Greedy algorithms

Main approach: always make the choice that looks best at the moment.

- More efficient than dynamic programming

- Always make the choice that looks “best” at the moment (just one choice;
contrast this with Dynamic Programming in which we check out all possible
choices!)

- Caveat: Doesn’t always result in globally optimal solution, but for some
problems does. We will look at such examples, as well as cases in which
it does not work.

We'll first develop the approach and then look at a classical example of data
compression known as Huffman coding.

Example: activity selection problem:

Goal: We want to allocate activities to a lecture hall, which could only serve one

activity at a time. Activities cannot overlap in time. We want to select a maximum
subset of activities (as many activities as possible) that are mutually compatible

(do not overlap in time). We’'ll just use compatible for “mutually compatible” from
now on.

More formally:

Activities are a set S={a1, a2, ..., an}

Start times: s1, s2, ... sn

Finish times: f1, 2, .. fn

Compatible means no time overlap: si >=fj or sj >=fi

Assumption: We assume activities have been pre-sorted by finish time such that:

f1<=f2<=f3...<=fn

Example:

1 2 3 4 5 6 7T 8 9 10 11
S; 1 3 0 5 3 5 6 8 8 2 12
4

Example compatible activities:

{a3, a9, a11}

{a3, a7, a11}

But this is not the largest subset possible.
Example of largest subset of compatible activities:
{a1, a4, a8, a11}

{a2, a4, a9, a11}

Next steps:

1. We'll first develop a dynamic programming solution.

2. We'll then see that we actually need just one choice — the greedy choice — for
an optimal solution.

3. We’'ll then develop a greedy algorithm.

Dynamic programming:

a. Optimal substructure: We'll divide the full set into two subsets, such that if we
know the optimal solutions to the subproblems, then this results in an optimal
solution to the full problem.

Original bigger problem: Definitions:
Sij Set of activities that start after ai finishes and finish before aj starts

We'll choose index k and activity ak in Sij, and divide into two subproblems: Sik
and Skj. (let's say we are already handed the best choice k of dividing the larger
problems into subproblems).

Then to find the optimal solution to the larger problem, we need to find the max
compatible subset in each of the subproblems Sik and in Sij, plus include ak in
the solution (since ak starts after activities in Sik and finishes before activities in
Sjk).

We therefore have: Sij = {Sik, ak, Skj}

If we have an optimal solution to the subproblems, then these are part of the
optimal solution to the bigger problem.

We'll define one extra variable, which we will use in the recursion:

Cli,j] = number of activities in the optimal compatible set
Main recursive equation:

Clij] = C[i,k] + C[k,j] + 1

The +1 is the extra activity ak.

b. Making a choice k: As usual for dynamic programming, we do not know the
optimal k that splits the set of activities. So we try all possible k’s. The recursion
becomes:

C[i,j] = max ak { C[i,k] + C[k,j] + 1}

That is, we need to find index k and corresponding activity ak, for which the
equation (C[i,j] = C[i,k] + C[k,j] + 1) is maximal.

As an aside, when we access the subproblem solutions C[i,k] and C[k,j] saved
in our table, we’ll technically need to make sure they are compatible with ak (end
before activity k starts; and start after activity k finishes). This turns out just an
extra line of code in practice to check this condition, when computing for each
choice of k.

- We could develop the recursive algorithm and “memoize” smaller subproblem
solutions or use a bottom up approach. But you could already see this is getting
a bit tedious... In addition the run time is proportional to n cubed (since the table
we saved is proportional to n squared, and the number of choices each time is
proportional to n).

- We'll instead go on to a greedy approach!

Greedy solution:

Main idea: What is we could just make one choice — a greedy choice — to add to
our optimal solution. That is, rather than considering all possible choices, we
make a single choice.

Look back at original example and remember that it was pre-sorted by finish time.

Greedy choice: Choose the activity that ends earliest, a1, to give most time for
putting in other activities.

Remaining subproblem: If we make a greedy choice, we have one remaining
subproblem: find activities that start after a1 finishes (why?)

Formally: Greedy strategy after choosing a1: find best greedy solution in set S1
(set that starts after a1 finishes).

Main algorithm idea: repeatedly choose activity that finishes first, and then keep
only set of compatible activities and choose from the remaining set (until set is

empty).

Main structure for greedy algorithm:

1. Make a choice (single choice!)

2. Solve remaining subproblem recursively

Caveat: greedy algorithms don’t always give optimal solution. It does here
(theorem in book). Problem sets: will see examples in which greedy solution is
not always optimal.

Pseudo code: We can write out pseudo code as recursive or as bottom up. Here
we will show bottom up, which is more intuitive. But you could see recursive in
the book.

Main sketch of code for recursive:

Recursive-activity-selector(s,f,k,n) // for choice k, start times s, finish times f

1. Find first activity in remaining set Sk = {ak+1, ak+2, ... an} that starts after ak
finishes

2. Return that activity (which we denote am with m>=k+1) and recurse on the
remaining activities for this choice m: Recursive-activity-selector(s,f,m,n)

Bottom-up:

GREEDY-ACTIVITY-SELECTOR (s, f)

1 n = s.length

2 A ={ai}

3 k=1

4 form = 2ton

5 if s[m] > f[k]

6 A= AU{a,}
7 k =m

8 return A4

Run time: O(n)

[Plus if counting pre-sorting of finish times: O(n log n)]

Main sketch of proof that greedy choice is optimal:

Theorem (simplified from book!): Consider subproblem Sk that has am as the
earliest finish time in Sk, and has other activities. Define Ak as the maximum size
subset of compatible activities in Sk. Then the claim is that am is included in Ak.

Proof sketch: Let aj be the activity in Ak (the optimal subset) with the earliest
finish time.

Then Ak = {aj, and other activities that are themselves compatible}

a. If aj is equal to am we are done (am is in the optimal solution of some max
size subset of compatible activities)

b. If aj is not equal to am, then we construct a new set Ak’, in which we remove
aj and we add am:

Ak’ = Ak — {aj} + {am}

(note: book uses union operation instead of +; here we just use minus and plus
for removing and adding an activity from the set)

Then: Ak’ = {am, and other activities that are themselves compatible}
Since am has earliest finish time in original set Sk, then fm <= f{j

So since Ak was compatible, our new set Ak’ is also compatible, and includes
the same number of activities as in Ak

(so again am is in the optimal solution of some max size subset of compatible
activities)

