
Programming Languages, Introduction 
CSC419; Odelia Schwartz

Short introduction

• Odelia Schwartz

– Office: Ungar Building, Room No 310D

– Email: odelia@cs.miami.edu (preferred)

– Office Hours: email for appointment or
when door open

• Research interests
– Computational neuroscience
– Machine learning

3

More introduction...

• Teaching Assistant: Xu Pan
– Email: xupan at miami.edu
– Office hours: TBA 

4

Short introduction

• Student introductions…  
 
what major? 
what languages?

• Hope to get out of course?

5

More introduction...

• Recommended Text Book
– Concepts of Programming Languages 8-11/E  

(most recent version 12), Robert W. Sebesta,  
University of Colorado, Colorado Springs,  
Pearson.

6

More introduction...
• Recommended Text Book

– Concepts of Programming Languages 8-11/E (most recent version 12), Robert
W. Sebesta, University of Colorado, Colorado Springs, Pearson. 

• Course Content
– Chapters 1 to 3 (introductory chapters)
– chapters 5-7 (aspects of imperative languages),
– chapter 15 (functional programming languages),
– chapter 16 (logic programming languages).
– Course material will be uploaded after the lecture as .pdf files.
– Check http://www.cs.miami.edu/home/odelia/teaching/csc419_spring20/

index.html regularly. Content may change slightly during semester.

7

Grading & general issues

– Grading
– HW: 70%; QUIZZES: 30%

– Participation, active engagement, and discussion in course encouraged
… each of us may be expert in other languages and learn from one
another

8

Chapter 1

Preliminaries

9ISBN 0-321-49362-1

Chapter 1 Topics

• Reasons for Studying Concepts of Programming
Languages

• Programming Domains
• Language Evaluation Criteria
• Influences on Language Design
• Language Categories
• Language Design Trade-Offs
• Implementation Methods
• Programming Environments

10

 Reasons for studying concepts of PL?

11

 Reasons for studying concepts of PL

• Increased ability to express ideas
• Improved background for choosing appropriate

languages (when you open your startup… when
solving particular problems)

• Learning new programming paradigms
• Increased ability to learn new languages
• Better understanding of significance of

implementation
• Better use of languages that are already known
• Overall advancement of computing

12

Programming Domains

• What languages used in?
• Scientific applications
• Business applications
• Artificial intelligence
• Systems programming
• Web Software

13

Programming Domains

• What languages used in?
• Scientific applications

14

Programming Domains

• What languages used in?
• Scientific applications 

– Large numbers of floating point computations; use of arrays
– Late 1940s, early 1950s, with first digital computers
– Fortran, upgraded over the years
– More recently though not stressed in book: Matlab, Python !

15

Programming Domains

• What languages used in?
• Business applications

16

Programming Domains

• What languages used in?
• Business applications 

– Produce reports, use decimal numbers and characters
– COBOL, 1950s, and still used today 

17

Programming Domains

• What languages used in?
• Artificial intelligence

18

Programming Domains

• What languages used in?
• Artificial intelligence  

– Symbols rather than numbers manipulated; use of linked lists
– LISP
– Not stressed in book: Machine learning - Python

19

Programming Domains

• What languages used in?
• Systems programming

20

Programming Domains

• What languages used in?
• Systems programming  

– Need efficiency because of continuous use (eg, reading from and writing
to file; starting and stopping programs)

– C

21

Programming Domains

• What languages used in?
• Web Software

22

Programming Domains

• What languages used in?
• Web Software  

– Eclectic collection of languages: markup (e.g., XHTML), scripting (e.g.,
Javascript, PHP), general-purpose (e.g., Java)

23

Programming Domains
• Scientific applications

– Large numbers of floating point computations; use of arrays
– Fortran (more recently though not stressed in book: Matlab, Python)

• Business applications
– Produce reports, use decimal numbers and characters
– COBOL

• Artificial intelligence
– Symbols rather than numbers manipulated; use of linked lists
– LISP

• Systems programming
– Need efficiency because of continuous use (eg, reading from and writing

to file)
– C

• Web Software
– Eclectic collection of languages: markup (e.g., XHTML), scripting (e.g.,

Javascript, PHP), general-purpose (e.g., Java)

24

Language Categories?

25

Language Categories

• Imperative
• Functional
• Logical  
 
Example languages?

