
Chapter 3

Describing Syntax
and Semantics

Chapter 3 Topics

• Introduction
• The General Problem of Describing Syntax
• Formal Methods of Describing Syntax
• Attribute Grammars
• Describing the Meanings of Programs:

Dynamic Semantics

2

Introduction

• Syntax: the form or structure of the
expressions, statements, and program units

• Semantics: the meaning of the expressions,
statements, and program units

• Syntax and semantics provide a language’s
definition
– Users of a language definition

• Other language designers
• Implementers
• Programmers (the users of the language)

3

The General Problem of Describing Syntax:
Terminology

• A sentence is a string of characters over some
alphabet

• A language is a set of sentences

• A lexeme is the lowest level syntactic unit of a
language (e.g., *, sum, begin)

• A token is a category of lexemes (e.g., identifier)

4

Formal Definition of Languages

• Recognizers
– A recognition device reads input strings over the alphabet of

the language and decides whether the input strings belong to
the language

– Example: syntax analysis part of a compiler
 - Detailed discussion of syntax analysis appears in chapter 4

• Generators
– A device that generates sentences of a language
– One can determine if the syntax of a particular sentence is

syntactically correct by comparing it to the structure of the
generator

5

Generating images…

6

Generative adversarial networks (GAN)
(Goodfellow 2014; Gulrajani et al. 2017)

Figure 4: Samples of 128⇥128 LSUN bedrooms. We believe these samples are at least comparable
to the best published results so far.

passed directly into the critic (which, likewise, is a simple 1D CNN). When decoding samples, we
just take the argmax of each output vector.

We present samples from the model in Table 4. Our model makes frequent spelling errors (likely
because it has to output each character independently) but nonetheless manages to learn quite a lot
about the statistics of language. We were unable to produce comparable results with the standard
GAN objective, though we do not claim that doing so is impossible.

Table 4: Samples from a WGAN-GP character-level language model trained on sentences from
the Billion Word dataset, truncated to 32 characters. The model learns to directly output one-hot
character embeddings from a latent vector without any discrete sampling step. We were unable to
achieve comparable results with the standard GAN objective and a continuous generator.

Busino game camperate spent odea Solice Norkedin pring in since
In the bankaway of smarling the ThiS record (31.) UBS) and Ch
SingersMay , who kill that imvic It was not the annuas were plogr
Keray Pents of the same Reagun D This will be us , the ect of DAN
Manging include a tudancs shat " These leaded as most-worsd p2 a0
His Zuith Dudget , the Denmbern The time I paidOa South Cubry i
In during the Uitational questio Dour Fraps higs it was these del
Divos from The ’ noth ronkies of This year out howneed allowed lo
She like Monday , of macunsuer S Kaulna Seto consficutes to repor

The difference in performance between WGAN and other GANs can be explained as follows. Con-
sider the simplex �

n

= {p 2 Rn

: p

i

� 0,

P
i

p

i

= 1}, and the set of vertices on the simplex (or
one-hot vectors) V

n

= {p 2 Rn

: p

i

2 {0, 1},
P

i

p

i

= 1} ✓ �

n

. If we have a vocabulary of
size n and we have a distribution P

r

over sequences of size T , we have that P
r

is a distribution on
V

T

n

= V

n

⇥ · · ·⇥ V

n

. Since V

T

n

is a subset of �T

n

, we can also treat P
r

as a distribution on �

T

n

(by
assigning zero probability mass to all points not in V

T

n

).

P
r

is discrete (or supported on a finite number of elements, namely V

T

n

) on �

T

n

, but P
g

can easily be
a continuous distribution over �T

n

. The KL divergences between two such distributions are infinite,

8

Generating images…

7

Generative adversarial networks

Natural language (Google translate)

8

NO. 1:
Kilimanjaro is a snow-covered mountain 19,710 feet high, and is said to be the highest mountain in
Africa. Its western summit is called the Masai “Ngaje Ngai,” the House of God. Close to the western
summit there is the dried and frozen carcass of a leopard. No one has explained what the leopard
was seeking at that altitude.

NO. 2:
Kilimanjaro is a mountain of 19,710 feet covered with snow and is said to be the highest mountain in
Africa. The summit of the west is called “Ngaje Ngai” in Masai, the house of God. Near the top of the
west there is a dry and frozen dead body of leopard. No one has ever explained what leopard wanted
at that altitude.

