Logical Languages

part 2
2020

Instructor: Odelia Schwartz



Formal logic and intro to predicate calculus

= All propositions can be expressed in clausal form

BBUBU...UB CANAN...NA,

Right side implies left side
If all of the A are true, at least one B is true



Predicate calculus and proving theorems

= One way to simplify resolution process:
restrict to simpler forms of propositions

Horn Clause

Either
(1) single atomic proposition on left side
(2) empty left side

Also called
(1) Headed horn clause
(2) Headless Horn clause



Predicate calculus and proving theorems

= One way to simplify resolution process:
restrict to simpler forms of propositions

Horn Clause example:
(1) Headed horn clause

likes (bob, trout) C likes (bob, fish) N fish (trout)

(2) Headless Horn clause

father (bob, jake) Often used to state fact

Most, but not all, propositions can be stated as Horn clauses. The restric-
tion to Horn clauses makes resolution a practical process for proving theorems.



Predicate calculus and proving theorems

= Main idea: Presence of variables in propositions
requires resolution to find values for the variables
that allows matching to succeed

» Unification: Finding values for variables in
propositions that allows matching to succeed

» Instantiation: temporary assigning of values to
variables to allow unification

» Backtracking: if resolution process to instantiate a
variable with a value fails to complete required
matching, then we backtrack and instantiate variable
with different value



Prolog

We will use:
http://www.swi-prolog.org/

https://www.swi-prolog.org/pldoc/doc_for?object=manual



Prolog

You can run Prolog programs in several ways:
If you want to install it in your own machine, please install the latest version

of the SWI-prolog. In this case please download it from http://www.swi-
prolog.org/

Our lab also has the SWI-prolog. You can use it from there. To use it, first you
need to login into the lab machines. Now you are ready to work with Prolog.



Prolog

Lets create a sample Prolog program file name simple.pl which has following
two lines

person(bob).

father(bob,sam).

Now to open the Prolog complier write command swipl.

Now to load the simple.pl file type ['simple.pl']. in the compiler terminal. The
“."” at the end of ['simple.pl']. is used to mark the end of the command in
Prolog.

Then you can query based on this simple file: person(bob).

returns true

father(bob,X).

returns X = sam.

There are other instructions available:
http://www.cs.toronto.edu/~sheila/324/f05/tuts/swi.pdf

Ctrl-d to quit



Prolog

= University of Aix-Marselle (NLP) and
Edinburgh (automated theorem proving)
in mid 1970s

= Prolog dialect has several forms. Here
we focus on Edinburgh syntax



Prolog

= Terms: 1. constant, 2. variable, 3. structure



Prolog

= JTerms: 1. constant

= A constant is an atom or integer



Prolog

= Terms: 1. constant
= A constant is an atom or integer

= Atom: symbolic value of Prolog (similar
to counterpart in LISP)



Prolog

= Terms: 1. constant
= A constant is an atom or integer

= Atom: symbolic value of Prolog (similar
to counterpart in LISP)

» string of letters, digits, underscores beginning
with lower case letter
Examples?



Prolog

= Terms: 1. constant
= A constant is an atom or integer

= Atom: symbolic value of Prolog (similar
to counterpart in LISP)

» string of letters, digits, underscores beginning
with lower case letter
Examples? likes, father, my_classes



Prolog

= Terms: 1. constant
= A constant is an atom or integer

= Atom: symbolic value of Prolog (similar
to counterpart in LISP)

» String of letters, digits, underscores beginning
with lower case letter
Examples? likes, father, my_classes

» String of printable ASCII characters
Examples? , :- have predefined meanings



Prolog

= Terms: 2. variable

= String of letters, digits, and underscores,
beginning with Uppercase letters



Prolog

= Terms: 2. variable

= String of letters, digits, and underscores,
beginning with Uppercase letters

Examples: X, List



Prolog

= Terms: 2. variable

= String of letters, digits, and underscores,
beginning with Uppercase letters

= \Variables are not bound to types by declaration



Prolog

= Terms: 2. variable

= Variable instantiation: Binding a variable to a
value and thus to a type



Prolog

20

= Terms: 2. variable

= Variable instantiation: Binding a variable to a
value and thus to a type

» Lasts only as long as it takes to satisfy one
complete goal (proof or disproof of proposition)



Prolog

21

= Terms: 2. variable

= Variable instantiation: Binding a variable to a
value and thus to a type

» Lasts only as long as it takes to satisfy one
complete goal (proof or disproof of proposition)

» Example: student(X)
instantiation will set a variable X to bob and
check the proposition student(bob)



Prolog

22

= Terms: 2. variable

= Prolog variables only distant relatives to
imperative languages both in semantics and use



Prolog

23

= Terms: 3. structure

= Represents atomic propositions of predicate
calculus



Prolog

24

= Terms: 3. structure

= Represents atomic propositions of predicate
calculus

functor(parameter_list)



Prolog

25

= Terms: 3. structure

= Represents atomic propositions of predicate
calculus

functor(parameter_list)

Example?



