expr1; 
loop: if expr2==10 goto out 
          … 
          expr3; 
          goto loop 
out: …
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Operational Semantics (continued)

• Uses of operational semantics:
   - Language manuals and textbooks
   - Teaching programming languages

• Evaluation
   - Good if used informally (language manuals, etc.)
   - Extremely complex if used formally 
      (e.g., VDL=Vienna Definition Language, to   

   describe PL/I semantics in 1972)
   - Operational semantics depend on programming  

  languages of a lower level, not on mathematics
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Axiomatic Semantics

• Based on formal logic (predicate calculus)
• Original purpose: formal program verification; 

rather than directly specifying meaning of 
program asks what can be proved 

• Axioms or inference rules are defined for each 
statement type in the language (to allow 
transformations of logic expressions into more 
formal logic expressions)

• The logic expressions are called assertions
• Assertions are used in programming languages 

(eg, Java, C, Python)
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Axiomatic Semantics (continued)

• An assertion before a statement (a precondition) 
states the relationships and constraints among 
variables that are true at that point in execution

• An assertion following a statement is a  
postcondition

• A weakest precondition is the least restrictive 
precondition that will guarantee the 
postcondition
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Program Proof Process

• The postcondition for the entire program is the 
desired result
– Work back through the program to the first statement.  

If the precondition on the first statement is the same 
as the input specification of the program, the program 
is correct.
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We’ll go through some examples…



Axiomatic Semantics Form

• Pre-, post form:  {P} statement {Q} 

• An example
– a = b + 1
– Postcondition: {a > 1}
– One possible precondition: {b > 10}
– Weakest precondition?       
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Axiomatic Semantics Form

• Pre-, post form:  {P} statement {Q} 
• Want to find precondition that 
makes postcondition true

• An example
– a = b + 1
– Postcondition: {a > 1}
– One possible precondition: {b > 10}
– Weakest precondition:        {b > 0}
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Axiomatic Semantics Form

• Pre-, post form:  {P} statement {Q} 
• Want to find precondition that 
makes postcondition true

• An example
– a = b + 1
– Postcondition: {a > 1}
– One possible precondition: {b > 10}
– Weakest precondition:        {b > 0}
– Written in pre-post form: {b>0} a = b + 1 {a>1}
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Axiomatic Semantics Form
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More examples on board…



Axiomatic Semantics: Axioms

• The Rule of Consequence:

24



Axiomatic Semantics: Axioms

• An inference rule for sequences of the form S1; S2

{P1} S1 {P2}
{P2} S2 {P3}
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Axiomatic Semantics: Axioms

• While loop

  {P} while B do S end {Q}

 -  If we knew how many iterations through the loop we 
could write out as sequence and prove correctness as 
before for the 2 sequence example, but we don’t…

-   This is where the loop invariant (induction) comes to
     play
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Axiomatic Semantics: Axioms

• Recall from CSC317…
• Invariant = something that does not change
• Loop invariant = a property about the algorithm that 

does not change at every iteration before the loop (it 
must be implied by precondition and thus hold before 
loop, and imply postcondition and thus hold after loop)

• This is usually the property we would like to prove is 
correct about the algorithm!
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Axiomatic Semantics: Axioms

• Example with assert statements:  
http://www.cs.miami.edu/home/burt/learning/
Csc517.101/workbook/findmin.html

• Input: Array A
• Output: Find minimum value in array A[1…n]
• Loop invariant: min is the smallest element in  

A[1 … i-1 ] before each iteration of the loop
• Loop invariant asserted before loop (precondition), 

each time goes through loop iteration, and at end of 
loop (postcondition)

• Done through induction (initialization, maintenance, 
termination)
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Loop Invariant

• I must be weak enough to be satisfied prior to 
the beginning of the loop, but when combined 
with the loop exit condition, it must be strong 
enough to force the truth of the postcondition

• Here we develop more formally how to find  
loop invariant using axiomatic semantics
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Axiomatic Semantics: Axioms

• Characteristics of the loop invariant: I must meet 
the following conditions:   
Loop example: {P} while B do S end {Q}
– P => I    -- the loop invariant must be true initially

– {I and B} S {I}   -- I is not changed by executing the body of the loop

– (I and (not B)) => Q     -- if I is true and B is false, Q is implied

– The loop terminates    -- can sometimes be difficult to prove
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Axiomatic Semantics: Axioms
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Loop invariant: formal example on the board…



Evaluation of Axiomatic Semantics

• Developing axioms or inference rules for all of 
the statements in a language is difficult

• It is a good tool for correctness proofs, and an 
excellent framework for reasoning about  
programs

• Its usefulness in describing the meaning of a 
programming language is highly limited for 
language users or compiler writers
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Denotational Semantics

• The most abstract semantics description 
method

• language entities are mapped into mathematical 
objects

• Originally developed by Scott and Strachey 
(1970)
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Denotational Semantics (continued)

• The process of building a denotational specification 
for a language:

    -  Define a mathematical object for each language entity
– Define a function that maps instances of the language 

entities onto instances of the corresponding mathematical 
objects

• The meaning of language constructs are defined by 
only the values of the program's variables

• Called denotational because mathematical 
constructs denote the meaning of the 
corresponding entities
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Denotation Semantics vs Operational Semantics

• Operational semantics: programming constructs 
translated into simpler programming language 
constructs

• Denotational semantics: programming 
constructs mapped into mathematical functions
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Example: Binary Numbers 

meaning = number represents

<bin_num> →  '0' | '1'  

              |<bin_num> '0'  

              |<bin_num> ‘1' 

Mbin('0') = 0,  Mbin ('1') = 1 

Mbin (<bin_num> '0') = 2 * Mbin (<bin_num>) 

Mbin (<bin_num> '1’) = 2 * Mbin (<bin_num>) + 1 

36



Example: Binary Numbers 
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3.5 Describing the Meanings of Programs: Dynamic Semantics     143

construct. In denotational semantics, programming language constructs are 
mapped to mathematical objects, either sets or, more often, functions. How-
ever, unlike operational semantics, denotational semantics does not model the 
step-by-step computational processing of programs.

