
1

Logical Languages
part 3

2020

Instructor: Odelia Schwartz



2

Prolog

To access the lab computers, ssh into 
johnston and then ssh into one of the host 
computers in the lab. To see what hosts are 
available type in the johnston command 
line cat ~irina/hostnames 

There are a couple of files available for 
download from the class website, such as 
simple.pl. 



3

Prolog

:- implies symbol
,      and symbol

§ Right side implies left side
Right side can have and

§ Headless or headed

§ Facts
Rules
Goals/Queries

§ Variables: start with capital letter



4

Prolog

Prolog demos

simple.pl file includes:

% Simple example for testing
% swipl from command line
% Inside compiler:
% ['simple.pl'].
% person(bob). 
% returns true
% father(bob,X).
% returns X = sam.
% control d to exit

person(bob).
father(bob,sam).



5

Prolog

Prolog demos

simple.pl let’s try it in compiler:

Ø swipl from command line

Ø Inside compiler:
['simple.pl’].

Ø control d to exit

Notice we always have a period after statement



6

Prolog

Prolog demos

simple.pl let’s try it in compiler:

Ø swipl from command line

Ø Inside compiler:
['simple.pl’].

Things to try:
person(bob). 
father(bob,X).



7

Prolog

Prolog demos

simple.pl let’s try it in compiler:

Ø swipl from command line

Ø Inside compiler:
['simple.pl’].

Things to try:
person(bob).      Returns true
father(bob,X).    Returns X=sam



8

Prolog

Prolog demos

simplemore.pl let’s add more facts to file:

person(bob).
father(bob,sam).
father(sam,liz).

father(bob,X).
Returns?



9

Prolog

Prolog demos

simplemore.pl let’s add more facts to file:

person(bob).
father(bob,sam).
father(sam,liz).

father(bob,X).
Returns?

initially returns X = sam
Type ; and will return next item here:
X = liz



10

Prolog

Prolog demos

Let’s try simple2.pl

%http://faculty.otterbein.edu/psanderson/csc326/notes/PrologNotes.html

mother(iva, pete).
mother(iva, ed).
mother(iva, becky).
mother(kay, nancy).
mother(kay, bob).
mother(kay, diane).
mother(becky, katie).
husband(dwight, iva).
husband(robert, kay).
husband(pete, nancy).

wife(X,Y) :- husband(Y,X).
father(X,Y) :- husband(X,Z), mother(Z,Y).

Things to query:
mother(kay, nancy).
mother(kay, kay).
mother(kay, Who). press ;



11

Prolog

Inferencing process of Prolog. Example:

man(bob) query

Database includes rules:
father(bob).
man(X) :- father(X).

How does Prolog do it? Two possibilities:

1. Forward chaining: search for and find first 
proposition father(bob); goal is inferred by 
matching first proposition with right side of second 
rule father(X) through instantiation of X to bob, 
and then matching left side of second proposition 
to goal man(bob)



12

Prolog

Inferencing process of Prolog. Example:

man(bob) query

Database includes rules:
father(bob).
man(X) :- father(X).

How does Prolog do it? Two possibilities:

2. Backward chaining: first match goal with left 
side of second proposition man(X) through the 
instantiation of X to bob; as last step, match right 
side of second proposition (now father(bob)) with 
first proposition



13

Prolog
How does Prolog do it? Two possibilities:

1. Forward chaining: search for and find first 
proposition father(bob); goal is inferred by 
matching first proposition with right side of second 
rule father(X) through instantiation of X to bob, 
and then matching left side of second proposition 
to goal man(bob)

2. Backward chaining: first match goal with left 
side of second proposition man(X) through the 
instantiation of X to bob; as last step, match right 
side of second proposition (now father(bob)) with 
first proposition

Prolog uses Backward chaining. First match goal.