26

Language Categories

• Imperative
– Central features are variables, assignment statements, and

iteration
– Include languages that support object-oriented programming
– Include scripting languages
– Include the visual languages
– Examples: C, Java, Perl, JavaScript, Ruby, Visual BASIC .NET,

C++, Python, …

27

Language Categories

• Functional
– Main means of making computations is by applying functions to

given parameters
– Examples?

28

Language Categories

• Functional
– Main means of making computations is by applying functions to

given parameters
– Examples: LISP, Scheme, Haskell (e.g., recently in Facebook

fighting spam)

29

Language Categories

• Logic
– Rule-based (rules are specified in no particular order)
– Example?

30

Language Categories

• Logic
– Rule-based (rules are specified in no particular order)
– Example: Prolog (e.g., recently in IBM Watson)

31

Are there new languages?

32

Are there new languages?

33

• Yes…
– Swift 2014 Apple
– Google go 2009
– Rust 2015 Mozilla
– Pyro deep learning probabilistic language 2017 - eg, Uber AI

Language Examples

• Rosettacode: 
 
 
 

• Look at some examples in different languages…

34

https://www.rosettacode.org/wiki/99_Bottles_of_Beer 

Also…

http://www.99-bottles-of-beer.net
 
https://www.rosettacode.org/wiki/A%2BB

Language Examples

• C

35

https://www.rosettacode.org/wiki/99_Bottles_of_Beer#The_simple_solution

int main(void)
{
 unsigned int bottles = 99;
 do
 {
 printf("%u bottles of beer on the wall\n", bottles);
 printf("%u bottles of beer\n", bottles);
 printf("Take one down, pass it around\n");
 printf("%u bottles of beer on the wall\n\n", --bottles);
 } while(bottles > 0);
 return EXIT_SUCCESS;
}

Language Examples

• Python  

36

def sing(b, end):
 print(b or 'No more','bottle'+('s' if b-1 else ''), end)

for i in range(99, 0, -1):
 sing(i, 'of beer on the wall,')
 sing(i, 'of beer,')
 print('Take one down, pass it around,')
 sing(i-1, 'of beer on the wall.\n')

https://www.rosettacode.org/wiki/99_Bottles_of_Beer/Python#Normal_Code

Language Examples

• Java

37

https://www.rosettacode.org/wiki/99_Bottles_of_Beer#Java

public class Beer
{
 static String bottles(final int n)
 {
 return MessageFormat.format("{0,choice,0#No more bottles|1#One bottle|2#{0} bottles} of beer", n);
 }
 public static void main(final String[] args)
 {
 String byob = bottles(99);
 for (int x = 99; x > 0;)
 {
 System.out.println(byob + " on the wall");
 System.out.println(byob);
 System.out.println("Take one down, pass it around");
 byob = bottles(--x);
 System.out.println(byob + " on the wall\n");
 }
 }
}

Language Examples

• Another Java

38

https://www.rosettacode.org/wiki/99_Bottles_of_Beer#Java

public class Beer extends JFrame implements ActionListener{
 private int x;
 private JButton take;
 private JTextArea text;
 public static void main(String[] args){
 new Beer();//build and show the GUI
 }

 public Beer(){
 x= 99;
 take= new JButton("Take one down, pass it around");
 text= new JTextArea(4,30);//size the area to 4 lines, 30 chars each
 text.setText(x + " bottles of beer on the wall\n" + x + " bottles of beer");
 text.setEditable(false);//so they can't change the text after it's displayed
 take.addActionListener(this);//listen to the button
 setLayout(new BorderLayout());//handle placement of components
 add(text, BorderLayout.CENTER);//put the text area in the largest section
 add(take, BorderLayout.SOUTH);//put the button underneath it
 pack();//auto-size the window
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);//exit on "X" (I hate System.exit...)
 setVisible(true);//show it
 }

 public void actionPerformed(ActionEvent arg0){
 if(arg0.getSource() == take){//if they clicked the button

Language Examples

• Swift

39

https://www.rosettacode.org/wiki/99_Bottles_of_Beer#Swift

for i in reverse(1...99) {

 println("\(i) bottles of beer on the wall, \(i) bottles of
beer.")
 let next = i == 1 ? "no" : i.description
 println("Take one down and pass it around, \(next) bottles of
beer on the wall.")
}

