
1

Programming Languages
Scheme part 1

2020

Instructor: Odelia Schwartz

2

Using Scheme interpreter

§ We will run code using Chicken Scheme

§ Installing on your computer:

https://wiki.call-cc.org/platforms

See also manual:
http://wiki.call-cc.org/man/5/The%20User%27s%20Manual

§ Can also run online with different interpreter,
works on simple examples I have tested:
https://repl.it/languages/scheme

https://wiki.call-cc.org/platforms
https://repl.it/languages/scheme

3

Using Chicken Scheme:

§ Type csi in the terminal. It will open the chicken
interpreter.

§ ,q to quit

§ Chicken interpreter uses lower case for reserved
words (book and some other interpreters use upper
case)

Using Scheme interpreter

4

Our department computer also has Chicken Scheme:

§ Log onto Johnston

§ Then log onto one of the computers, such as
wilderness etc.

§ Type csi in the terminal. It will open the chicken
interpreter

Using Scheme interpreter

5

§ Basic arithmetic: +, -, *, /

§ Open csi for the following expressions

(* 3 7)

(- 5 6)

(- 15 7 2)

(- 24 (* 4 3))

(- 24 * 4 3)

Primitive numeric functions

6

§ Basic arithmetic: +, -, *, /

§ Open csi for the following expressions

(-5 6)

‘(-5 6)

‘(-5 6)

Primitive numeric functions

7

Introduction

§ Other built in math functions:

modulo, round, max, min, log, sin, sqrt

(sqrt 5)

(sqrt (round 5.1))

Remember: Chicken scheme, reserved words
lower case

8

Lambda functions

§ Nameless function:
(lambda (x) (* x x))

§ Evaluate for parameter:
((lambda (x) (* x x)) 3)

§ Can have multiple params:
((lambda (a b) (+ a b)) 4 5)

§ With map:
(map (lambda (num) (* num num num)) '(3 4 2 6))

9

Define

§ define used in two ways:

(1) Binds a name to a value:

(define pi 3.14159)
(eval pi)

(define two-pi (* 2 pi))
(eval two-pi)

10

Define

§ define used in two ways:

(1) Binds a name to a value:

(define pi 3.14159)
(eval pi)

(define two-pi (* 2 pi))
(eval two-pi)

Equivalent to:
Java:
final float pi = 3.14159
final float two-pi = 2.0 * pi

Equivalent to:
C/C++:
const float pi = 3.14159
const float two-pi = 2.0 * pi

11

Define

§ define used in two ways:

(2) Binds a name to a lambda expression:

Format:
(define (function_name parameters)

(expression)
)

12

Define

§ define used in two ways:

(2) Binds a name to a lambda expression:

Example:

(define (square number) (* number number))

(square 5)

(square 5.1)

13

Define

§ define used in two ways:

(2) Binds a name to a lambda expression:

Another example: hypotenuse: length (longest side)
of right triangle given two other sides

(define (hypotenuse side1 side2)
(sqrt (+ (square side1) (square side2)))

)

(hypotenuse 3 4)

14

Define

§ define used in two ways:

(2) Binds a name to a lambda expression:

Another example:

(define (hypotenuse side1 side2)
(sqrt (+ (square side1) (square side2)))

)

(hypotenuse 3 4)

returns 5

15

Numeric predefined predicate functions

§ =
§ <>
§ >
§ <
§ >=
§ <=
§ even?
§ odd?
§ zero?

16

Numeric predefined predicate functions

§ =
§ <>
§ >
§ <
§ >=
§ <=
§ even?
§ odd?
§ zero?

Examples:

(even? 5)
(>= 7 6)

17

Numeric predefined predicate functions

§ Two Boolean values:

#t

#f

18

Numeric predefined predicate functions

§ Two Boolean values:

#t

#f

§ Empty list evaluates as false

§ Non empty list evaluates as true

19

Numeric predefined predicate functions

§ Two Boolean values:

#t

#f

§ Empty list evaluates as false

§ Non-empty list evaluates as true

Similar to C integers as Boolean…

20

Control flow

§ If expression

1. (if predicate then_expression else_expression)

21

Control flow

§ If expression

1. (if predicate then_expression else_expression)

Example:

Write a function for computing factorial

§ Use define for defining the function name
§ Use if statement for control

22

Control flow

§ If expression

1. (if predicate then_expression else_expression)