14

Prolog
Backtracking

§ Multiple subgoals

§ If fail to show proof of one subgoal, reconsider 
previous subgoal to find alternative solution 
(backtracking)

§ Begin search where previous search left off

§ Can take lots of time and space, because may 
find all possible proofs for every subgoal



15

Prolog
Backtracking

§ Multiple subgoals

§ If fail to show proof of one subgoal, reconsider 
previous subgoal to find alternative solution 
(backtracking)



16

Prolog
Backtracking

§ Multiple subgoals

§ If fail to show proof of one subgoal, reconsider 
previous subgoal to find alternative solution 
(backtracking)

§ Begin search where previous search left off



17

Prolog
Backtracking

§ Multiple subgoals

§ If fail to show proof of one subgoal, reconsider 
previous subgoal to find alternative solution 
(backtracking)

§ Begin search where previous search left off

§ Can take lots of time and space, because may 
find all possible proofs for every subgoal



18

Prolog
Backtracking Example:

§ Database has:
male(mike)
male(bob)
parent(bob, shelley)

§ Goal/query:
male(X), parent(X, shelley)



19

Prolog
Backtracking Example:
§ Database has:

male(mike)
male(bob)
parent(bob, shelley)

§ Goal/query:
male(X), parent(X, shelley)

Ø Prolog finds first fact for subgoal male(X) and instantiates X 
to mike; attempts to prove parent(mike, shelley) but fails



20

Prolog
Backtracking Example:
§ Database has:

male(mike)
male(bob)
parent(bob, shelley)

§ Goal/query:
male(X), parent(X, shelley)

Ø Prolog finds first fact for subgoal male(X) and instantiates X 
to mike; attempts to prove parent(mike, shelley) but fails

Ø Backtracks to first subgoal male(x); next finds male(bob) 
such that parent(bob, shelley) is true



21

Prolog
Backtracking Example:
§ Database has:

male(mike)
male(bob)
parent(bob, shelley)

§ Goal/query:
male(X), parent(X, shelley)

Ø Prolog finds first fact for subgoal male(X) and instantiates X 
to mike; attempts to prove parent(mike, shelley) but fails

Ø Backtracks to first subgoal male(x); next finds male(bob) 
such that parent(bob, shelley) is true

Ø To prove goal cannot be satisfied, has to go through all males 
in database



22

Prolog
Backtracking Example:
§ Database has:

male(mike)
male(bob)
parent(bob, shelley)

§ Goal/query:
male(X), parent(X, shelley)

Ø Prolog finds first fact for subgoal male(X) and instantiates X to 
mike; attempts to prove parent(mike, shelley) but fails

Ø Backtracks to first subgoal male(x); next finds male(bob) such 
that parent(bob, shelley) is true

Ø To prove goal cannot be satisfied, has to go through all males in 
database

Ø Note: could be more efficient here if reversed order of subgoals



23

Prolog
Simple arithmetic

§ Prolog supports integer variables and arithmetic



24

Prolog
Simple arithmetic

§ Prolog supports integer variables and arithmetic

§ Original Prolog had Scheme like + (7 , X)

§ Versions today use is operator



25

Prolog
Simple arithmetic

§ Versions today use is operator

Try in Prolog:

A is 2+3.

10 is 5+5.

10 is 5+2.

A is 5/2.



26

Prolog
Simple arithmetic

§ Versions today use is operator

Try in Prolog:

A is 2+3.

10 is 5+5.

10 is 5+2.

A is 5/2.

?- A is 2+3.
A = 5.

?- 10 is 5+5.
true.

?- 10 is 5+2.
false.

?- 5/2 is 2.5.
false.

?- A is 5/2.
A = 2.5.



27

Prolog
Simple arithmetic

§ All variables on the right must already be 
instantiated

§ A is B/17 + C.
OK if B and C instantiated



28

Prolog
Simple arithmetic

§ All variables on the right must already be 
instantiated

§ A is B/17 + C.
OK if B and C instantiated

§ Sum is Sum + 1
OK?



