Chapter 3

. . CONCEPTS OF
Describing Syntax PROGRAMMING LANGUAGES 11/¢

and Semantics

Chapter 3 Topics

Introduction

The General Problem of Describing Syntax
Formal Methods of Describing Syntax
Attribute Grammars

Describing the Meanings of Programs:
Dynamic Semantics

Introduction

.- Syntax: the form or structure of the
expressions, statements, and program units

- Semantics: the meaning of the expressions,
statements, and program units

- Syntax and semantics provide a language’s
definition
- Users of a language definition
- Other language designers

- Implementers

- Programmers (the users of the language)

The General Problem of Describing Syntax:

Terminology

- A sentence is a string of characters over some
alphabet

- A language is a set of sentences

- A lexeme is the lowest level syntactic unit of a
language (e.g., *, sum, begin)

- A token is a category of lexemes (e.g., identifier)

Formal Definition of Languages

Recognizers

- A recognition device reads input strings over the alphabet of
the language and decides whether the input strings belong to
the language

- Example: syntax analysis part of a compiler

— Detailed discussion of syntax analysis appears in chapter 4

Generators
- A device that generates sentences of a language

- One can determine if the syntax of a particular sentence is
syntactically correct by comparing it to the structure of the
generator

Generating images...

Generative adversarial networks (GAN)
(Goodfellow 2014; Gulrajani et al. 2017)

Generating images...

D: Discriminator
(Detective)

G: Generator
(Counterfeit)

X : Original Data

Generative adversarial networks

Natural language (Google translate)

Haruki Murakami compares his own translation from Japanese
to English (of Hemingway’s Snows of Kilimanjaro™) to
the 2016 (deep learning) Google translate

NO. 1:

Kilimanjaro is a snow-covered mountain 19,710 feet high, and is said to be the highest mountain in
Africa. Its western summit is called the Masai “Ngaje Ngai,” the House of God. Close to the western
summit there is the dried and frozen carcass of a leopard. No one has explained what the leopard
was seeking at that altitude.

NO. 2:
Kilimanjaro is a mountain of 19,710 feet covered with snow and is said to be the highest mountain in
Africa. The summit of the west is called “Ngaje Ngai” in Masai, the house of God. Near the top of the

west there is a dry and frozen dead body of leopard. No one has ever explained what leopard wanted
at that altitude.

from New York Times, Dec 14 2016

BNF and Context-Free Grammars

- Context-Free Grammars

- Developed by Noam Chomsky in the mid-1950s for
natural languages

- Language generators, meant to describe the syntax
of natural languages

- Define a class of languages called context-free
languages

- Backus-Naur Form (1959)
- Invented by John Backus to describe Algol 58

- BNF is equivalent to context-free grammars

BNF Fundamentals

In BNF, abstractions are used to represent syntactic structures (also
called nonterminal symbols, or just nonterminals)

Terminals are lexemes or tokens

- A rule has a left-hand side (LHS), which is a nonterminal, and a right-
hand side (RHS), which is a string of terminals and/or nonterminals

- Nonterminals are often enclosed in angle brackets

- Examples of BNF rules:
<assign> — <var> = <expression>

<if stmt> — 1f <logic expr> then <stmt>

Grammar: a finite non-empty set of rules

A start symbol is a special element of the nonterminals of a
grammar

10

BNF Rules

- An abstraction (or nonterminal symbol)
cah have more than one RHS

<stmt> — <single stmt>

| begin <stmt list> end

11

Describing Lists

. Syntactic lists are described using
recursion

<ident list> — 1dent

| ident, <ident list>

12

Example Grammar for small

<program> — begin <stmt list> end
<stmt list> — <stmt>

| <stmt> ; <stmt list>
<stmt> — <var> = <expression>
<var> — a | b | c
<expression> — <var> + <var>

| <wvar> - <var>

| <var>

13

Example Grammar for small

<program> — begin <stmt list> end
<stmt list> — <stmt>

| <stmt> ; <stmt list>
<stmt> — <var> = <expression>
<var> — a | b | c
<expression> — <var> + <var>

| <wvar> - <var>

| <var>

14

Example derivation

<program> => begin <stmt_list> end

- We’ll derive A = B + C; B = C with this grammar

- A derivation is a repeated application of rules,

starting with the start symbol (in this case
program)

