
ISBN 0-321-49362-1

Chapter 2

Evolution of the Major
Programming
Languages (part 1)

�2

Source: https://onionesquereality.wordpress.com/tag/lisp/
referencing “Land of Lisp: Learn to Program in List, One Game at a time” by M. D. Conrad Barski.

Chapter 2 Topics

• Go through some history and major evolution of
some Programming Languages 

• We will show example code to get a sense

• But we will not yet delve into any one language

�3

Genealogy
of Common
Languages
(light version)

1956

1958

1960

1962

1964

1966

1968

1970

1972

1974

1976

1978

1980

1982

1984

1986

1988

1990

1992

1994

1996

1998

2000

2002

2004

2006

2008

Smalltalk 80

Ruby

C# 2.0

SML

Caml

OCaml

Perl

Perl 5

Java 2 (v1.5 beta)

Fortran I

PL/I

Algol 60

Fortran 77

Scheme

Common Lisp

Scheme R5RS

Pascal

Fortran 90

Prolog

Python

Python 2.0

Smalltalk

C (K&R)

Tcl

C++

COBOL

C#

Lisp

Java JavaScript

C++ (ISO) Haskell 98

Ada 83

Eiffel

ML

See also http://www.levenez.com/lang/ for a complete list.

Zuse’s Plankalkül

• Designed in 1945, but not published  
until 1972! Some features got  
reinvented around 15 years later…

�5

Zuse’s Plankalkül

• Designed in 1945, but not published  
until 1972! Some features got  
reinvented around 15 years later…

• Never implemented
• Advanced data structures

– floating point, arrays, records
• Interesting feature: Mathematical  

expressions similar to assertions
• 49 pages of algorithms for playing chess!
• Wikipedia: kalkül = formal system;  

Plankalkül = formal system for planning
�6

Plankalkül Syntax

• But funky/intimidating notation…

• An assignment statement to assign the expression
A[4] + 1 to A[5]

 | A + 1 => A (statement)
 V | 4 5 (subscripts of array)
 S | 1.n 1.n (data types)

�7

integer n bits

Minimal Hardware Programming: Pseudocodes

• 1940’s and early 50s
• Not same as contemporary meaning,
• There was no high level machine language, or even

assembly, so programming done in machine code
• What was wrong with using machine code?

�8

Minimal Hardware Programming: Pseudocodes

• 1940’s and early 50s
• Not same as contemporary meaning,
• There was no high level machine language, or even

assembly, so programming done in machine code
• What was wrong with using machine code?  

- tedious to modify and error prone; absolute  
 addressing  
- hard to program 
- readability 
- Machine deficiencies--no indexing or floating point

�9

Pseudocodes: Short Code

�10

01 - 06 abs 1n (n+2)nd power

02) 07 + 2n (n+2)nd root

03 = 08 pause 4n if >= n

04 / 09 (58 print and tab

Coded versions of mathematical expressions
to be evaluated:

Pseudocodes: Short Code

�11

01 - 06 abs 1n (n+2)nd power

02) 07 + 2n (n+2)nd root

03 = 08 pause 4n if >= n

04 / 09 (58 print and tab

Example: X0=SQRT(ABS(Y0))

coded as: 00 X0 03 20 09 06 09 Y0 02 02
(with 00 padding)

Pseudocodes: Short Code

�12

Source: https://onionesquereality.wordpress.com/tag/lisp/
referencing “Land of Lisp: Learn to Program in List, One Game at a time” by M. D. Conrad Barski.

Pseudocodes: Short Code

• UNIVAC I Computer: first commercial computer sold
in US, used short code

�13http://www.computerhistory.org/timeline/1951/

Pseudocodes: Short Code

• UNIVAC I Computer: first commercial computer sold
in US, used short code

�14http://www.computerhistory.org/timeline/1951/

Univac (Universal Automatic
Computer)
Used for??

Pseudocodes: Short Code

• UNIVAC I Computer: first commercial computer sold
in US, used short code

�15http://www.computerhistory.org/timeline/1951/

https://www.thocp.net/hardware/univac.htm#1

- “Univac (Universal Automatic Computer) computers were  
used in many different applications but utilities, insurance  
companies and the US military were major customers…”

- Apparently used in 1952 presidential elections to predict  
Eisenhower would win over Stevens on the evening of the  
election: “CBS withheld its predictions from the air, but as  
the night went on, Walter Cronkite announced UNIVAC  
was right and Eisenhower had won.”

- “One biblical scholar even used a Univac 1 to compile a  
concordance to the King James version of the Bible"

Pseudocodes: Speedcoding

• Speedcoding developed by Backus in 1954 for IBM
701
– Included floating point operations
– Slow! (add instruction: 4.2 millisec to  

execute)
– Only 700 words left for user program 

after loading interpreter!

