
Chapter 3  
(part 3)

Describing Syntax
and Semantics

Chapter 3 Topics

• Introduction
• The General Problem of Describing Syntax
• Formal Methods of Describing Syntax
• Attribute Grammars
• Describing the Meanings of Programs:

Dynamic Semantics

2

Static semantics

• Context-free grammars (CFGs) cannot describe all
of the syntax of programming languages

• Categories of constructs that are trouble:
 - Context-free, but cumbersome (e.g.,
 types of operands in expressions; Java floating-
 point value cannot be assigned to integer type,
 but opposite legal)
 - Non-context-free (e.g., variables must
 be declared before they are used)
• These type of needed specification checks are

referred to as Static Semantics
3

Attribute Grammars

• Attribute grammars are used to describe
more of the structure of PL than we can do
with CFG, e.g. to address static semantics
such as type compatibility

• Attribute grammars (AGs) have additions to
CFGs to carry some semantic info on parse
tree nodes

• Primary value of AGs:
– Static semantics specification
– Compiler design (static semantics checking)

4

Attribute Grammars : Definition

• Def: An attribute grammar is a context-free
grammar with the following additions:
– For each grammar symbol x there is a set A(x) of

attribute values
– Each rule has a set of functions that define certain

attributes of the nonterminals in the rule
– Each rule has a (possibly empty) set of predicates,

which state the static semantic rules, to check for
attribute consistency

5

Attribute Grammars: Definition

• Let X0 → X1 ... Xn be a rule
• Synthesized attributes - up the parse tree from

children
• Inherited attributes - down and across parse

tree
• Initially, there are intrinsic attributes on the

leaves (such as actual types of variables, int or
real)

6

Attribute Grammars (continued)

• How are attribute values computed?
– If all attributes were inherited, the tree could be

decorated in top-down order.
– If all attributes were synthesized, the tree could be

decorated in bottom-up order.
– In many cases, both kinds of attributes are used, and

it is some combination of top-down and bottom-up
that must be used.

7

Attribute Grammars: An Example

• Syntax
<assign> -> <var> = <expr>
<expr> -> <var> + <var> | <var>
<var> -> A | B | C

• actual_type: synthesized for <var>
and <expr>

• expected_type: inherited for <expr>

8

Attribute Grammar (continued)

• Syntax rule: <expr> → <var>[1] + <var>[2]

 Semantic rules:
 <expr>.actual_type ← <var>[1].actual_type

 Predicate:
 <var>[1].actual_type == <var>[2].actual_type

 <expr>.expected_type == <expr>.actual_type

• Syntax rule: <var> → id

 Semantic rule:
 <var>.actual_type ← lookup (<var>.string)

9

Attribute Grammars (continued)

<expr>.expected_type ← inherited from parent

<var>[1].actual_type ← lookup (A)

<var>[2].actual_type ← lookup (B)

<var>[1].actual_type =? <var>[2].actual_type

<expr>.actual_type ← <var>[1].actual_type

<expr>.actual_type =? <expr>.expected_type

10

Attribute Grammars (continued)

11

• checking static semantic rules of a language is
an essential part of all compilers.

• main problems of contemporary languages?

Attribute Grammars (continued)

12

• checking static semantic rules of a language is
an essential part of all compilers.

• main problems of contemporary languages?
 size and complexity

Semantics

• There is no single widely acceptable notation or
formalism for describing semantics (or dynamic 
semantics; meaning while executing program)

• Operational Semantics
– Describe the meaning of a program by executing its

statements on a machine, either simulated or actual.
The change in the state of the machine (memory,
registers, etc.) defines the meaning of the statement

– Many of you have written a test program to determine
the meaning of some PL construct… essentially
operational semantics

13

Operational Semantics

• Design an appropriate intermediate level language
that describes the high level language, where the
primary goal is clarity

• A virtual machine (interpreter) must be constructed
for the intermediate language

• Basic idea of translating to simpler, intermediate
form, often used in textbooks or manuals to explain
a language

14

Operational Semantics

Example: C for statement: 
 
for (expr1; expr2; expr 3) {…} 
for (a=1; a<10; a++) {…} 

• Intermediate/meaning: 
 expr1; 
loop: if expr2==10 goto out 
 … 
 expr3; 
 goto loop 
out: …

15

Operational Semantics (continued)

• Uses of operational semantics:
 - Language manuals and textbooks
 - Teaching programming languages

• Evaluation
 - Good if used informally (language manuals, etc.)
 - Extremely complex if used formally
 (e.g., VDL=Vienna Definition Language, to  

 describe PL/I semantics in 1972)
 - Operational semantics depend on programming  

 languages of a lower level, not on mathematics
16

Axiomatic Semantics

• Based on formal logic (predicate calculus)
• Original purpose: formal program verification;

rather than directly specifying meaning of
program asks what can be proved

• Axioms or inference rules are defined for each
statement type in the language (to allow
transformations of logic expressions into more
formal logic expressions)

• The logic expressions are called assertions
• Assertions are used in programming languages

(eg, Java, C, Python)
17

Axiomatic Semantics (continued)

• An assertion before a statement (a precondition)
states the relationships and constraints among
variables that are true at that point in execution

• An assertion following a statement is a
postcondition

• A weakest precondition is the least restrictive
precondition that will guarantee the
postcondition

18

Program Proof Process

• The postcondition for the entire program is the
desired result
– Work back through the program to the first statement.

