
1

Logical Languages
part 2

2020

Instructor: Odelia Schwartz

2

Formal logic and intro to predicate calculus

§ All propositions can be expressed in clausal form

16.2 A Brief Introduction to Predicate Calculus 717

The period between X and P simply separates the variable from the proposi-
tion. For example, consider the following:

5X.(woman(X) ⊃ human(X))
EX.(mother(mary, X) ¨ male(X))

The first of these propositions means that for any value of X, if X is a woman,
then X is a human. The second means that there exists a value of X such that
mary is the mother of X and X is a male; in other words, mary has a son. The
scope of the universal and existential quantifiers is the atomic propositions to
which they are attached. This scope can be extended using parentheses, as in
the two compound propositions just described. So, the universal and existential
quantifiers have higher precedence than any of the operators.

16.2.2 Clausal Form

We are discussing predicate calculus because it is the basis for logic program-
ming languages. As with other languages, logic languages are best in their sim-
plest form, meaning that redundancy should be minimized.

One problem with predicate calculus as we have described it thus far is that
there are too many different ways of stating propositions that have the same
meaning; that is, there is a great deal of redundancy. This is not such a problem
for logicians, but if predicate calculus is to be used in an automated (comput-
erized) system, it is a serious problem. To simplify matters, a standard form
for propositions is desirable. Clausal form, which is a relatively simple form of
propositions, is one such standard form. All propositions can be expressed in
clausal form. A proposition in clausal form has the following general syntax:

B1 ∪ B2 ∪ c ∪ Bn⊂ A1 ¨ A2 ¨ c ¨ Am

in which the A’s and B’s are terms. The meaning of this clausal form proposition
is as follows: If all of the A’s are true, then at least one B is true. The primary
characteristics of clausal form propositions are the following: Existential quan-
tifiers are not required; universal quantifiers are implicit in the use of variables
in the atomic propositions; and no operators other than conjunction and dis-
junction are required. Also, conjunction and disjunction need appear only in
the order shown in the general clausal form: disjunction on the left side and
conjunction on the right side. All predicate calculus propositions can be algo-
rithmically converted to clausal form. Nilsson (1971) gives proof that this can
be done, as well as a simple conversion algorithm for doing it.

The right side of a clausal form proposition is called the antecedent. The
left side is called the consequent because it is the consequence of the truth of
the antecedent. As examples of clausal form propositions, consider the following:

likes(bob, trout) ⊂ likes(bob, fish) ¨ fish(trout)

Right side implies left side
If all of the A are true, at least one B is true

3

Predicate calculus and proving theorems

§ One way to simplify resolution process:
restrict to simpler forms of propositions

Horn Clause

Either
(1) single atomic proposition on left side
(2) empty left side

Also called
(1) Headed horn clause
(2) Headless Horn clause

4

Predicate calculus and proving theorems

§ One way to simplify resolution process:
restrict to simpler forms of propositions

Horn Clause example:

(1) Headed horn clause

(2) Headless Horn clause

720 Chapter 16 Logic Programming Languages

follows: We can envision a theorem proof in terms of predicate calculus as
a given set of pertinent propositions, with the negation of the theorem itself
stated as a new proposition. The theorem is negated so that resolution can be
used to prove the theorem by finding an inconsistency. This is proof by con-
tradiction, a frequently used approach to proving theorems in mathematics.
Typically, the original propositions are called the hypotheses, and the negation
of the theorem is called the goal.

Theoretically, this process is valid and useful. The time required for reso-
lution, however, can be a problem. Although resolution is a finite process when
the set of propositions is finite, the time required to find an inconsistency in a
large database of propositions may be huge.

Theorem proving is the basis for logic programming. Much of what is
computed can be couched in the form of a list of given facts and relationships
as hypotheses, and a goal to be inferred from the hypotheses, using resolution.

