
Data$Structures$and$Algorithm$

Analysis$(CSC317)$

Divideandconquer$(part$3)

Goals

What$kind$of$recurrences$ariseinalgorithms

andhowdowesolve$more$generally$(than$what

wesawfor$merge$sort)?

• More$recurrence$examples

• Revisit$recursion$trees$more$generally

• Master$theorem$as$“recipe”$for$range$of$cases

• (Substitution$method)

Master$method

T (n) = aT (n
b
)+ f (n)

a ≥1;b >1

Master$method

T (n) = aT (n
b
)+ f (n)

a subproblems

n/b$size$of$each$subproblem

f(n)$cost$of$dividing$problemandcombining$subproblem results

Master$method

T (n) = aT (n
b
)+ f (n)

a subproblems

n/b$size$of$each$subproblem

f(n)$cost$of$dividing$problemandcombining$subproblem results

Competition$between:

a numberofrecursive$calls$made$– bad

Master$method

T (n) = aT (n
b
)+ f (n)

a subproblems

n/b$size$of$each$subproblem

f(n)$cost$of$dividing$problemandcombining$subproblem results

Competition$between:

a numberofrecursive$calls$made$– bad

bhowmuch$problem$size$decreased$each$call$– good

Master$method

T (n) = aT (n
b
)+ f (n)

a subproblems

n/b$size$of$each$subproblem

f(n)$cost$of$dividing$problemandcombining$subproblem results

Competition$between:

a numberofrecursive$calls$made$– bad

bhowmuch$problem$size$decreased$each$call$– good

f(n)$determines$work$outside$of$recursive$callwecompare$to

Master$method

T (n) = aT (n
b
)+ f (n)

Competition$between:

a numberofrecursive$calls$made$– bad

bhowmuch$problem$size$decreased$each$call$– good

f(n)$determines$work$outside$of$recursive$callwecompare$to

We’llbecomparing:

andf (n) n logb a

Master$method

T (n) = aT (n
b
)+ f (n)

Competition$between:

a numberofrecursive$calls$made$– bad

bhowmuch$problem$size$decreased$each$call$– good

f(n)$determines$work$outside$of$recursive$callwecompare$to

We’llbecomparing:

andf (n) n logb a = a logb n

Intuitively,isthere$more$workatthe$root$oratthe$

leaves?$Like$whatwedevelopedinrecursion$tree$

examples…

Master$theorem

T (n) = aT (n
b
)+ f (n)

Let$a>=1$and$b>1$be$constants,$f(n)afunction,andlet

T(n)bedefinedonthe$nonnegative$integersbythe$recurrence

Then$T(n)$hasthefollowing$asymptotic$bounds:

1.$If$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$for$some$constant$$$$$$$$$$$$then:f (n) =O(n logb a−ε) ε > 0

T (n) =Θ(n logb a)

n logb aIf$$$$$$$$$$$$polynomially larger$than$f(n)$X>$$$$$$$$$$$$dominatesn logb a

Master$theorem

T (n) = aT (n
b
)+ f (n)

Let$a>=1$and$b>1$be$constants,$f(n)afunction,andlet

T(n)bedefinedonthe$nonnegative$integersbythe$recurrence

Then$T(n)$hasthefollowing$asymptotic$bounds:

1.$If$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$for$some$constant$$$$$$$$$$$$then:f (n) =O(n logb a−ε) ε > 0

T (n) =Θ(n logb a)

n logb aIf$$$$$$$$$$$$polynomially larger$than$f(n)$X>$$$$$$$$$$$$dominatesn logb a

Liketheleaves$dominating$inarecursion$tree

Master$theorem

T (n) = aT (n
b
)+ f (n)

Let$a>=1$and$b>1$be$constants,$f(n)afunction,andlet

T(n)bedefinedonthe$nonnegative$integersbythe$recurrence

Then$T(n)$hasthefollowing$asymptotic$bounds:

2.$If$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$then:f (n) =O(n logb a)

T (n) =Θ(n logb a logn)

n logb aIf$$$$$$$$$$$$equals$f(n)$X> n logb a logn

Master$theorem

T (n) = aT (n
b
)+ f (n)

Let$a>=1$and$b>1$be$constants,$f(n)afunction,andlet

T(n)bedefinedonthe$nonnegative$integersbythe$recurrence

Then$T(n)$hasthefollowing$asymptotic$bounds:

2.$If$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$then:f (n) =O(n logb a)