Language Examples

• APL code (1960s) 
https://www.rosettacode.org/wiki/99_Bottles_of_Beer#APL 
 
bob ← { (⍕⍵), ' bottle', (1=⍵)↓'s of beer'} 
bobw ← {(bob ⍵) , ' on the wall'} 
beer ← { (bobw ⍵) , ', ', (bob ⍵) , ';  
take one down and pass it around, ', bobw ⍵-1}↑beer¨ ⌽(1-
⎕IO)+⍳99

40

Language Examples

• Scheme

41

https://www.rosettacode.org/wiki/99_Bottles_of_Beer#Scheme_2

(define (sing)
 (define (sing-to-x n)
 (if (> n -1)
 (begin
 (display n)
 (display "bottles of beer on the wall")
 (newline)
 (display "Take one down, pass it around")
 (newline)
 (sing-to-x (- n 1)))
 (display "would you wanna me to sing it again?")))
 (sing-to-x 99))

Language Examples

• Prolog

42

https://www.rosettacode.org/wiki/99_Bottles_of_Beer/Python#Normal_Code

bottles(0):-!.
bottles(X):-
 writef('%t bottles of beer on the wall \n',[X]),
 writef('%t bottles of beer\n',[X]),
 write('Take one down, pass it around\n'),
 succ(XN,X),
 writef('%t bottles of beer on the wall \n\n',[XN]),
 bottles(XN).

:- bottles(99).

Language Examples

• Assembly

43

https://www.rosettacode.org/wiki/99_Bottles_of_Beer/Assembly#360_Assembly

* 99 Bottles of Beer 04/09/2015
BOTTLES CSECT
 USING BOTTLES,R12
 LR R12,R15
BEGIN LA R2,99 r2=99 number of bottles
 LR R3,R2
LOOP BCTR R3,0 r3=r2-1
 CVD R2,DW binary to pack decimal
 MVC ZN,EDMASKN load mask
 ED ZN,DW+6 pack decimal (PL2) to char (CL4)
 CH R2,=H'1' if r2<>1
 BNE NOTONE1 then goto notone1
 MVI PG1+13,C' ' 1 bottle
 MVI PG2+13,C' ' 1 bottle
NOTONE1 MVC PG1+4(2),ZN+2 insert bottles
 MVC PG2+4(2),ZN+2 insert bottles
 CVD R3,DW binary to pack decimal
 MVC ZN,EDMASKN load mask

…

Language Evaluation Criteria

• What criteria are important?

44

Language Evaluation Criteria

• Readability: the ease with which programs can be
read and understood

• Writability: the ease with which a language can be
used to create programs

• Reliability: conformance to specifications (i.e.,
performs to its specifications)

• Cost: the ultimate total cost

45

Evaluation Criteria: Readability

• Overall simplicity
– A manageable set of features and constructs
– Minimal feature multiplicity
– Minimal operator overloading

46

Evaluation: Simplicity example

• Java: how many ways to increment an integer variable?

47

Evaluation: Simplicity example

• Example: Java; multiplicity of ways to increment:
– count = count + 1
– count+=1
– count++
– ++count

48

Evaluation Criteria: Readability

• Overall simplicity
– A manageable set of features and constructs
– Minimal feature multiplicity
– Minimal operator overloading

• Orthogonality
– Term comes from mathematics …
– A relatively small set of primitive constructs can be

combined in a relatively small number of ways
– Every possible combination is legal

49

Evaluation: Examples of Orthogonality
• IBM: only certain combos allowed adding integers in

registers and memory (not orthogonal) 
 
A Reg1, memory_cell  
AR Reg1, Reg2  
 
Reg1 <- contents(Reg1) + contents(memory_cell) 
Reg1 <- contents(Reg1) + contents(Reg2) 

• VAX (orthogonal) 
 
ADDL operand_1, operand_2  
 
operand_1 <- contents(operand_1) + contents(operand_2)

50

Evaluation: Examples of Orthogonality

• The more orthogonal the design of a language, the fewer
exceptions the language rule require. Also easier to learn.

