Data Structures and Algorithm Analysis (CSC317)

Randomized algorithms

- We always want the best hire for a job!
- Using employment agency to send one candidate at a time
- Each day, we interview one candidate
- We must decide immediately if to hire candidate and if so, fire previous!

- Always want the best hire...
- Cost to interview (low)
- Cost to fire/hire... (expensive)

Hire-Assistant(n)

- 1. *best* = 0 //least qualified candidate
- 2. **for** i = 1 **to** n
- 3. interview candidate i
- 4. **if** candidate i better than best

```
6. hire candidate i
```

- Always want the best hire... fire if better candidate comes along...
- Cost to interview (low) C_i
- Cost to fire/hire... (expensive) C_h

- n Total number candidates
- m Total number hired

- Always want the best hire... fire if better candidate comes along...
- Cost to interview (low) C_i
- Cost to fire/hire... (expensive) C_h

- n Total number candidates
- m Total number hired

Different type of cost – not run time, but cost of hiring

Hire-Assistant(n)

- 1. *best* = 0 //least qualified candidate
- 2. **for** i = 1 **to** n
- 3. interview candidate i
- 4. **if** candidate i better than best

6. hire candidate i

Different type of cost, but flavor of max problems, which candidate is best/winning

- Always want the best hire... fire if better candidate comes along...
- Cost to interview (low) C_i
- Cost to fire/hire... (expensive) C_h

$$c_h > c_i$$

- n Total number candidates
- m Total number hired

$$O(c_i n + c_h m)$$

Different type of cost – not run time, but cost of hiring

- Always want the best hire... fire if better candidate comes along...
- Cost to interview (low) C_i
- Cost to fire/hire... (expensive) C_h

- n Total number candidates
- m Total number hired

When is this most expensive?

- Always want the best hire... fire if better candidate comes along...
- Cost to interview (low) C_i
- Cost to fire/hire... (expensive) C_h
 - n Total number candidates
 - m Total number hired

When is this most expensive? When candidates interview in reverse order, worst first...

- 1. *best* = 0 //least qualified candidate
- 2. **for** i = worst_candidate **to** best_candidate...

$$O(c_i n + c_h n)$$

When is this most expensive? When candidates interview in reverse order, worst first...

- 1. *best* = 0 //least qualified candidate
- 2. **for** i = worst_candidate **to** best_candidate...

$$C_h > C_i$$

$$O(c_i n + c_h n) = O(c_h n)$$

When is this most expensive? When candidates interview in reverse order, worst first...

- Always want the best hire... fire if better candidate comes along...
- Cost to interview (low) C_i
- Cost to fire/hire... (expensive) C_h
 - n Total number candidates
 - m Total number hired

When is this least expensive?

- 1. *best* = 0 //least qualified candidate
- 2. **for** i = best_candidate **to** worst_candidate...

$$O(c_i n + c_h)$$

When is this least expensive? When candidates interview in order, best first...

- 1. *best* = 0 //least qualified candidate
- 2. **for** i = best_candidate **to** worst_candidate...

$$O(c_i n + c_h)$$

When is this least expensive? When candidates interview in order, best first... But we don't know who is good or bad a priori...

- Cost to interview (low C_i)
- Cost to fire/hire... (expensive C_h)
 - n Total number candidates
 - m Total number hired

 $O(c_i n + c_h m)$ \uparrow Depends on order of candidates! Constant no matter order of candidates

Hiring problem and randomized algorithms

$O(c_i n + c_h m)$ \uparrow Depends on order of candidates! Constant no matter order of candidates

Randomized order can do us well on average (we will show!)

Hiring problem and randomized algorithms

$$O(c_i n + c_h m)$$

Depends on order of candidates!

- Can't assume in advance that candidates are in random order there might be bias
- But we can add randomization to our algorithm by asking the agency to send names in advance, and randomizing

Hiring problem - randomized

- We always want the best hire for a job!
- Employment agency sends list of n candidates in advance
- Each day, we choose randomly a candidate from the list to interview
- We do not rely on the agency to send us randomly, but rather take control in algorithm

Randomized hiring problem(n)

randomly permute the list of candidates
 Hire-Assistant(n)

What do we mean by randomly permute?

