
Greedy algorithms 

Main approach: always make the choice that looks best at the moment. 

- More efficient than dynamic programming 

- Always make the choice that looks “best” at the moment (just one choice;         
  contrast this with Dynamic Programming in which we check out all possible    
  choices!) 

- Caveat: Doesn’t always result in globally optimal solution, but for some  
  problems does. We will look at such examples, as well as cases in which  
  it does not work. 

We’ll first develop the approach and then look at a classical example of data 
compression known as Huffman coding. 

Example: activity selection problem: 

Goal: We want to allocate activities to a lecture hall, which could only serve one 
activity at a time. Activities cannot overlap in time. We want to select a maximum 
subset of activities (as many activities as possible) that are mutually compatible 
(do not overlap in time). We’ll just use compatible for “mutually compatible” from 
now on. 

More formally:   

Activities are a set S={a1, a2, … , an} 

Start times: s1, s2, … sn 

Finish times: f1, f2, .. fn 

Compatible means no time overlap: si >= fj or sj >= fi 

Assumption: We assume activities have been pre-sorted by finish time such that: 

f1 <= f2 <= f3 … <= fn 

Example: 
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this chapter and Chapter 23 independently of each other, you might find it useful
to read them together.

16.1 An activity-selection problem

Our first example is the problem of scheduling several competing activities that re-
quire exclusive use of a common resource, with a goal of selecting a maximum-size
set of mutually compatible activities. Suppose we have a set S D fa1; a2; : : : ; ang
of n proposed activities that wish to use a resource, such as a lecture hall, which
can serve only one activity at a time. Each activity ai has a start time si and a finish
time fi , where 0 ! si < fi < 1. If selected, activity ai takes place during the
half-open time interval Œsi ; fi /. Activities ai and aj are compatible if the intervals
Œsi ; fi / and Œsj ; fj / do not overlap. That is, ai and aj are compatible if si " fj

or sj " fi . In the activity-selection problem, we wish to select a maximum-size
subset of mutually compatible activities. We assume that the activities are sorted
in monotonically increasing order of finish time:
f1 ! f2 ! f3 ! # # # ! fn!1 ! fn : (16.1)
(We shall see later the advantage that this assumption provides.) For example,
consider the following set S of activities:
i 1 2 3 4 5 6 7 8 9 10 11
si 1 3 0 5 3 5 6 8 8 2 12
fi 4 5 6 7 9 9 10 11 12 14 16
For this example, the subset fa3; a9; a11g consists of mutually compatible activities.
It is not a maximum subset, however, since the subset fa1; a4; a8; a11g is larger. In
fact, fa1; a4; a8; a11g is a largest subset of mutually compatible activities; another
largest subset is fa2; a4; a9; a11g.

We shall solve this problem in several steps. We start by thinking about a
dynamic-programming solution, in which we consider several choices when deter-
mining which subproblems to use in an optimal solution. We shall then observe that
we need to consider only one choice—the greedy choice—and that when we make
the greedy choice, only one subproblem remains. Based on these observations, we
shall develop a recursive greedy algorithm to solve the activity-scheduling prob-
lem. We shall complete the process of developing a greedy solution by converting
the recursive algorithm to an iterative one. Although the steps we shall go through
in this section are slightly more involved than is typical when developing a greedy
algorithm, they illustrate the relationship between greedy algorithms and dynamic
programming.



Example compatible activities:  

{a3, a9, a11} 

{a3, a7, a11} 

But this is not the largest subset possible. 

Example of largest subset of compatible activities: 

{a1, a4, a8, a11} 

{a2, a4, a9, a11} 

 

Next steps: 

1. We’ll first develop a dynamic programming solution. 

2. We’ll then see that we actually need just one choice – the greedy choice – for 
an optimal solution. 

3. We’ll then develop a greedy algorithm. 

Dynamic programming: 

a. Optimal substructure: We’ll divide the full set into two subsets, such that if we 
know the optimal solutions to the subproblems, then this results in an optimal 
solution to the full problem. 

Original bigger problem: Definitions: 

Sij  Set of activities that start after ai finishes and finish before aj starts 

We’ll choose index k and activity ak in Sij, and divide into two subproblems: Sik 
and Skj. (let’s say we are already handed the best choice k of dividing the larger 
problems into subproblems). 

Then to find the optimal solution to the larger problem, we need to find the max 
compatible subset in each of the subproblems Sik and in Sij, plus include ak in 
the solution (since ak starts after activities in Sik and finishes before activities in 
Sjk). 

We therefore have: Sij = {Sik, ak, Skj} 

If we have an optimal solution to the subproblems, then these are part of the 
optimal solution to the bigger problem.  

 

 

 

 

 



We’ll define one extra variable, which we will use in the recursion: 

C[i,j]  = number of activities in the optimal compatible set  

Main recursive equation: 

C[i,j] = C[i,k] + C[k,j] + 1 

The +1 is the extra activity ak. 

b. Making a choice k: As usual for dynamic programming, we do not know the 
optimal k that splits the set of activities. So we try all possible k’s. The recursion 
becomes: 

C[i,j] = max ak { C[i,k] + C[k,j] + 1} 

That is, we need to find index k and corresponding activity ak, for which the 
equation ( C[i,j] = C[i,k] + C[k,j] + 1 ) is maximal. 

