
Chapter 3

Describing Syntax
and Semantics

Chapter 3 Topics

• Introduction
• The General Problem of Describing Syntax
• Formal Methods of Describing Syntax
• Attribute Grammars
• Describing the Meanings of Programs:

Dynamic Semantics

�2

Ambiguous grammar

• 2 parse trees for
the sentence  
A=B+C*A

• Operator
precedence

• Conflicting
precedence

�3

An Unambiguous Expression Grammar

• If we use the parse tree to indicate precedence
levels of the operators, we cannot have
ambiguity

<expr> → <expr> - <term> | <term>
<term> → <term> / const| const

<expr>

<expr> <term>

<term> <term>

const const

const/

-

�4

Associativity of Operators

• Operator associativity can also be indicated by a
grammar

<expr> -> <expr> + <expr> | const (ambiguous)

<expr> -> <expr> + const | const (unambiguous)

<expr><expr>

<expr>

<expr> const

const

const

+

+

�5

Extended BNF (EBNF)

• Optional parts are placed in brackets []
 <if_stmt> -> if (<expression>)
<statement> [else <statement>]

• Alternative parts of RHSs are placed inside
parentheses and separated via vertical bars

 <term> → <term> (+|-) const

• Repetitions (0 or more) are placed inside
braces { }

 <ident_list> → <identifier>
{,<identifier>}

�6

BNF and EBNF

• BNF
 <expr> → <expr> + <term>
 | <expr> - <term>
 | <term>
 <term> → <term> * <factor>
 | <term> / <factor>
 | <factor>

• EBNF
 <expr> → <term> {(+ | -) <term>}
 <term> → <factor> {(* | /) <factor>}

�7

Recent Variations in EBNF

• Alternative RHSs are put on separate lines
• Use of a colon instead of =>
• Use of opt for optional parts
• Use of oneof for choices

�8

Example of parsing string and generating error (from chap
4)

�9

• Parsing examples as part of compilation process (chapter 4) and  
generating errors

• Example recursive-descent parser using a parse tree written  
in C

• Follows the generative, top-down, process of the EBNF grammar, 
with collections of subprograms that could be recursive

• Subprogram for each non terminal rule; traces parse tree rooted  
at that non terminal

• Starts from root and does leftmost derivation

• We assume function lex() gets the next lexeme and puts its 
token code in the global variable nextToken

• This (chapter 4) material is presented as example, beyond scope of  
course

Example of parsing string and generating error (from chap
4)

�10

EBNF rule: <expr> → <term> {(+ | -) <term>}

 <term> -> <factor> {(* | /) <factor>}

 <factor> → id | int_constant | (<expr>)

/* expr
 Parses strings in the language generated by the rule:
 <expr> -> <term> {(+ | -) <term>}
 */
void expr() {

printf("Enter <expr>\n");

/* Parse the first term */
 term();
/* As long as the next token is + or -, get
 the next token and parse the next term */
while (nextToken == ADD_OP || nextToken == SUB_OP) { lex();

term(); }

 printf("Exit <expr>\n");
} /* End of function expr */

Example of parsing string and generating error (from chap
4)

�11

EBNF rule: <expr> → <term> {(+ | -) <term>}

 <term> -> <factor> {(* | /) <factor>)

 <factor> → id | int_constant | (<expr>)

/* term
 Parses strings in the language generated by the rule:
 <term> -> <factor> {(* | /) <factor>)
 */
void term() {

printf("Enter <term>\n");

/* Parse the first factor */
 factor();
/* As long as the next token is * or /, get the
 next token and parse the next factor */
while (nextToken == MULT_OP || nextToken == DIV_OP) { lex();

factor(); }

 printf("Exit <term>\n");
} /* End of function term */

Example of parsing string and generating error (from chap
4)

�12

/* factor
 Parses strings in the language generated by the rule:
 <factor> -> id | int_constant | (<expr)
 */
void factor() {

printf("Enter <factor>\n");

/* Determine which RHS */  
if (nextToken == IDENT || nextToken == INT_LIT)

/* Get the next token */
 lex();

EBNF rule: <expr> → <term> {(+ | -) <term>}

 <term> -> <factor> {(* | /) <factor>)
 <factor> → id | int_constant | (<expr>)

Example of parsing string and generating error (from chap
4)

�13

/* If the RHS is (<expr>), call lex to pass over the
 left parenthesis, call expr, and check for the right
 parenthesis */
else {  
if (nextToken == LEFT_PAREN) {

lex();  
expr();  
if (nextToken == RIGHT_PAREN)

lex();

else

 error();
 } /* End of if (nextToken == ... */

EBNF rule: <expr> → <term> {(+ | -) <term>}

 <term> -> <factor> {(* | /) <factor>)
 <factor> → id | int_constant | (<expr>)

