
1

Logical Languages
part 5

2020

Instructor: Odelia Schwartz

2

Prolog
Control flow model for
likes(jake,X), likes(darcie,X)732 Chapter 16 Logic Programming Languages

twice. The second subgoal fails the first time, which forces a return through
redo to the first subgoal.

16.6.7 List Structures

So far, the only Prolog data structure we have discussed is the atomic prop-
osition, which looks more like a function call than a data structure. Atomic
propositions, which are also called structures, are actually a form of records.
The other basic data structure supported is the list. Lists are sequences of any
number of elements, where the elements can be atoms, atomic propositions, or
any other terms, including other lists.

Prolog uses the syntax of ML and Haskell to specify lists. The list elements
are separated by commas, and the entire list is delimited by square brackets,
as in

[apple, prune, grape, kumquat]

The notation [] is used to denote the empty list. Instead of having explicit
functions for constructing and dismantling lists, Prolog simply uses a special
notation. [X | Y] denotes a list with head X and tail Y, where head and tail
correspond to CAR and CDR in LISP. This is similar to the notation used in ML
and Haskell.

A list can be created with a simple structure, as in

new_list([apple, prune, grape, kumquat]).

which states that the constant list [apple, prune, grape, kumquat] is a
new element of the relation named new_list (a name we just made up). This
statement does not bind the list to a variable named new_list; rather, it does
the kind of thing that the proposition

likes (jake, X)

likes (darcie, X)

Call Fail

Call Fail

Exit Redo

Exit Redo

Figure 16.1

Control flow model
for the goal likes
(jake, X), likes
(darcie, X)

§ Four parts for each subgoal
§ Can enter goal through call

(forward) or redo (backward)
§ Can exit through fail or

exit

3

Prolog

§ append

append([], List, List)
append ([Head | List_1], List_2, [Head | List_3]) :-
append(List_1, List_2, List_3)

[trace] ?- append([bob,jo],[jake, darcie],Family).
Call: (6) append([bob, jo], [jake, darcie], _G1110) ? creep
Call: (7) append([jo], [jake, darcie], _G1189) ? creep
Call: (8) append([], [jake, darcie], _G1192) ? creep
Exit: (8) append([], [jake, darcie], [jake, darcie]) ? creep
Exit: (7) append([jo], [jake, darcie], [jo, jake, darcie]) ? creep
Exit: (6) append([bob, jo], [jake, darcie], [bob, jo, jake, darcie]) ? creep

Family = [bob, jo, jake, darcie].

4

Prolog

Prolog append more flexible than Scheme/ML!
append([], List, List)
append ([Head | List_1], List_2, [Head | List_3]) :-
append(List_1, List_2, List_3)

Let’s try:

§ append(X,Y,[a,b,c]).

Returns:
X = []
Y = [a,b,c]

X = [a]
Y = [b,c]

X = [a,b]
Y = [c]

X = [a,b,c]
Y = []

5

Prolog

§ reverse

reverse([],[])
reverse ([Head|Tail], List) :-
reverse (Tail, Result) , append(Result,[Head],List)

6

Prolog

§ reverse

reverse([],[])
reverse ([Head|Tail], List) :-
reverse (Tail, Result) , append(Result,[Head],List)

Run in Prolog compiler reverse([a,b,c],Q).

7

Prolog

§ reverse
[trace] ?- reverse([a,b,c],Q).

Call: (6) reverse([a, b, c], _G1106) ? creep
Call: (7) reverse([b, c], _G1188) ? creep
Call: (8) reverse([c], _G1188) ? creep
Call: (9) reverse([], _G1188) ? creep
Exit: (9) reverse([], []) ? creep
Call: (9) lists:append([], [c], _G1192) ? creep
Exit: (9) lists:append([], [c], [c]) ? creep
Exit: (8) reverse([c], [c]) ? creep
Call: (8) lists:append([c], [b], _G1195) ? creep
Exit: (8) lists:append([c], [b], [c, b]) ? creep
Exit: (7) reverse([b, c], [c, b]) ? creep
Call: (7) lists:append([c, b], [a], _G1106) ? creep
Exit: (7) lists:append([c, b], [a], [c, b, a]) ? creep
Exit: (6) reverse([a, b, c], [c, b, a]) ? creep

