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Haskell versus ML 

Pattern Matching 

Haskell:

fact 0 = 1
fact 1 = 1
fact n = n * fact(n-1)

ML:

fun fact(0) = 1
| fact(1) = 1
| fact(n:int) = n*fact(n-1);
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Haskell 

Pattern Matching

Could also do with guards and otherwise:

fact n
| n==0 = 1
| n==1 = 1
| otherwise = n*fact(n-1)

main :: IO ()
main = do

print(fact(4))
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Cons, car, cdr comparison

Haskell:
append ([],lis2) = lis2
append(h:t,lis2) = h:append(t,lis2)

ML: Scheme:
(define (append lis1 lis2)
(cond
((null? lis1) lis2)
(else (cons (car lis1)
(append (cdr lis1) lis2)))

))

fun append ([],lis2) = lis2
| append(h::t,lis2) = 
h::append(t,lis2)
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Haskell 

What kind of sort is this?

sort [] = []
sort (h:t) =

sort [b | b <- t, b <= h]
++ [h] ++
sort [b | b <- t, b > h]

main :: IO ()
main = do

print([1, 2] ++ [3,4])
print(sort [25, 1, 3])
print(sort [9, 6, 25, 1, 3])
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Haskell 

Compare to some imperative languages!
 * A Pascal quicksort.
 *****************************************************************************}
PROGRAM Sort(input, output);
    CONST
        { Max array size. }
        MaxElts = 50;
    TYPE 
        { Type of the element array. }
        IntArrType = ARRAY [1..MaxElts] OF Integer;

    VAR
        { Indexes, exchange temp, array size. }
        i, j, tmp, size: integer;

        { Array of ints }
        arr: IntArrType;

    { Read in the integers. }
    PROCEDURE ReadArr(VAR size: Integer; VAR a: IntArrType);
        BEGIN
            size := 1;
            WHILE NOT eof DO BEGIN
                readln(a[size]);
                IF NOT eof THEN 
                    size := size + 1
            END
        END;

           PROCEDURE QuicksortRecur(start, stop: integer);
            VAR
                m: integer;

                { The location separating the high and low parts. }
                splitpt: integer;

            { The quicksort split algorithm.  Takes the range, and
              returns the split point. }
            FUNCTION Split(start, stop: integer): integer;
                VAR
                    left, right: integer;       { Scan pointers. }
                    pivot: integer;             { Pivot value. }

                { Interchange the parameters. }
                PROCEDURE swap(VAR a, b: integer);
                    VAR
                        t: integer;
                    BEGIN
                        t := a;
                        a := b;
                        b := t
                    END;

                BEGIN { Split }
                    { Set up the pointers for the hight and low sections, and
                      get the pivot value. }
                    pivot := arr[start];
                    left := start + 1;
                    right := stop;

                    { Look for pairs out of place and swap 'em. }
                    WHILE left <= right DO BEGIN
                        WHILE (left <= stop) AND (arr[left] < pivot) DO
                            left := left + 1;
                        WHILE (right > start) AND (arr[right] >= pivot) DO
                            right := right - 1;
                        IF left < right THEN 
                            swap(arr[left], arr[right]);
                    END;

                    { Put the pivot between the halves. }
                    swap(arr[start], arr[right]);

                    { This is how you return function values in pascal.
                      Yeccch. }
                    Split := right
                END;

            BEGIN { QuicksortRecur }
                { If there's anything to do... }
                IF start < stop THEN BEGIN
                    splitpt := Split(start, stop);
                    QuicksortRecur(start, splitpt-1);
                    QuicksortRecur(splitpt+1, stop);
                END
            END;
                    
        BEGIN { Quicksort }
            QuicksortRecur(1, size)
        END;

    BEGIN
        { Read }
        ReadArr(size, arr);

        { Sort the contents. }
        Quicksort(size, arr);

        { Print. }
        FOR i := 1 TO size DO
            writeln(arr[i])
    END.