29

Prolog
Simple arithmetic

§ All variables on the right must already be 
instantiated

§ A is B/17 + C.
OK if B and C instantiated

§ Sum is Sum + 1
No, won’t work! Not like imperative. 

Ø If Sum is not instantiated, then right side is not 
proper and cannot assign



30

Prolog
Simple arithmetic

§ All variables on the right must already be 
instantiated

§ A is B/17 + C.
OK if B and C instantiated

§ Sum is Sum + 1
No, won’t work! Not like imperative. 



31

Prolog
Simple arithmetic

§ All variables on the right must already be 
instantiated

§ A is B/17 + C.
OK if B and C instantiated

§ Sum is Sum + 1
Ø If Sum is not instantiated, then right side is not 

proper and cannot assign



32

Prolog
Simple arithmetic

§ All variables on the right must already be 
instantiated

§ A is B/17 + C.
OK if B and C instantiated

§ Sum is Sum + 1
Ø If Sum is not instantiated, then right side is not 

proper and cannot assign
Ø If Sum is instantiated, it is not proper in Prolog to 

set its left side! 



33

Prolog
Simple arithmetic

§ All variables on the right must already be 
instantiated

§ A is B/17 + C.
OK if B and C instantiated

§ Sum is Sum + 1
Ø If Sum is not instantiated, then right side is not 

proper and cannot assign
Ø If Sum is instantiated, it is not proper in Prolog to 

set its left side! 
Not useful or legal in Prolog



34

Prolog
Prolog example of numeric computation

Example: We know average speed of several 
automobiles on racetrack and the time on track.
We can code relationship speed, time, distance



35

Prolog
Prolog example of numeric computation

speed.pl

speed(ford,100).
speed(chevy,105).
speed(dodge,95).
speed(volvo,80).
time(ford,20).
time(chevy,21).
time(dodge,24).
time(volvo,24).

distance(X,Y) :- speed(X,Speed),
time(X,Time),
Y is Speed * Time.



36

Prolog
Prolog example of numeric computation

speed.pl

speed(ford,100).
speed(chevy,105).
speed(dodge,95).
speed(volvo,80).
time(ford,20).
time(chevy,21).
time(dodge,24).
time(volvo,24).

distance(X,Y) :- speed(X,Speed),
time(X,Time),
Y is Speed * Time.

Facts



37

Prolog
Prolog example of numeric computation

speed.pl

speed(ford,100).
speed(chevy,105).
speed(dodge,95).
speed(volvo,80).
time(ford,20).
time(chevy,21).
time(dodge,24).
time(volvo,24).

distance(X,Y) :- speed(X,Speed),
time(X,Time),
Y is Speed * Time.

Facts

Rule for getting distance: 
need to establish the Speed 
for given X and the Time for 
given X, and then can set Y 
to Speed * Time  



38

Prolog
Prolog example of numeric computation

speed(ford,100).
speed(chevy,105).
speed(dodge,95).
speed(volvo,80).
time(ford,20).
time(chevy,21).
time(dodge,24).
time(volvo,24).

distance(X,Y) :- speed(X,Speed),
time(X,Time),
Y is Speed * Time.

Try the queries:

time(chevy,X). 

distance(chevy,X).

distance(X,Y). (with ;)

speed.pl



39

Prolog
Prolog example of numeric computation

speed(ford,100).
speed(chevy,105).
speed(dodge,95).
speed(volvo,80).
time(ford,20).
time(chevy,21).
time(dodge,24).
time(volvo,24).

distance(X,Y) :- speed(X,Speed),
time(X,Time),
Y is Speed * Time.

Try the queries:

time(chevy,X). 
Returns 21
distance(chevy,X).
Returns 2205 (105*21)
distance(X,Y). (with ;)
Returns all distances

speed.pl



40

Prolog
How does Prolog keep track of the variables and
produce results?



41

Prolog
How does Prolog keep track of the variables and
produce results?