Prolog

26

= Terms: 3. structure

= Represents atomic propositions of predicate
calculus

functor(parameter_list)

Example? father(jon, shelley)



Prolog

27

= Terms: 3. structure

= Represents atomic propositions of predicate
calculus

functor(parameter_list)
Example? father(jon, shelley)

Used for?



Prolog

28

= Terms: 3. structure

= Represents atomic propositions of predicate
calculus

functor(parameter_list)
Example? father(jon, shelley)

» used to specify facts in Prolog



Prolog

29

= Terms: 3. structure

= Represents atomic propositions of predicate
calculus

functor(parameter_list)
Example? father(jon, shelley)
used to specify facts in Prolog

> also a predicate when specifying a question
(query)



Prolog

30

Fact statements

= Construct hypotheses or database of assumed
information; statements from which new
information can be inferred



Prolog

31

Fact statements

= Construct hypotheses or database of assumed
information; statements from which new
information can be inferred

= Remember: facts we have in database; then
queries/goals asking about database



Prolog

32

Statement forms
1. Headless Horn clauses of predicate calculus

Examples??



Prolog

33

Statement forms

1. Headless Horn clauses of predicate calculus
Examples??

female(shelley)

male(bill)
father(bill, jake)



Prolog

34

Statement forms

» Headless Horn clauses of predicate calculus
Examples??

female(shelley)

male(bill)

father(bill, Jake)

Why are the first letters of each term lower case?



Prolog

35

Statement forms

1. Headless Horn clauses of predicate calculus
Examples??

female(shelley)

male(bill)

father(bill, Jake)

Why are the first letters of each term lower case?

Answer: these are not variables, but facts (or
queries)



Prolog

36

Statement forms

2. Rule statements (these will correspond to
headed horn clauses)



Prolog

37

Statement forms

2. Rule statements (these will correspond to
headed horn clauses)

conseqguence :- expression

Here the expression implies consequence (right
side implies left side)



Prolog

38

Statement forms

2. Rule statements (these will correspond to
headed horn clauses)

conseqguence :- expression

Here the expression implies consequence (right
side implies left side)

The expression can be a single term or
conjunction
Example: female(shelley), child(shelley)



Prolog

39

Statement forms

2. Rule statements (these will correspond to
headed horn clauses)

Example headed horn clauses:

ancestor(mary, shelley) :- mother(mary, shelley)



Prolog

40

Statement forms

2. Rule statements (these will correspond to
headed horn clauses)

Example headed horn clauses:
ancestor(mary, shelley) :- mother(mary, shelley)

Reads: If mary is the mother of shelley,
then this implies that mary is an ancestor of
shelley



Prolog

41

Statement forms

2. Rule statements (these will correspond to
headed horn clauses)

Use of Variables in Prolog statements



Prolog

42

Statement forms

2. Rule statements (these will correspond to
headed horn clauses)

Use of Variables in Prolog statements
parent(X,Y) :- mother(X,Y)

Meaning?



Prolog

43

Statement forms

2. Rule statements (these will correspond to
headed horn clauses)

Use of Variables in Prolog statements
parent(X,Y) :- mother(X,Y)
Meaning? If there are instantiations of X, Y

such that mother(X,Y) is true, then for those
instantiations of X and Y, parent (X,Y) is true



Prolog

44

Statement forms

2. Rule statements (these will correspond to
headed horn clauses)

Use of Variables in Prolog statements
parent(X,Y) :- mother(X,Y)

Meaning? If there are instantiations of X, Y
such that mother(X,Y) is true, then for those
instantiations of X and Y, parent (X,Y) is true

There could be several X,Y pairs in the database
for which parent(X,Y) is true. jon, shelley mary,liz etc



Prolog

45

Statement forms

2. Rule statements (these will correspond to
headed horn clauses)

Use of Variables in Prolog statements
parent(X,Y) :- mother(X,Y)

Meaning? If there are instantiations of X, Y such
that mother(X,Y) is true, then for those
instantiations of X and Y, parent (X,Y) is true

Use of variables allows to generalize meanings



Prolog

46

Statement forms

3. Goal statements (these will correspond to
headless horn clauses, like the fact statements)



Prolog

47

Statement forms

3. Goal statements (these will correspond to
headless horn clauses)

» So far: we have described statements as logical
propositions, for facts and logical relationships

between facts. These are the basis for theorem
proving.