• Too much orthogonality can also cause problems
– ALGOL 68 is most orthogonal language (every language

construct has a type and no restrictions on those types …
combinatorial freedom allows very complex structures)

– Unnecessary complexity due to extremely complex structures

51

Evaluation Criteria: Readability

• Overall simplicity
– A manageable set of features and constructs
– Minimal feature multiplicity
– Minimal operator overloading

• Orthogonality
– A relatively small set of primitive constructs can be

combined in a relatively small number of ways
– Every possible combination is legal

• Control statements
– The presence of well-known control structures

52

Evaluation Criteria: Readability

53

Lack of readability (goto; 1960s)…

Basic:
10 PRINT "Hello"
20 GOTO 50
30 PRINT "This text will not be printed"
40 END
50 PRINT "Goodbye"

Source: http://www.readybasic.com/referencemanual/commands/GOTO.html

Evaluation Criteria: Readability

• Overall simplicity
– A manageable set of features and constructs
– Minimal feature multiplicity
– Minimal operator overloading

• Orthogonality
– A relatively small set of primitive constructs can be

combined in a relatively small number of ways
– Every possible combination is legal

• Control statements
– The presence of well-known control structures

54

Evaluation Criteria: Readability (2)

• Data types and structures
– Adequate predefined data types and structures (e.g.,

boolean with TRUE/FALSE)
– The presence of adequate facilities for defining data

structures
• Syntax considerations

– Special words (eg, while, class, for) and methods of
forming compound statements (all end or close brackets
for any control statement, versus end if in Fortran95 and
Ada, versus indent for Python)

– Form and meaning: self-descriptive constructs,
meaningful keywords (eg, grep in Unix)

55

Evaluation Criteria: Writability
• Simplicity and orthogonality

– Few constructs, a small number of primitives, a small set
of rules for combining them

• Support for abstraction
– The ability to define and use complex structures or

operations in ways that allow details to be ignored (e.g.,  
OOP)

• Expressivity
– A set of relatively convenient ways of specifying

operations
– Strength and number of operators and predefined

functions

56

Evaluation Criteria: Reliability

• Type checking
– Testing for type errors (e.g., original C 1978, int could be used  

in function that expected float but returned nonsense)
• Exception handling

– Intercept run-time errors and take corrective measures (e.g., C
++,Java,C#, but not C)

• Aliasing
– Presence of two or more distinct referencing methods for the

same memory location
• Readability and writability

– A language that does not support “natural” ways of expressing
an algorithm will have reduced reliability

57

Language Design Trade-Offs

• Reliability vs. cost of execution
– Example: Java demands all references to array elements be

checked for proper indexing, which leads to increased execution
costs. C does not require index range checking.

• Readability vs. writability
– Example: APL provides many powerful operators (and a large

number of new symbols), allowing complex computations to be
written in a compact program but at the cost of poor readability

• Writability (flexibility) vs. reliability
– Example: C++ pointers are powerful and very flexible but are

unreliable. Not included in Java.

58

Language Design Trade-Offs

• Readability: Example APL code: 
https://www.rosettacode.org/wiki/99_Bottles_of_Beer#APL 
 
bob ← { (⍕⍵), ' bottle', (1=⍵)↓'s of beer'} 
bobw ← {(bob ⍵) , ' on the wall'} 
beer ← { (bobw ⍵) , ', ', (bob ⍵) , ';  
take one down and pass it around, ', bobw ⍵-1}↑beer¨ ⌽(1-
⎕IO)+⍳99

59

Language Design Trade-Offs

• Readability: Compare to Python 

60

def sing(b, end):
 print(b or 'No more','bottle'+('s' if b-1 else ''), end)

for i in range(99, 0, -1):
 sing(i, 'of beer on the wall,')
 sing(i, 'of beer,')
 print('Take one down, pass it around,')
 sing(i-1, 'of beer on the wall.\n')

https://www.rosettacode.org/wiki/99_Bottles_of_Beer/Python#Normal_Code

Language Evaluation Criteria

61

Evaluation Criteria: Cost

• Training programmers to use the language
• Writing programs (closeness to particular

applications)
• Compiling programs (Ada initially high cost)
• Executing programs (run-time checks)
• Language implementation system: availability of

free compilers (e.g., Java)
• Reliability: poor reliability leads to high costs
• Maintaining programs

62

Evaluation Criteria: Others

• Portability
– The ease with which programs can be moved from one

implementation to another (standardization: C++
committee in 1989, approved 1998!)