Ø trace: built in structure displays instantiations of 
values to variables at each step during attempt to 
satisfy a goal 



42

Prolog
How does Prolog keep track of the variables and
produce results?

Ø trace: built in structure displays instantiations of 
values to variables at each step during attempt to 
satisfy a goal 

We will look at this more in our Prolog example
in a moment



43

Prolog
How does Prolog keep track of the variables and
produce results?

Prolog’s tracing model describes execution as 4 
possible events:

1. call, which occurs at beginning of attempt to 
satisfy a goal



44

Prolog
How does Prolog keep track of the variables and
produce results?

Prolog’s tracing model describes execution as 4 
possible events:

1. call, which occurs at beginning of attempt to 
satisfy a goal

2. exit, when goal is satisfied



45

Prolog
How does Prolog keep track of the variables and
produce results?

Prolog’s tracing model describes execution as 4 
possible events:

1. call, which occurs at beginning of attempt to 
satisfy a goal

2. exit, when goal is satisfied
3. redo, when backtrack causes attempt to re-

satisfy goal



46

Prolog
How does Prolog keep track of the variables and
produce results?

Prolog’s tracing model describes execution as 4 
possible events:

1. call, which occurs at beginning of attempt to 
satisfy a goal

2. exit, when goal is satisfied
3. redo, when backtrack causes attempt to re-

satisfy goal
4. fail, when goal fails



47

Prolog
trace for our example

speed(ford,100).
speed(chevy,105).
speed(dodge,95).
speed(volvo,80).
time(ford,20).
time(chevy,21).
time(dodge,24).
time(volvo,24).

distance(X,Y) :- speed(X,Speed),
time(X,Time),
Y is Speed * Time.

Ø If distance is thought of as
a subprogram, then call and
exit can be related to 
execution models of 
imperative languages

speed.pl



48

Prolog
trace for our example

speed(ford,100).
speed(chevy,105).
speed(dodge,95).
speed(volvo,80).
time(ford,20).
time(chevy,21).
time(dodge,24).
time(volvo,24).

distance(X,Y) :- speed(X,Speed),
time(X,Time),
Y is Speed * Time.

Ø If distance is thought of as
a subprogram, then call and
exit can be related to 
execution models of 
imperative languages

Ø Other two events, redo and 
fail are unique to logical 
languages

speed.pl



49

Prolog
trace for our example

speed(ford,100).
speed(chevy,105).
speed(dodge,95).
speed(volvo,80).
time(ford,20).
time(chevy,21).
time(dodge,24).
time(volvo,24).

distance(X,Y) :- speed(X,Speed),
time(X,Time),
Y is Speed * Time.

Let’s try it; type in Prolog 
compiler:

trace.
distance(chevy,X).

speed.pl



50

Prolog
trace for our example

[trace]  ?- distance(chevy,X).
Call: (6) distance(chevy, _G1097) ? 
Call: (7) speed(chevy, _G1170) ? 
Exit: (7) speed(chevy, 105) ? 
Call: (7) time(chevy, _G1170) ? 
Exit: (7) time(chevy, 21) ? 
Call: (7) _G1097 is 105*21 ? 
Exit: (7) 2205 is 105*21 ? 
Exit: (6) distance(chevy, 2205) ? 

X = 2205.

Let’s unpack this



51

Prolog
trace for our example

[trace]  ?- distance(chevy,X).
Call: (6) distance(chevy, _G1097) ? 

Let’s unpack this

Internal variable to 
store instantiated value

Depth of 
matching 
Process. In
textbook starts
from 1 but not
in practice



52

Prolog
trace for our example

[trace]  ?- distance(chevy,X).
Call: (6) distance(chevy, _G1097) ? 
Call: (7) speed(chevy, _G1170) ? 

Let’s unpack this

Internal variables to 
store instantiated value

Depth

distance(X,Y) :- speed(X,Speed),
time(X,Time),
Y is Speed * Time.