Source: http://sandbox.mc.edu/~bennet/cs404/doc/qsort_pas.html

    private static long exchanges   = 0;

   /***********************************************************************
    *  Quicksort code from Sedgewick 7.1, 7.2.
    ***********************************************************************/
    public static void quicksort(double[] a) {
        shuffle(a);                        // to guard against worst-case
        quicksort(a, 0, a.length - 1);
    }

    // quicksort a[left] to a[right]
    public static void quicksort(double[] a, int left, int right) {
        if (right <= left) return;
        int i = partition(a, left, right);
        quicksort(a, left, i-1);
        quicksort(a, i+1, right);
    }

    // partition a[left] to a[right], assumes left < right
    private static int partition(double[] a, int left, int right) {
        int i = left - 1;
        int j = right;
        while (true) {
            while (less(a[++i], a[right]))      // find item on left to swap
                ;                               // a[right] acts as sentinel
            while (less(a[right], a[--j]))      // find item on right to swap
                if (j == left) break;           // don't go out-of-bounds
            if (i >= j) break;                  // check if pointers cross
            exch(a, i, j);                      // swap two elements into place
        }
        exch(a, i, right);                      // swap with partition element
        return i;
    }

    // is x < y ?
    private static boolean less(double x, double y) {
        comparisons++;
        return (x < y);
    }

    // exchange a[i] and a[j]
    private static void exch(double[] a, int i, int j) {
        exchanges++;
        double swap = a[i];
        a[i] = a[j];
        a[j] = swap;
    }

    // shuffle the array a[]
    private static void shuffle(double[] a) {
        int N = a.length;
        for (int i = 0; i < N; i++) {
            int r = i + (int) (Math.random() * (N-i));   // between i and N-1
            exch(a, i, r);
        }
    }

    // test client
    public static void main(String[] args) {
        int N = Integer.parseInt(args[0]);

        // generate N random real numbers between 0 and 1
        long start = System.currentTimeMillis();
        double[] a = new double[N];
        for (int i = 0; i < N; i++)
            a[i] = Math.random();
        long stop = System.currentTimeMillis();
        double elapsed = (stop - start) / 1000.0;
        System.out.println("Generating input:  " + elapsed + " seconds");

        // sort them
        start = System.currentTimeMillis();
        quicksort(a);
        stop = System.currentTimeMillis();
        elapsed = (stop - start) / 1000.0;
        System.out.println("Quicksort:   " + elapsed + " seconds");

        // print statistics
        System.out.println("Comparisons: " + comparisons);
        System.out.println("Exchanges:   " + exchanges);
    }
}

Source: http://www.cs.princeton.edu/introcs/42sort/QuickSort.java.html
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Haskell 

Lazy evaluation

§ Allow infinite lists

§ Expressions only evaluated if needed



8

Haskell 

Some list capabilities:

main :: IO ()
main = do

print([1,3..])

Keeps going infinitely…

In practice lazy; can use as much as you want
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Haskell 

squares = [n*n | n <- [0..]]
member n (m:x)

| m<n = member n x
| m==n = True
| otherwise = False

main :: IO ()
main = do

print(member 16 squares)

print(member 15 squares)
Checking if number
can be expressed as n*n
[0,1,4,9,16,25,36,49,64,81,100,121…

Lazy evaluation – let’s run some code
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Support for functional in imperative languages

§ Anonymous functions (Lambda expressions)

Remember Scheme:

((lambda (a b) (+ a b)) 4 5)
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Support for functional in imperative languages

§ Anonymous functions (like Lambda expressions)
are part of Python, Javascript, Ruby, Java, C#
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Support for functional in imperative languages

§ Anonymous functions (like Lambda expressions)
are part of Python, Javascript, Ruby, Java, C#

Javascript: named function
function name (formal parameters) {

body
}

Javascript: name omitted function
function (formal parameters) {
body
}
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Support for functional in imperative languages