Prolog

48

Statement forms

3. Goal statements (these will correspond to
headless horn clauses)

» So far: we have described statements as logical
propositions, for facts and logical relationships
between facts. These are the basis for theorem
proving.

» The theorem: in the form of a proposition that
we want to prove or disprove (called goals or
queries)



Prolog

49

Statement forms

3. Goal statements (these will correspond to
headless horn clauses)

» So far: we have described statements as logical
propositions, for facts and logical relationships
between facts. These are the basis for theorem
proving.

» The theorem: in the form of a proposition that
we want to prove or disprove (called goals or
queries)

Example: man(fred)



Prolog

50

Statement forms

3. Goal statements (these will correspond to
headless horn clauses)

Example: man(fred)
The system will respond either:

true: proved goal and true under database of facts
and relations

false: either goal was determined as false, or
system was unable to prove it



Prolog

51

Statement forms

3. Goal statements (these will correspond to
headless horn clauses)

Another example: father(X, mike)



Prolog

52

Statement forms

3. Goal statements (these will correspond to
headless horn clauses)

Another example: father(X, mike)

Note that X is a variable (starts with capital letter)



Prolog

53

Statement forms

3. Goal statements (these will correspond to
headless horn clauses)

Another example: father(X, mike)
Note that X is a variable (starts with capital letter)
When a variable is present, the system not only

asserts validity, but identifies instantiations of
variable that make goal true



Prolog

54

Prolog demos

simple.pl file includes:

% Simple example for testing
% swipl from command line
% Inside compiler:

% ['simple.pl'].

% person(bob).

% returns true

% father(bob,X).

% returns X = sam.

% control d to exit

person(bob).
father(bob,sam).



Prolog

55

Prolog demos
simple.pl let’s try it in compiler:
» swipl from command line

» Inside compiler:
['simple.pl’].

Notice we always have a period after statement



Prolog

56

Prolog demos
simple.pl let’s try it in compiler:
» swipl from command line

» Inside compiler:
['simple.pl’].

» person(bob).
Returns?



Prolog

57

Prolog demos
simple.pl let’s try it in compiler:
» swipl from command line

» Inside compiler:
['simple.pl’].

» person(bob).
Returns true



Prolog

58

Prolog demos
simple.pl let’s try it in compiler:
» swipl from command line

» Inside compiler:
['simple.pl’].

» father(bob, X).
Returns?



Prolog

59

Prolog demos
simple.pl let’s try it in compiler:
» swipl from command line

» Inside compiler:
['simple.pl’].

» father(bob, X).
Returns? X = sam.



Prolog

60

Prolog demos
simplemore.pl let’'s add more facts to file:

person(bob).
father(bob,sam).
father(sam,liz).



Prolog

61

Prolog demos
simplemore.pl let’'s add more facts to file:

person(bob).
father(bob,sam).
father(bob,liz).

» father(bob, X).
Returns?

initially returns X = sam



Prolog

62

Prolog demos
simplemore.pl let’'s add more facts to file:

person(bob).
father(bob,sam).
father(bob,liz).

» father(bob, X).
Returns?

initially returns X = sam
Type ; and will return next item here:

X =liz



Prolog

63

Prolog demos
simplemore.pl let’'s add more facts to file:

person(bob).
father(bob,sam).
father(bob,liz).

» father(bob, X).
Returns?

returns X = sam ; X = liz

So system will attempt (called unification) to find
instantiations of X that results in true value for

goal



Prolog

64

Prolog demos

simple2.pl

%http://faculty.otterbein.edu/psanderson/csc326/notes/Prolo
gNotes.html

mother(iva, pete).
mother(iva, ed).
mother(iva, becky).
mother(kay, nancy).
mother(kay, bob).
mother(kay, diane).
mother(becky, katie).
husband(dwight, iva).
husband(robert, kay).
husband(pete, nancy).



Prolog

65

Prolog demos

simple2.pl

%http://faculty.otterbein.edu/psanderson/csc326/notes/Prolo
gNotes.html

mother(iva, pete).
mother(iva, ed).
mother(iva, becky).

mother(kay, nancy). Things to try:

mother(kay, bob). mother(kay, nancy).
mother(kay, diane). mother(kay, kay).
mother(becky, katie). mother(kay, Who). press ;

husband(dwight, iva).
husband(robert, kay).
husband(pete, nancy).