53

Prolog
trace for our example

[trace]  ?- distance(chevy,X).
Call: (6) distance(chevy, _G1097) ? 
Call: (7) speed(chevy, _G1170) ? 
Exit: (7) speed(chevy, 105) ? 

Let’s unpack this

distance(X,Y) :- speed(X,Speed),
time(X,Time),
Y is Speed * Time.



54

Prolog
trace for our example

[trace]  ?- distance(chevy,X).
Call: (6) distance(chevy, _G1097) ? 
Call: (7) speed(chevy, _G1170) ? 
Exit: (7) speed(chevy, 105) ? 
Call: (7) time(chevy, _G1170) ? 

Let’s unpack this

distance(X,Y) :- speed(X,Speed),
time(X,Time),
Y is Speed * Time.



55

Prolog
trace for our example

[trace]  ?- distance(chevy,X).
Call: (6) distance(chevy, _G1097) ? 
Call: (7) speed(chevy, _G1170) ? 
Exit: (7) speed(chevy, 105) ? 
Call: (7) time(chevy, _G1170) ? 
Exit: (7) time(chevy, 21) ? 

Let’s unpack this

distance(X,Y) :- speed(X,Speed),
time(X,Time),
Y is Speed * Time.



56

Prolog
trace for our example

[trace]  ?- distance(chevy,X).
Call: (6) distance(chevy, _G1097) ? 
Call: (7) speed(chevy, _G1170) ? 
Exit: (7) speed(chevy, 105) ? 
Call: (7) time(chevy, _G1170) ? 
Exit: (7) time(chevy, 21) ? 
Call: (7) _G1097 is 105*21 ? 

Let’s unpack this

distance(X,Y) :- speed(X,Speed),
time(X,Time),
Y is Speed * Time.



57

Prolog
trace for our example

[trace]  ?- distance(chevy,X).
Call: (6) distance(chevy, _G1097) ? 
Call: (7) speed(chevy, _G1170) ? 
Exit: (7) speed(chevy, 105) ? 
Call: (7) time(chevy, _G1170) ? 
Exit: (7) time(chevy, 21) ? 
Call: (7) _G1097 is 105*21 ? 
Exit: (7) 2205 is 105*21 ? 

Let’s unpack this

distance(X,Y) :- speed(X,Speed),
time(X,Time),
Y is Speed * Time.



58

Prolog
trace for our example

[trace]  ?- distance(chevy,X).
Call: (6) distance(chevy, _G1097) ? 
Call: (7) speed(chevy, _G1170) ? 
Exit: (7) speed(chevy, 105) ? 
Call: (7) time(chevy, _G1170) ? 
Exit: (7) time(chevy, 21) ? 
Call: (7) _G1097 is 105*21 ? 
Exit: (7) 2205 is 105*21 ? 
Exit: (6) distance(chevy, 2205) ? 

X = 2205.

Let’s unpack this

distance(X,Y) :- speed(X,Speed),
time(X,Time),
Y is Speed * Time.



59

Prolog
Another example

% ['likes.pl'].
% Based on sebesta book
% control d, to exit

likes(jake,chocolate).
likes(jake,apricots).
likes(jake,bananas).
likes(darcie,licorice).
likes(darcie,apricots).
likes(darcie,bananas).

In compiler type:
[‘likes.pl’].
likes(jake,X), likes(darcie,X).     Returns?



60

Prolog
Another example
In compiler type:
[‘likes.pl’].
likes(jake,X), likes(darcie,X).     

Call: (7) likes(jake, _G1097) ? creep
Exit: (7) likes(jake, chocolate) ? creep
Call: (7) likes(darcie, chocolate) ? creep
Fail: (7) likes(darcie, chocolate) ? creep
Redo: (7) likes(jake, _G1097) ? creep
Exit: (7) likes(jake, apricots) ? creep
Call: (7) likes(darcie, apricots) ? creep
Exit: (7) likes(darcie, apricots) ? creep

X = apricots ;



61

Prolog
Another example
In compiler type:
[‘likes.pl’].
likes(jake,X), likes(darcie,X).