§ Anonymous functions (like Lambda expressions)
are part of Python, Javascript, Ruby, Java, C#

C#
parameters => expression
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Support for functional in imperative languages

§ Anonymous functions (like Lambda expressions)
are part of Python, Javascript, Ruby, Java, C#

C#
parameters => expression

If more than one parameter, then enclosed 
in parentheses

If system cannot infer type of parameters, may
be preceded by name type

Return value type always inferred
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Support for functional in imperative languages

§ Anonymous functions (like Lambda expressions)
are part of Python, Javascript, Ruby, Java, C#

C#
parameters => expression

Example:

int [] numbers = {-3,0,4,5,1,-6}
int [] positives = Array.FindAll(numbers, n=>n>0);
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Support for functional in imperative languages

§ Anonymous functions (like Lambda expressions)
are part of Python, Javascript, Ruby, Java, C#

C#
parameters => expression

Example:

int [] numbers = {-3,0,4,5,1,-6}
int [] positives = Array.FindAll(numbers, n=>n>0);

used as parameter to a methods   
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Support for functional in imperative languages

§ Anonymous functions (like Lambda expressions)
are part of Python, Javascript, Ruby, Java, C#

C#
parameters => expression

Example:

int [] numbers = {-3,0,4,5,1,-6}
int [] positives = Array.FindAll(numbers, n=>n>0);

C# method searches an array;
retrieves all elements that
match condition
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Support for functional in imperative languages

§ Anonymous functions (like Lambda expressions)
are part of Python, Javascript, Ruby, Java, C#

C#
parameters => expression

Example:

int [] numbers = {-3,0,4,5,1,-6}
int [] positives = Array.FindAll(numbers, n=>n>0);

So passing block of code
to a method
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Support for functional in imperative languages

§ Anonymous functions (like Lambda expressions)
are part of Python, Javascript, Ruby, Java, C#

C#
parameters => expression

Example:

int [] numbers = {-3,0,4,5,1,-6}
int [] positives = Array.FindAll(numbers, n=>n>0);

// now, positives is 4,5,1
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Support for functional in imperative languages

§ Anonymous functions (like Lambda expressions)
are part of Python, Javascript, Ruby, Java, C#

C#
Can also do named version:

Example:

Func <int,int,int> evall = (a,b) => 3*(a + b/2);
int result = evall(6,22);
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Support for functional in imperative languages

§ Anonymous functions (like Lambda expressions)
are part of Python, Javascript, Ruby, Java, C#

Java 8, similar to c#:
parameters -> expression
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Support for functional in imperative languages

§ Anonymous functions (like Lambda expressions)
are part of Python, Javascript, Ruby, Java, C#

Python:

y=lambda a,b : 2*a-b
print(y(2,3))
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Support for functional in imperative languages

§ Anonymous functions (like Lambda expressions)
are part of Python, Javascript, Ruby, Java, C#

Python:

def thepower(n):
return lambda x: x**n

f = thepower(2)
print(f(8))
f = thepower(3)
print(f(8))
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Support for functional in imperative languages

§ Anonymous functions (like Lambda expressions)
are part of Python, Javascript, Ruby, Java, C#

Python:

def thepower(n):
return lambda x: x**n

f = thepower(2)
print(f(8))
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Support for functional in imperative languages

§ Anonymous functions (like Lambda expressions)
are part of Python, Javascript, Ruby, Java, C#

Python:

def thepower(n):
return lambda x: x**n

f = thepower(2)
print(f(8))

Returns 64
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Support for functional in imperative languages

§ Anonymous functions (like Lambda expressions)
are part of Python, Javascript, Ruby, Java, C#

Python:

def thepower(n):
return lambda x: x**n

f = thepower(2)
print(f(8))
f = thepower(3)
print(f(8))
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Support for functional in imperative languages

§ Anonymous functions (like Lambda expressions)
are part of Python, Javascript, Ruby, Java, C#

Python:

def thepower(n):
return lambda x: x**n

f = thepower(2)
print(f(8))
f = thepower(3)
print(f(8))

