
Programming Languages Concepts,

Summary  

CSC419; Odelia Schwartz

This is a summary/reminder
of some main topics discussed;
by no means comprehensive
of entire course

 Reasons for studying PL concepts

• Increased ability to express ideas
• Improved background for choosing appropriate

languages (when you open your startup… when
solving particular problems)

• Increased ability to learn new languages
• Better understanding of significance of

implementation
• Better use of languages that are already known
• Overall advancement of computing

3

Programming Domains
• Scientific applications

– Large numbers of floating point computations; use of arrays
– Fortran (more recently though not stressed in book: Matlab, Python)

• Business applications
– Produce reports, use decimal numbers and characters
– COBOL

• Artificial intelligence
– Symbols rather than numbers manipulated; use of linked lists
– LISP

4

Language Categories

• Imperative
– Central features are variables, assignment statements, and

iteration
– Include languages that support object-oriented programming
– Include scripting languages
– Include the visual languages
– Examples: Ada, C, Java, Perl, JavaScript, Ruby, Visual

BASIC .NET, C++, Python, …
• Functional

– Main means of making computations is by applying functions to
given parameters

– In pure languages, no side effects
– Examples: LISP, Scheme, ML, Haskell

5

Language Categories (2)

• Logic
– Rule-based (rules are specified in no particular order)
– Example: Prolog

6

Language Evaluation Criteria

• Readability: the ease with which programs can be read
and understood

• Writability: the ease with which a language can be
used to create programs

• Reliability: conformance to specifications (i.e., performs
to its specifications)

• Cost: the ultimate total cost

7

Computer Architecture Influence

• Well-known computer architecture: Von Neumann
• Imperative languages, most dominant, because of von

Neumann computers
– Data and programs stored in memory
– Memory is separate from CPU
– Instructions and data are piped from memory to CPU
– Basis for imperative languages

8

• We discussed Von Neumann bottleneck

Evolution of the
Major
Programming
Languages
(light version)

1956

1958

1960

1962

1964

1966

1968

1970

1972

1974

1976

1978

1980

1982

1984

1986

1988

1990

1992

1994

1996

1998

2000

2002

2004

2006

2008

Smalltalk 80

Ruby

C# 2.0

SML

Caml

OCaml

Perl

Perl 5

Java 2 (v1.5 beta)

Fortran I

PL/I

Algol 60

Fortran 77

Scheme

Common Lisp

Scheme R5RS

Pascal

Fortran 90

Prolog

Python

Python 2.0

Smalltalk

C (K&R)

Tcl

C++

COBOL

C#

Lisp

Java JavaScript

C++ (ISO) Haskell 98

Ada 83

Eiffel

ML

See also http://www.levenez.com/lang/ for a complete list.

Describing Syntax and Semantics

• BNF and context-free grammars are equivalent meta-
languages
– Well-suited for describing the syntax of programming

languages
• An attribute grammar is a descriptive formalism that

can describe both the syntax and the semantics of a
language

• Three primary methods of semantics description
– Operation, axiomatic, denotational

10

Example Grammar for small language

 <program> → begin <stmt_list> end

 <stmt_list> → <stmt>

 | <stmt> ; <stmt_list>

 <stmt> → <var> = <expression>

 <var> → a | b | c

 <expression> → <var> + <var>

 | <var> - <var>

 | <var>

11

Example derivation

12

<program> => begin <stmt_list> end

• We’ll derive A = B + C; B = C with this grammar
• A derivation is a repeated application of rules,  

starting with the start symbol (in this case  
program)

• => reads “derives”

Example derivation

13

<program> => begin <stmt_list> end
 => begin <stmt> ; <stmt_list> end

 => begin <var> = <expression> ; <stmt_list> end
 => begin A = <expression> ; <stmt_list> end
 => begin A = <var> + <var> ; <stmt_list> end
 => begin A = B + <var> ; <stmt_list> end
 => begin A = B + C ; <stmt_list> end
 => begin A = B + C ; <stmt> end
 => begin A = B + C ; <var> = <expression> end
 => begin A = B + C ; B = <expression> end
 => begin A = B + C ; B = <var> end
 => begin A = B + C ; B = C end

Example derivation

14

<program> => begin <stmt_list> end
 => begin <stmt> ; <stmt_list> end

 => begin <var> = <expression> ; <stmt_list> end
 => begin A = <expression> ; <stmt_list> end
 => begin A = <var> + <var> ; <stmt_list> end
 => begin A = B + <var> ; <stmt_list> end
 => begin A = B + C ; <stmt_list> end
 => begin A = B + C ; <stmt> end
 => begin A = B + C ; <var> = <expression> end
 => begin A = B + C ; B = <expression> end
 => begin A = B + C ; B = <var> end
 => begin A = B + C ; B = C end

We derived leftmost; could have also done rightmost

Derivations

• Every string of symbols in a derivation is called a
sentential form

• A sentence is a sentential form that has only
terminal symbols

• A leftmost derivation is one in which the leftmost
nonterminal in each sentential form is the one that
is expanded; similarly, rightmost derivation.