(after ;)

X = apricots ;
Redo: (7) likes(darcie, apricots) ? creep
Fail: (7) likes(darcie, apricots) ? creep
Redo: (7) likes(jake, _G1097) ? creep
Exit: (7) likes(jake, bananas) ? creep
Call: (7) likes(darcie, bananas) ? creep
Exit: (7) likes(darcie, bananas) ? creep

X = bananas.



62

Prolog
Control flow model for
likes(jake,X), likes(darcie,X)732      Chapter 16  Logic Programming Languages

twice. The second subgoal fails the first time, which forces a return through 
redo to the first subgoal.

16.6.7 List Structures

So far, the only Prolog data structure we have discussed is the atomic prop-
osition, which looks more like a function call than a data structure. Atomic 
propositions, which are also called structures, are actually a form of records. 
The other basic data structure supported is the list. Lists are sequences of any 
number of elements, where the elements can be atoms, atomic propositions, or 
any other terms, including other lists.

Prolog uses the syntax of ML and Haskell to specify lists. The list elements 
are separated by commas, and the entire list is delimited by square brackets, 
as in

[apple, prune, grape, kumquat]

The notation [] is used to denote the empty list. Instead of having explicit 
functions for constructing and dismantling lists, Prolog simply uses a special 
notation. [X | Y] denotes a list with head X and tail Y, where head and tail 
correspond to CAR and CDR in LISP. This is similar to the notation used in ML 
and Haskell.

A list can be created with a simple structure, as in

new_list([apple, prune, grape, kumquat]).

which states that the constant list [apple, prune, grape, kumquat] is a 
new element of the relation named new_list (a name we just made up). This 
statement does not bind the list to a variable named new_list; rather, it does 
the kind of thing that the proposition

likes (jake, X)

likes (darcie, X)

Call Fail

Call Fail

Exit Redo

Exit Redo

Figure 16.1

Control flow model 
for the goal likes 
(jake, X), likes 
(darcie, X)



63

Prolog
Control flow model for
likes(jake,X), likes(darcie,X)732      Chapter 16  Logic Programming Languages

twice. The second subgoal fails the first time, which forces a return through 
redo to the first subgoal.

16.6.7 List Structures

So far, the only Prolog data structure we have discussed is the atomic prop-
osition, which looks more like a function call than a data structure. Atomic 
propositions, which are also called structures, are actually a form of records. 
The other basic data structure supported is the list. Lists are sequences of any 
number of elements, where the elements can be atoms, atomic propositions, or 
any other terms, including other lists.

Prolog uses the syntax of ML and Haskell to specify lists. The list elements 
are separated by commas, and the entire list is delimited by square brackets, 
as in

[apple, prune, grape, kumquat]

The notation [] is used to denote the empty list. Instead of having explicit 
functions for constructing and dismantling lists, Prolog simply uses a special 
notation. [X | Y] denotes a list with head X and tail Y, where head and tail 
correspond to CAR and CDR in LISP. This is similar to the notation used in ML 
and Haskell.

A list can be created with a simple structure, as in

new_list([apple, prune, grape, kumquat]).

which states that the constant list [apple, prune, grape, kumquat] is a 
new element of the relation named new_list (a name we just made up). This 
statement does not bind the list to a variable named new_list; rather, it does 
the kind of thing that the proposition

likes (jake, X)

likes (darcie, X)

Call Fail

Call Fail

Exit Redo

Exit Redo

Figure 16.1

Control flow model 
for the goal likes 
(jake, X), likes 
(darcie, X)

§ Four parts for each subgoal
§ Can enter goal through call

(forward) or redo (backward)
§ Can exit through fail or

exit



64

Prolog
Control flow model for
likes(jake,X), likes(darcie,X)732      Chapter 16  Logic Programming Languages

twice. The second subgoal fails the first time, which forces a return through 
redo to the first subgoal.