Returns 512
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Support for functional in imperative languages

§ Anonymous functions (like Lambda expressions)
are part of Python, Javascript, Ruby, Java, C#

Python:

f = lambda x: print(x)
f("hi")
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Support for functional in imperative languages

§ More on Python

Higher order filter and map often use 
lambda expressions as first parameter:

fib = [0,1,1,2,3,5,8,13,21,34,55] 
result = filter(lambda x: x % 2 == 0, fib)

print(result)

list(result)
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Support for functional in imperative languages

§ More on Python

Higher order filter and map often use 
lambda expressions as first parameter:

fib = [0,1,1,2,3,5,8,13,21,34,55] 
result = filter(lambda x: x % 2 == 0, fib)

print(result)

list(result)

Returns all fib values divisible by 2
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Support for functional in imperative languages

§ More on Python

Higher order filter and map often use 
lambda expressions as first parameter:

list(map(lambda x: x/2,[2,4,6,8]))



32

Support for functional in imperative languages

§ More on Python

Partial function application (like currying of Haskell)

from operator import add;
from functools import partial;

Need to import functional version of addition
Operator named add from operator module…
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Support for functional in imperative languages

§ More on Python

Partial function application (like currying of Haskell)

from operator import add;
from functools import partial;
add5 = partial(add,5);
add5(15)
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Support for functional in imperative languages

§ More on Python

Head and tail…

theList = [1, 2, 3, 4, 5]
head, *tail = theList
print(head)
print(tail)
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Support for functional in imperative languages

§ More on Python

Head and tail… 

theList = [1, 2, 3, 4, 5]
head = theList[0]
tail = theList[1:]
print(head)
print(tail)
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Support for functional in imperative languages

§ More on Python

Head and tail… also:

theList = [1, 2, 3, 4, 5]
head, *tail = theList
print(head)
print(tail)

Print[head, *tail]
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Let’s try append in Python functional style

Haskell:
append ([],lis2) = lis2
append(h:t,lis2) = h:append(t,lis2)

ML: Scheme:
(define (append lis1 lis2)
(cond
((null? lis1) lis2)
(else (cons (car lis1)
(append (cdr lis1) lis2)))

))

fun append ([],lis2) = lis2
| append(h::t,lis2) = 
h::append(t,lis2)



38

Let’s try append in Python functional style

Python:

def append(list1, list2):
if list1==[]:
return list2;

else:
h,*t = list1;
return ([h,append(t,list2)]);

print(lis1+lis2)      
lis1= [1,2,3]
lis2= [4,5,6]
print(append(lis1,lis2))
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Let’s try append in Python functional style

Python:

def append(list1, list2):
if list1==[]:
return list2;

else:
h,*t = list1;
return ([h,append(t,list2)]);

print(lis1+lis2)      
lis1= [1,2,3]
lis2= [4,5,6]
print(append(lis1,lis2))

But we are missing cons…
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Summary functional in imperative

§ Interesting that renewed interest in functional
languages

§ Mainly, functional capabilities in imperative
languages in recent years
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Summary functional in imperative

§ Interesting that renewed interest in functional
languages

§ Mainly, functional capabilities in imperative
languages in recent years

§ Also interest from perspective of side
effects and parallel computing
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Comparison functional vs imperative

§ Functional versus imperative???
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Comparison functional vs imperative

§ Functional can have simple syntactic structure
(e.g., list structure of Scheme used for both
code and data)
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Comparison functional vs imperative

§ Functional can have simple syntactic structure
(e.g., list structure of Scheme used for both
code and data)
Syntax of imperative more complex
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Comparison functional vs imperative

§ Functional can have simple syntactic structure
(e.g., list structure of Scheme used for both
code and data)
Syntax of imperative more complex

§ Semantics of functional simpler and no 
side effects
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Comparison functional vs imperative

§ Functional can have simple syntactic structure
(e.g., list structure of Scheme used for both
code and data)
Syntax of imperative more complex

§ Semantics of functional simpler and no 
side effects

§ Functional programming can increase productivity
(as in smaller programs). See Haskell quicksort!
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Comparison functional vs imperative

§ Functional can have simple syntactic structure
(e.g., list structure of Scheme used for both
code and data)
Syntax of imperative more complex

§ Semantics of functional simpler and no 
side effects

§ Functional programming can increase productivity
(as in smaller programs). See Haskell quicksort!