Example of parsing string and generating error (from chap
4)

�14

/* It was not an id, an integer literal, or a left
 parenthesis */
else

 error();
 } /* End of else */
 printf("Exit <factor>\n");;
} /* End of function factor */

EBNF rule: <expr> → <term> {(+ | -) <term>}

 <term> -> <factor> {(* | /) <factor>)
 <factor> → id | int_constant | (<expr>)

Example of parsing string and generating error (from chap
4)

�15

<ifstmt> → if (<boolexpr>) <statement> [else <statement>]
/* Function ifstmt
 Parses strings in the language generated by the rule:
 <ifstmt> -> if (<boolexpr>) <statement>
 [else <statement>]
*/
void ifstmt() {
/* Be sure the first token is 'if' */
if (nextToken != IF_CODE)
error(); else {
/* Call lex to get to the next token */
 lex();
/* Check for the left parenthesis */
if (nextToken != LEFT_PAREN)
error(); else {
/* Call boolexpr to parse the Boolean expression */
 boolexpr();
/* Check for the right parenthesis */
if (nextToken != RIGHT_PAREN)
error();

Example of parsing string and generating error (from chap
4)

�16

<ifstmt> → if (<boolexpr>) <statement> [else <statement>]

else {
/* Call statement to parse the then clause */
 statement();
/* If an else is next, parse the else clause */
if (nextToken == ELSE_CODE) {
/* Call lex to get over the else */
 lex();
 statement();
 } /* end of if (nextToken == ELSE_CODE ... */
 } /* end of else of if (nextToken != RIGHT ... */
 } /* end of else of if (nextToken != LEFT ... */
 } /* end of else of if (nextToken != IF_CODE ... */
} /* end of ifstmt */

Reminder: BNF and Context-Free Grammars

• Context-Free Grammars
– Developed by Noam Chomsky in the mid-1950s for

natural languages
– Language generators, meant to describe the syntax of

natural languages
– Define a class of languages called context-free languages

• Backus-Naur Form (BNF) (1959)
– Invented by John Backus to describe Algol 58
– BNF is equivalent to context-free grammars

�17

Reminder: BNF Fundamentals

• In BNF, abstractions are used to represent syntactic structures (also called
nonterminal symbols, or just nonterminals)

• Terminals are lexemes or tokens
• A rule has a left-hand side (LHS), which is a nonterminal, and a right-hand  

 side (RHS), which is a string of terminals and/or nonterminals
• Nonterminals are often enclosed in angle brackets

– Examples of BNF rules:
<assign> → <var> = <expression>
<if_stmt> → if <logic_expr> then <stmt>

• Grammar: a finite non-empty set of rules
• A start symbol is a special element of the nonterminals of a grammar

�18

Static semantics

• BNF form we have been discussing (Context free
grammars) cannot describe all of the syntax of
programming languages

• Categories of constructs that are trouble:
 - Context-free, but cumbersome (e.g., types of operands

in expressions; Java floating-point value cannot be
assigned to integer type, but opposite legal)

 - Non-context-free (e.g., variables must be declared
before they are used)

• These type of needed specification checks are referred
to as Static Semantics

�19

Attribute Grammars

• Attribute grammars are used to describe
more of the structure of PL than we can do
with Context free grammars, e.g. to address
static semantics such as type compatibility

• Attribute grammars (AGs) have additions to
Context free grammars to carry some
semantic info on parse tree nodes

• Primary value of AGs:
– Static semantics specification
– Compiler design (static semantics checking)

�20

Attribute Grammars : Definition

• Def: An attribute grammar is a context-free
grammar with the following additions:
– For each grammar symbol x there is a set A(x) of

attribute values
– Each rule has a set of functions that define certain

attributes of the nonterminals in the rule
– Each rule has a (possibly empty) set of predicates,

which state the static semantic rules, to check for
attribute consistency

�21

Attribute Grammars: Definition

• Let X0 → X1 ... Xn be a rule
• Synthesized attributes - up the parse tree from

children
• Inherited attributes - down and across parse

tree
• Initially, there are intrinsic attributes on the

leaves (such as actual types of variables, int or
real)

�22

Attribute Grammars (continued)

• How are attribute values computed?
– If all attributes were inherited, the tree could be

decorated in top-down order.
– If all attributes were synthesized, the tree could be

decorated in bottom-up order.
– In many cases, both kinds of attributes are used, and

it is some combination of top-down and bottom-up
that must be used.

�23