16.6.7 List Structures

So far, the only Prolog data structure we have discussed is the atomic prop-
osition, which looks more like a function call than a data structure. Atomic 
propositions, which are also called structures, are actually a form of records. 
The other basic data structure supported is the list. Lists are sequences of any 
number of elements, where the elements can be atoms, atomic propositions, or 
any other terms, including other lists.

Prolog uses the syntax of ML and Haskell to specify lists. The list elements 
are separated by commas, and the entire list is delimited by square brackets, 
as in

[apple, prune, grape, kumquat]

The notation [] is used to denote the empty list. Instead of having explicit 
functions for constructing and dismantling lists, Prolog simply uses a special 
notation. [X | Y] denotes a list with head X and tail Y, where head and tail 
correspond to CAR and CDR in LISP. This is similar to the notation used in ML 
and Haskell.

A list can be created with a simple structure, as in

new_list([apple, prune, grape, kumquat]).

which states that the constant list [apple, prune, grape, kumquat] is a 
new element of the relation named new_list (a name we just made up). This 
statement does not bind the list to a variable named new_list; rather, it does 
the kind of thing that the proposition

likes (jake, X)

likes (darcie, X)

Call Fail

Call Fail

Exit Redo

Exit Redo

Figure 16.1

Control flow model 
for the goal likes 
(jake, X), likes 
(darcie, X)

§ Four parts for each subgoal
§ Can enter goal through call

(forward) or redo (backward)
§ Can exit through fail or

exit
§ Here second subgoal fails

the first time, forcing
return through redo to
first subgoal



65

Prolog
List structure
§ Prolog uses syntax of ML and Haskell to specify lists

§ Example: [apple, prune, grape, kumquat]
[ ] empty list



66

Prolog
List structure
§ Prolog uses syntax of ML and Haskell to specify lists

§ Example: [apple, prune, grape, kumquat]
[ ] empty list

§ Prolog also has head and tail:

[x | y]

denotes a list with head x and tail y



67

Prolog
List structure
§ Prolog uses syntax of ML and Haskell to specify lists

§ Example: [apple, prune, grape, kumquat]
[ ] empty list

§ Prolog also has head and tail:

[x | y]

denotes a list with head x and tail y

§ Similar to? 



68

Prolog
List structure
§ Prolog uses syntax of ML and Haskell to specify lists

§ Example: [apple, prune, grape, kumquat]
[ ] empty list

§ Prolog also has head and tail:

[x | y]

denotes a list with head x and tail y

§ Similar to? Most similar to Haskell (x : y) 
and ML (x :: y) format. Also conceptually related to    
car, cdr of Scheme.



69

Prolog
List structure
§ Lists can be created by a proposition:

new_list([apple, prune, grape, kumquat]).



70

Prolog
List structure
§ Lists can be created by a proposition:

new_list([apple, prune, grape, kumquat]).

§ This states that the constant list [apple, prune, 
grape, kumquat] is a new element of the relation
name new_list (a name we just made up).



71

Prolog
List structure
§ Lists can be created by a proposition:

new_list([apple, prune, grape, kumquat]).

§ This states that the constant list [apple, prune, 
grape, kumquat] is a new element of the relation
name new_list (a name we just made up).

§ Does a similar thing to male(jake) …
It states that [apple, prune, grape, kumquat] is a 
new element of new_list



72

Prolog
List structure
§ Lists can be created by a proposition:

new_list([apple, prune, grape, kumquat]).

§ This states that the constant list [apple, prune, 
grape, kumquat] is a new element of the relation
name new_list (a name we just made up).

§ Does a similar thing to male(jake) …
It states that [apple, prune, grape, kumquat] is a 
new element of new_list

§ So we can also have a second statement
new_list([apricot, peach, pear)].



73

Prolog
lists_simple.pl

new_list([apple,prune,grape,kumquot]).
new_list([apricot,peach,pear]).