. => reads “derives”

15

Example derivation

<program> => begin <stmt_list> end
=> begin <stmt> ; <stmt_list> end

16

Example derivation

<program> => begin <stmt_list> end
=> begin <stmt> ; <stmt_list> end
=> begin <var> = <expression> ; <stmt_list> end

17

Example derivation

<program>

=> begin <stmt_list> end

=> begin <stmt> ; <stmt_list> end

=> begin <var> = <expression> ; <stmt_list> end
=> begin A = <expression> ; <stmt_list> end

18

Example derivation

<program> => begin <stmt_list> end
=> begin <stmt> ; <stmt_list> end
=> begin <var> = <expression> ; <stmt_list> end
=> begin A = <expression> ; <stmt_list> end
=> begin A = <var> + <var> ; <stmt_list> end

19

Example derivation

<program> => begin <stmt_list> end
=> begin <stmt> ; <stmt_list> end
=> begin <var> = <expression> ; <stmt_list> end
=> begin A = <expression> ; <stmt_list> end
=> begin A = <var> + <var> ; <stmt_list> end
=> begin A = B + <var> ; <stmt_list> end

20

Example derivation

<program> => begin <stmt_list> end
=> begin <stmt> ; <stmt_list> end
=> begin <var> = <expression> ; <stmt_list> end
=> begin A = <expression> ; <stmt_list> end
=> begin A = <var> + <var> ; <stmt_list> end
=> begin A = B + <var> ; <stmt_list> end
=> begin A=B + C ; <stmt_list> end

21

Example derivation

<program> => begin <stmt_list> end
=> begin <stmt> ; <stmt_list> end
=> begin <var> = <expression> ; <stmt_list> end
=> begin A = <expression> ; <stmt_list> end
=> begin A = <var> + <var> ; <stmt_list> end
=> begin A = B + <var> ; <stmt_list> end
=> begin A=B + C ; <stmt_list> end
=> begin A=B + C ; <stmt> end

22

Example derivation

<program> => begin <stmt_list> end
=> begin <stmt> ; <stmt_list> end
=> pbegin <var> = <expression> ; <stmt_list> end
=> pbegin A = <expression> ; <stmt_list> end
=> begin A = <var> + <var> ; <stmt_list> end
=> begin A = B + <var> ; <stmt_list> end
=> begin A=B + C ; <stmt_list> end
=> begin A=B + C ; <stmt> end
=> pbegin A=B + C ; <var> = <expression> end

23

Example derivation

<program>

=> begin <stmt_list> end

=> begin <stmt> ; <stmt_list> end

=> pbegin <var> = <expression> ; <stmt_list> end
=> pbegin A = <expression> ; <stmt_list> end

=> begin A = <var> + <var> ; <stmt_list> end

=> begin A = B + <var> ; <stmt_list> end

=> begin A=B + C ; <stmt_list> end

=> begin A=B + C ; <stmt> end

=> pbegin A=B + C ; <var> = <expression> end
=> begin A=B + C ; B = <expression> end

24

Example derivation

<program> => begin <stmt_list> end
=> begin <stmt> ; <stmt_list> end
=> pbegin <var> = <expression> ; <stmt_list> end
=> pbegin A = <expression> ; <stmt_list> end
=> begin A = <var> + <var> ; <stmt_list> end
=> begin A = B + <var> ; <stmt_list> end
=> begin A=B + C ; <stmt_list> end
=> begin A=B + C ; <stmt> end
=> pbegin A=B + C ; <var> = <expression> end
=> begin A=B + C ; B = <expression> end
=>begin A=B + C ; B = <var> end

