
1

Programming Languages
Scheme part 4 and other functional

2020

Instructor: Odelia Schwartz

2

Summary:

Lots of equalities!

§ eq? for symbolic atoms, not numeric (eq? ‘a ‘b)

§ = for numeric, not symbolic (= 5 7)

§ eqv? for numeric and symbolic

3

equal versus equalsimp

(define (equal lis1 lis2)
(cond
((not (list? lis1)) (eq? lis1

lis2))
((not (list? lis2)) #f)
((null? lis1) (null? lis2))
((null? lis2) #f)
((equal (car lis1) (car

lis2))
(equal (cdr lis1) (cdr

lis2)))
(else #f)

)
)

(define (equalsimp lis1 lis2)
(cond
((null? lis1) (null? lis2))
((null? lis2) #f)
((eq? (car lis1) (car lis2))

(equalsimp (cdr lis1)
(cdr lis2)))

(else #f)
)

)

4

append

(define (append lis1 lis2)
(cond
((null? lis1) lis2)
(else (cons (car lis1)
(append (cdr lis1) lis2)))

))

§ Reminding ourselves of cons (run it on csi):

(cons ‘(a b) ‘(c d)) returns ((a b) c d)

(cons ‘((a b) c) ‘(d (e f))) returns (((a b) c) d (e f))

5

Adding a list of numbers

§ This works: (+ 3 7 10 2)

§ This doesn’t work: (+ (3 7 10 2))

§ Why?

6

Adding a list of numbers

§ This works: (+ 3 7 10 2)

§ This doesn’t work: (+ (3 7 10 2))

How would we achieve the second option?

7

Adding a list of numbers

§ This works: (+ 3 7 10 2)

§ This doesn’t work: (+ (3 7 10 2))

How would we achieve the second option?

Breakout groups

8

Adding a list of numbers

§ We want: (+ (3 7 10 2))

(define (adder a_list)
(cond
((null? a_list) 0)
(else (eval(cons '+ a_list)))

)
)

9

Adding a list of numbers

§ We want: (+ (3 7 10 2))

(define (adder a_list)
(cond
((null? a_list) 0)
(else (eval(cons '+ a_list)))

)
)

We’ll do a little “trick” …

10

Adding a list of numbers

§ We want: (+ (3 7 10 2))

(define (adder a_list)
(cond
((null? a_list) 0)
(else (eval(cons '+ a_list)))

)
)

§ cons creates new list with + and a_list

11

Adding a list of numbers

§ We want: (+ (3 7 10 2))

(define (adder a_list)
(cond
((null? a_list) 0)
(else (eval(cons '+ a_list)))

)
)

§ cons creates new list with + and a_list

§ Why the quote on ‘+?

12

Adding a list of numbers

§ We want: (+ (3 7 10 2))

(define (adder a_list)
(cond
((null? a_list) 0)
(else (eval(cons '+ a_list)))

)
)

§ cons creates new list with + and a_list

§ Why the quote on ‘+?

§ Quote so that eval will not evaluate in evaluation
of cons

13

Adding a list of numbers

§ We want: (+ (3 7 10 2))

(define (adder a_list)
(cond
((null? a_list) 0)
(else (eval(cons '+ a_list)))

)
)

§ Adder (+ 1 2 3 4)

§ Calls (eval (+ 1 2 3 4))

§ And returns (+ 1 2 3 4)

14

Adding a list of numbers

§ We want: (+ (3 7 10 2))

(define (adder a_list)
(cond
((null? a_list) 0)
(else (eval(cons '+ a_list)))

)
)

§ Create adder function and load into csi

§ Run on sci adder (+ 1 2 3 4)

§ Run on sci (eval (+ 1 2 3 4))

15

Adding a list of numbers

§ We want: (+ (3 7 10 2))

(define (adder a_list)
(cond
((null? a_list) 0)
(else (eval(cons '+ a_list)))

)
)

Examples:

(adder '(1 2 3))

16

Adding a list of numbers

§ We want: (+ (3 7 10 2))

Let’s each write another way of doing this…

Create adder2 function and load into csi

Run on sci (adder2 ‘(3 7 10 2))

17

Adding a list of numbers

§ We want: (+ (3 7 10 2))

Let’s each write another way of doing this…
Hint: use car and cdr

Create adder2 function and load into csi

Run on sci (adder2 ‘(3 7 10 2))

18

Other functional languages

19

Common LISP

§ Combination of many features of popular
dialects of LISP, early 1980s

§ Large and complex language, opposite of
Scheme

§ Features include: records; arrays; complex
numbers; character strings; iterative control
statements; etc.