Resolution on a hypotheses and a goal that are general propositions, even
if they are in clausal form, is often not practical. Although it may be possible
to prove a theorem using clausal form propositions, it may not happen in a
reasonable amount of time. One way to simplify the resolution process is to
restrict the form of the propositions. One useful restriction is to require the
propositions to be Horn clauses. Horn clauses only can be in one of two forms:
They have either a single atomic proposition on the left side or an empty left
side.1 The left side of a clausal form proposition is sometimes called the head,
and Horn clauses with left sides are called headed Horn clauses. Headed Horn
clauses are used to state relationships, such as

likes(bob, trout) ⊂ likes(bob, fish) ¨ fish(trout)

Horn clauses with empty left sides, which are often used to state facts, are
called headless Horn clauses. For example,

father(bob, jake)

Most, but not all, propositions can be stated as Horn clauses. The restric-
tion to Horn clauses makes resolution a practical process for proving theorems.

16.4 An Overview of Logic Programming
Languages used for logic programming are called declarative languages, because
programs written in them consist of declarations rather than assignments and
control flow statements. These declarations are actually statements, or propo-
sitions, in symbolic logic.

One of the essential characteristics of logic programming languages is their
semantics, which is called declarative semantics. The basic concept of this
semantics is that there is a simple way to determine the meaning of each state-
ment, and it does not depend on how the statement might be used to solve a

 1. Horn clauses are named after Alfred Horn (1951), who studied clauses in this form.

720 Chapter 16 Logic Programming Languages

follows: We can envision a theorem proof in terms of predicate calculus as
a given set of pertinent propositions, with the negation of the theorem itself
stated as a new proposition. The theorem is negated so that resolution can be
used to prove the theorem by finding an inconsistency. This is proof by con-
tradiction, a frequently used approach to proving theorems in mathematics.
Typically, the original propositions are called the hypotheses, and the negation
of the theorem is called the goal.

Theoretically, this process is valid and useful. The time required for reso-
lution, however, can be a problem. Although resolution is a finite process when
the set of propositions is finite, the time required to find an inconsistency in a
large database of propositions may be huge.

Theorem proving is the basis for logic programming. Much of what is
computed can be couched in the form of a list of given facts and relationships
as hypotheses, and a goal to be inferred from the hypotheses, using resolution.

Resolution on a hypotheses and a goal that are general propositions, even
if they are in clausal form, is often not practical. Although it may be possible
to prove a theorem using clausal form propositions, it may not happen in a
reasonable amount of time. One way to simplify the resolution process is to
restrict the form of the propositions. One useful restriction is to require the
propositions to be Horn clauses. Horn clauses only can be in one of two forms:
They have either a single atomic proposition on the left side or an empty left
side.1 The left side of a clausal form proposition is sometimes called the head,
and Horn clauses with left sides are called headed Horn clauses. Headed Horn
clauses are used to state relationships, such as

likes(bob, trout) ⊂ likes(bob, fish) ¨ fish(trout)

Horn clauses with empty left sides, which are often used to state facts, are
called headless Horn clauses. For example,

father(bob, jake)

Most, but not all, propositions can be stated as Horn clauses. The restric-
tion to Horn clauses makes resolution a practical process for proving theorems.

16.4 An Overview of Logic Programming
Languages used for logic programming are called declarative languages, because
programs written in them consist of declarations rather than assignments and
control flow statements. These declarations are actually statements, or propo-
sitions, in symbolic logic.

One of the essential characteristics of logic programming languages is their
semantics, which is called declarative semantics. The basic concept of this
semantics is that there is a simple way to determine the meaning of each state-
ment, and it does not depend on how the statement might be used to solve a

 1. Horn clauses are named after Alfred Horn (1951), who studied clauses in this form.

Often used to state fact

720 Chapter 16 Logic Programming Languages

follows: We can envision a theorem proof in terms of predicate calculus as
a given set of pertinent propositions, with the negation of the theorem itself
stated as a new proposition. The theorem is negated so that resolution can be
used to prove the theorem by finding an inconsistency. This is proof by con-
tradiction, a frequently used approach to proving theorems in mathematics.
Typically, the original propositions are called the hypotheses, and the negation
of the theorem is called the goal.