Haruki Murakami compares his own translation from Japanese
to English (of Hemingway’s Snows of Kilimanjaro”) to
the 2016 (deep learning) Google translate

from New York Times, Dec 14 2016

BNF and Context-Free Grammars

• Context-Free Grammars
– Developed by Noam Chomsky in the mid-1950s for

natural languages

– Language generators, meant to describe the syntax
of natural languages

– Define a class of languages called context-free
languages

• Backus-Naur Form (1959)
– Invented by John Backus to describe Algol 58

– BNF is equivalent to context-free grammars
9

BNF Fundamentals
• In BNF, abstractions are used to represent syntactic structures (also

called nonterminal symbols, or just nonterminals)
• Terminals are lexemes or tokens
• A rule has a left-hand side (LHS), which is a nonterminal, and a right-

hand side (RHS), which is a string of terminals and/or nonterminals
• Nonterminals are often enclosed in angle brackets

– Examples of BNF rules:

 <assign> → <var> = <expression>

 <if_stmt> → if <logic_expr> then <stmt>

• Grammar: a finite non-empty set of rules
• A start symbol is a special element of the nonterminals of a

grammar

10

BNF Rules

• An abstraction (or nonterminal symbol)
can have more than one RHS

 <stmt> → <single_stmt>

 | begin <stmt_list> end

11

Describing Lists

• Syntactic lists are described using
recursion

 <ident_list> → ident

 | ident, <ident_list>

12

Example Grammar for small

 <program> → begin <stmt_list> end

 <stmt_list> → <stmt>

 | <stmt> ; <stmt_list>

 <stmt> → <var> = <expression>

 <var> → a | b | c

 <expression> → <var> + <var>

 | <var> - <var>

 | <var>

13

Example Grammar for small

 <program> → begin <stmt_list> end

 <stmt_list> → <stmt>

 | <stmt> ; <stmt_list>

 <stmt> → <var> = <expression>

 <var> → a | b | c

 <expression> → <var> + <var>

 | <var> - <var>

 | <var>

14

Example derivation

15

<program> => begin <stmt_list> end

• We’ll derive A = B + C; B = C with this grammar
• A derivation is a repeated application of rules,

starting with the start symbol (in this case  
program)

• => reads “derives”

Example derivation

16

<program> => begin <stmt_list> end
 => begin <stmt> ; <stmt_list> end

Example derivation

17

<program> => begin <stmt_list> end
 => begin <stmt> ; <stmt_list> end

 => begin <var> = <expression> ; <stmt_list> end

Example derivation

18

<program> => begin <stmt_list> end
 => begin <stmt> ; <stmt_list> end

 => begin <var> = <expression> ; <stmt_list> end
 => begin A = <expression> ; <stmt_list> end

Example derivation

19

<program> => begin <stmt_list> end
 => begin <stmt> ; <stmt_list> end

 => begin <var> = <expression> ; <stmt_list> end
 => begin A = <expression> ; <stmt_list> end
 => begin A = <var> + <var> ; <stmt_list> end

Example derivation

20

<program> => begin <stmt_list> end
 => begin <stmt> ; <stmt_list> end

 => begin <var> = <expression> ; <stmt_list> end
 => begin A = <expression> ; <stmt_list> end
 => begin A = <var> + <var> ; <stmt_list> end
 => begin A = B + <var> ; <stmt_list> end

Example derivation

21

<program> => begin <stmt_list> end
 => begin <stmt> ; <stmt_list> end

 => begin <var> = <expression> ; <stmt_list> end
 => begin A = <expression> ; <stmt_list> end
 => begin A = <var> + <var> ; <stmt_list> end
 => begin A = B + <var> ; <stmt_list> end
 => begin A = B + C ; <stmt_list> end

Example derivation

22

<program> => begin <stmt_list> end
 => begin <stmt> ; <stmt_list> end

 => begin <var> = <expression> ; <stmt_list> end
 => begin A = <expression> ; <stmt_list> end
 => begin A = <var> + <var> ; <stmt_list> end
 => begin A = B + <var> ; <stmt_list> end
 => begin A = B + C ; <stmt_list> end
 => begin A = B + C ; <stmt> end

Example derivation

23

<program> => begin <stmt_list> end
 => begin <stmt> ; <stmt_list> end

 => begin <var> = <expression> ; <stmt_list> end
 => begin A = <expression> ; <stmt_list> end
 => begin A = <var> + <var> ; <stmt_list> end
 => begin A = B + <var> ; <stmt_list> end
 => begin A = B + C ; <stmt_list> end
 => begin A = B + C ; <stmt> end
 => begin A = B + C ; <var> = <expression> end