Q = [c, b, a].

reverse([],[])
reverse ([Head|Tail], List) :-
reverse (Tail, Result) , append(Result,[Head],List)

8

Prolog

§ Another list operation: member

9

Prolog

§ Another list operation: member

§ Remember assignment hint: you can use this
built in function

10

Prolog

§ Another list operation: member

§ Remember assignment hint: you can use this
built in function

§ Here we will go through the code

11

Prolog

§ Member: Is Element a member of List? Start
from base condition:

Main idea: If Element is in the head of the list,
then yes, it is a member (true); otherwise recurse
on the tail…

12

Prolog

§ Member: Is Element a member of List? Start
from base condition:

Scheme…

(define (member atm lis)
(cond
((null? lis) #f)
((eq? atm (car lis)) #t)
(else (member atm (cdr lis)))

)
)

13

Prolog

§ Member: Is Element a member of List? Start
from base condition:

Member(Element, [Element | _]).

14

Prolog

§ Member: Is Element a member of List? Start
from base condition:

Member(Element, [Element | _]).

anonymous variable;
do not care what instantiation
it gets from unification

15

Prolog

§ Member: Is Element a member of List? Start
from base condition:

Member(Element, [Element | _]).

anonymous variable;
do not care what instantiation
it gets from unification

also remember: | separates
the head and tail. So tail
can be anything.

16

Prolog

§ Member: Is Element a member of List? Start
from base condition:

Member(Element, [Element | _]).

anonymous variable;
do not care what instantiation
it gets from unification

also remember | separates
the head and tail. So tail
can be anything.

What does this mean then?

17

Prolog

§ Member: Is Element a member of List? Start
from base condition:

Member(Element, [Element | _]).

anonymous variable;
do not care what instantiation
it gets from unification

Base statement succeeds if Element is
head of list (either initially or after several
recursions). In that case, returns true

18

Prolog

§ Member: Is Element a member of List?

Member(Element, [Element | _]).

Member(Element, [_ | List]) :- member(Element, List)

19

Prolog

§ Member: Is Element a member of List?

Member(Element, [Element | _]).

Member(Element, [_ | List]) :- member(Element, List)

Meaning?

20

Prolog

§ Member: Is Element a member of List?

Member(Element, [Element | _]).

Member(Element, [_ | List]) :- member(Element, List)

If Element is in the tail of the list, then recurse
on the tail of the list (head can be anything, as
in the _ symbol !)

21

Prolog

§ Member: Is Element a member of List?

Member(Element, [Element | _]).
Member(Element, [_ | List]) :- member(Element, List).

Overall:

First statement base condition: If Element is
in the head of the list, succeeds (true)

Recursion: If Element is in the tail of the list,
then recurse on the tail of the list

22

Prolog

§ Member: let’s do trace on Prolog.

trace.
member(a,[b,a,c]).

Member(Element, [Element | _]).
Member(Element, [_ | List]) :- member(Element, List).

23

Prolog

§ Member: let’s do trace on Prolog.

trace.
member(a,[b,a,c]).

[trace] ?- member(a,[b,a,c]).
Call: (6) member(a, [b, a, c]) ? creep
Call: (7) member(a, [a, c]) ? creep

Member(Element, [Element | _]).
Member(Element, [_ | List]) :- member(Element, List).

Recurse on tail

24

Prolog

§ Member: let’s do trace on Prolog.

trace.
member(a,[b,a,c]).

[trace] ?- member(a,[b,a,c]).
Call: (6) member(a, [b, a, c]) ? creep
Call: (7) member(a, [a, c]) ? creep
Exit: (7) member(a, [a, c]) ? creep

Member(Element, [Element | _]).
Member(Element, [_ | List]) :- member(Element, List).

First statement true

25

Prolog

§ Member: let’s do trace on Prolog.

trace.
member(a,[b,a,c]).

[trace] ?- member(a,[b,a,c]).
Call: (6) member(a, [b, a, c]) ? creep
Call: (7) member(a, [a, c]) ? creep
Exit: (7) member(a, [a, c]) ? creep
Exit: (6) member(a, [b, a, c]) ? creep

Member(Element, [Element | _]).
Member(Element, [_ | List]) :- member(Element, List).