T (n) =Θ(n logb a logn)

n logb aIf$$$$$$$$$$$$equals$f(n)$X>$$$$$$$$$$$$n logb a logn
Like$merge$sort$$X equal$work$each$level

Master$theorem

T (n) = aT (n
b
)+ f (n)

Let$a>=1$and$b>1$be$constants,$f(n)afunction,andlet

T(n)bedefinedonthe$nonnegative$integersbythe$recurrence

Then$T(n)$hasthefollowing$asymptotic$bounds:

3.$If$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$for$some$constant$$$$$$$$$$$$and

regularity$condition$(ignorefornow):

f (n) =Ω(n logb a+ε)

T (n) =Θ(f (n))
n logb aIf$$$$$$$$$$$$polynomially smaller$than$$f(n)$X>$$f(n)$dominates

ε > 0

Master$theorem

T (n) = aT (n
b
)+ f (n)

Let$a>=1$and$b>1$be$constants,$f(n)afunction,andlet

T(n)bedefinedonthe$nonnegative$integersbythe$recurrence

Then$T(n)$hasthefollowing$asymptotic$bounds:

3.$If$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$for$some$constant$$$$$$$$$$$$and

regularity$condition$(ignorefornow)

f (n) =Ω(n logb a+ε)

T (n) =Θ(f (n))
n logb aIf$$$$$$$$$$$$polynomially smaller$than$$f(n)$X>$$f(n)$dominates

ε > 0

Liketheroot$dominating$inarecursion$tree

Master$theorem

T (n) = aT (n
b
)+ f (n)

Let$a>=1$and$b>1$be$constants,$f(n)afunction,andlet

T(n)bedefinedonthe$nonnegative$integersbythe$recurrence

Then$T(n)$hasthefollowing$asymptotic$bounds:

3.$$…$regularity$condition:

af n
b

⎛
⎝⎜

⎞
⎠⎟ ≤ cf (n)

This$regularity$condition$will$holdinmost$examples$we

lookatZit’s$intuitively$sayingtheroot$will$indeed$

dominatethework

Master$theorem

T (n) = aT (n
b
)+ f (n)

Let$a>=1$and$b>1$be$constants,$f(n)afunction,andlet

T(n)bedefinedonthe$nonnegative$integersbythe$recurrence

Then$T(n)$hasthefollowing$asymptotic$bounds:

3.$If$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$for$some$constant$$$$$$$$$$$$and

,forsome$constant$c<1,$then:

f (n) =Ω(n logb a+ε)

T (n) =Θ(f (n))

n logb aIf$$$$$$$$$$$$polynomially smaller$than$$f(n)$X>$$f(n)$dominates

ε > 0

af n
b

⎛
⎝⎜

⎞
⎠⎟ ≤ cf (n)

Liketheroot$dominating$inarecursion$tree

Master$theorem$summary$– 3$cases

n logb aIf$$$$$$$$$$$$<$$f(n)$X>$$$f(n)$dominates

Liketheroot$dominating$inarecursion$tree

n logb aIf$$$$$$$$$$$$equals$f(n)$X> n logb a logn
Like$merge$sort$$X equal$work$each$level

n logb aIf$$$$$$$$$$$$>$f(n)$X>$$$$$$$$$$$$dominatesn logb a

Liketheleaves$dominating$inarecursion$tree

T (n) = aT (n
b
)+ f (n)

1

2

3

Master$theorem:

n logb aSoinall$cases$we$compare$$$$$$$$$$$$$to$f(n)

and$look$if$they$are$equal$orforpolynomial$differences

Intuition:$Either$the$leaves and$recursion$process$dominate

the$cost,$ortheroot$dominates$the$cost,$or$they$are$balanced

Proof:wewon’t$showZ$but$relies$on$recursion$treesand

geometric$sums,$similartoexample$cases$we$looked$at

Master$theorem:$examples

Ontheboard…$we’ll$remember$that:

n logb a3.$If$$$$$$$$$$$$<$$f(n)$X>

n logb a2.$If$$$$$$$$$$$$equals$f(n)$X>

n logb a1.$If$$$$$$$$$$$$>$f(n)$X>

T (n) = aT (n
b
)+ f (n)

T (n) =Θ(n logb a)

T (n) =Θ(n logb a logn)
T (n) =Θ(f (n))

Master$theorem:$example$1

T (n) = aT (n
b
)+ f (n)

T (n) = 8T (n
2
)+Θ(n2)

Master$theorem:$example$1

T (n) = aT (n
b
)+ f (n)

a = 8;b = 2; f (n) =Θ(n2)

T (n) = 8T (n
2
)+Θ(n2)

Familiar??