Theoretically, this process is valid and useful. The time required for reso-
lution, however, can be a problem. Although resolution is a finite process when
the set of propositions is finite, the time required to find an inconsistency in a
large database of propositions may be huge.

Theorem proving is the basis for logic programming. Much of what is
computed can be couched in the form of a list of given facts and relationships
as hypotheses, and a goal to be inferred from the hypotheses, using resolution.

Resolution on a hypotheses and a goal that are general propositions, even
if they are in clausal form, is often not practical. Although it may be possible
to prove a theorem using clausal form propositions, it may not happen in a
reasonable amount of time. One way to simplify the resolution process is to
restrict the form of the propositions. One useful restriction is to require the
propositions to be Horn clauses. Horn clauses only can be in one of two forms:
They have either a single atomic proposition on the left side or an empty left
side.1 The left side of a clausal form proposition is sometimes called the head,
and Horn clauses with left sides are called headed Horn clauses. Headed Horn
clauses are used to state relationships, such as

likes(bob, trout) ⊂ likes(bob, fish) ¨ fish(trout)

Horn clauses with empty left sides, which are often used to state facts, are
called headless Horn clauses. For example,

father(bob, jake)

Most, but not all, propositions can be stated as Horn clauses. The restric-
tion to Horn clauses makes resolution a practical process for proving theorems.

16.4 An Overview of Logic Programming
Languages used for logic programming are called declarative languages, because
programs written in them consist of declarations rather than assignments and
control flow statements. These declarations are actually statements, or propo-
sitions, in symbolic logic.

One of the essential characteristics of logic programming languages is their
semantics, which is called declarative semantics. The basic concept of this
semantics is that there is a simple way to determine the meaning of each state-
ment, and it does not depend on how the statement might be used to solve a

 1. Horn clauses are named after Alfred Horn (1951), who studied clauses in this form.

5

Predicate calculus and proving theorems

§ Main idea: Presence of variables in propositions
requires resolution to find values for the variables
that allows matching to succeed

Ø Unification: Finding values for variables in
propositions that allows matching to succeed

Ø Instantiation: temporary assigning of values to
variables to allow unification

Ø Backtracking: if resolution process to instantiate a
variable with a value fails to complete required
matching, then we backtrack and instantiate variable
with different value

6

Prolog

We will use:

http://www.swi-prolog.org/

https://www.swi-prolog.org/pldoc/doc_for?object=manual

7

Prolog
You can run Prolog programs in several ways:
If you want to install it in your own machine, please install the latest version
of the SWI-prolog. In this case please download it from http://www.swi-
prolog.org/

Our lab also has the SWI-prolog. You can use it from there. To use it, first you
need to login into the lab machines. Now you are ready to work with Prolog.

8

Prolog

Lets create a sample Prolog program file name simple.pl which has following
two lines
person(bob).
father(bob,sam).
Now to open the Prolog complier write command swipl.
Now to load the simple.pl file type ['simple.pl']. in the compiler terminal. The
“.” at the end of ['simple.pl']. is used to mark the end of the command in
Prolog.
Then you can query based on this simple file: person(bob).
returns true
father(bob,X).
returns X = sam.
There are other instructions available:
http://www.cs.toronto.edu/~sheila/324/f05/tuts/swi.pdf
Ctrl-d to quit

9

Prolog

§ University of Aix-Marselle (NLP) and
Edinburgh (automated theorem proving)
in mid 1970s

§ Prolog dialect has several forms. Here
we focus on Edinburgh syntax

10

Prolog

§ Terms: 1. constant, 2. variable, 3. structure

11

Prolog

§ Terms: 1. constant

§ A constant is an atom or integer

12

Prolog

§ Terms: 1. constant

§ A constant is an atom or integer

§ Atom: symbolic value of Prolog (similar
to counterpart in LISP)

13

Prolog

§ Terms: 1. constant

§ A constant is an atom or integer

§ Atom: symbolic value of Prolog (similar
to counterpart in LISP)

Ø string of letters, digits, underscores beginning
with lower case letter
Examples?