Example derivation

24

<program> => begin <stmt_list> end
 => begin <stmt> ; <stmt_list> end

 => begin <var> = <expression> ; <stmt_list> end
 => begin A = <expression> ; <stmt_list> end
 => begin A = <var> + <var> ; <stmt_list> end
 => begin A = B + <var> ; <stmt_list> end
 => begin A = B + C ; <stmt_list> end
 => begin A = B + C ; <stmt> end
 => begin A = B + C ; <var> = <expression> end
 => begin A = B + C ; B = <expression> end

Example derivation

25

<program> => begin <stmt_list> end
 => begin <stmt> ; <stmt_list> end

 => begin <var> = <expression> ; <stmt_list> end
 => begin A = <expression> ; <stmt_list> end
 => begin A = <var> + <var> ; <stmt_list> end
 => begin A = B + <var> ; <stmt_list> end
 => begin A = B + C ; <stmt_list> end
 => begin A = B + C ; <stmt> end
 => begin A = B + C ; <var> = <expression> end
 => begin A = B + C ; B = <expression> end
 => begin A = B + C ; B = <var> end

Example derivation

26

<program> => begin <stmt_list> end
 => begin <stmt> ; <stmt_list> end

 => begin <var> = <expression> ; <stmt_list> end
 => begin A = <expression> ; <stmt_list> end
 => begin A = <var> + <var> ; <stmt_list> end
 => begin A = B + <var> ; <stmt_list> end
 => begin A = B + C ; <stmt_list> end
 => begin A = B + C ; <stmt> end
 => begin A = B + C ; <var> = <expression> end
 => begin A = B + C ; B = <expression> end
 => begin A = B + C ; B = <var> end
 => begin A = B + C ; B = C end

Derivations

• Every string of symbols in a derivation is
called a sentential form

• A sentence is a sentential form that has
only terminal symbols

• A leftmost derivation is one in which the
leftmost nonterminal in each sentential
form is the one that is expanded

• A derivation may be neither leftmost nor
rightmost 27

Parse Tree

• A hierarchical representation of a derivation

<program>

<stmt_list>

<stmt>

 C

a

<var> = <expression>

<var> + <var>

28

 B

English language example

29

6 STUART GEMAN AND MARK JOHNSON

w; ψ is called a parse tree of w (with respect to G). In what follows, we
define ΨG to be the set of parse trees generated by G, and Y(·) to be the
function that maps trees to their yields.

Example 1 (continued). The grammar G1 defined above generates
the following two trees, ψ1 and ψ2.

S

NP VP

rice grows

S

NP VP

wheat grows

ψ2 =ψ1 =

In this example, Y(ψ1) = rice grows and Y(ψ2) = wheat grows

A string of terminals w is called ambiguous iff w has two or more parse trees.
Linguistically, each parse tree of an ambiguous string usually corresponds
to a distinct interpretation.

Example 2. Consider G2 = (T2, N2, S, R2), where T2 = {I, saw,
the, man, with, telescope}, N2 = {S, NP, N, Det, VP, V, PP, P} and R2 =
{S → NPVP, NP → I, NP → DetN, Det → the, NP → NP PP, N →
man, N → telescope, VP → V NP, VP → VP PP, PP → P NP, V → saw,
P → with}. Informally, N rewrites to nouns, Det to determiners, V to
verbs, P to prepositions and PP to prepositional phrases. It is easy to
check that the two trees ψ3 and ψ4 with the yields Y(ψ3) = Y(ψ4) =
I saw the man with the telescope are both generated by G2. Linguisti-
cally, these two parse trees represent two different syntactic analyses of
the sentence. The first analysis corresponds to the interpretation where
the seeing is by means of a telescope, while the second corresponds to the
interpretation where the man has a telescope.

the telescope

Det N

NP

with

P

PP

manthe

Det N

NP

saw

V

VP

VP

I

NP

S

PROBABILITY AND STATISTICS IN
COMPUTATIONAL LINGUISTICS, A BRIEF REVIEW

STUART GEMAN∗ AND MARK JOHNSON∗

1. Introduction. Computational linguistics studies the computat-
ional processes involved in language learning, production, and comprehen-
sion. Computational linguists believe that the essence of these processes
(in humans and machines) is a computational manipulation of informa-
tion. Computational psycholinguistics studies psychological aspects of hu-
man language (e.g., the time course of sentence comprehension) in terms
of such computational processes.