�16

IBM 704 and Fortran

�17Source: Columbia University

One of the greatest single advances
in computing …

IBM 704 and Fortran

• Fortran 0: 1954 - not implemented  
Report: “The IBM Mathematical FORmula
TRANslating System: FORTRAN”

• Fortran I: 1957
– Designed for the new IBM 704
– Considered one of the greatest single advances in

computing
– Prompted development of Fortran high-level language

�18Source: Columbia University

IBM 704 and Fortran

• Fortran I:1957
– Designed for the new IBM 704, which had index registers

and floating point hardware
– This led to the idea of compiled programming languages,

(primary reason for interpreters being tolerated before
was the lack of floating point ops in hardware. All had to
be done in software)

�19Source: Columbia University

IBM 704 and Fortran

• Fortran I:1957
– Environment of development

• Computers were unreliable
• Applications were scientific
• No programming methodology or tools
• Machine efficiency was the most important concern

�20Source: Columbia University

Fortran I Overview

• First implemented version of Fortran
– Names could have up to six characters (2 in version 0)
– Post-test counting loop (DO)
– Formatted I/O
– User-defined subprograms
– Three-way selection statement (arithmetic IF)
– No data typing statements (names beginning I,J,K,L,M,N

implicitly integer; others float…)

�21

Fortran I Overview (continued)

• First implemented version of FORTRAN
– Compiler released in April 1957, after 18 worker-years of

effort!
– Programs larger than 400 lines rarely compiled correctly,

mainly due to poor reliability of 704
– Code was very fast
– Quickly became widely used

�22

• “…early versions of Fortran suffer in a variety of ways,
as would be expected … afterall, it would not be fair
to compare the performance or comfort of a 1910
model T Ford to a 2015 Ford Mustang”; Sebesta book

�23

Fortran I Overview (continued)

Fortran IV (1960-62)

• Evolved during 1960-62
– Explicit type declarations
– Logical selection statement
– Subprogram names could be parameters
– ANSI standard in 1966

�24

Fortran and art (1967)
• Nam Jun Paik (video artist) uses Fortran (1967);

Smithsonian Watch This! Revelations in media art 2015

�25

Fortran 77

• Became the new standard in 1978
– Character string handling
– Logical loop control statement
– IF-THEN-ELSE statement

�26

Fortran 90

• Changed significantly from Fortran 77
– Modules
– Dynamic arrays
– Pointers
– Recursion
– CASE statement
– Parameter type checking

�27

Latest versions of Fortran

• Fortran 95 – relatively minor additions, plus some
deletions

• Fortran 2003 - supports OOP
• Summary: Fortran accredited as first high-level

language; has evolved with modern features and still
used today

�28

Fortran Evaluation

• Highly optimizing compilers
– Types and storage of all variables are fixed before run time

• Dramatically changed forever the way computers are
used

• Characterized as the lingua franca of the computing
world

�29

! Fortran 95 Example program
! Input: An integer, List_Len, where List_Len is less
! than 100, followed by List_Len-Integer values
! Output: The number of input values that are greater
! than the average of all input values
Implicit none
Integer Dimension(99) :: Int_List
Integer :: List_Len, Counter, Sum, Average, Result
Result= 0
Sum = 0
Read *, List_Len
If ((List_Len > 0) .AND. (List_Len < 100)) Then
! Read input data into an array and compute its sum
 Do Counter = 1, List_Len
 Read *, Int_List(Counter)
 Sum = Sum + Int_List(Counter)
 End Do
 ! Compute the average
 Average = Sum / List_Len
 ! Count the values that are greater than the average
 Do Counter = 1, List_Len
 If (Int_List(Counter) > Average) Then
 Result = Result + 1
 End If
 End Do
 ! Print the result
 Print *, 'Number of values > Average is:', Result
 Else
 Print *, 'Error - list length value is not legal'
 End If
 End Program Example

�30

Fortran example code

Functional Programming: LISP

• LISP Processing language
– Designed at MIT by McCarthy

�31http://www-formal.stanford.edu/jmc/history/lisp/lisp.html

Functional Programming: LISP

• AI research needed a language
– Interest in AI in mid 1950s
– Interest from linguists and natural language processing,

psychologists and the brain, mathematicians and
mechanizing intelligent processes 
 

�32

Functional Programming: LISP

�33
http://www-formal.stanford.edu/jmc/history/lisp/lisp.html

“My desire for an algebraic list processing language for artificial intelligence work on the
IBM 704 computer arose in the summer of 1956 during the Dartmouth Summer Research
Project on Artificial Intelligence which was the first organized study of AI …
There were two motivations for developing a language for the IBM 704. First, IBM was
generously establishing a New England Computation Center at M.I.T. which Dartmouth
would use. Second, IBM was undertaking to develop a program for proving theorems in
plane geometry (based on an idea of Marvin Minsky's), and I was to serve as a consultant
to that project…”

Functional Programming: LISP

�34
http://www-formal.stanford.edu/jmc/history/lisp/lisp.html

“my own research in artificial intelligence was proceeding along the lines that led to the
Advice Taker proposal in 1958 (McCarthy 1959). This involved representing information
about the world by sentences in a suitable formal language and a reasoning program that
would decide what to do by making logical inferences. Representing sentences by list
structure seemed appropriate - it still is - and a list processing language also seemed
appropriate for programming the operations involved in deduction - and still is.”