14

Prolog

§ Terms: 1. constant

§ A constant is an atom or integer

§ Atom: symbolic value of Prolog (similar
to counterpart in LISP)

Ø string of letters, digits, underscores beginning
with lower case letter
Examples? likes, father, my_classes

15

Prolog

§ Terms: 1. constant

§ A constant is an atom or integer

§ Atom: symbolic value of Prolog (similar
to counterpart in LISP)

Ø String of letters, digits, underscores beginning
with lower case letter
Examples? likes, father, my_classes

Ø String of printable ASCII characters
Examples? , :- have predefined meanings

16

Prolog

§ Terms: 2. variable

§ String of letters, digits, and underscores,
beginning with Uppercase letters

17

Prolog

§ Terms: 2. variable

§ String of letters, digits, and underscores,
beginning with Uppercase letters

Examples: X, List

18

Prolog

§ Terms: 2. variable

§ String of letters, digits, and underscores,
beginning with Uppercase letters

§ Variables are not bound to types by declaration

19

Prolog

§ Terms: 2. variable

§ Variable instantiation: Binding a variable to a
value and thus to a type

20

Prolog

§ Terms: 2. variable

§ Variable instantiation: Binding a variable to a
value and thus to a type

Ø Lasts only as long as it takes to satisfy one
complete goal (proof or disproof of proposition)

21

Prolog

§ Terms: 2. variable

§ Variable instantiation: Binding a variable to a
value and thus to a type

Ø Lasts only as long as it takes to satisfy one
complete goal (proof or disproof of proposition)

Ø Example: student(X)
instantiation will set a variable X to bob and
check the proposition student(bob)

22

Prolog

§ Terms: 2. variable

§ Prolog variables only distant relatives to
imperative languages both in semantics and use

23

Prolog

§ Terms: 3. structure

§ Represents atomic propositions of predicate
calculus

24

Prolog

§ Terms: 3. structure

§ Represents atomic propositions of predicate
calculus

functor(parameter_list)

25

Prolog

§ Terms: 3. structure

§ Represents atomic propositions of predicate
calculus

functor(parameter_list)

Example?

26

Prolog

§ Terms: 3. structure

§ Represents atomic propositions of predicate
calculus

functor(parameter_list)

Example? father(jon, shelley)

27

Prolog

§ Terms: 3. structure

§ Represents atomic propositions of predicate
calculus

functor(parameter_list)

Example? father(jon, shelley)

Used for?

28

Prolog

§ Terms: 3. structure

§ Represents atomic propositions of predicate
calculus

functor(parameter_list)

Example? father(jon, shelley)

Ø used to specify facts in Prolog

29

Prolog

§ Terms: 3. structure

§ Represents atomic propositions of predicate
calculus

functor(parameter_list)

Example? father(jon, shelley)

used to specify facts in Prolog

Ø also a predicate when specifying a question
(query)

30

Prolog

Fact statements

§ Construct hypotheses or database of assumed
information; statements from which new
information can be inferred

31

Prolog

Fact statements

§ Construct hypotheses or database of assumed
information; statements from which new
information can be inferred

§ Remember: facts we have in database; then
queries/goals asking about database

32

Prolog

Statement forms

1. Headless Horn clauses of predicate calculus

Examples??

33

Prolog

Statement forms

1. Headless Horn clauses of predicate calculus

Examples??

female(shelley)
male(bill)
father(bill, jake)

34

Prolog

Statement forms

§ Headless Horn clauses of predicate calculus

Examples??

female(shelley)
male(bill)
father(bill, jake)

Why are the first letters of each term lower case?