15

Parse Tree

• A hierarchical representation of a derivation

 <program>

<stmt_list>

<stmt>

 C

a

<var> = <expression>

<var> + <var>

16

 B

Ambiguity in Grammars

• A grammar is ambiguous if and only if it
generates a sentential form that has two or
more distinct parse trees

• Problematic for compilers since parse tree, and
therefore meaning of the structure, cannot be
determined uniquely

17

Names, Bindings, Type Checking, and Scopes

• Variables are characterized by: name, address, value,
type, lifetime, scope

• Binding is the association of attributes with program
entities

• Scalar variables are categorized as: static, stack dynamic,
explicit heap dynamic, implicit heap dynamic

• Strong typing means detecting all type errors

18

Static and Dynamic Binding

• A binding is static if it first occurs before run time and
remains unchanged throughout program execution.

• A binding is dynamic if it first occurs during execution
or can change during execution of the program

19

Categories of Variables by Lifetimes

• Static--bound to memory cells before execution begins
and remains bound to the same memory cell
throughout execution, e.g., C and C++ static
variables

20

Categories of Variables by Lifetimes

• Stack-dynamic--Storage bindings are created for variables
when their declaration statements are elaborated.

 (A declaration is elaborated when the executable code
associated with it is executed)
–local variables in C subprograms and Java methods

21

Categories of Variables by Lifetimes

• Explicit heap-dynamic -- Allocated and deallocated by
explicit directives, specified by the programmer, which take
effect during execution

• Referenced only through pointers or references, e.g.
dynamic objects in C++ (via new and delete), all objects in
Java

22

Categories of Variables by Lifetimes

• Implicit heap-dynamic--Allocation and deallocation
caused by assignment statements

–Example: arrays in Perl, JavaScript, PHP, Python

23

Type Checking

• Generalize the concept of operands and operators to include
subprograms and assignments

• Type checking is the activity of ensuring that the operands of an
operator are of compatible types

• A compatible type is one that is either legal for the operator, or is
allowed under language rules to be implicitly converted, by
compiler- generated code, to a legal type

–This automatic conversion is called a coercion.

• A type error is the application of an operator to an operand of an
inappropriate type

24

Type Checking (continued)

• If all type bindings are static, nearly all type checking
can be static

• If type bindings are dynamic, type checking must be
dynamic

• A programming language is strongly typed if type
errors are always detected

• Advantage of strong typing: allows the detection of the
misuses of variables that result in type errors

25

Strong Typing

Language examples:
–C and C++ are not: unions are not type checked
–Ada, Java and C# are more strongly typed
–ML is strongly typed

26

Strong Typing (continued)

• Coercion rules strongly affect strong typing--they can
weaken it considerably (C++ versus Ada)

• Although Java has just half the assignment coercions
of C++, its strong typing is still far less effective than
that of Ada

27

Variable Attributes: Scope

• The scope of a variable is the range of statements
over which it is visible

• The nonlocal variables of a program unit are those that
are visible but not declared there

• The scope rules of a language determine how
references to names are associated with variables

• Static and dynamic scope

28

Referencing Environments

• The referencing environment of a statement is the collection of
all names that are visible in the statement

• In a static-scoped language, it is the local variables plus all of
the visible variables in all of the enclosing scopes

• A subprogram is active if its execution has begun but has not
yet terminated

• In a dynamic-scoped language, the referencing environment is
the local variables plus all visible variables in all active
subprograms

29

2

Chapter 6 Topics

• Introduction
• Primitive Data Types
• Character String Types
• User-Defined Ordinal Types
• Array Types
• Associative Arrays
• Record Types
• Union Types
• Pointer and Reference Types
• Note comparisons across languages

Chapter 7 Topics
• Introduction
• Arithmetic Expressions
• Overloaded Operators
• Type Conversions
• Relational and Boolean Expressions
• Short-Circuit Evaluation
• Assignment Statements
• Mixed-Mode Assignment

31

Arithmetic Expressions: Design Issues

• Design issues for arithmetic expressions
– Operator precedence rules?
– Operator associativity rules?
– Order of operand evaluation?
– Operand evaluation side effects?
– Operator overloading?
– Type mixing in expressions?

32

Functional Programming Languages
• Functional programming languages use function

application, conditional expressions, recursion, and
functional forms to control program execution
instead of imperative features such as variables
and assignments

• Pure functional languages have no side effects!
• LISP began as a purely functional language and

later included imperative features
• Scheme is a relatively simple dialect of LISP that

uses static scoping exclusively

33

Functional Programming Languages
• ML is a static-scoped and strongly typed functional

language which includes type inference, exception
handling, and a variety of data structures and
abstract data types

• Haskell is a lazy functional language supporting
infinite lists and set comprehension.

• We focused on some programming examples in
Scheme

• We talked about Head and Tail across languages
of Scheme, ML, Haskell

• Functional capabilities have been making their way
into imperative languages

34

Logic Programming Languages

• Symbolic logic provides basis for logic programming
• We talked about clausal form, and horn clauses
• Logic programs should be nonprocedural
• Prolog statements are facts, rules, or goals
• Resolution is the primary activity of a Prolog interpreter
• Although there are a number of drawbacks with the

current state of logic programming it has been used in a
number of areas

• We focused on some programming in Prolog

35

List processing capabilities

• We saw this both in functional languages (e.g.,
Scheme, ML, Haskell)

• We also saw this in logical languages (Prolog)
• Comparison of similarities and differences in list

processing capabilities

36