Natural language processing is the use of computers for processing nat-
ural language text or speech. Machine translation (the automatic transla-
tion of text or speech from one language to another) began with the very
earliest computers [Kay et al., 1994]. Natural language interfaces permit
computers to interact with humans using natural language, e.g., to query
databases. Coupled with speech recognition and speech synthesis, these
capabilities will become more important with the growing popularity of
portable computers that lack keyboards and large display screens. Other
applications include spell and grammar checking and document summa-
rization. Applications outside of natural language include compilers, which
translate source code into lower-level machine code, and computer vision
[Foo, 1974, Foo, 1982].

The notion of a grammar is central to most work in computational
linguistics and natural language processing. A grammar is a description
of a language; usually it identifies the sentences of the language and pro-
vides descriptions of them, e.g., by defining the phrases of a sentence, their
inter-relationships, and perhaps also aspects of their meanings. Parsing
is the process of recovering a sentence’s description from its words, while
generation is the process of translating a meaning or some other part of a
sentence’s description into a grammatical or well-formed sentence. Parsing
and generation are major research topics in their own right. Evidently,
human use of language involves some kind of parsing and generation pro-
cess, as do many natural language processing applications. For example, a
machine translation program may parse an input language sentence into a
(partial) representation of its meaning, and then generate an output lan-
guage sentence from that representation.

Although the intellectual roots of modern linguistics go back thousands
of years, by the 1950s there was considerable interest in applying the then
newly developing ideas about finite-state machines and other kinds of au-
tomata, both deterministic and stochastic, to natural language. Automata

∗Department of Cognitive and Linguistic Sciences, Brown University, Providence,
RI 02912, USA.

1

Ambiguity in Grammars

• A grammar is ambiguous if and only if it
generates a sentential form that has two
or more distinct parse trees

• Problematic for compilers since parse
tree, and therefore meaning of the
structure, cannot be determined uniquely

30

An Ambiguous Expression Grammar

<expr> → <expr> <op> <expr> | const

<op> → / | -

<expr>

<expr> <expr>

<expr> <expr>

<expr>

<expr> <expr>

<expr> <expr>

<op>

<op>

<op>

<op>

const const const const const const- -/ /

<op>

31

Example

• 2 parse trees
for the sentence  
A=B+C*A

• Operator
precedence

• Conflicting
precedence

32

English language

33

PROBABILITY AND STATISTICS IN
COMPUTATIONAL LINGUISTICS, A BRIEF REVIEW

STUART GEMAN∗ AND MARK JOHNSON∗

1. Introduction. Computational linguistics studies the computat-
ional processes involved in language learning, production, and comprehen-
sion. Computational linguists believe that the essence of these processes
(in humans and machines) is a computational manipulation of informa-
tion. Computational psycholinguistics studies psychological aspects of hu-
man language (e.g., the time course of sentence comprehension) in terms
of such computational processes.

Natural language processing is the use of computers for processing nat-
ural language text or speech. Machine translation (the automatic transla-
tion of text or speech from one language to another) began with the very
earliest computers [Kay et al., 1994]. Natural language interfaces permit
computers to interact with humans using natural language, e.g., to query
databases. Coupled with speech recognition and speech synthesis, these
capabilities will become more important with the growing popularity of
portable computers that lack keyboards and large display screens. Other
applications include spell and grammar checking and document summa-
rization. Applications outside of natural language include compilers, which
translate source code into lower-level machine code, and computer vision
[Foo, 1974, Foo, 1982].

The notion of a grammar is central to most work in computational
linguistics and natural language processing. A grammar is a description
of a language; usually it identifies the sentences of the language and pro-
vides descriptions of them, e.g., by defining the phrases of a sentence, their
inter-relationships, and perhaps also aspects of their meanings. Parsing
is the process of recovering a sentence’s description from its words, while
generation is the process of translating a meaning or some other part of a
sentence’s description into a grammatical or well-formed sentence. Parsing
and generation are major research topics in their own right. Evidently,
human use of language involves some kind of parsing and generation pro-
cess, as do many natural language processing applications. For example, a
machine translation program may parse an input language sentence into a
(partial) representation of its meaning, and then generate an output lan-
guage sentence from that representation.