�35

Source: https://onionesquereality.wordpress.com/tag/lisp/
referencing “Land of Lisp: Learn to Program in List, One Game at a time” by M. D. Conrad Barski.

�36

Source: https://onionesquereality.wordpress.com/tag/lisp/
referencing “Land of Lisp: Learn to Program in List, One Game at a time” by M. D. Conrad Barski.

Functional Programming: LISP

• AI research needed a language to
– Process data in lists (rather than arrays). Why lists?

�37

Functional Programming: LISP

• AI research needed a language to
– Process data in lists (rather than arrays). Why lists?  
 
More flexible than arrays, allows more heterogeneous data,
hierarchies, decision making on trees, recursion

�38

Functional Programming: LISP

• AI research needed a language to
– Process data in lists (rather than arrays)
– Symbolic computation (rather than numeric) 
 
What is symbolic? Example lists?

�39

Functional Programming: LISP

• AI research needed a language to
– Process data in lists (rather than arrays)
– Symbolic computation (rather than numeric) 
 
Symbolic as in symbols, e.g., relationship between items 
in a list - more abstract (colors, places, people, hierarchical
parts of objects, things you remember, etc.); can have
semantic value

�40

Functional Programming: LISP

• AI research needed a language to
– Process data in lists (rather than arrays)
– Symbolic computation (rather than numeric) 

• Only two data types: atoms and lists

�41

Representation of Two LISP Lists

Representing the lists (A B C D)
and (A (B C) D (E (F G)))

�42

Functional Programming: LISP

• All computations by applying functions to arguments

�43

Very different from Imperative Languages

Functional Programming: LISP

• All computations by applying functions to arguments
• assignment statements and variables not necessary

�44

Very different from Imperative Languages

Functional Programming: LISP

• All computations by applying functions to arguments
• assignment statements and variables not necessary
• No loops and all done with recursion

�45

Very different from Imperative Languages

Functional Programming: LISP

• All computations by applying functions to arguments
• assignment statements and variables not necessary
• No loops and all done with recursion
• Syntax very different (compare C to LISP and its

simplicity)

�46

Very different from Imperative Languages

Functional Programming: LISP

• All computations by applying functions to arguments
• assignment statements and variables not necessary
• No loops and all done with recursion
• Syntax very different (compare C to LISP and its

simplicity)
• Formally, based on lambda calculus, introduced to

investigate function definition, application, and
recursion in 1930s

�47

Very different from Imperative Languages

LISP Evaluation

• Pioneered functional programming
– No need for variables or assignment
– Control via recursion and conditional expressions

• Original LISP is “Pure Lisp” because purely functional
• Dominated AI for 25 years and still dominant [though

note today: renewed interest in machine learning/AI,
and other imperative languages such as Python]

�48

LISP Evaluation

• Pioneered functional programming
– No need for variables or assignment
– Control via recursion and conditional expressions

• Original LISP is “Pure Lisp” because purely functional
• Dominated AI for 25 years and still dominant [though

note today: renewed interest in machine learning/AI,
and other imperative languages such as Python]

• COMMON LISP (which has added imperative
language capabilities) and Scheme are contemporary
dialects of LISP (more later)

• Related languages today?
�49

LISP Evaluation

• Dominated AI for 25 years and still dominant [though
note today: renewed interest in machine learning/AI,
and other imperative languages such as Python]

• COMMON LISP (which has added imperative
language capabilities) and Scheme are contemporary
dialects of LISP (more later)

• ML, Miranda, Haskell, Clojure are related languages
• ML some imperative and doesn’t use parenthesis; 

Haskell, lazy evaluation.

�50

LISP Example Program

�51

; LISP Example function
; The following code defines a LISP predicate function
; that takes two lists as arguments and returns True
; if the two lists are equal, and NIL (false) otherwise
 (DEFUN equal_lists (lis1 lis2)
 (COND
 ((ATOM lis1) (EQ lis1 lis2))
 ((ATOM lis2) NIL)
 ((equal_lists (CAR lis1) (CAR lis2))
 (equal_lists (CDR lis1) (CDR lis2)))
(T NIL))

)

CAR, CDR?
Where is the recursion?

Genealogy
of Common
Languages
(light version)

1956

1958

1960

1962

1964

1966

1968

1970

1972

1974

1976

1978

1980

1982

1984

1986

1988

1990

1992

1994

1996

1998

2000

2002

2004

2006

2008

Smalltalk 80

Ruby

C# 2.0

SML

Caml

OCaml

Perl

Perl 5

Java 2 (v1.5 beta)

Fortran I

PL/I

Algol 60

Fortran 77

Scheme

Common Lisp

Scheme R5RS

Pascal

Fortran 90

Prolog

Python

Python 2.0

Smalltalk

C (K&R)

Tcl

C++

COBOL

C#

Lisp

Java JavaScript

C++ (ISO) Haskell 98

Ada 83

Eiffel

ML

See also http://www.levenez.com/lang/ for a complete list.