If the precondition on the first statement is the same
as the input specification of the program, the program
is correct.

19

We’ll go through some examples…

Axiomatic Semantics Form

• Pre-, post form: {P} statement {Q}

• An example
– a = b + 1
– Postcondition: {a > 1}
– One possible precondition: {b > 10}
– Weakest precondition?

20

Axiomatic Semantics Form

• Pre-, post form: {P} statement {Q}
• Want to find precondition that
makes postcondition true

• An example
– a = b + 1
– Postcondition: {a > 1}
– One possible precondition: {b > 10}
– Weakest precondition: {b > 0}

21

Axiomatic Semantics Form

• Pre-, post form: {P} statement {Q}
• Want to find precondition that
makes postcondition true

• An example
– a = b + 1
– Postcondition: {a > 1}
– One possible precondition: {b > 10}
– Weakest precondition: {b > 0}
– Written in pre-post form: {b>0} a = b + 1 {a>1}

22

Axiomatic Semantics Form

23

More examples on board…

Axiomatic Semantics: Axioms

• The Rule of Consequence:

24

Axiomatic Semantics: Axioms

• An inference rule for sequences of the form S1; S2

{P1} S1 {P2}
{P2} S2 {P3}

25

Axiomatic Semantics: Axioms

• While loop

 {P} while B do S end {Q}

 - If we knew how many iterations through the loop we
could write out as sequence and prove correctness as
before for the 2 sequence example, but we don’t…

- This is where the loop invariant (induction) comes to
 play

26

Axiomatic Semantics: Axioms

• Recall from CSC317…
• Invariant = something that does not change
• Loop invariant = a property about the algorithm that

does not change at every iteration before the loop (it
must be implied by precondition and thus hold before
loop, and imply postcondition and thus hold after loop)

• This is usually the property we would like to prove is
correct about the algorithm!

27

Axiomatic Semantics: Axioms

• Example with assert statements:  
http://www.cs.miami.edu/home/burt/learning/
Csc517.101/workbook/findmin.html

• Input: Array A
• Output: Find minimum value in array A[1…n]
• Loop invariant: min is the smallest element in  

A[1 … i-1] before each iteration of the loop
• Loop invariant asserted before loop (precondition),

each time goes through loop iteration, and at end of
loop (postcondition)

• Done through induction (initialization, maintenance,
termination)

28

Loop Invariant

• I must be weak enough to be satisfied prior to
the beginning of the loop, but when combined
with the loop exit condition, it must be strong
enough to force the truth of the postcondition

• Here we develop more formally how to find  
loop invariant using axiomatic semantics

29

Axiomatic Semantics: Axioms

• Characteristics of the loop invariant: I must meet
the following conditions:  
Loop example: {P} while B do S end {Q}
– P => I -- the loop invariant must be true initially

– {I and B} S {I} -- I is not changed by executing the body of the loop

– (I and (not B)) => Q -- if I is true and B is false, Q is implied

– The loop terminates -- can sometimes be difficult to prove

30

Axiomatic Semantics: Axioms

31

Loop invariant: formal example on the board…

Evaluation of Axiomatic Semantics

• Developing axioms or inference rules for all of
the statements in a language is difficult

• It is a good tool for correctness proofs, and an
excellent framework for reasoning about
programs

• Its usefulness in describing the meaning of a
programming language is highly limited for
language users or compiler writers

32

Denotational Semantics

• The most abstract semantics description
method

• language entities are mapped into mathematical
objects

• Originally developed by Scott and Strachey
(1970)

33

Denotational Semantics (continued)

• The process of building a denotational specification
for a language:

 - Define a mathematical object for each language entity
– Define a function that maps instances of the language

entities onto instances of the corresponding mathematical
objects

• The meaning of language constructs are defined by
only the values of the program's variables

• Called denotational because mathematical
constructs denote the meaning of the
corresponding entities

34

Denotation Semantics vs Operational Semantics

• Operational semantics: programming constructs
translated into simpler programming language
constructs

• Denotational semantics: programming
constructs mapped into mathematical functions

35

Example: Binary Numbers

meaning = number represents

<bin_num> → '0' | '1'

 |<bin_num> '0'

 |<bin_num> ‘1'

Mbin('0') = 0, Mbin ('1') = 1

Mbin (<bin_num> '0') = 2 * Mbin (<bin_num>)

Mbin (<bin_num> '1’) = 2 * Mbin (<bin_num>) + 1

36

Example: Binary Numbers

37

3.5 Describing the Meanings of Programs: Dynamic Semantics 143

construct. In denotational semantics, programming language constructs are
mapped to mathematical objects, either sets or, more often, functions. How-
ever, unlike operational semantics, denotational semantics does not model the
step-by-step computational processing of programs.