• Generality
– The applicability to a wide range of applications

• Well-definedness
– The completeness and precision of the language’s

official definition

63

Language Design Trade-Offs

• Hoare 1973: “There are so many important but
conflicting criteria, that their reconciliation and
satisfaction is a major engineering task”

64

Influences on Language Design

• Computer Architecture
– Languages are developed around the prevalent

computer architecture, known as the von Neumann
architecture

• Programming Methodologies
– New software development methodologies (e.g.,

object-oriented software development) led to new
programming paradigms and by extension, new
programming languages

65

Computer Architecture Influence

• Well-known computer architecture: Von Neumann
• Imperative languages, most dominant, because of von

Neumann computers
– Data and programs stored in memory
– Memory is separate from CPU
– Instructions and data are piped from memory to CPU
– Basis for imperative languages

• Variables model memory cells
• Assignment statements model piping
• Iteration is efficient

66

The von Neumann Architecture

67

The von Neumann Architecture

• Fetch-execute-cycle (on a von Neumann
architecture computer)

initialize the program counter

repeat forever

fetch the instruction pointed by the counter

increment the counter

decode the instruction

execute the instruction

end repeat

68

69

Von Neumann Bottleneck

Backus 1977 ACM Turing Award Lecture:

“… and a connecting tube that can transmit a single word between the
CPU and the store (and send an address to the store). I propose to call
this tube the Von Neumann bottleneck. The task of a program is to
change the contents of the store in some major way; when one considers
that this task must be accomplished entirely by pumping single words
back and forth through the von Neumann bottleneck, the reason for its
name becomes clear…”

Von Neumann Bottleneck

• Connection speed between a computer’s memory
and its processor determines the speed of a
computer

• Program instructions often can be executed much
faster than the speed of the connection; the
connection speed thus results in a bottleneck

• Known as the von Neumann bottleneck; it is the
primary limiting factor in the speed of computers

70

Programming Methodologies Influences

• 1950s and early 1960s: Simple applications; worry
about machine efficiency

• Late 1960s: People efficiency became important;
readability, better control structures
– structured programming
– top-down design and step-wise refinement

• Late 1970s: Process-oriented to data-oriented
– data abstraction

• Middle 1980s: Object-oriented programming
– Data abstraction + inheritance + polymorphism

71

Implementation Methods

• Compilation
– Programs are translated into machine language

• Pure Interpretation
– Programs are interpreted by another program known as an

interpreter
• Hybrid Implementation Systems

– A compromise between compilers and pure interpreters
– translate high-level programs to an intermediate language

72

Compilation

• Translate high-level program (source language) into
machine code (machine language)

• Slow translation, fast execution
• Compilation process has several phases:

– lexical analysis: converts characters in the source program
into lexical units

– syntax analysis: transforms lexical units into parse trees which
represent the syntactic structure of program

– Semantics analysis: generate intermediate code
– code generation: machine code is generated

73

The Compilation Process

74

Pure Interpretation

• No translation
• Easier implementation of  

programs (run-time errors  
can easily and immediately be displayed)

• Slower execution (10 to 100 times slower than
compiled programs)

• Often requires more space
• Now rare for traditional high-level languages
• Significant comeback with some Web scripting

languages (e.g., JavaScript, PHP)

75

Hybrid Implementation Systems

• A compromise between  
compilers and pure interpreters

• A high-level language program is translated
to an intermediate language that allows
easy interpretation

• Examples
– Perl programs are partially compiled to detect errors before

interpretation
– Initial implementations of Java were hybrid; the intermediate

form, byte code, provides portability to any machine that has a
byte code interpreter and a run-time system (together, these
are called Java Virtual Machine)

76

Just-in-Time Implementation Systems

• Initially translate programs to an intermediate
language

• Then compile the intermediate language of the
subprograms into machine code when they are called

• Machine code version is kept for subsequent calls
• JIT systems are widely used for Java programs
• .NET languages are implemented with a JIT system

77

Summary
• The study of programming languages is valuable for a number

of reasons:
– Increase our capacity to use different constructs
– Enable us to choose languages more intelligently
– Makes learning new languages easier

• Most important criteria for evaluating programming languages
include:

– Readability, writability, reliability, cost
• Major influences on language design have been machine

architecture and software development methodologies
• The major methods of implementing programming languages

are: compilation, pure interpretation, and hybrid
implementation

78