§ Execution efficiency: functional slower than 
imperative
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Comparison functional vs imperative

§ Reliability??? 
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Comparison functional vs imperative

§ Reliability??? Functional has no side effects. 
Therefore concurrent more natural for functional;  
since no side effects can divide into functions that
are executed concurrently
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Comparison functional vs imperative

§ Readability???
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Comparison functional vs imperative

§ Readability???

Compare C code:
int sumCubes (int n) {

int sum = 0;
for (int index=1; index<=n; index++)

sum+=index*index*index;
return sum;

}
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Comparison functional vs imperative

§ Readability???

Compare C code:
int sumCubes (int n) {

int sum = 0;
for (int index=1; index<=n; index++)

sum+=index*index*index;
return sum;

}

To Haskell:
sumCubes n = sum(map(^3)[1..n])
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Comparison functional vs imperative

§ Readability???

Compare C code:
int sumCubes (int n) {

int sum = 0;
for (int index=1; index<=n; index++)

sum+=index*index*index;
return sum;

}

To Haskell:
sumCubes n = sum(map(^3)[1..n])

1. Build list [1..n]
2. Create new list mapping the cube of each element
3. Sum new list
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Comparison functional vs imperative

§ But why have functional languages not attained
even greater popularity?
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Comparison functional vs imperative

§ But why have functional languages not attained
even greater popularity?

Perhaps inefficiency of earlier implementations
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Comparison functional vs imperative

§ But why have functional languages not attained
even greater popularity?

Perhaps inefficiency of earlier implementations

Most programmers learn imperative first – so
functional might seem strange
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Comparison functional vs imperative

§ But why have functional languages not attained
even greater popularity?

Perhaps inefficiency of earlier implementations

Most programmers learn imperative first – so
functional might seem strange

But as noted, some features of functional making
their way into imperative…
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Programming paradigms

§ Imperative

§ Functional

§ ??
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Programming paradigms

§ Imperative

§ Functional

§ Logical 
What is that?
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Programming paradigms

§ Imperative

§ Functional

§ Logical 
What is that?

Logical programs: declarative rather than procedural
Only desired results (and collections of facts and rules)
specified, rather than detailed procedure for producing
results
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Programming paradigms

§ Imperative

§ Functional

§ Logical 
What is that?

Logical programs: declarative rather than procedural
Only desired results (and collections of facts and rules)
specified, rather than detailed procedure for producing
Results

Syntax and semantics very different from imperative
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Towards logical languages: applications

§ What languages?
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Towards logical languages: applications

§ What languages?

We’ll learn Prolog
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Towards logical languages: applications

§ ???
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Towards logical languages: applications

§ Relational Database Management Systems 
e.g., Structured Query Database (SQL) is non
procedural (tables of information; relations
between tables)
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Towards logical languages: applications

§ Relational Database Management Systems 
e.g., Structured Query Database (SQL) is non
procedural (tables of information; relations
between tables)

§ Expert systems
Designed to emulate user expertise; lots of facts
and relations in databases. Use inference rules to
infer new facts. Example: with Prolog



67

Towards logical languages: applications

§ Relational Database Management Systems 
e.g., Structured Query Database (SQL) is non
procedural (tables of information; relations
between tables)

§ Expert systems
Designed to emulate user expertise; lots of facts
and relations in databases. Use inference rules to
infer new facts. Example: with Prolog

Theorem proving

Recent example: IBM Watson won jeopardy 
challenge
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Towards logical languages: applications