Putting back head of implication

26

Prolog

§ Member: let’s do trace on Prolog.

trace.
member(a,[b,a,c]).

[trace] ?- member(a,[b,a,c]).
Call: (6) member(a, [b, a, c]) ? creep
Call: (7) member(a, [a, c]) ? creep
Exit: (7) member(a, [a, c]) ? creep
Exit: (6) member(a, [b, a, c]) ? creep

true .

Member(Element, [Element | _]).
Member(Element, [_ | List]) :- member(Element, List).

Returns true

27

Prolog

§ Member: let’s do trace on Prolog.

trace.
member(a,[b,c,d]).

Member(Element, [Element | _]).
Member(Element, [_ | List]) :- member(Element, List).

28

Prolog

§ Member: let’s do trace on Prolog.

?- trace.
[trace] ?- member(a,[b,c,d]).

Call: (6) member(a, [b, c, d]) ? creep
Call: (7) member(a, [c, d]) ? creep
Call: (8) member(a, [d]) ? creep
Call: (9) member(a, []) ? creep

recursion on tail

Member(Element, [Element | _]).
Member(Element, [_ | List]) :- member(Element, List).

29

Prolog

§ Member: let’s do trace on Prolog.

?- trace.
[trace] ?- member(a,[b,c,d]).

Call: (6) member(a, [b, c, d]) ? creep
Call: (7) member(a, [c, d]) ? creep
Call: (8) member(a, [d]) ? creep
Call: (9) member(a, []) ? creep
Fail: (9) member(a, []) ? creep

Failure first statement head match

Member(Element, [Element | _]).
Member(Element, [_ | List]) :- member(Element, List).

30

Prolog

§ Member: let’s do trace on Prolog.

?- trace.
[trace] ?- member(a,[b,c,d]).

Call: (6) member(a, [b, c, d]) ? creep
Call: (7) member(a, [c, d]) ? creep
Call: (8) member(a, [d]) ? creep
Call: (9) member(a, []) ? creep
Fail: (9) member(a, []) ? creep
Fail: (8) member(a, [d]) ? creep
Fail: (7) member(a, [c, d]) ? creep
Fail: (6) member(a, [b, c, d]) ? creep

false.

Failures

Member(Element, [Element | _]).
Member(Element, [_ | List]) :- member(Element, List).

31

Prolog

§ Member: let’s do trace on Prolog.

?- member(X,[a,b,c]).

Member(Element, [Element | _]).
Member(Element, [_ | List]) :- member(Element, List).

Answer?

32

Prolog

§ Member: let’s do trace on Prolog.

?- member(X,[a,b,c]).

Member(Element, [Element | _]).
Member(Element, [_ | List]) :- member(Element, List).

Answer?

X = a ;
X = b ;
X = c ;

33

Prolog

For the union of two lists, you need to consider what happens if the
head of the first list is a member of the second list, and what happens
when it is not. You are allowed to use the built in Prolog member
function.

First, consider the base of the recursion.
Then, for the actual recursion: consider for List1, List2, List3, what
happens when the right side of the implication includes member(H,
List2) and union(List1, List2, List3) (what is the left side of the
implication?).
Then consider what the implication should be when H is not a member
of List2.

§ Assignment hint

34

Prolog

§ Issues

Create a file not.pl with:

parent(bill, jake).
parent(bill, shelley).
sibling(X,Y) :- parent(M,X), parent(M,Y)

Run in Prolog sibling(X,Y)

Returns?

35

Prolog

§ Issues

File not.pl :
parent(bill, jake).
parent(bill, shelley).
sibling(X,Y) :- parent(M,X), parent(M,Y)

?- sibling(X,Y).
X = Y, Y = jake ;
X = jake,
Y = shelley ;
X = shelley,
Y = jake ;
X = Y, Y = shelley.

36

Prolog

§ Issues

File not.pl :
parent(bill, jake).
parent(bill, shelley).
sibling(X,Y) :- parent(M,X), parent(M,Y)

?- sibling(X,Y).
X = Y, Y = jake ;
X = jake,
Y = shelley ;
X = shelley,
Y = jake ;
X = Y, Y = shelley.