As an aside, when we access the subproblem solutions C[i,k] and C[k,j] saved 
in our table, we’ll technically need to make sure they are compatible with ak  (end 
before activity k starts; and start after activity k finishes). This turns out just an 
extra line of code in practice to check this condition, when computing for each 
choice of k. 

- We could develop the recursive algorithm and “memoize” smaller subproblem 
solutions or use a bottom up approach. But you could already see this is getting 
a bit tedious… In addition the run time is proportional to n cubed (since the table 
we saved is proportional to n squared, and the number of choices each time is 
proportional to n). 

- We’ll instead go on to a greedy approach! 

Greedy solution: 

Main idea: What is we could just make one choice – a greedy choice – to add to 
our optimal solution. That is, rather than considering all possible choices, we 
make a single choice. 

Look back at original example and remember that it was pre-sorted by finish time. 

Greedy choice: Choose the activity that ends earliest, a1, to give most time for 
putting in other activities. 

Remaining subproblem: If we make a greedy choice, we have one remaining 
subproblem: find activities that start after a1 finishes (why?) 

Formally: Greedy strategy after choosing a1: find best greedy solution in set S1 
(set that starts after a1 finishes). 

Main algorithm idea: repeatedly choose activity that finishes first, and then keep 
only set of compatible activities and choose from the remaining set (until set is 
empty). 

 

 



Main structure for greedy algorithm: 

1. Make a choice (single choice!) 

2. Solve remaining subproblem recursively 

Caveat: greedy algorithms don’t always give optimal solution. It does here 
(theorem in book). Problem sets: will see examples in which greedy solution is 
not always optimal. 

Pseudo code: We can write out pseudo code as recursive or as bottom up. Here 
we will show bottom up, which is more intuitive. But you could see recursive in 
the book. 

Main sketch of code for recursive: 

Recursive-activity-selector(s,f,k,n)   // for choice k, start times s, finish times f 

1. Find first activity in remaining set Sk = {ak+1, ak+2, … an} that starts after ak 
finishes 

2. Return that activity (which we denote am with m>=k+1) and recurse on the 
remaining activities for this choice m: Recursive-activity-selector(s,f,m,n) 

 

Bottom-up: 

 

Run time: O(n) 

[Plus if counting pre-sorting of finish times: O(n log n)] 
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The procedure GREEDY-ACTIVITY-SELECTOR is an iterative version of the pro-
cedure RECURSIVE-ACTIVITY-SELECTOR. It also assumes that the input activi-
ties are ordered by monotonically increasing finish time. It collects selected activ-
ities into a set A and returns this set when it is done.

GREEDY-ACTIVITY-SELECTOR.s; f /

1 n D s: length
2 A D fa1g
3 k D 1
4 for m D 2 to n
5 if sŒm! ! f Œk!
6 A D A [ famg
7 k D m
8 return A

The procedure works as follows. The variable k indexes the most recent addition
to A, corresponding to the activity ak in the recursive version. Since we consider
the activities in order of monotonically increasing finish time, fk is always the
maximum finish time of any activity in A. That is,
fk D max ffi W ai 2 Ag : (16.3)
Lines 2–3 select activity a1, initialize A to contain just this activity, and initialize k
to index this activity. The for loop of lines 4–7 finds the earliest activity in Sk to
finish. The loop considers each activity am in turn and adds am to A if it is compat-
ible with all previously selected activities; such an activity is the earliest in Sk to
finish. To see whether activity am is compatible with every activity currently in A,
it suffices by equation (16.3) to check (in line 5) that its start time sm is not earlier
than the finish time fk of the activity most recently added to A. If activity am is
compatible, then lines 6–7 add activity am to A and set k to m. The set A returned
by the call GREEDY-ACTIVITY-SELECTOR.s; f / is precisely the set returned by
the call RECURSIVE-ACTIVITY-SELECTOR.s; f; 0; n/.

Like the recursive version, GREEDY-ACTIVITY-SELECTOR schedules a set of n
activities in ‚.n/ time, assuming that the activities were already sorted initially by
their finish times.

Exercises
16.1-1
Give a dynamic-programming algorithm for the activity-selection problem, based
on recurrence (16.2). Have your algorithm compute the sizes cŒi; j ! as defined
above and also produce the maximum-size subset of mutually compatible activities.



Main sketch of proof that greedy choice is optimal: 

Theorem (simplified from book!): Consider subproblem Sk that has am as the 
earliest finish time in Sk, and has other activities. Define Ak as the maximum size 
subset of compatible activities in Sk. Then the claim is that am is included in Ak. 

Proof sketch: Let aj be the activity in Ak (the optimal subset) with the earliest 
finish time.  

Then Ak = {aj, and other activities that are themselves compatible} 

a. If aj is equal to am we are done (am is in the optimal solution of some max 
size subset of compatible activities) 

b. If aj is not equal to am, then we construct a new set Ak’, in which we remove 
aj and we add am: 

Ak’ = Ak – {aj} + {am} 

(note: book uses union operation instead of +; here we just use minus and plus 
for removing and adding an activity from the set) 

Then: Ak’ = {am, and other activities that are themselves compatible} 

Since am has earliest finish time in original set Sk, then fm <= fj 

So since Ak was compatible, our new set Ak’ is also compatible, and includes 
the same number of activities as in Ak  

(so again am is in the optimal solution of some max size subset of compatible 
activities) 

 