74

Prolog

lists_simple.pl

new_list([apple,prune,grape,kumquot]).
new_list([apricot,peach,pear]).

Run in compiler:

new_list(X).
new_list([X|Y]). 
use ; after entering.

Returns?



75

Prolog

lists_simple.pl

new_list([apple,prune,grape,kumquot]).
new_list([apricot,peach,pear]).

Run in compiler:

new_list(X).
?- new_list(X).
X = [apple, prune, grape, kumquot] ;
X = [apricot, peach, pear].



76

Prolog

lists_simple.pl

new_list([apple,prune,grape,kumquot]).
new_list([apricot,peach,pear]).

Run in compiler:

new_list([X|Y]). 

?- new_list([X|Y]).
X = apple,
Y = [prune, grape, kumquot] ;
X = apricot,
Y = [peach, pear].

Returns the
head and tail
of each list!



77

Prolog

§ The | notation can both dismantle and construct lists

§ We saw dismantling into a head and tail 



78

Prolog

§ The | notation can both dismantle and construct lists

§ We saw dismantling into a head and tail 

§ But we can also construct:
[pickle, [peanut, prune, popcorn]]

creates [pickle, peanut, prune, popcorn]



79

Prolog

§ The | notation can both dismantle and construct lists

§ We saw dismantling into a head and tail 

§ But we can also construct:
[pickle, [peanut, prune, popcorn]]

creates [pickle, peanut, prune, popcorn]

These are all equivalent!

[apricot, peach, pear | [] ]
[apricot, peach | [pear] ]
[apricot | [peach, pear] ]



80

Prolog

§ File lists_simple4.pl

% run in compiler:
% new_list(X).
% use ; after entering.

new_list([apricot,peach,pear | []]).
new_list([apricot,peach | [pear]]).
new_list([apricot | [peach,pear]]).



81

Prolog

§ File lists_simple4.pl

% run in compiler:
% new_list(X).
% use ; after entering.

new_list([apricot,peach,pear | []]).
new_list([apricot,peach | [pear]]).
new_list([apricot | [peach,pear]]).

In compiler:
?- new_list(X).
X = [apricot, peach, pear] ;
X = [apricot, peach, pear] ;
X = [apricot, peach, pear].



82

Prolog

§ File lists_simple4.pl

% run in compiler:
% new_list(X).
% use ; after entering.

new_list([apricot,peach,pear | []]).
new_list([apricot,peach | [pear]]).
new_list([apricot | [peach,pear]]).

In compiler:
?- new_list(X).
X = [apricot, peach, pear] ;
X = [apricot, peach, pear] ;
X = [apricot, peach, pear].



83

Prolog

§ File lists_simple2.pl

new_list([H|T], H, T).

What does this do??



84

Prolog

§ File lists_simple2.pl

new_list([H|T], H, T).

What does this do??

?- new_list([apple,prune,grape,kumquot],X,Y).
X = apple,
Y = [prune, grape, kumquot].

Returns head and tail



85

Prolog

§ File lists_simple2.pl

new_list([H|T], H, T).

What does this do??

?- new_list(X,apple,[prune, grape, kumquot]).
X = [apple, prune, grape, kumquot].

Constructs list



86

Prolog

§ File lists_simple2.pl

new_list([H|T], H, T).

What does this do??

?- new_list([apple,prune,grape,kumquot],X,Y).
X = apple,
Y = [prune, grape, kumquot].

?- new_list(X,apple,[prune, grape, kumquot]).
X = [apple, prune, grape, kumquot].

Returns head and tail

Constructs list



87

Prolog

§ File lists_simple2.pl

new_list([H|T], H, T).

?- new_list([apple,prune,grape,kumquot],prune,
[prune, grape, kumquot]).

Returns??



88

Prolog

§ File lists_simple2.pl

new_list([H|T], H, T).

?- new_list([apple,prune,grape,kumquot],prune,
[prune, grape, kumquot]).

Returns?? false.


