Data Structures and Algorithm
Analysis (CSC317)

Randomized Algorithms (part 3)



Quicksort

Quicksort(A, p, r)

1. If p<r

2. q = Partition(A,p,r)

3. Quicksort(A,p,q-1)
4. Quicksort(A,q+1,r)



Quicksort

Quicksort(A, p, r)

1. If p<r
2. q = Partition(A,p,r)
3. Quicksort(A,p,g-1)
4. Quicksort(A,q+1,r)




Quicksort on average run time

« We'll prove that average run time with random
pivots for any input array is O(n log n)

 Randomnessis in choosing pivot

* Average as good as best case!



Quicksort on average runtime

Prelims:
* Most work of Quicksort in comparisons

« Each call to partition is constant plus number
of comparisons in for loop

* Let X = total number of comparisonsin all
calls to Partition



Quicksort on average runtime

« Let X =total number of comparisonsin all
calls to Partition

« Rename smallest and largest elementsin Aas
Lys&g sy

Example: [4 12 3]
z1=1; z2=2; z3=3; z4=4

This is for analysis, not that we presort!




Quicksort on average runtime

« Let X = total number of comparisonsin all
calls to Partition

« Rename smallest and largest elementsin Aas
Lys&g sy

* ConsiderZ;,<; with indices i<

Y = 1if Z,and <;compared
y 0 if not compared



Quicksort on average runtime

How many times will zi and zj be compared?

Example:
A=[81640 39 5]; zi=3; zj=9

When will two elements be compared?

Only if one of them (3 or 9) is chosen as a pivot, since
in Partition, each element compared only with pivot.
They will then never be compared again, since

pivot is not in the subsequentrecursions to Partition



Quicksort on average runtime

How many times will zi and zj be compared?

Example:
A=[81640 39 5]; zi=3; zj=9

When will two elements not be compared?

If pivot=95, then none of [8 6 9] will be compared
to [14 0 3], so zi and zj not compared.

Not in this call of partition, or any other call,
since these sets will then be separated



Quicksort on average runtime
Probability that zi and zj be compared?

Not necessarily in
order in array A

Consideri<j and set Zl-j = L3 &ipyoL

* This set will remain togetherin calls to Partition,
unless one of them is a pivot

 Because otherwise pivotwill be smaller thanii
or larger than |, so these will remain together



Quicksort on average runtime
Probability that zi and zj be compared?

Consideri<j and set Zl-j = L3 &ipyoL

« Ifiorjchosenfirst as pivot within this set, they’'ll be
compared

 (Otherwise, anotherelement will be chosen as
pivot, and they will be separated

« Since (j-i+1) elementsin this set, the prob of any
elementas pivot: |

j—i+1



Quicksort on average runtime

Pr{ zicomparedtozj} =

Pr { zi or zj chosen first as pivot in Zij } =

(since mutually
exclusive)

Pr { zi first element chosen from Zij } +
Pr { zj first element chosen from Zij } =

1 1 2
_I_

=i+l j—i+l j—i+]




Quicksort on average runtime

« Let X = total number of comparisonsin all
calls to Partition

Y = 1if Z; and {;compared
lJ 0 if not compared

n—-1 n
X:ZZXU’

=1 j=i+l

All possible comparisons | and |



Quicksort on average runtime

« Let X = total number of comparisonsin all
calls to Partition

Y = 1if g and {;compared
lJ 0 if not compared

EIXI=ELY, ¥ X,1= 3, Y EIX,]

i=1 j=i+l i=1 j=i*+1 prob zi compared
to z



Quicksort on average runtime

n-1 n n-1 n
EIX1=EY, Y X;1=3, 3 EIX;]=
=1 j=i+l i=1 j=i+1  Prob zi compared

to z

5y

i=1 j=i+1J i+1



chksort on average runtime

-1¥ 3 x,1=3 3 A, 1-

i=1 j=i+l i=1 j=i+l

Z 2 — (Change of var: k = j-i)

11]z+1]

n—1 n—i

szﬂ

=1 k=1

nlnl

>y

llkl

20(log n)=
0_(n logn)



Quicksort on average run time

« We'll shown thataverage run time with random
pivots for any input array is O(n log n)

 Randomnessis in choosing pivot

* Average as good as best case!



Order statistics: another use of partition!

* Array n unsorted
* Find kth smallest

e k=1: Minimum



Order statistics: another use of partition!

* Array n unsorted

Find kth smallest element

e k=1: Minimum

Rk



Order statistics: another use of partition!

* Array n unsorted

Find kth smallest element

e k=1: Minimum

. k:[”_HJ,{”H] Median
2 2



Order statistics

* Array n unsorted
o st 2nd 3rd smallest or largest; median ...

* Anotheruse of Partition



Order statistics: start simple (15t order)

Minimum(A)

1. Min = A[1]

2. for i=2 to A.length
3. if min>A[i]

4. min=A[i]

5. return min

Worst case?
Best case?



Order statistics: start simple (15t order)

Minimum(A)

1. Min = A[1]

2. for i=2 to A.length
3. if min>A]Ji]

4. min = AJi]

5. return min

Worst case? O(n)
Bestcase? ©O(n)



Order statistics

Selection problem — more general problem
Input: set A with n distinct numbers

Output: find ith smallest element
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Selection problem — more general problem
Input: set A with n distinct numbers

Output: find ith smallest element

Upper bound?



Order statistics

Selection problem — more general problem
Input: set A with n distinct numbers

Output: find ith smallest element

Upper bound?

We can solve in O(nlogn) since we can always sort
and find ith index in array



Order statistics

Selection problem — more general problem
Input: set A with n distinct numbers

Output: find ith smallest element

Upper bound?

We can solve in O(nlogn) since we can always sort
and find ith index in array. We would like to do better!



Selection problem

Selection problem — more general problem
Input: set A with n distinct numbers

Output: find ith smallest element

O(n) on average with randomized algorithm

Amazing that (at least on average) similar to finding
just minimum!



Selection problem

Randomized-Select(A,p,r,i) < pivot q

1if p==r //base case P ¥ ]
2 return A[p]
3 g=Randomized-Partition(A,p,r)

> pivot

4 k=qg-p+1 // number elements from left up to pivot
5 if i==k // pivot is the ith smallest!

6 returnAlq]

7 elseif i<k

8 return Randomized-Select(A,p,q-1,i) //ith smallest left
9 else return Randomized-Select(A,q+1,r,i-k) //on right



Selection problem

Randomized-Select(A,p,r,i) ) < pivot

> pivot

q
v

Example:
A=[4165 3]
=3

(find 2" smallest; 3™ smallest element
On the board...)



Selection problem

< pivot > pivot

How is this differentfrom randomized version of
Quicksort?



Selection problem

< pivot > pivot

How is this differentfrom randomized version of
Quicksort?

Answer: Only one recursion (left or right); not two



Selection problem

gr

Analysis

Worst case: T(n)= T(n — 1) +0(n)
=0(n*)

always partition around largest remaining
element, and recursion on array size n-1

Worse than a good sorting scheme!




Selection problem

Analysis: But 1/10to 9/10 good... ©®(n)

On
T(l’l) = T(E) + @(l’l) —



Selection problem

Analysis: But 1/10to 9/10 good... ©®(n)

On
Tn)=T| — [+0
(n) (10) (n)
nlogba — n10g10/91 — nO — 1
Master theorem....
f(n)=0(n)

T(n)=06(n)



Selection problem

Average case solution also good! ©®(n)

We won't prove, but similar to Quicksort....