Although the intellectual roots of modern linguistics go back thousands
of years, by the 1950s there was considerable interest in applying the then
newly developing ideas about finite-state machines and other kinds of au-
tomata, both deterministic and stochastic, to natural language. Automata

∗Department of Cognitive and Linguistic Sciences, Brown University, Providence,
RI 02912, USA.

1

2.3 Overlapping Reusable Parts 285

S

NP VP

VP PP

NPNP

Det

PV

N

I saw the man with the telescope

Det N

S

NP VP

NP

PP

NP

NP

Det

P

V

N

I saw the man with the telescope

Det N

Fig. 2.6 An example of ambiguous sentence with two parse trees. The non-terminal nodes
S, V, NP, VP denotes sentence, verbal, noun phrase, and verbal phrase, respectively. Note
that if the two parses are merged, we obtain a graph, not a tree, with a “diamond” in it as
above.

The above is, however, only the simplest case where reusable parts
overlap. Taking vision, there seem to occur an overlap in four ways.

1. Ambiguous scenes where distinct parses suggest themselves.
2. High level patterns which incorporate multiple partial

patterns.
3. “Joints” between two high level parts where some sharing of

pixels or edges occurs.
4. Occlusion where a background object is completed behind a

foreground object, so the two objects overlap.

A common cause of ambiguity in images is when there is an acciden-
tal match of color across the edge of an object. An example is shown in
Figure 2.7(a): the man’s face has similar color to the background and,
in fact, the segmenter decided the man had a pinnocio-like nose. The
true background and the false head with large nose overlap. As in the
linguistic examples, there is only “true” parse and the large nose part
should be rejected.

An example of the second is given by a square (or by many alpha-
numeric characters). A square may be broken up into two pairs of
parallel lines. A pair of parallel lines is a common reusable part in its
own right, so we may parse the square as having two child nodes, each

English language

34

PROBABILITY AND STATISTICS IN
COMPUTATIONAL LINGUISTICS, A BRIEF REVIEW

STUART GEMAN∗ AND MARK JOHNSON∗

1. Introduction. Computational linguistics studies the computat-
ional processes involved in language learning, production, and comprehen-
sion. Computational linguists believe that the essence of these processes
(in humans and machines) is a computational manipulation of informa-
tion. Computational psycholinguistics studies psychological aspects of hu-
man language (e.g., the time course of sentence comprehension) in terms
of such computational processes.

Natural language processing is the use of computers for processing nat-
ural language text or speech. Machine translation (the automatic transla-
tion of text or speech from one language to another) began with the very
earliest computers [Kay et al., 1994]. Natural language interfaces permit
computers to interact with humans using natural language, e.g., to query
databases. Coupled with speech recognition and speech synthesis, these
capabilities will become more important with the growing popularity of
portable computers that lack keyboards and large display screens. Other
applications include spell and grammar checking and document summa-
rization. Applications outside of natural language include compilers, which
translate source code into lower-level machine code, and computer vision
[Foo, 1974, Foo, 1982].

The notion of a grammar is central to most work in computational
linguistics and natural language processing. A grammar is a description
of a language; usually it identifies the sentences of the language and pro-
vides descriptions of them, e.g., by defining the phrases of a sentence, their
inter-relationships, and perhaps also aspects of their meanings. Parsing
is the process of recovering a sentence’s description from its words, while
generation is the process of translating a meaning or some other part of a
sentence’s description into a grammatical or well-formed sentence. Parsing
and generation are major research topics in their own right. Evidently,
human use of language involves some kind of parsing and generation pro-
cess, as do many natural language processing applications. For example, a
machine translation program may parse an input language sentence into a
(partial) representation of its meaning, and then generate an output lan-
guage sentence from that representation.

Although the intellectual roots of modern linguistics go back thousands
of years, by the 1950s there was considerable interest in applying the then
newly developing ideas about finite-state machines and other kinds of au-
tomata, both deterministic and stochastic, to natural language. Automata

∗Department of Cognitive and Linguistic Sciences, Brown University, Providence,
RI 02912, USA.

1

2.3 Overlapping Reusable Parts 285

S

NP VP

VP PP

NPNP

Det

PV

N

I saw the man with the telescope

Det N

S

NP VP

NP

PP

NP

NP

Det

P

V

N

I saw the man with the telescope

Det N

Fig. 2.6 An example of ambiguous sentence with two parse trees. The non-terminal nodes
S, V, NP, VP denotes sentence, verbal, noun phrase, and verbal phrase, respectively. Note
that if the two parses are merged, we obtain a graph, not a tree, with a “diamond” in it as
above.