What is
strange here?

37

Prolog

§ Issues

File not.pl :
parent(bill, jake).
parent(bill, shelley).
sibling(X,Y) :- parent(M,X), parent(M,Y)

?- sibling(X,Y).
X = Y, Y = jake ;
X = jake,
Y = shelley ;
X = shelley,
Y = jake ;
X = Y, Y = shelley.

What is
strange here?

38

Prolog

§ Issues

File not.pl :
parent(bill, jake).
parent(bill, shelley).
sibling(X,Y) :- parent(M,X), parent(M,Y)

Prolog “thinks” Jake is
sibling of self!

What is
strange here?

39

Prolog

§ Issues

File not.pl :
parent(bill, jake).
parent(bill, shelley).
sibling(X,Y) :- parent(M,X), parent(M,Y)

[trace] ?- sibling(X,Y).
Call: (6) sibling(_G1096, _G1097) ? creep
Call: (7) parent(_G1181, _G1096) ? creep
Exit: (7) parent(bill, jake) ? creep
Call: (7) parent(bill, _G1097) ? creep
Exit: (7) parent(bill, jake) ? creep
Exit: (6) sibling(jake, jake) ? creep

X = Y, Y = jake

40

Prolog

§ Issues

File not.pl :
parent(bill, jake).
parent(bill, shelley).
sibling(X,Y) :- parent(M,X), parent(M,Y)

Why?
System instantiates M with bill, X with jake
(first subgoal, parent(M,X)) yielding true.
Then for second subgoal (parent(M,Y)) starts
again at beginning of database and instantiates
Y to jake, yielding true.

41

Prolog

§ Issues

File not.pl :
parent(bill, jake).
parent(bill, shelley).
sibling(X,Y) :- parent(M,X), parent(M,Y)

Why?
System instantiates M with bill, X with jake
(first subgoal, parent(M,X)) yielding true.
Then for second subgoal (parent(M,Y)) starts
again at beginning of database and instantiates
Y to jake, yielding true.

How to fix?

42

Prolog

§ Issues

File not2.pl :
parent(bill, jake).
parent(bill, shelley).
sibling(X,Y) :- parent(M,X), parent(M,Y), not(X=Y).

43

Prolog

§ Issues

File not2.pl :
parent(bill, jake).
parent(bill, shelley).
sibling(X,Y) :- parent(M,X), parent(M,Y), not(X=Y).

Run in Prolog sibling(X,Y)

Returns?

44

Prolog

§ Issues

File not2.pl :
parent(bill, jake).
parent(bill, shelley).
sibling(X,Y) :- parent(M,X), parent(M,Y), not(X=Y).

Run in Prolog sibling(X,Y)

Returns?

45

Prolog

§ Issues

File not2.pl :
parent(bill, jake).
parent(bill, shelley).
sibling(X,Y) :- parent(M,X), parent(M,Y), not(X=Y).

?- sibling(X,Y).
X = jake,
Y = shelley ;
X = shelley,
Y = jake ;

46

Prolog

§ Issues

File not2.pl :
parent(bill, jake).
parent(bill, shelley).
sibling(X,Y) :- parent(M,X), parent(M,Y), not(X=Y).

Try trace…

47

Prolog
§ Issues

File not2.pl :
parent(bill, jake).
parent(bill, shelley).
sibling(X,Y) :- parent(M,X), parent(M,Y), not(X=Y).

[trace] ?- sibling(X,Y).
Call: (6) sibling(_G1096, _G1097) ? creep
Call: (7) parent(_G1181, _G1096) ? creep
Exit: (7) parent(bill, jake) ? creep
Call: (7) parent(bill, _G1097) ? creep
Exit: (7) parent(bill, jake) ? creep

^ Call: (7) not(jake=jake) ? creep
^ Fail: (7) not(user: (jake=jake)) ? creep

Redo: (7) parent(bill, _G1097) ? creep
Exit: (7) parent(bill, shelley) ? creep

^ Call: (7) not(jake=shelley) ? creep
^ Exit: (7) not(user: (jake=shelley)) ? creep

Exit: (6) sibling(jake, shelley) ? creep
X = jake,
Y = shelley .

48

Prolog

Questions?