Random(a,b)

Function that returns an integer between a and b, inclusive, where each integer has equal probability

Most programs: pseudorandom-number generator

Random(a,b)

Function that returns an integer between a and b, inclusive, where each integer has equal probability

Random(0,1)?

Random(a,b)

Function that returns an integer between a and b, inclusive, where each integer has equal probability

Random(0,1)?

0 with prob .5 1 with prob .5

Random(a,b)

Function that returns an integer between a and b, Inclusive, where each integer has equal probability

```
Random(3,7)?
```

3 with prob 1/5 4 with prob 1/5 5 with prob 1/5

Like rolling a (7-3+1) dice

How do we randomly permute?

Random permutation

Randomize-in-place(A,n)

- 1. For i = 1 to n
- 2. swap A[i] with A[Random(i,n)]

Random permutation

Randomize-in-place(A,n)

- 1. For i = 1 to n
- 2. swap A[i] with A[Random(i,n)]

 $A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ A = & 3 & 2 & 1 & 4 & 5 & 6 \\ A = & 3 & 6 & 4 & 5 & 2 \\ A = & 3 & 6 & 1 & 4 & 5 & 2 \\ A = & 3 & 6 & 1 & 4 & 5 & 2 \end{bmatrix}$

- Sample space S: space of all possible outcomes (e.g., that can happen in a coin toss)
- Probability of each outcome: p(i)>=0

$$\sum_{i\in S} p(i) = 1$$

• Example: coin toss $S = \{H, T\}$

$$p(H) = p(T) = \frac{1}{2}$$

• Event: a subset of all possible outcomes that can happen; subset of sample space S

 $E \subseteq S$

Probability of event:

$$\sum_{i\in E} p(i)$$

• Example: coin toss that gave Heads E={H}

• Event: a subset of all possible outcomes that can happen; subset of sample space

Example: rolling two dice

• List all possible outcomes

• List the event or subset of outcomes for which the sum of the dice is 7

• Probability of event that sum of dice 7

• Event: a subset of all possible outcomes that can happen; subset of sample space

Example: rolling two dice

- List all possible outcomes
 S={(1,1},(1,2),(1,3),...(2,1),(2,2),(2,3),...(6,6)}
- List the event or subset of outcomes for which the sum of the dice is 7 E = {(1,6),(6,1),(2,5),(5,2),(3,4),(4,3)}
- Probability of event that sum of dice 7: 6/36

• Random variable: attaches value to an outcome/s

Example: value of one dice

Example: sum of two dice

• Random variable: attaches value to an outcome/s

CAPITAL X: typically capital letter to denote random variable

small $\boldsymbol{\mathcal{X}}$: typically lower case for particular value/s that random variable takes

p(X = x) Probability that random variable X takes on value x

• Random variable: attaches value to an outcome/s

Example: r.v. X represents sum of two dice

p(X = x) Probability that sum of two dice takes on value x

$$p(X=7) = \frac{6}{36}$$

- Expectation or Expected Value of Random variable:
- = Average

- Expectation or Expected Value of Random variable:
- = Average

$$E[X] = \sum_{x} p(X = x)x$$

Sum over each possible value, weighted by probability of that value

• Expectation or Expected Value of Random variable:

dice

$$E[X] = \sum_{x} p(X = x)x$$

Example: X represents sum of two

$$E[X] = ?$$

• Expectation or Expected Value of Random variable:

dice

$$E[X] = \sum_{x} p(X = x)x$$

Example: X represents sum of two

$$E[X] = ?$$

• Expectation or Expected Value of Random variable:

Example: X represents sum of two dice

Sum 2: $\{(1,1)\}$; 3: $\{(1,2);(2,1)\}$; 4: $\{(1,3),(3,1),(2,2)\}$; 5: $\{(1,4),(4,1),(2,3),(3,2)\}$; 6: $\{(1,5),(5,1),(4,2),(2,4),(3,3)\}$; 7: $\{(1,6);(6,1);(5,2);(2,5);(3,4);(4,3)\}$; 8: $\{(2,6);\{6,2),\{5,3\},\{3,5\},\{4,4\}\}$; 9: $\{(3,6),\{6,3\},\{5,4\},\{4,5\}\}$; 10: $\{(6,4);(4,6);(5,5)\}$; 11: $\{(6,5);(5,6)\}$; 12: $\{(6,6)\}$

$$E[X] = 2\frac{1}{36} + 3\frac{2}{36} + 4\frac{3}{36} + 5\frac{4}{36} + 6\frac{5}{36}$$
$$+7\frac{6}{36} + 8\frac{5}{36} + 9\frac{4}{36} + 10\frac{3}{36} + 11\frac{2}{36} + 12\frac{1}{36} = \frac{252}{36} = 7$$

• Expectation or Expected Value of Random variable:

Example: X represents sum of two dice

$$E[X] = 2\frac{1}{36} + 3\frac{2}{36} + 4\frac{3}{36} + 5\frac{4}{36} + 6\frac{5}{36}$$
$$+7\frac{6}{36} + 8\frac{5}{36} + 9\frac{4}{36} + 10\frac{3}{36} + 11\frac{2}{36} + 12\frac{1}{36} = \frac{252}{36} = 7$$

Easier way?

• Linearity of Expectation

$$X_1, ..., X_n$$
 random variables then:

$$E[\sum_{i=1}^{n} X_{i}] = \sum_{i=1}^{n} E[X_{i}]$$

Does not require independence of random variables

• Linearity of Expectation

$$E[\sum_{i=1}^{n} X_{i}] = \sum_{i=1}^{n} E[X_{i}]$$

Example: X1, X2 represent the value of each dice

$$E[X_1] = E[X_2] = 1\frac{1}{6} + 2\frac{1}{6} + 3\frac{1}{6} + 4\frac{1}{6} + 5\frac{1}{6} + 6\frac{1}{6} = \frac{21}{6}$$
$$E[X_1 + X_2] = E[X_1] + E[X_2] = \frac{42}{6} = 7$$

• Indicator Random Variable (indicating if occurs...)

$$X_A = I\{A\} = \begin{array}{c} 1 \text{ if } A \text{ occurs} \\ 0 \text{ if } A \text{ does not occur} \end{array}$$

Lemma: For event A $E[X_A] = \Pr\{A\}$ Pr = probability

 $E[X_A] = 1 \Pr(A) + 0(1 - \Pr(A)) = \Pr(A)$

Indicator Random Variable

$$X_{H} = I\{A\} = \begin{array}{c} 1 \text{ if } A \text{ occurs} \\ 0 \text{ if } A \text{ does not occur} \end{array}$$

Example: Expected number Heads when flipping fair coin

$$X_{H} = I \{H\}$$

$$E[X_{H}] = 0 \frac{1}{2} + 1 \frac{1}{2} = \frac{1}{2}$$

$$= \Pr(H)$$

i=1

Indicator Random Variable & Linearity of Expectation

$$X_{i} = I\{A\} = \begin{array}{c} 1 \text{ if } A \text{ occurs} \\ 0 \text{ if } A \text{ does not occur} \end{array}$$
$$X = \sum_{i=1}^{n} X_{i}$$

Then by linearity of expectation:

$$E[\sum_{i=1}^{n} X_{i}] = \sum_{i=1}^{n} E[X_{i}]$$

• Indicator Random Variable & Linearity of Expectation

Example: Expected number Heads when flipping 3 fair coins

$$X_H = I\{H\} = \begin{array}{c} 1 \text{ if Heads occurs} \\ 0 \text{ if Heads does not occur} \end{array}$$

$$E[3X_H] = 3E[X_H] = 3\frac{1}{2} = 1.5$$