3.5.2.1 Two Simple Examples

We use a very simple language construct, character string representations of
binary numbers, to introduce the denotational method. The syntax of such
binary numbers can be described by the following grammar rules:

<bin_num> → '0'
 | '1'
 | <bin_num> '0'
 | <bin_num> '1'

A parse tree for the example binary number, 110, is shown in Figure 3.9. Notice
that we put apostrophes around the syntactic digits to show they are not math-
ematical digits. This is similar to the relationship between ASCII coded digits and
mathematical digits. When a program reads a number as a string, it must be con-
verted to a mathematical number before it can be used as a value in the program.

<bin_num>

<bin_num> '0'

<bin_num>

'1'

'1'

Figure 3.9

A parse tree of the
binary number 110

The syntactic domain of the mapping function for binary numbers is the
set of all character string representations of binary numbers. The semantic
domain is the set of nonnegative decimal numbers, symbolized by N.

To describe the meaning of binary numbers using denotational semantics,
we associate the actual meaning (a decimal number) with each rule that has a
single terminal symbol as its RHS.

In our example, decimal numbers must be associated with the first two
grammar rules. The other two grammar rules are, in a sense, computational
rules, because they combine a terminal symbol, to which an object can be
associated, with a nonterminal, which can be expected to represent some
construct. Presuming an evaluation that progresses upward in the parse tree,

Example: Binary Numbers

38

144 Chapter 3 Describing Syntax and Semantics

the nonterminal in the right side would already have its meaning attached.
So, a syntax rule with a nonterminal as its RHS would require a function that
computed the meaning of the LHS, which represents the meaning of the
complete RHS.

The semantic function, named Mbin, maps the syntactic objects, as
described in the previous grammar rules, to the objects in N, the set of non-
negative decimal numbers. The function Mbin is defined as follows:

Mbin('0') = 0
Mbin('1') = 1
Mbin(<bin_num> '0') = 2 * Mbin(<bin_num>)
Mbin(<bin_num> '1') = 2 * Mbin(<bin_num>) + 1

The meanings, or denoted objects (which in this case are decimal numbers),
can be attached to the nodes of the parse tree shown on the previous page,
yielding the tree in Figure 3.10. This is syntax-directed semantics. Syntactic
entities are mapped to mathematical objects with concrete meaning.

<bin_num>

<bin_num> '0'

<bin_num>

'1'

'1'1

3

6Figure 3.10

A parse tree with
denoted objects for 110

In part because we need it later, we now show a similar example for describ-
ing the meaning of syntactic decimal literals. In this case, the syntactic domain
is the set of character string representations of decimal numbers. The semantic
domain is once again the set N.

<dec_num> → '0'|'1'|'2'|'3'|'4'|'5'|'6'|'7''8'|'9'
 |<dec_num> ('0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9')

The denotational mappings for these syntax rules are

Mdec('0') = 0, Mdec('1') = 1, Mdec('2') = 2, . . ., Mdec('9') = 9
Mdec(<dec_num> '0') = 10 * Mdec(<dec_num>)
Mdec(<dec_num> '1') = 10 * Mdec(<dec_num>) + 1
. . .
Mdec(<dec_num> '9') = 10 * Mdec(<dec_num>) + 9

Numbers on nodes represent meaning

Example: Decimal Numbers

meaning = number represents

39

<dec_num> → '0'|'1'|'2'|'3'|'4'|'5'|'6'|'7''8'|'9'

 |<dec_num> ('0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9')

The denotational mappings for these syntax rules are

Mdec('0')=0, Mdec('1')=1, Mdec('2')=2,..., Mdec('9')=9
Mdec(<dec_num> '0') = 10 * Mdec(<dec_num>)  
Mdec(<dec_num> '1') = 10 * Mdec(<dec_num>) + 1  
.. .

Mdec(<dec_num> '9') = 10 * Mdec(<dec_num>) + 9

Denotational Semantics: Program State

• The state of a program is the values of all its
current variables

 s = {<i1, v1>, <i2, v2>, …, <in, vn>}  
 i is name of variable and v  
 associated value

• Let VARMAP be a function that, when given a
variable name and a state, returns the current
value of the variable

 VARMAP(ij, s) = vj
• Error we can consider is if VARMAP of a

variable is undefined (special value undef) 40

Loop Meaning
• The meaning of a loop is the value of the program

variables after the statements in the loop have been
executed the prescribed number of times, assuming there
have been no errors

• In essence, loops are converted from iteration to recursion,
where the recursive control is mathematically defined by
other recursive state mapping functions

 - Recursion, when compared to iteration, is easier
 to describe with mathematical rigor

41

Evaluation of Denotational Semantics 

• Can be used to prove the correctness of programs
• Provides a rigorous way to think about programs
• Can be an aid to language design
• Has been used in compiler generation systems -

feasible but complicated!
• Because of its complexity, it’s of little use to

language users

42

Summary

• BNF and context-free grammars are equivalent
meta-languages
– Well-suited for describing the syntax of programming

languages
• An attribute grammar is a descriptive formalism that

can describe both the syntax and the (static)
semantics of a language

• Three primary methods of semantics description
– Operation, axiomatic, denotational

43