Example:

(define (factorial n)

if statement in here…

)

23

Control flow

§ If expression

1. (if predicate then_expression else_expression)

Example:

(define (factorial n)
(if (<= n 1)
1
(* n (factorial (- n 1)))
) ;this is a comment. end if

) ;end define

24

Control flow

§ If expression

1. (if predicate then_expression else_expression)

Example:

(define (factorial n)
(if (<= n 1)
1
(* n (factorial (- n 1)))
) ;this is a comment. end if

) ;end define

(factorial 4)

25

Control flow

§ If expression

1. (if predicate then_expression else_expression)

Note: We can create a file called factorial.scm
with this code

(load “factorial.scm”)
(factorial 4)

26

Control flow

§ Cond statement

2. Multiple selection via cond:

(cond
(predicate_1 expression_1)
(predicate_2 expression_2)
…
(predicate_n expression_n)
[(else expression_n+1)] ;optional

)

27

Control flow

§ Cond statement

2. Multiple selection via cond:

(cond
(predicate_1 expression_1)
(predicate_2 expression_2)
…
(predicate_n expression_n)
[(else expression_n+1)] ;optional

)
Predicates evaluated one at a time from first line,
until one evaluates to #t. The corresponding
expression is then evaluated and returned. If none
evaluate #t then else is evaluated and value returned…

28

Control flow

§ Cond statement

2. Multiple selection via cond:

Example:

Write a function (compare x y) that returns:

“x is greater than y” if x>y

“y is greater than x” if y>x

“x and y are equal” otherwise

29

Control flow

§ Cond statement

2. Multiple selection via cond:

Example:

(define (compare x y)
(cond
((> x y) "x is greater than y")
((< x y) "y is greater than x")
(else "x and y are equal")

)
)

30

Control flow

§ Cond statement

2. Multiple selection via cond:

Example:

(define (compare x y)
(cond
((> x y) "x is greater than y")
((< x y) "y is greater than x")
(else "x and y are equal")

)
)

(compare 5.1 5.1)

31

Control flow

§ Cond statement

2. Multiple selection via cond:

Example:

(define (leap? year)
(cond
((zero? (modulo year 400)) #t)

)) ;ends define and cond

If can be divided by
400 evenly then
leap year (evaluates
to #t)

32

Control flow

§ Cond statement

2. Multiple selection via cond:

Example:

(define (leap? year)
(cond
((zero? (modulo year 400)) #t)
((zero? (modulo year 100)) #f)

)) ;ends define and cond

If can be divided by
100 evenly then
NOT leap year
(evaluates #f)

33

Control flow

§ Cond statement

2. Multiple selection via cond:

Example:

(define (leap? year)
(cond
((zero? (modulo year 400)) #t)
((zero? (modulo year 100)) #f)
(else (zero? (modulo year 4)))

)) ;ends define and cond
Otherwise if divisible
by 4 then leap year
is #t and if not
divisible by 4 leap
year is #f

34

Control flow

§ Cond statement

2. Multiple selection via cond:

Example:

(define (leap? year)
(cond
((zero? (modulo year 400)) #t)
((zero? (modulo year 100)) #f)
(else (zero? (modulo year 4)))

)) ;ends define and cond

35

Control flow

§ Cond statement

2. Multiple selection via cond:

Example:

(define (leap? year)
(cond
((zero? (modulo year 400)) #t)
((zero? (modulo year 100)) #f)
(else (zero? (modulo year 4)))

)) ;ends define and cond

Returns value
of last expression
in line that evaluates
to true

36

Control flow

§ Cond statement

2. Multiple selection via cond:

Example:

(define (leap? year)
(cond
((zero? (modulo year 400)) #t)
((zero? (modulo year 100)) #f)
(else (zero? (modulo year 4)))

)) ;ends define and cond

Try leap? On 2020 and 2021

37

Control flow

§ Cond statement

2. Multiple selection via cond:

Example:

(define (leap? year)
(cond
((zero? (modulo year 400)) #t)
((zero? (modulo year 100)) #f)
(else (zero? (modulo year 4)))

)) ;ends define and cond

(leap? 2020)
(leap? 2021)

38

Control flow

§ Cond statement

2. Multiple selection via cond:

Example:

(define (leap? year)
(cond
((zero? (modulo year 400)) #t)
((zero? (modulo year 100)) #f)
(else (zero? (modulo year 4)))

)) ;ends define and cond

(leap? 2020)
(leap? 2021)

39

Control flow

§ Cond statement

2. Multiple selection via cond:

Example:

(define (leap? year)
(cond
((zero? (modulo year 400)) #t)
((zero? (modulo year 100)) #f)
(else (zero? (modulo year 4)))

)) ;ends define and cond

(leap? 2020)
(leap? 2021)

40

List functions

§ Returning an element or list

(quote a)

(quote (a b c))

41

List functions

§ Returning an element or list

(quote a)

(quote (a b c))

Abbreviation:

‘a

‘(a b c)

42

List functions

§ Returning an element or list

(quote a)

(quote (a b c))

Abbreviation:

‘a

‘(a b c) Why the need for quote?

43

List functions

§ Returning an element or list

(quote a)

(quote (a b c))

Abbreviation:

‘a

‘(a b c)
Why the need for quote?
In Scheme and some other
Functional languages, data and
code have same format. This tells
the Interpreter it is data

44

List functions: car, cdr

§ car takes a list and returns first element

(car ‘(a b c))

(car ‘((a b) c d))

(car ‘a)

45

List functions: car, cdr

§ car takes a list and returns first element

(car ‘(a b c))

(car ‘((a b) c d))

(car ‘a)

We got an error…

46

List functions: car, cdr

§ car takes a list and returns first element

(car ‘(a b c)) returns a

(car ‘((a b) c d)) returns (a b)

(car ‘a) error since a is not a list

47

List functions: car, cdr

§ car takes a list and returns first element

(car ‘(a b c)) returns a

(car ‘((a b) c d)) returns (a b)

(car ‘a) error since a is not a list

(car ‘(a))

(car ‘())

48

List functions: car, cdr

§ car takes a list and returns first element

(car ‘(a b c)) returns a

(car ‘((a b) c d)) returns (a b)

(car ‘a) error since a is not a list

(car ‘(a)) returns a

(car ‘()) error….

49

List functions: car, cdr

§ cdr takes a list and returns list after removing
first element

(cdr ‘(a b c))

(cdr ‘((a b) c d))

(cdr ‘a)

(cdr ‘(a))

(cdr ‘())

50

List functions: car, cdr

§ cdr takes a list and returns list after removing
first element

(cdr ‘(a b c)) return (b c)

(cdr ‘((a b) c d)) returns (c d)

(cdr ‘a) error

(cdr ‘(a)) returns ()

(cdr ‘()) error

51

List functions: car, cdr

§ car and cdr

Names carried over from IBM 704
address and decrement parts of register

Names not intuitive…

I remember a comes before d …

52

List functions: car, cdr

§ Define a function named second that returns
the second element in a list, using car and cdr

53

List functions: car, cdr

§ Define a function named second that returns
the second element in a list, using car and cdr

(define (second a_list) (car (cdr a_list)))

(second ‘(a b c d))

54

List functions: car, cdr

§ Define a function named second that returns
the second element in a list, using car and cdr

(define (second a_list) (car (cdr a_list)))

(second ‘(a b c d))

Returns b

55

Other variants of car, cdr

§ (caar x) equivalent to (car (car x))

56

Other variants of car, cdr

§ (caar x) equivalent to (car (car x))

Example:

(caar ‘((a) b c d))

(car (car ’((a) b c d)))

57

Other variants of car, cdr

§ (caar x) equivalent to (car (car x))

Example:

(caar ‘((a) b c d))

(car (car ’((a) b c d)))

Answer a

58

Other variants of car, cdr

§ Can keep going with it…

§ Any combo of a, d up to 4 legal in-between!

59

Other variants of car, cdr

§ Can keep going with it…
§ (caddar x) equiv to (car (cdr (cdr (car x))))

60

Other variants of car, cdr

§ Can keep going with it…
§ (caddar x) equiv to (car (cdr (cdr (car x))))

Example:

(caddar ‘((a b (c) d) e))

61

Other variants of car, cdr

§ Can keep going with it…
§ (caddar x) equiv to (car (cdr (cdr (car x))))

Example:

(caddar ‘((a b (c) d) e))

Answer (c). Why?

