Data Structures and Algorithm
Analysis (CSC317)

Intro/Review of Data Structures
Focus on dynamic sets

We've been talking a lot about efficiency
iIn computing and run time

.... But thus far mostly ignoring data
structures

Dynamic sets ...

Set size changes overtime

Elements could have identifying keys, and
could also have satellite data

example: key corresponding to friend
name, with satellite data corresponding to
email, phone, favorite hobbies, etc

Dynamic sets ... what operations?

Dynamic sets ... what operations?

« Either queries

* Or modifying operations that change
the set

Dynamic sets ... what operations?

* Search

* Insert

* Delete

* Min/ Max

e Successor/ Predecessor

Operations on dynamic sets...

Which data structure?
 Dependson what you want to do.

We know of... ?

Operations on dynamic sets...

Which data structure?
 Dependson what you want to do.

We know of... hash table, stack, queue,
linked list, tree, heap, etc.

Data structures

Hash table

* I|nsert, Delete, Search/lookup

* We don’t maintain order information
* Applications?

« WEe'll go throughin detalil later

« WEe'll see that all operations on average O(1)

Data structures

Stack
 last-in-first-out
* |nsert = push
 Delete =pop

« Applications?

Data structures

Stack
Run time of push and pop? O(1)
Very fast!

But limited operations... (eg, if you want to
Search it’'s not efficient)

Data structures

Queue

e first-in-first-out

Data structures

Queue
 first-in-first-out
 |nsert=Enqueue
 Delete = Deqeue

* Applications?

Data structures

Queue

e first-in-first-out

Run time Enqueue/Dequeue: O(1)
Very fast!

But limited operations...

Data structures

Linked lists
e Search
e |nsert

« Delete

Data structures

Linked lists (example of double linked)

prev key next

\ | /

L.head —> /19| |1 [16] |

Data structures

Linked lists: Run time?
« Search O(n) [limitation if lots of searches]

 Insert O(1)

 Delete O(1) [unlessfirst searching for key]

Data structures

Binary tree and trees (later)

——
N
JB

/

\
2
Qs

/
;)
o

AN
)
1/

Data structures

Binary trees

* Search

* Min/Max

* Predecessor/Successor
* Insert/Delete

« Later; basic operations take height of tree,
complete binary tree |©(logn)

Data structures

Heap: main operations: (discussed in sorting
chapter)

* Insert O(ogn)

 Remove object from heap that is min
(or max, but not both) @(logn)

* Technically, can be implemented via a
complete binary tree

* Applications?

Data structures

Heap: main operations: (discussed in sorting
chapter)

insert ©(logn)

Remove object from heap that is min
(or max, but not both) ®(logn)

Applications?

(Heapsort) and we’ll discuss finding median
dynamically...

Finding median dynamically

Input: numbers presentedone by one: x , x,,...x
Output: At each time step, the median

Run time?

Finding median dynamically

Input: numbers presented one by one: X5 XyyeooX,
Output: At each time step, the median
Run time”? We know we can do O(n) but dynamically

each time we add a number, would like to do better
and not have to recompute with O(n)

Finding median dynamically

Input: numbers presentedone by one: x , x,,...x
Output: At each time step, the median

« Using two heaps: one for max and one for min
O(log k) each step

On the board...

Finding median dynamically

Low Heap holding smaller numbers: performs max
operationin O(log k) time

High Heap holding larger numbers: performs min
operationin O(log k) time

Invariant: half smallest number of elements so far
In low heap; half highestin high heap

Finding median dynamically

Low Heap (max); High heap (min)

Invariant: half smallest number of elements so far
in low heap; half highestin high heap

« Considerif have 10 elements and inserting the 11t;
12t - need to maintain balanced numberin each
heap

* If Low has 6 elements and High 5 elements, and
next elementis less than max of Low, insert in low
and move min of High to Low...

Finding median dynamically

Low Heap (max); High heap (min)
Computing median: each step log(k) time

« Ifkis odd number(eg, 6 in Low and 5 in High),
extract min of High

 |fkis oddnumber(eg, 5in Lowand 6 in High),
extract max of Low

* If Kk even number, extract both min of High and
max of Low