3.5.2.1 Two Simple Examples

We use a very simple language construct, character string representations of 
binary numbers, to introduce the denotational method. The syntax of such 
binary numbers can be described by the following grammar rules:

<bin_num> → '0'
                      | '1'
                      | <bin_num>  '0'
                      | <bin_num>  '1'

A parse tree for the example binary number, 110, is shown in Figure 3.9. Notice 
that we put apostrophes around the syntactic digits to show they are not math-
ematical digits. This is similar to the relationship between ASCII coded digits and 
mathematical digits. When a program reads a number as a string, it must be con-
verted to a mathematical number before it can be used as a value in the program.

<bin_num>

<bin_num> '0'

<bin_num>

'1'

'1'

Figure 3.9

A parse tree of the 
binary number 110

The syntactic domain of the mapping function for binary numbers is the 
set of all character string representations of binary numbers. The semantic 
domain is the set of nonnegative decimal numbers, symbolized by N.

To describe the meaning of binary numbers using denotational semantics, 
we associate the actual meaning (a decimal number) with each rule that has a 
single terminal symbol as its RHS.

In our example, decimal numbers must be associated with the first two 
grammar rules. The other two grammar rules are, in a sense, computational 
rules, because they combine a terminal symbol, to which an object can be 
associated, with a nonterminal, which can be expected to represent some 
construct. Presuming an evaluation that progresses upward in the parse tree, 



Example: Binary Numbers 
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144     Chapter 3  Describing Syntax and Semantics 

the nonterminal in the right side would already have its meaning attached. 
So, a syntax rule with a nonterminal as its RHS would require a function that 
computed the meaning of the LHS, which represents the meaning of the 
complete RHS.

The semantic function, named Mbin, maps the syntactic objects, as 
described in the previous grammar rules, to the objects in N, the set of non-
negative decimal numbers. The function Mbin is defined as follows:

Mbin('0') = 0
Mbin('1') = 1
Mbin(<bin_num> '0') = 2 * Mbin(<bin_num>)
Mbin(<bin_num> '1') = 2 * Mbin(<bin_num>) + 1

The meanings, or denoted objects (which in this case are decimal numbers), 
can be attached to the nodes of the parse tree shown on the previous page, 
yielding the tree in Figure 3.10. This is syntax-directed semantics. Syntactic 
entities are mapped to mathematical objects with concrete meaning.

<bin_num>

<bin_num> '0'

<bin_num>

'1'

'1'1

3

6Figure 3.10

A parse tree with 
denoted objects for 110

In part because we need it later, we now show a similar example for describ-
ing the meaning of syntactic decimal literals. In this case, the syntactic domain 
is the set of character string representations of decimal numbers. The semantic 
domain is once again the set N.

<dec_num> → '0'|'1'|'2'|'3'|'4'|'5'|'6'|'7''8'|'9'
             |<dec_num> ('0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9')

The denotational mappings for these syntax rules are

Mdec('0') = 0, Mdec('1') = 1, Mdec('2') = 2, . . ., Mdec('9') = 9
Mdec(<dec_num> '0') = 10 * Mdec(<dec_num>)
Mdec(<dec_num> '1') = 10 * Mdec(<dec_num>) + 1
. . .
Mdec(<dec_num> '9') = 10 * Mdec(<dec_num>) + 9

Numbers on nodes represent meaning



Example: Decimal Numbers 

meaning = number represents
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<dec_num> → '0'|'1'|'2'|'3'|'4'|'5'|'6'|'7''8'|'9' 

   |<dec_num> ('0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9') 

The denotational mappings for these syntax rules are 

Mdec('0')=0, Mdec('1')=1, Mdec('2')=2,..., Mdec('9')=9 
Mdec(<dec_num> '0') = 10 * Mdec(<dec_num>)  
Mdec(<dec_num> '1') = 10 * Mdec(<dec_num>) + 1  
.. . 

Mdec(<dec_num> '9') = 10 * Mdec(<dec_num>) + 9 



Denotational Semantics: Program State

• The state of a program is the values of all its 
current variables

      s = {<i1, v1>, <i2, v2>, …, <in, vn>}  
    i is name of variable and v  
    associated value

• Let VARMAP be a function that, when given a 
variable name and a state, returns the current 
value of the variable

         VARMAP(ij, s) = vj 
• Error we can consider is if VARMAP of a 

variable is undefined (special value undef) 40



Loop Meaning
• The meaning of a loop is the value of the program 

variables after the statements in the loop have been 
executed the prescribed number of  times, assuming there 
have been no errors

• In essence, loops are converted from iteration to recursion, 
where the recursive control  is mathematically defined by 
other recursive state mapping functions

    - Recursion, when compared to iteration, is easier
        to describe with mathematical rigor
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Evaluation of Denotational Semantics 

• Can be used to prove the correctness of programs
• Provides a rigorous way to think about programs
• Can be an aid to language design
• Has been used in compiler generation systems - 

feasible but complicated!
• Because of its complexity, it’s of little use to 

language users
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Summary

• BNF and context-free grammars are equivalent 
meta-languages
– Well-suited for describing the syntax of programming 

languages
• An attribute grammar is a descriptive formalism that 

can describe both the syntax and the (static) 
semantics of a language

• Three primary methods of semantics description
– Operation, axiomatic, denotational
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