§ Relational Database Management Systems 
e.g., Structured Query Database (SQL) is non
procedural (tables of information; relations
between tables)

§ Expert systems
Designed to emulate user expertise; lots of facts
and relations in databases. Use inference rules to
infer new facts. Example: with Prolog

Theorem proving

Recent example: IBM Watson won jeopardy 
challenge
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Towards logical languages: applications

Fairly recent example: IBM Watson won jeopardy 
challenge

https://www.cs.miami.edu/home/odelia/teaching/csc419_spring20/syllabus/IBM_Watson_Prolog.pdf

Natural Language Processing 
With Prolog in the IBM Watson 
System 
Adam Lally
IBM Thomas J. Watson Research Center 
Paul Fodor Stony Brook University 
24 May 2011 
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Towards logical languages: applications

Fairly recent example: IBM Watson won jeopardy 
challenge

https://www.cs.miami.edu/home/odelia/teaching/csc419_spring20/syllabus/IBM_Watson_Prolog.pdf

Natural Language Processing With Prolog
in the IBM Watson System

Adam Lally
IBM Thomas J. Watson Research Center

Paul Fodor
Stony Brook University

24 May 2011

On February 14-16, 2011, the IBM Watson question answering system won the
Jeopardy! Man vs. Machine Challenge by defeating two former grand champions, Ken
Jennings and Brad Rutter. To compete successfully at Jeopardy!, Watson had to answer
complex natural language questions over an extremely broad domain of knowledge.
Moreover, it had to compute an accurate confidence in its answers and to complete its
processing in a very short amount of time.

The Question-Answering (QA) problem requires a machine to go beyond just match-
ing keywords in documents, which is what a web-search engine does, and correctly in-
terpret the question to figure out what is being asked. The QA system also needs to find
the precise answer without requiring the aid of a human to read through the returned
documents.

To address these challenges, the research team at IBM developed a software archi-
tecture called DeepQA, on which Watson is implemented. The DeepQA architecture
assumes and pursues multiple interpretations of the question, generates many plausi-
ble answers or hypotheses, collects evidence for these hypotheses, and evaluates the
evidence to determine if it supports or refutes those hypotheses [2]. Watson contains
hundreds of different algorithms that evaluate evidence along different dimensions.

Watson utilizes Natural Language Processing (NLP) technology to interpret the
question and extract key elements such as the answer type and relationships between
entities. Also, NLP was used to analyze (prior to the competition) the vast amounts
of unstructured text (encyclopedias, dictionaries, news articles, etc.) that may provide
evidence in support of the answers to the questions. Some of Watson’s algorithms
evaluate whether the relationships between entities in the question match those in the
evidence.

Watson’s NLP begins by applying a parser [5] that converts each text sentence
into a more structured form: a tree that shows both surface structure and deep, logical
structure. For example, in the following example Jeopardy! question:

POETS & POETRY: He was a bank clerk in the Yukon before he published
“Songs of a Sourdough” in 1907

1
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Towards logical languages: applications

Fairly recent example: IBM Watson won jeopardy 
challenge

https://www.cs.miami.edu/home/odelia/teaching/csc419_spring20/syllabus/IBM_Watson_Prolog.pdf

Natural Language Processing With Prolog
in the IBM Watson System

Adam Lally
IBM Thomas J. Watson Research Center

Paul Fodor
Stony Brook University

24 May 2011

On February 14-16, 2011, the IBM Watson question answering system won the
Jeopardy! Man vs. Machine Challenge by defeating two former grand champions, Ken
Jennings and Brad Rutter. To compete successfully at Jeopardy!, Watson had to answer
complex natural language questions over an extremely broad domain of knowledge.
Moreover, it had to compute an accurate confidence in its answers and to complete its
processing in a very short amount of time.

The Question-Answering (QA) problem requires a machine to go beyond just match-
ing keywords in documents, which is what a web-search engine does, and correctly in-
terpret the question to figure out what is being asked. The QA system also needs to find
the precise answer without requiring the aid of a human to read through the returned
documents.