25

Example derivation

<program> => begin <stmt_list> end
=> begin <stmt> ; <stmt_list> end
=> begin <var> = <expression> ; <stmt_list> end
=> begin A = <expression> ; <stmt_list> end
=> begin A = <var> + <var> ; <stmt_list> end
=> pbegin A = B + <var> ; <stmt_list> end
=> begin A=B + C ; <stmt_list> end
=> begin A=B + C ; <stmt> end
=> begin A =B + C ; <var> = <expression> end
=> begin A=B + C ; B = <expression> end
=>pbegin A=B + C ; B =<var>end
= beginA=B+C ;B=Cend

26

Derivations

- Every string of symbols in a derivation is
called a sentential form

- A sentence is a sentential form that has
only terminal symbols

. A leftmost derivation is one in which the
leftmost nonterminal in each sentential
form is the one that is expanded

- A derivation may be neither leftmost nor
rightmost

27

Parse Tree

- A hierarchical representation of a derivation

<program>

<stmt_list>

<stmt>

I
<var> = <expression>
| P N

a <var> + <var>

|
C

28

English language example

S
/\
NP VP
/\
VP PP
/\ /\
Vv NP P NP
N PN
Det N Det N

| | | |

I saw the man with the telescope

PROBABILITY AND STATISTICS IN
COMPUTATIONAL LINGUISTICS, A BRIEF REVIEW

STUART GEMAN* AND MARK JOHNSON*

Ambiguity in Grammars

- A grammar is ambiguous if and only if it
generates a sentential form that has two
or more distinct parse trees

- Problematic for compilers since parse
tree, and therefore meaning of the
structure, cannot be determined uniquely

30

An Ambiguous Expression Grammar

<expr> — <expr> <op> <expr> | const
<op> — / | -
<expr> <expr>
<expr> <op> <expr> <expr> <op> <expr>
<expr> <op> <expr> <expr> <op> <expr>
const - const | const const - const / const

31

Example

- 2 parse trees

for the sentence <assign> <assign>
] Operator <i‘d> - <expr> <id> - <expr>
recedence 1 B EoE | e i
<expr> + <expr> A <expr> » <expr>
. ConﬂiCting /{\ /}\
prece dence <id> <expr> & <expr> <expr> + <expr> <id>
B <id> <id> <id> <id> A
Cc A B C

32

English language

S

/\

NP

VP

T

Det

VP
PN
Vv NP
/\

N

man

PP
P NP
Det N

with the telescope

PROBABILITY AND STATISTICS IN

I

saw the

COMPUTATIONAL LINGUISTICS, A BRIEF REVIEW

STUART GEMAN* AND MARK JOHNSON*

man with the telescope

English language

S S

/\ /\

NP VP NP VP

/\ V/\NP

VP
N RN NP PP
\ NP P NP A N

/\ /\ Det N P /NP\

Det N Det N
o . o
I saw the man with the telescope I saw the man with the telescope
usually more correct: the man has the telescope
seeing with the telescope VP = Verb phrase
PROBABILITY AND STATISTICS IN NP = Noun phI’&S@

COMPUTATIONAL LINGUISTICS, A BRIEF REVIEW

STUART GEMAN* AND MARK JOHNSON*

34

If else statement

Figure 3.5 <if_stmt>

Two distinct parse trees
for the same sentential
form

if <logic_expr> then <stmt> else <stmt>

<if_stmt>

if <logic_expr> then <stmt>

<if _stmt>

if <logic_expr> then <stmt>

<if_stmt>

if <logic_expr> then

<stmt>

else

<stmt>

35

Image grammars

Bg (Object)

Window (Part) Body (Part)
~ ;

angld o x\% N
\ Car(Oyect) / |

Door (Part)
y — A - e
/ o
/ 5 a\ _f&._“ R P
g — e =
{J;.\ d.__; ’_/’{ = SR

e Light (Part)
- 7 \
= =5

RearviewMirror
(Part)

Bumper (Part)

A Stochastic Grammar of Images

Song-Chun Zhu'* and David Mumford?

36

Generating images...

=_

SEL

-
—

(S

==

'.'.d -
— &

See also Gatys et al. 2015:
Separating content and style in a deep network

DIEINE

37

Generating images...

38