The above is, however, only the simplest case where reusable parts
overlap. Taking vision, there seem to occur an overlap in four ways.

1. Ambiguous scenes where distinct parses suggest themselves.
2. High level patterns which incorporate multiple partial

patterns.
3. “Joints” between two high level parts where some sharing of

pixels or edges occurs.
4. Occlusion where a background object is completed behind a

foreground object, so the two objects overlap.

A common cause of ambiguity in images is when there is an acciden-
tal match of color across the edge of an object. An example is shown in
Figure 2.7(a): the man’s face has similar color to the background and,
in fact, the segmenter decided the man had a pinnocio-like nose. The
true background and the false head with large nose overlap. As in the
linguistic examples, there is only “true” parse and the large nose part
should be rejected.

An example of the second is given by a square (or by many alpha-
numeric characters). A square may be broken up into two pairs of
parallel lines. A pair of parallel lines is a common reusable part in its
own right, so we may parse the square as having two child nodes, each

usually more correct:
seeing with the telescope VP = Verb phrase

NP = Noun phrase

the man has the telescope

If else statement

35

3.3 Formal Methods of Describing Syntax 129

Therefore, there cannot be an if statement without an else between a
then and its matching else. So, for this situation, statements must be distin-
guished between those that are matched and those that are unmatched, where
unmatched statements are else-less ifs and all other statements are matched.
The problem with the earlier grammar is that it treats all statements as if they
had equal syntactic significance—that is, as if they were all matched.

To reflect the different categories of statements, different abstractions, or
nonterminals, must be used. The unambiguous grammar based on these ideas
follows:

<stmt> → <matched> | <unmatched>
<matched> → if <logic_expr> then <matched> else <matched>
 |any non-if statement
<unmatched> → if <logic_expr> then <stmt>
 |if <logic_expr> then <matched> else <unmatched>

There is just one possible parse tree, using this grammar, for the following
sentential form:

if <logic_expr> then if <logic_expr> then <stmt> else <stmt>

Figure 3.5

Two distinct parse trees
for the same sentential
form

if <logic_expr> then <stmt> else <stmt>

if <logic_expr> then <stmt>

<if_stmt>

<if_stmt>

if <logic_expr> then <stmt> else <stmt>

<if_stmt>

if <logic_expr> then <stmt>

<if_stmt>

Image grammars

36

1.3 Overview of the Image Grammar 275

Fig. 1.5 Two examples of the parse trees (cat and car) in the Lotus Hill Research Institute
image corpus. From [87].

Foundations and TrendsR⃝ in
Computer Graphics and Vision
Vol. 2, No. 4 (2006) 259–362
c⃝ 2007 S.-C. Zhu and D. Mumford
DOI: 10.1561/0600000018

A Stochastic Grammar of Images

Song-Chun Zhu1,∗ and David Mumford2

1 University of California, Los Angeles USA, sczhu@stat.ucla.edu
2 Brown University, USA, David Mumford@brown.edu

Abstract

This exploratory paper quests for a stochastic and context sensitive
grammar of images. The grammar should achieve the following four
objectives and thus serves as a unified framework of representation,
learning, and recognition for a large number of object categories. (i) The
grammar represents both the hierarchical decompositions from scenes,
to objects, parts, primitives and pixels by terminal and non-terminal
nodes and the contexts for spatial and functional relations by horizon-
tal links between the nodes. It formulates each object category as the
set of all possible valid configurations produced by the grammar. (ii)
The grammar is embodied in a simple And–Or graph representation
where each Or-node points to alternative sub-configurations and an
And-node is decomposed into a number of components. This represen-
tation supports recursive top-down/bottom-up procedures for image
parsing under the Bayesian framework and make it convenient to scale
up in complexity. Given an input image, the image parsing task con-
structs a most probable parse graph on-the-fly as the output interpre-
tation and this parse graph is a subgraph of the And–Or graph after

* Song-Chun Zhu is also affiliated with the Lotus Hill Research Institute, China.

Generating images…

37

Deep learning in your Prisma app

See also Gatys et al. 2015:

Separating content and style in a deep network

Generating images…

38

Deep learning in your Prisma app

