
Graphs part 1  

Motivation: 

Graphs – fundamental to many problems. Web graphs. Biology. Other. 

Connectivity – is network connected and can you get from one node to another, 
or what is the shortest path? Examples: Driving directions; get to one contact 
through another; social media or contact path. 

Some notation: We’ll usually describe the vertices (V) and edges (E) of graph 
G=(V, E). We sometimes talk about vertices v in V, and edges e in E. We denote 
the number of vertices and edges as n and m respectively. (The book sometimes 
also uses V and E to denote number of vertices and edges). 

Two forms of representation: 

(1) Adjacency list: each vertex has a linked list to each adjacent vertex (can save 
in space O(n + m); slower lookup; good in the case of a relatively sparse graph) 

(2) Adjacency Matrix (takes up more space O(n squared), faster lookup; good in 
the case of a dense graph) 

Note: number of edges can be between O(1) and O(n squared), depending on 
whether graph is sparse or dense. 
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Figure 22.1 Two representations of an undirected graph. (a)An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation
of G.
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Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8
edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

shortest-paths algorithms presented in Chapter 25 assume that their input graphs
are represented by adjacency matrices.

The adjacency-list representation of a graph G D .V; E/ consists of an ar-
ray Adj of jV j lists, one for each vertex in V . For each u 2 V , the adjacency list
AdjŒu! contains all the vertices " such that there is an edge .u; "/ 2 E. That is,
AdjŒu! consists of all the vertices adjacent to u in G. (Alternatively, it may contain
pointers to these vertices.) Since the adjacency lists represent the edges of a graph,
in pseudocode we treat the array Adj as an attribute of the graph, just as we treat
the edge set E. In pseudocode, therefore, we will see notation such as G:AdjŒu!.
Figure 22.1(b) is an adjacency-list representation of the undirected graph in Fig-
ure 22.1(a). Similarly, Figure 22.2(b) is an adjacency-list representation of the
directed graph in Figure 22.2(a).

If G is a directed graph, the sum of the lengths of all the adjacency lists is jEj,
since an edge of the form .u; "/ is represented by having " appear in AdjŒu!. If G is



 

 

How do we find the vertices reachable from a given vertex? 

Two ways to search graphs: BFS; DFS 

Breadth First Search (BFS): 

Find all vertices distance 1; then distance 2; then distance 3; etc… by breadth. 
Like visiting according to levels (of distance 1; then 2; then 3; etc). 

 

Also in undirected graph: 

 

Application: finding shortest paths between vertices (eg, from source vertex s to 
all other vertices). 

Run time: we will see that fast; linear in number of vertices and nodes: O(n + m) 

We color the nodes to keep track of them (in BFS, DFS): 

White: Vertices are initially white;  
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Gray: First time vertex encountered, make gray  

Black: Only when all its adjacent neighbors discovered, turn to black. 

Main approach: Uses first in first out queue Q to manage the discovered gray 
vertices, until we go through all their adjacency neighbors, and they then turn 
black. Same for directed and undirected graphs. We’ll write this out higher level 
than book: 

BFS(G, s)           

// G is a graph and s is some source vertex 

- initialize all vertices to white, and distance infinity 

- initially make s vertex gray, distance 0,  and Enqueue(Q, s) 

- while Q not empty 

        u = Dequeue(Q) 

        for every vertex v in adjacency list of u 

                if v white  
                // first discovered; put in the back of queue 

                   make v gray  

                   v.d = u.d + 1     // distance 

                   v.parent = u    

                   Enqueue(Q,v)   

        change vertex u to black  // after going through adjacency 



 

At the same time: make Breadth First tree. If node v is discovered after u, then 
edge (u,v) is added to the tree and we say that u is a predecessor (parent) of v. A 
vertex is discovered at most once.  

Run time:  

n =number vertices 
m = number edges 

- Each vertex enqueued and dequeued at most once (why? Because never white 
again).  Cost of these is O(1). n = number of vertices. Total over all vertices O(n). 

- Scans adjacency list only when dequeued, therefore each adjacency list only at 
most once. Sum of all adjacency lists depends on number of edges O(m) where 
m = number of edges.  

- Total O(n + m). Linear in number of vertices and edges.  

BFS allows to find Shortest paths: 

BFS discovers shortest paths distances. Shortest path distance from s to v: 

delta(s,v) = minimum number of edges from any path from vertex s to v.  

(infinity if no path exists) 
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Figure 22.3 The operation of BFS on an undirected graph. Tree edges are shown shaded as they
are produced by BFS. The value of u:d appears within each vertex u. The queue Q is shown at the
beginning of each iteration of the while loop of lines 10–18. Vertex distances appear below vertices
in the queue.

Although we won’t use this loop invariant to prove correctness, it is easy to see
that it holds prior to the first iteration and that each iteration of the loop maintains
the invariant. Prior to the first iteration, the only gray vertex, and the only vertex
in Q, is the source vertex s. Line 11 determines the gray vertex u at the head of
the queue Q and removes it from Q. The for loop of lines 12–17 considers each
vertex ! in the adjacency list of u. If ! is white, then it has not yet been discovered,
and the procedure discovers it by executing lines 14–17. The procedure paints
vertex ! gray, sets its distance !:d to u:dC1, records u as its parent !:" , and places
it at the tail of the queue Q. Once the procedure has examined all the vertices on u’s



Main theorem (we’ve simplified from book format): 

Let G=(V,E) be a graph. Suppose the BFS is run on G from given source s. Then 
upon termination, for each vertex v in V, v.d computed by BFS satisfies  

v.d = delta(s,v)  

That is, v.d is the shortest path, shortest number of edges from source s. 

Main idea of proof: induction over distance i (node u with distance i-1 from source 
discovers vertex v, and v is distance one away from u, and therefore distance i 
from source). 

 

 