§ So not purely functional, has imperative features

20

Common LISP

§ Combination of many features of popular
dialects of LISP, early 1980s

21

Common LISP

§ Combination of many features of popular
dialects of LISP, early 1980s

§ Large and complex language, opposite of
Scheme

22

Common LISP

§ Combination of many features of popular
dialects of LISP, early 1980s

§ Large and complex language, opposite of
Scheme

§ Features include: records; arrays; complex
numbers; character strings; iterative control
statements; etc.

23

Common LISP

§ Combination of many features of popular
dialects of LISP, early 1980s

§ Large and complex language, opposite of
Scheme

§ Features include: records; arrays; complex
numbers; character strings; iterative control
statements; etc.

§ So not purely functional, has imperative features

24

ML Language

§ Syntax closer to Pascal and other imperative
than to LISP

25

ML Language

§ Syntax closer to Pascal and other imperative
than to LISP

§ Strongly typed (whereas Scheme is essentially
typesless) with no type coercions

What were those?

26

ML Language

§ Syntax closer to Pascal and other imperative
than to LISP

§ Strongly typed (whereas Scheme is essentially
typesless) with no type coercions

§ Has identifiers, but once set cannot be changed –
more like final declarations in Java or const
in C/C++

27

Functional declarations ML

§ Format:

fun name (parameters) = body;

28

Functional declarations ML

§ Format:

fun name (parameters) = body;

Example (run it):

fun circumf(r) = 3.14*r*r;

29

Functional declarations ML

§ Format:

fun name (parameters) = body;

Example:

fun circumf(r) = 3.14*r*r;

The type here is inferred as float from
the type of the literal in the expression

30

Functional declarations ML

§ Format:

fun name (parameters) = body;

Example:

fun times10(x) = 10*x;

Inferred as int

31

Functional declarations ML

§ Format:

fun name (parameters) = body;

Example:

fun square(x) = x*x;

Also inferred as int (default type)

32

Functional declarations ML

§ Format:

fun name (parameters) = body;

Example:

fun square(x) = x*x;

Also inferred as int (default type)

What happens if called with square(2.75)???

33

ML Language

https://www.tutorialspoint.com/execute_smlnj_online.php

34

ML Language

§ Try running some code:

fun times10(x) = 10*x;
times10(5);

35

ML Language

§ Try running some code:

fun times10(x) = 10*x;
times10(5);

times10(5.1);

What happens???

36

ML Language

§ Try running some code:

fun times10(x) = 10*x;
times10(5);

times10(5.1);

Yields error; expecting int…

It’s strongly typed!!

37

ML Language

§ We could also specify type.

fun square(x:real) = x * x;

38

ML Language

§ We could also specify type.

fun square(x:real) = x * x;

Enough to infer that type is real

39

ML Language

§ These are all valid:

fun square(x:real) = x * x;

fun square(x) = (x:real) * x;

fun square(x) = x * (x:real)

Enough to infer that type is real

40

ML Language

§ These are all valid:

fun square(x:real) = x * x;

fun square(x) = (x:real) * x;

fun square(x) = x * (x:real)

Enough to infer that type is real

Type inference also used in Haskell, Miranda, F#

41

ML Language

§ Try running some more code:

fun square(y:real) = y*y;
square(5.1);
square(5.0);

42

ML Language

§ What about this?

fun square(y:real) = y*y;
square(5);

43

ML Language

§ What about this?

fun square(y:real) = y*y;
square(5);

Oops another type error…

44

ML Language

§ What about this?

fun square(y:real) = y*y;
square(5);

Oops another type error…

Note: user defined overloaded functions not allowed,
so if we wanted a square function, one for real and
one for int, would have to use different names…

45

ML selection

§ if else format:

if expression then expression

else else_expression

46

ML selection

§ Example:

fun fact (n:int) =

if n<=1 then 1
else n * fact(n-1);

47

ML selection

§ Example:

fun fact (n:int) =

if n<=1 then 1
else n * fact(n-1);

fact(4);

Run it…

48

ML selection

§ Another way: pattern matching!

fun fact(0) = 1

49

ML selection

§ Another way: pattern matching!

fun fact(0) = 1

| fact(1) = 1

50

ML selection

§ Another way: pattern matching!

fun fact(0) = 1

| fact(1) = 1

| fact(n:int) = n*fact(n-1);

51

ML selection

§ Another way: pattern matching!

fun fact(0) = 1

| fact(1) = 1

| fact(n:int) = n*fact(n-1);

Meant to mimic conditional functional definitions
in math…

52

ML selection

§ Another way: pattern matching!

fun fact(0) = 1

| fact(1) = 1

| fact(n:int) = n*fact(n-1);