62

Other variants of car, cdr

§ Can keep going with it…
§ (caddar x) equiv to (car (cdr (cdr (car x))))

Example:

(caddar ‘((a b (c) d) e))

Answer (c)

Because:
1st inner car = (a b (c) d)
Next inner cdr = (b (c) d)
Next cdr = ((c) d)
Final outer car = (c)

63

Creating a list

§ Two ways

§ cons: takes two params, the first either an atom
or a list, and the second a list. Returns a new list
with first param as first element, and second param
as remainder of the result.

64

Creating a list

§ Two ways

§ cons: takes two params, the first either an atom
or a list, and the second a list. Returns a new list
with first param as first element, and second param
as remainder of the result.

Example: (cons ‘a ‘(b c))

Returns?

65

Creating a list

§ Two ways

§ cons: takes two params, the first either an atom
or a list, and the second a list. Returns a new list
with first param as first element, and second param
as remainder of the result.

Example: (cons ‘a ‘(b c))

Returns? (a b c)

66

Creating a list

§ Two ways

§ cons: takes two params, the first either an atom
or a list, and the second a list. Returns a new list
with first param as first element, and second param
as remainder of the result.

Example: (cons ‘a ‘())

Returns?

67

Creating a list

§ Two ways

§ cons: takes two params, the first either an atom
or a list, and the second a list. Returns a new list
with first param as first element, and second param
as remainder of the result.

Example: (cons ‘a ‘())

Returns? (a)

68

Creating a list

§ Two ways

§ cons: takes two params, the first either an atom
or a list, and the second a list. Returns a new list
with first param as first element, and second param
as remainder of the result.

Example: (cons ‘() ‘(a b))

Returns (() a b)

69

Creating a list

§ Two ways

§ cons: takes two params, the first either an atom
or a list, and the second a list. Returns a new list
with first param as first element, and second param
as remainder of the result.

Example: (cons ‘(a b) ‘(c d))

Returns ((a b) c d)

70

Taking a list apart
And putting it back together

§ car and cdr take a list apart

§ cons constructs a new list from two given parts

71

Taking a list apart
And putting it back together

§ What does this function do to list parameter
a_list?

(cons (car a_list) (cdr a_list))

72

Taking a list apart
And putting it back together

§ What does this function do to list parameter
a_list?

(cons (car a_list) (cdr a_list))

Answer: returns list with exact same structure
as a_list

73

Taking a list apart
And putting it back together

§ What does this function do to list parameter
a_list?

(cons (car a_list) (cdr a_list))

Answer: returns list with exact same structure
as a_list

Example:
(cons (car '(a b c)) (cdr '(a b c))) = (a b c)

74

Creating a list

§ Two ways

§ list: takes any number of params; returns a list
with the params as elements

75

Creating a list

§ Two ways

§ list: takes any number of params; returns a list
with the params as elements

Example: (list 'apple 'orange 'grape)

76

Creating a list

§ Two ways

§ list: takes any number of params; returns a list
with the params as elements

Example: (list 'apple 'orange 'grape)

Answer: (apple orange grape)

77

Creating a list

§ Two ways

§ cons would be more tedious for generating
the list (apple orange grape) …

Try it!

78

Creating a list

§ Two ways

§ cons would be more tedious for generating
a list (apple orange grape) …

Example: start from the end

(cons 'grape '())

Results in (grape)

Then would need to add orange and then apple…

79

Creating a list

§ Two ways

§ cons would be more tedious for generating
a list (apple orange grape) …

Example: (cons 'apple (cons 'orange (cons 'grape '())))

Answer: (apple orange grape)

80

Creating a list

§ Two ways

§ cons would be more tedious for generating
a list (apple orange grape) …

Example: (cons 'apple (cons 'orange (cons 'grape '())))

Answer: (apple orange grape)

Why would we still want to use this?

81

Creating a list

§ Two ways

§ cons would be more tedious for generating
a list (apple orange grape) …

Example: (cons 'apple (cons 'orange (cons 'grape '())))

Answer: (apple orange grape)

Why would we still want to use this?
Because of how it works with car and cdr (taking
a list apart versus putting it together). We will
see this later in recursions.

82

Creating a list

§ Summary: Two ways

§ cons: takes two params, the first either an atom
or a list, and the second a list. Returns a new list
with first param as first element, and second param
as remainder of the result.

§ list: takes any number of params; returns a list
with the params as elements.