35

Prolog

Statement forms

1. Headless Horn clauses of predicate calculus

Examples??

female(shelley)
male(bill)
father(bill, jake)

Why are the first letters of each term lower case?
Answer: these are not variables, but facts (or
queries)

36

Prolog

Statement forms

2. Rule statements (these will correspond to
headed horn clauses)

37

Prolog

Statement forms

2. Rule statements (these will correspond to
headed horn clauses)

consequence :- expression

Here the expression implies consequence (right
side implies left side)

38

Prolog

Statement forms

2. Rule statements (these will correspond to
headed horn clauses)

consequence :- expression

Here the expression implies consequence (right
side implies left side)

The expression can be a single term or
conjunction
Example: female(shelley), child(shelley)

39

Prolog

Statement forms

2. Rule statements (these will correspond to
headed horn clauses)

Example headed horn clauses:

ancestor(mary, shelley) :- mother(mary, shelley)

40

Prolog

Statement forms

2. Rule statements (these will correspond to
headed horn clauses)

Example headed horn clauses:

ancestor(mary, shelley) :- mother(mary, shelley)

Reads: If mary is the mother of shelley,
then this implies that mary is an ancestor of
shelley

41

Prolog

Statement forms

2. Rule statements (these will correspond to
headed horn clauses)

Use of Variables in Prolog statements

42

Prolog

Statement forms

2. Rule statements (these will correspond to
headed horn clauses)

Use of Variables in Prolog statements

parent(X,Y) :- mother(X,Y)

Meaning?

43

Prolog

Statement forms

2. Rule statements (these will correspond to
headed horn clauses)

Use of Variables in Prolog statements

parent(X,Y) :- mother(X,Y)

Meaning? If there are instantiations of X, Y
such that mother(X,Y) is true, then for those
instantiations of X and Y, parent (X,Y) is true

44

Prolog

Statement forms

2. Rule statements (these will correspond to
headed horn clauses)

Use of Variables in Prolog statements

parent(X,Y) :- mother(X,Y)

Meaning? If there are instantiations of X, Y
such that mother(X,Y) is true, then for those
instantiations of X and Y, parent (X,Y) is true

There could be several X,Y pairs in the database
for which parent(X,Y) is true. jon, shelley mary,liz etc

45

Prolog

Statement forms

2. Rule statements (these will correspond to
headed horn clauses)

Use of Variables in Prolog statements

parent(X,Y) :- mother(X,Y)

Meaning? If there are instantiations of X, Y such
that mother(X,Y) is true, then for those
instantiations of X and Y, parent (X,Y) is true

Use of variables allows to generalize meanings

46

Prolog

Statement forms

3. Goal statements (these will correspond to
headless horn clauses, like the fact statements)

47

Prolog

Statement forms

3. Goal statements (these will correspond to
headless horn clauses)

Ø So far: we have described statements as logical
propositions, for facts and logical relationships
between facts. These are the basis for theorem
proving.

48

Prolog

Statement forms

3. Goal statements (these will correspond to
headless horn clauses)

Ø So far: we have described statements as logical
propositions, for facts and logical relationships
between facts. These are the basis for theorem
proving.

Ø The theorem: in the form of a proposition that
we want to prove or disprove (called goals or
queries)

49

Prolog

Statement forms

3. Goal statements (these will correspond to
headless horn clauses)

Ø So far: we have described statements as logical
propositions, for facts and logical relationships
between facts. These are the basis for theorem
proving.

Ø The theorem: in the form of a proposition that
we want to prove or disprove (called goals or
queries)
Example: man(fred)

50

Prolog

Statement forms

3. Goal statements (these will correspond to
headless horn clauses)

Example: man(fred)

The system will respond either:

true: proved goal and true under database of facts
and relations

false: either goal was determined as false, or
system was unable to prove it

51

Prolog

Statement forms

3. Goal statements (these will correspond to
headless horn clauses)

Another example: father(X, mike)

52

Prolog

Statement forms

3. Goal statements (these will correspond to
headless horn clauses)

Another example: father(X, mike)

Note that X is a variable (starts with capital letter)

53

Prolog

Statement forms

3. Goal statements (these will correspond to
headless horn clauses)

Another example: father(X, mike)

Note that X is a variable (starts with capital letter)

When a variable is present, the system not only
asserts validity, but identifies instantiations of
variable that make goal true

54

Prolog

Prolog demos

simple.pl file includes:

% Simple example for testing
% swipl from command line
% Inside compiler:
% ['simple.pl'].
% person(bob).
% returns true
% father(bob,X).
% returns X = sam.
% control d to exit

person(bob).
father(bob,sam).