Meant to mimic conditional functional definitions
in math…

If param is int that is not 0 or 1 then third
definition is used…

53

ML selection

§ Another way: pattern matching!

fun fact(0) = 1

| fact(1) = 1

| fact(n:int) = n*fact(n-1);

Note that don’t need the int here since it is the
default

54

ML selection

§ Another way: pattern matching!

fun fact(0) = 1

| fact(1) = 1

| fact(n) = n*fact(n-1);

So this is also OK

55

ML selection

§ Another way: pattern matching!

fun fact(0) = 1

| fact(1) = 1

| fact(n) = n*fact(n-1);

fact(4)

Let’s try running code above…

56

ML list operations

§ hd, tl are ML’s version of Scheme CAR, CDR

57

ML list operations

§ hd, tl are ML’s version of Scheme CAR, CDR

§ Literal lists in brackets [3,5,7]; [] empty list

58

ML list operations

§ hd, tl are ML’s version of Scheme CAR, CDR

§ Literal lists in brackets [3,5,7]; [] empty list

§ :: used for cons

59

ML list operations

§ hd, tl are ML’s version of Scheme CAR, CDR

§ Literal lists in brackets [3,5,7]; [] empty list

§ :: used for cons

4::[3,5,7] evaluates to?

60

ML list operations

§ hd, tl are ML’s version of Scheme CAR, CDR

§ Literal lists in brackets [3,5,7]; [] empty list

§ :: used for cons

4::[3,5,7] evaluates to?

[4,3,5,7]

61

ML list operations

§ Try running these:

4::[3,5,7]

hd([4,3,5,7])

tl([4,3,5,7])

62

ML list operations

§ Number of elements in a list

fun length([]) = 0

63

ML list operations

§ Number of elements in a list

fun length([]) = 0

| length(h::t) = 1 + length(t);

64

ML list operations

§ Number of elements in a list

fun length([]) = 0

| length(h::t) = 1 + length(t);

length([1,3,5])

Try running it

65

ML list operations

§ Append function

fun append ([],lis2) = ?

(what should we write here?)

66

ML list operations

§ Append function

fun append ([],lis2) = lis2

67

ML list operations

§ Append function

fun append ([],lis2) = lis2

| append(h::t,lis2) = ?

What should we do?

68

ML list operations

§ Append function

fun append ([],lis2) = lis2

| append(h::t,lis2) = h::?

69

ML list operations

§ Append function

fun append ([],lis2) = lis2

| append(h::t,lis2) = h::append(t,lis2);

70

ML list operations

§ Append function

fun append ([],lis2) = lis2

| append(h::t,lis2) = h::append(t,lis2);

append([1,2],[3,4]);

Try running it…

71

Let’s remind ourselves Scheme

(define (append lis1 lis2)
(cond
((null? lis1) lis2)
(else (cons (car lis1)
(append (cdr lis1) lis2)))

))

§ Reminding ourselves of cons (run it on csi):

(cons ‘(a b) ‘(c d)) returns ((a b) c d)

(cons ‘((a b) c) ‘(d (e f))) returns (((a b) c) d (e f))

72

ML versus Scheme append

(define (append lis1 lis2)
(cond
((null? lis1) lis2)
(else (cons (car lis1)
(append (cdr lis1) lis2)))

))

fun append ([],lis2) = lis2
| append(h::t,lis2) =
h::append(t,lis2);

73

ML list operations

§ Let’s each try fun adder

adder([1,2,3]) should return 6

74

ML list operations

§ Let’s each try fun adder

fun adder([]) = 0

| adder (h::t)=h+adder(t);

adder([1,2,3,4,5]);

75

Names bound to values (constants)

§ Format:

val new_name = expression;

76

Names bound to values (constants)

§ Format:

val new_name = expression;

Binds the value to name once and cannot be
rebound (nothing like an assignment statement
in an imperative language!)

77

Names bound to values (constants)

§ Format:

val new_name = expression;

Example: usually used with a let statement:

fun area(radius) =
let val radius = 2.7

val pi = 3.14159
in pi*radius*radius
end;

78

Higher order functions

§ map

map(fn x =>x*x*x)[1,3,5];

79

Higher order functions

§ map

map(fn x =>x*x*x)[1,3,5];

Note: different interpreters have slightly
different notation; book notation different

80

Higher order functions

§ Composing two functions

h = f o g

(lower case o)

81

Higher order functions

§ Composing two functions

h = f o g

Example: (run it)

fun times10(x) = 10*x;
times10(5);
fun plus3(y) = 3 + y;
plus3(4);
val h = times10 o plus3;
h(7)

