
1

Programming Languages
Functional languages intro

2020

Instructor: Odelia Schwartz

2

Introduction

§ Zoom intros …

§ Questions about assignment?

3

§ Start with zoom introductions …

§ Mute microphone unless asking questions

§ Turn video off if too slow

§ Give me feedback! (email / in class)

4

Introduction

§ Imperative: based on Von Neumann

§ Functional: based on mathematical functions

5

Introduction

§ Imperative: based on Von Neumann

§ Functional: based on mathematical functions

§ Important feature of functional: no side effects;
no variables; no states

6

Introduction

§ Last decade: increase in interest and use of
functional languages. What languages?

7

Introduction

§ Last decade: increase in interest and use of
functional languages. What languages?

ML
Haskell
F#
Scheme / Lisp
Clojure

8

Introduction

§ Last decade: increase in interest and use of
functional languages. What languages?

ML
Haskell
F#
Scheme / Lisp
Clojure

We’ll largely focus on Scheme

9

Introduction

§ Last decade: increase in interest and use of
functional languages. What languages?

ML
Haskell
F#
Scheme / Lisp
Clojure

And some ML / Haskell

10

Introduction

§ Last decade: increase in interest and use of
functional languages. What languages?

ML
Haskell
F#
Scheme / Lisp
Clojure

Functional capabilities also common
in modern imperative languages!

11

Mathematical functions

Domain set Range set

12

Mathematical functions

Domain set Range set

§ Evaluation order of mapping expressions controlled
by recursion and conditional expressions

§ Since no side effects cannot depend on any
external values; always map a particular element
of domain to same element of range

13

Mathematical functions

Domain set Range set

§ Evaluation order of mapping expressions controlled
by recursion and conditional expressions

§ Since no side effects cannot depend on any
external values; always map a particular element
of domain to same element of range

14

Mathematical functions

§ Subprograms may depend on current value of
nonlocal or global variables…

§ Difficult to determine statistically what values
subprogram will produce due to side effects…

Imperative in contrast:

15

Simple Functions

Example:

𝑐𝑢𝑏𝑒 𝑥 = 𝑥 ∗ 𝑥 ∗ 𝑥

Note: we are discussing math concepts that apply to
PL; not yet PL …

16

Simple Functions

Example:

𝑐𝑢𝑏𝑒 𝑥 = 𝑥 ∗ 𝑥 ∗ 𝑥

Note: we are discussing math concepts that apply to
PL; not yet PL …

§ Domain and range real numbers

17

Simple Functions

Example:

𝑐𝑢𝑏𝑒 𝑥 = 𝑥 ∗ 𝑥 ∗ 𝑥

Note: we are discussing math concepts that apply to
PL; not yet PL …

§ Parameter x is fixed during evaluation (bound to
a value from domain set)

𝑐𝑢𝑏𝑒 2.0 = 2.0 ∗ 2.0 ∗ 2.0 = 8.0

18

Lambda expressions

§ Early theoretical work separated task of defining
a function from that of naming a function

19

Lambda expressions

§ Lambda notation (Church, 1941) provides method
for defining nameless functions

Example:

λ(x)	x	*	x	*	x

20

Lambda expressions

§ Lambda notation (Church, 1941) provides method
for defining nameless functions

Example:

(λ(x)	x	*	x	*	x)	(2)

Evaluates to?

21

Lambda expressions

§ Lambda notation (Church, 1941) provides method
for defining nameless functions

Example:

(λ(x)	x	*	x	*	x)	(2)

Evaluates to? 8

22

Lambda expressions

§ Python example

open google colab or jupyter notebook

x = lambda a: a * a * a

print(x(5))

23

Lambda expressions

§ Lambda notation (Church, 1941) provides method
for defining nameless functions

§ Church defined formal system for function
definition, function application, and recursion
using lambda functions (lambda calculus)

§ Inspiration for functional languages

24

Functional forms

§ Higher order functions or functional form:
takes one or more functions as parameters,
or yields a function as a result, or both

25

Functional forms

§ Common type: functional composition

ℎ = 𝑓 𝑜 𝑔

Means:

ℎ = 𝑓(𝑔 𝑥)

26

Functional forms

§ Common type: functional composition

ℎ = 𝑓 𝑜 𝑔

Means:

ℎ = 𝑓(𝑔 𝑥)
Example:
𝑓 𝑥 = 𝑥 + 2
𝑔(𝑥) = 3 ∗ 𝑥

ℎ = 𝑓 𝑔 𝑥 =

27

Functional forms

§ Common type: functional composition

ℎ = 𝑓 𝑜 𝑔

Means:

ℎ = 𝑓(𝑔 𝑥)
Example:

𝑓 𝑥 = 𝑥 + 2
𝑔(𝑥) = 3 ∗ 𝑥

ℎ = 𝑓 𝑔 𝑥 = 3 ∗ 𝑥 + 2

28

Functional forms

§ Common type: apply to all
(often called map in PL)

Functional form that takes a single function as a
parameter. Applies function to each of the values
in a list, returning a list

29

Functional forms

§ Common type: apply to all
(often called map in PL)

Functional form that takes a single function as a
parameter. Applies function to each of the values
in a list, returning a list (math symbol α)

30

Functional forms

§ Common type: apply to all
(often called map in PL)

Functional form that takes a single function as a
parameter. Applies function to each of the values
in a list, returning a list (math symbol α)

Example:

ℎ 𝑥 = 𝑥 ∗ 𝑥

𝛼 ℎ, 2,3,4 =?

31

Functional forms

§ Common type: apply to all
(often called map in PL)

Functional form that takes a single function as a
parameter. Applies function to each of the values
in a list, returning a list (math symbol α)

Example:

ℎ 𝑥 = 𝑥 ∗ 𝑥

𝛼 ℎ, 2,3,4 = (4, 9, 16)

32

Lambda expressions

§ Python example

open google colab or jupyter notebook

http://book.pythontips.com/en/latest/map_filter.html

items = [1, 2, 3, 4, 5]

cubed = list(map(lambda x: x**3, items))

33

Lambda expressions

§ Python example

Compare to:

items = [1, 2, 3, 4, 5]
cubed = []
for i in items:

cubed.append(i**3)
print(cubed)

34

Lisp

§ McCarthy, MIT, 1959
§ Functional through Lisp like imperative through

Fortran: first language but no longer represents
latest design concepts

§ Scheme, which we will learn in detail, has similarities

35

Lisp

§ Representing list (A B C D)

§ Internal representation as linked lists

36

Lisp

37

Lisp

§ List (A B C)

§ If interpreted as data, it’s a simple list of 3
elements: A, B, C

38

Lisp

§ List (A B C)

§ If interpreted as data, it’s a simple list of 3
elements: A, B, C

§ If interpreted as a function, it means that
function A is applied to two parameters:
B and C

39

Lisp

§ List (A B C)

§ If interpreted as data, it’s a simple list of 3
elements: A, B, C

§ If interpreted as a function, it means that
function A is applied to two parameters:
B and C

(in a sense, no separation of data and code…)

40

Lisp

§ List (A B C)

§ If interpreted as data, it’s a simple list of 3
elements: A, B, C

§ If interpreted as a function, it means that
function A is applied to two parameters:
B and C

Example: (+ 5 7) evaluates to 12

41

Lisp

§ Lambda notation chosen to specify function
definition, but modified to also allow binding
of functions to names

(function_name (LAMBDA (param1 .. Param n) expression))

42

Lisp

§ Lambda notation chosen to specify function
definition, but modified to also allow binding
of functions to names

(function_name (LAMBDA (param1 .. Param n) expression))

Why sometimes no need for a function name?

43

Lisp

§ Lambda notation chosen to specify function
definition, but modified to also allow binding
of functions to names

(function_name (LAMBDA (param1 .. Param n) expression))

Why sometimes no need for a function name?

Example: function for immediate application to
a parameter list; produced function has no need
for a name, since applied only at one point in
construction

44

Next class

§ Next class Scheme; more in depth

45

Using Scheme interpreter

§ Next class Scheme; more in depth

§ We will run code using Chicken Scheme

§ Installing on your computer:

https://wiki.call-cc.org/platforms

§ Can also run online with different interpreter,
works on simple examples I have tested:
https://repl.it/languages/scheme

https://wiki.call-cc.org/platforms
https://repl.it/languages/scheme

46

Using Chicken Scheme:

§ Type csi in the terminal. It will open the chicken
interpreter.

§ ,q to quit

§ Chicken interpreter uses lower case for reserved
words (book and some other interpreters use upper
case)

Using Scheme interpreter

47

Our department computer also has Chicken Scheme:

§ Log onto Johnston

§ Then log onto one of the computers, such as
wilderness etc.

§ Type csi in the terminal. It will open the chicken
interpreter

Using Scheme interpreter