To address these challenges, the research team at IBM developed a software archi-
tecture called DeepQA, on which Watson is implemented. The DeepQA architecture
assumes and pursues multiple interpretations of the question, generates many plausi-
ble answers or hypotheses, collects evidence for these hypotheses, and evaluates the
evidence to determine if it supports or refutes those hypotheses [2]. Watson contains
hundreds of different algorithms that evaluate evidence along different dimensions.

Watson utilizes Natural Language Processing (NLP) technology to interpret the
question and extract key elements such as the answer type and relationships between
entities. Also, NLP was used to analyze (prior to the competition) the vast amounts
of unstructured text (encyclopedias, dictionaries, news articles, etc.) that may provide
evidence in support of the answers to the questions. Some of Watson’s algorithms
evaluate whether the relationships between entities in the question match those in the
evidence.

Watson’s NLP begins by applying a parser [5] that converts each text sentence
into a more structured form: a tree that shows both surface structure and deep, logical
structure. For example, in the following example Jeopardy! question:

POETS & POETRY: He was a bank clerk in the Yukon before he published
“Songs of a Sourdough” in 1907

1
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Towards logical languages: applications

Fairly recent example: IBM Watson won jeopardy 
challenge

https://www.cs.miami.edu/home/odelia/teaching/csc419_spring20/syllabus/IBM_Watson_Prolog.pdf

Natural Language Processing With Prolog
in the IBM Watson System

Adam Lally
IBM Thomas J. Watson Research Center

Paul Fodor
Stony Brook University

24 May 2011

On February 14-16, 2011, the IBM Watson question answering system won the
Jeopardy! Man vs. Machine Challenge by defeating two former grand champions, Ken
Jennings and Brad Rutter. To compete successfully at Jeopardy!, Watson had to answer
complex natural language questions over an extremely broad domain of knowledge.
Moreover, it had to compute an accurate confidence in its answers and to complete its
processing in a very short amount of time.

The Question-Answering (QA) problem requires a machine to go beyond just match-
ing keywords in documents, which is what a web-search engine does, and correctly in-
terpret the question to figure out what is being asked. The QA system also needs to find
the precise answer without requiring the aid of a human to read through the returned
documents.

To address these challenges, the research team at IBM developed a software archi-
tecture called DeepQA, on which Watson is implemented. The DeepQA architecture
assumes and pursues multiple interpretations of the question, generates many plausi-
ble answers or hypotheses, collects evidence for these hypotheses, and evaluates the
evidence to determine if it supports or refutes those hypotheses [2]. Watson contains
hundreds of different algorithms that evaluate evidence along different dimensions.

Watson utilizes Natural Language Processing (NLP) technology to interpret the
question and extract key elements such as the answer type and relationships between
entities. Also, NLP was used to analyze (prior to the competition) the vast amounts
of unstructured text (encyclopedias, dictionaries, news articles, etc.) that may provide
evidence in support of the answers to the questions. Some of Watson’s algorithms
evaluate whether the relationships between entities in the question match those in the
evidence.

Watson’s NLP begins by applying a parser [5] that converts each text sentence
into a more structured form: a tree that shows both surface structure and deep, logical
structure. For example, in the following example Jeopardy! question:

POETS & POETRY: He was a bank clerk in the Yukon before he published
“Songs of a Sourdough” in 1907

1
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Towards logical languages: applications

Fairly recent example: IBM Watson won jeopardy 
challenge

https://www.cs.miami.edu/home/odelia/teaching/csc419_spring20/syllabus/IBM_Watson_Prolog.pdf
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On February 14-16, 2011, the IBM Watson question answering system won the
Jeopardy! Man vs. Machine Challenge by defeating two former grand champions, Ken
Jennings and Brad Rutter. To compete successfully at Jeopardy!, Watson had to answer
complex natural language questions over an extremely broad domain of knowledge.
Moreover, it had to compute an accurate confidence in its answers and to complete its
processing in a very short amount of time.