Prolog

66

Prolog demos

simple2.pl

%http://faculty.otterbein.edu/psanderson/csc326/notes/Prolo
gNotes.html

mother(iva, pete).
mother(iva, ed).
mother(iva, becky).

mother(kay, nancy). Things to try:

mother(kay, bob). mother(kay, Who). press ;
mother(kay, diane).

mother(becky, katie). mother(kay,Who).
husband(dwight, iva). Who = nancy ;

husband(robert, kay).

husband(pete, nancy). Who = bob ;

Who = diane.



Prolog

67

Note about form

= Goal and non goal statements (e.g., facts, rules)
can have the same form



Prolog

68

Note about form

= Goal and non goal statements (e.g., facts, rules)
can have the same form

= S0 Prolog implementation must have means to
differentiate goals and non goals



Prolog

69

Note about form

= Goal and non goal statements (e.g., facts, rules)
can have the same form

= S0 Prolog implementation must have means to
differentiate goals and non goals

= We separated by reading in facts file first



Prolog

70

Inferencing process of Prolog

= Prolog resolution is critical (proving true, or false
cannot prove)



Prolog

71

Inferencing process of Prolog

= Prolog resolution is critical (proving true, or false
cannot prove)

= Queries are called goals
If a goal is a compound proposition,
it consists of subgoals

= To prove goal true:
inferencing process must find chain of rules
and/or facts in the database



Prolog

72

Inferencing process of Prolog

If Q is a goal, then either Q must be found in the
database, or inferencing must find fact P1 and
propositions P2, P3, P4, ... Pn such that:

P2 :- P1
P3 :- P2
P4 .- P3

Q :-Pn



Prolog

73

Inferencing process of Prolog

If Q is a goal, then either Q must be found in the
database, or inferencing must find fact P1 and
propositions P2, P3, P4, ... Pn such that:

P2 :- P1
P3 :- P2
P4 :- P3
Q :-Pn

Process is called matching,
satisfying, or resolution



Prolog

74

Inferencing process of Prolog. Example:

man(bob) query



Prolog

75

Inferencing process of Prolog. Example:
man(bob) query

Easy if database includes this fact; then proof
trivial



Prolog

76

Inferencing process of Prolog. Example:
man(bob) query
More complex if database includes rules:

father(bob).
man(X) :- father(X).



Prolog

77

Inferencing process of Prolog. Example:
man(bob) query
More complex if database includes rules:

father(bob).
man(X) :- father(X).

Prolog needs to find the two statements, and use
them to infer the truth of the goal; needs
unification to instantiate X temporarily to bob



Prolog

78

Inferencing process of Prolog. Example:
man(X) query
More complex if database includes rules:

father(bob).
father(jon).
man(X) :- father(X).

Prolog must match goal against propositions in
database

e.g., first find bob then jon (remember we used ;
in compiler)



Prolog

79

Inferencing process of Prolog. Example:
man(bob) query

Database includes rules:
father(bob).
man(X) :- father(X).

How does Prolog do it? Two possibilities:

1. Forward chaining: search for and find first
proposition father(bob); goal is inferred by
matching first proposition with right side of second
rule father(X) through instantiation of X to bob,
and then matching left side of second proposition
to goal man(bob)



Prolog

80

Inferencing process of Prolog. Example:
man(bob) query

Database includes rules:
father(bob).
man(X) :- father(X).

How does Prolog do it? Two possibilities:

2. Backward chaining: first match goal with left
side of second proposition man(X) through the
instantiation of X to bob; as last step, match right
side of second proposition (now father(bob)) with
first proposition



Prolog

8l

How does Prolog do it? Two possibilities:

1. Forward chaining: search for and find first
proposition father(bob); goal is inferred by
matching first proposition with right side of second
rule father(X) through instantiation of X to bob,
and then matching left side of second proposition
to goal man(bob)

2. Backward chaining: first match goal with left
side of second proposition man(X) through the
instantiation of X to bob; as last step, match right
side of second proposition (now father(bob)) with
first proposition

Which does Prolog use?



Prolog

82

How does Prolog do it? Two possibilities:

1. Forward chaining: search for and find first
proposition father(bob); goal is inferred by
matching first proposition with right side of second
rule father(X) through instantiation of X to bob,
and then matching left side of second proposition
to goal man(bob)

2. Backward chaining: first match goal with left
side of second proposition man(X) through the
instantiation of X to bob; as last step, match right
side of second proposition (now father(bob)) with
first proposition

Prolog uses Backward chaining. First match goal.