55

Prolog

Prolog demos

simple.pl let’s try it in compiler:

Ø swipl from command line

Ø Inside compiler:
['simple.pl’].

Notice we always have a period after statement

56

Prolog

Prolog demos

simple.pl let’s try it in compiler:

Ø swipl from command line

Ø Inside compiler:
['simple.pl’].

Ø person(bob).
Returns?

57

Prolog

Prolog demos

simple.pl let’s try it in compiler:

Ø swipl from command line

Ø Inside compiler:
['simple.pl’].

Ø person(bob).
Returns true

58

Prolog

Prolog demos

simple.pl let’s try it in compiler:

Ø swipl from command line

Ø Inside compiler:
['simple.pl’].

Ø father(bob,X).
Returns?

59

Prolog

Prolog demos

simple.pl let’s try it in compiler:

Ø swipl from command line

Ø Inside compiler:
['simple.pl’].

Ø father(bob,X).
Returns? X = sam.

60

Prolog

Prolog demos

simplemore.pl let’s add more facts to file:

person(bob).
father(bob,sam).
father(sam,liz).

61

Prolog

Prolog demos

simplemore.pl let’s add more facts to file:

person(bob).
father(bob,sam).
father(bob,liz).

Ø father(bob,X).
Returns?

initially returns X = sam

62

Prolog

Prolog demos

simplemore.pl let’s add more facts to file:

person(bob).
father(bob,sam).
father(bob,liz).

Ø father(bob,X).
Returns?

initially returns X = sam
Type ; and will return next item here:
X = liz

63

Prolog

Prolog demos

simplemore.pl let’s add more facts to file:

person(bob).
father(bob,sam).
father(bob,liz).

Ø father(bob,X).
Returns?

returns X = sam ; X = liz

So system will attempt (called unification) to find
instantiations of X that results in true value for
goal

64

Prolog

Prolog demos

simple2.pl

%http://faculty.otterbein.edu/psanderson/csc326/notes/Prolo
gNotes.html

mother(iva, pete).
mother(iva, ed).
mother(iva, becky).
mother(kay, nancy).
mother(kay, bob).
mother(kay, diane).
mother(becky, katie).
husband(dwight, iva).
husband(robert, kay).
husband(pete, nancy).

65

Prolog

Prolog demos

simple2.pl

%http://faculty.otterbein.edu/psanderson/csc326/notes/Prolo
gNotes.html

mother(iva, pete).
mother(iva, ed).
mother(iva, becky).
mother(kay, nancy).
mother(kay, bob).
mother(kay, diane).
mother(becky, katie).
husband(dwight, iva).
husband(robert, kay).
husband(pete, nancy).

Things to try:
mother(kay, nancy).
mother(kay, kay).
mother(kay, Who). press ;

66

Prolog

Prolog demos

simple2.pl

%http://faculty.otterbein.edu/psanderson/csc326/notes/Prolo
gNotes.html

mother(iva, pete).
mother(iva, ed).
mother(iva, becky).
mother(kay, nancy).
mother(kay, bob).
mother(kay, diane).
mother(becky, katie).
husband(dwight, iva).
husband(robert, kay).
husband(pete, nancy).

Things to try:
mother(kay, Who). press ;

mother(kay,Who).
Who = nancy ;
Who = bob ;
Who = diane.