The Question-Answering (QA) problem requires a machine to go beyond just match-
ing keywords in documents, which is what a web-search engine does, and correctly in-
terpret the question to figure out what is being asked. The QA system also needs to find
the precise answer without requiring the aid of a human to read through the returned
documents.

To address these challenges, the research team at IBM developed a software archi-
tecture called DeepQA, on which Watson is implemented. The DeepQA architecture
assumes and pursues multiple interpretations of the question, generates many plausi-
ble answers or hypotheses, collects evidence for these hypotheses, and evaluates the
evidence to determine if it supports or refutes those hypotheses [2]. Watson contains
hundreds of different algorithms that evaluate evidence along different dimensions.

Watson utilizes Natural Language Processing (NLP) technology to interpret the
question and extract key elements such as the answer type and relationships between
entities. Also, NLP was used to analyze (prior to the competition) the vast amounts
of unstructured text (encyclopedias, dictionaries, news articles, etc.) that may provide
evidence in support of the answers to the questions. Some of Watson’s algorithms
evaluate whether the relationships between entities in the question match those in the
evidence.

Watson’s NLP begins by applying a parser [5] that converts each text sentence
into a more structured form: a tree that shows both surface structure and deep, logical
structure. For example, in the following example Jeopardy! question:

POETS & POETRY: He was a bank clerk in the Yukon before he published
“Songs of a Sourdough” in 1907
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terpret the question to figure out what is being asked. The QA system also needs to find
the precise answer without requiring the aid of a human to read through the returned
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assumes and pursues multiple interpretations of the question, generates many plausi-
ble answers or hypotheses, collects evidence for these hypotheses, and evaluates the
evidence to determine if it supports or refutes those hypotheses [2]. Watson contains
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evaluate whether the relationships between entities in the question match those in the
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The output of the parser includes, among many other things, that “published” is

a verb with base form (or lemma) “publish”, subject “he”, and object “Songs of a
Sourdough”.

Next, Watson applies numerous detection rules that match patterns in the parse.
These rules detect elements such as the focus of the question (the words that refer
to the answer, in this case “he”), the lexical answer types (terms in the question or
category that indicate what type of entity is being asked for, in this case “poet”), and
the relationships between entities in either a question or a potential supporting passage.

We required a language in which we could conveniently express pattern matching
rules over the parse trees and other annotations (such as named entity recognition re-
sults), and a technology that could execute these rules very efficiently. We found that
Prolog was the ideal choice for the language due to its simplicity and expressiveness.
The information in the parse is easily converted into Prolog facts, such as (the numbers
representing unique identifiers for parse nodes):

lemma(1, "he").

partOfSpeech(1,pronoun).

lemma(2, "publish").

partOfSpeech(2,verb).

lemma(3, "Songs of a Sourdough").

partOfSpeech(3,noun).

subject(2,1).

object(2,3).

Such facts were consulted into a Prolog system and several rule sets were executed
to detect the focus of the question, the lexical answer type and several relations between
the elements of the parse. A simplified rule for detecting the authorOf relation can be
written in Prolog as follows:

authorOf(Author,Composition) :-

createVerb(Verb),

subject(Verb,Author),

author(Author),

object(Verb,Composition),

composition(Composition).

createVerb(Verb) :-

partOfSpeech(Verb,verb),

lemma(Verb,VerbLemma),

member(VerbLemma, ["write", "publish",...]).

The author and composition predicates, not shown, apply constraints on the
nodes (“he” and “Songs of a Sourdough”, respectively) to rule out nodes that are not
valid fillers for the author and composition roles in the relation.

This rule, applied to the example, results in the new fact authorOf(1,3), which
is recorded and passed to downstream components in the Watson pipeline.

Now, assume that among the evidence that Watson gathered while attempting to
answer the question is the text:
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