67

Prolog

Note about form

§ Goal and non goal statements (e.g., facts, rules)
can have the same form

68

Prolog

Note about form

§ Goal and non goal statements (e.g., facts, rules)
can have the same form

§ So Prolog implementation must have means to
differentiate goals and non goals

69

Prolog

Note about form

§ Goal and non goal statements (e.g., facts, rules)
can have the same form

§ So Prolog implementation must have means to
differentiate goals and non goals

§ We separated by reading in facts file first

70

Prolog

Inferencing process of Prolog

§ Prolog resolution is critical (proving true, or false
cannot prove)

71

Prolog

Inferencing process of Prolog

§ Prolog resolution is critical (proving true, or false
cannot prove)

§ Queries are called goals
If a goal is a compound proposition,
it consists of subgoals

§ To prove goal true:
inferencing process must find chain of rules
and/or facts in the database

72

Prolog

Inferencing process of Prolog

If Q is a goal, then either Q must be found in the
database, or inferencing must find fact P1 and
propositions P2, P3, P4, … Pn such that:

P2 :- P1
P3 :- P2
P4 :- P3

…

Q :- Pn

73

Prolog

Inferencing process of Prolog

If Q is a goal, then either Q must be found in the
database, or inferencing must find fact P1 and
propositions P2, P3, P4, … Pn such that:

P2 :- P1
P3 :- P2
P4 :- P3

…

Q :- Pn
Process is called matching,
satisfying, or resolution

74

Prolog

Inferencing process of Prolog. Example:

man(bob) query

75

Prolog

Inferencing process of Prolog. Example:

man(bob) query

Easy if database includes this fact; then proof
trivial

76

Prolog

Inferencing process of Prolog. Example:

man(bob) query

More complex if database includes rules:

father(bob).
man(X) :- father(X).

77

Prolog

Inferencing process of Prolog. Example:

man(bob) query

More complex if database includes rules:

father(bob).
man(X) :- father(X).

Prolog needs to find the two statements, and use
them to infer the truth of the goal; needs
unification to instantiate X temporarily to bob

78

Prolog

Inferencing process of Prolog. Example:

man(X) query

More complex if database includes rules:

father(bob).
father(jon).
man(X) :- father(X).

Prolog must match goal against propositions in
database

e.g., first find bob then jon (remember we used ;
in compiler)

79

Prolog

Inferencing process of Prolog. Example:

man(bob) query

Database includes rules:
father(bob).
man(X) :- father(X).

How does Prolog do it? Two possibilities:

1. Forward chaining: search for and find first
proposition father(bob); goal is inferred by
matching first proposition with right side of second
rule father(X) through instantiation of X to bob,
and then matching left side of second proposition
to goal man(bob)

80

Prolog

Inferencing process of Prolog. Example:

man(bob) query

Database includes rules:
father(bob).
man(X) :- father(X).

How does Prolog do it? Two possibilities:

2. Backward chaining: first match goal with left
side of second proposition man(X) through the
instantiation of X to bob; as last step, match right
side of second proposition (now father(bob)) with
first proposition

81

Prolog
How does Prolog do it? Two possibilities:

1. Forward chaining: search for and find first
proposition father(bob); goal is inferred by
matching first proposition with right side of second
rule father(X) through instantiation of X to bob,
and then matching left side of second proposition
to goal man(bob)

2. Backward chaining: first match goal with left
side of second proposition man(X) through the
instantiation of X to bob; as last step, match right
side of second proposition (now father(bob)) with
first proposition

Which does Prolog use?

82

Prolog
How does Prolog do it? Two possibilities:

1. Forward chaining: search for and find first
proposition father(bob); goal is inferred by
matching first proposition with right side of second
rule father(X) through instantiation of X to bob,
and then matching left side of second proposition
to goal man(bob)

2. Backward chaining: first match goal with left
side of second proposition man(X) through the
instantiation of X to bob; as last step, match right
side of second proposition (now father(bob)) with
first proposition

Prolog uses Backward chaining. First match goal.