Master$theorem:$example$1

T (n) = aT (n
b
)+ f (n)

a = 8;b = 2; f (n) =Θ(n2)

T (n) = 8T (n
2
)+Θ(n2)

Familiar??$

Our$first$divideandconquer$matrix$multiplication

Master$theorem:$example$1

T (n) = aT (n
b
)+ f (n)

a = 8;b = 2; f (n) =Θ(n2)

T (n) = 8T (n
2
)+Θ(n2)

n logb a = n log2 8 = n3 Which$case?

Master$theorem:$example$1

T (n) = aT (n
b
)+ f (n)

a = 8;b = 2; f (n) =Θ(n2)

T (n) = 8T (n
2
)+Θ(n2)

n logb a = n log2 8 = n3

Polynomially larger$than
Case$1f (n) = n2

Master$theorem:$example$1

T (n) = aT (n
b
)+ f (n)

a = 8;b = 2; f (n) =Θ(n2)

T (n) = 8T (n
2
)+Θ(n2)

T (n) =Θ(n logb a) =Θ(n3)

n logb a = n log2 8 = n3

Polynomially larger$than
Case$1f (n) = n2

Master$theorem:$example$2

T (n) = aT (n
b
)+ f (n)

T (n) = 7T (n
2
)+Θ(n2)

Master$theorem:$example$2

T (n) = aT (n
b
)+ f (n)

a = 7;b = 2; f (n) =Θ(n2)

T (n) = 7T (n
2
)+Θ(n2)

Familiar??$Strassen’s method!

Master$theorem:$example$2

T (n) = aT (n
b
)+ f (n)

a = 8;b = 2; f (n) =Θ(n2)

T (n) = 8T (n
2
)+Θ(n2)

n logb a = n log2 7 What$case$is$this?

Master$theorem:$example$2

T (n) = aT (n
b
)+ f (n)

a = 8;b = 2; f (n) =Θ(n2)

T (n) = 8T (n
2
)+Θ(n2)

n logb a = n log2 7 Case$1

T (n) =Θ(n logb a) =Θ(n log2 7) ≈ Θ(n2.8)

Master$theorem:$example$3

T (n) = aT (n
b
)+ f (n)

T (n) = T (n
3
)+1

Master$theorem:$example$3

T (n) = aT (n
b
)+ f (n)

a =1;b = 3; f (n) =1

n logb a = n log31 = n0 =1

T (n) = T (n
3
)+1

Master$theorem:$example$3

T (n) = aT (n
b
)+ f (n)

a =1;b = 3; f (n) =1

n logb a = n log31 = n0 =1

Equaltof(n)=1 Case$2

T (n) = T (n
3
)+1

Master$theorem:$example$3

T (n) = aT (n
b
)+ f (n)

a =1;b = 3; f (n) =1

n logb a = n log31 = n0 =1

Equaltof(n)=1

T (n) =Θ(f (n)logn) =Θ(1logn) =Θ(logn)

Case$2

T (n) = T (n
3
)+1

Master$theorem:$example$4

T (n) = aT (n
b
)+ f (n)

T (n) = 3T (n
4
)+ n logn

Master$theorem:$example$4

T (n) = aT (n
b
)+ f (n)

a = 3;b = 4; f (n) = n logn

n logb a = n log4 3 = n0.793

T (n) = 3T (n
4
)+ n logn

Master$theorem:$example$4

T (n) = aT (n
b
)+ f (n)

a = 3;b = 4; f (n) = n logn

n logb a = n log4 3 = n0.793

polynomially smaller$than$f(n)

T (n) =Θ(f (n)) =Θ(n logn)

Case$3

T (n) = 3T (n
4
)+ n logn

Master$theorem:$example$5

T (n) = aT (n
b
)+ f (n)

a = 3;b = 4; f (n) = n logn

n logb a = n log4 3 = n0.793

polynomially smaller$than$f(n)

T (n) =Θ(f (n)) =Θ(n logn)

Case$3

T (n) = 3T (n
4
)+ n logn

Note:$need$to$verify$regularity$condition$holds

Master$theorem:$example$5

T (n) = aT (n
b
)+ f (n)

T (n) = 2T (n
2
)+ n logn

Master$theorem:$example$5

T (n) = aT (n
b
)+ f (n)

T (n) = 2T (n
2
)+ n logn

a = 2;b = 2; f (n) = n logn

n logb a = n log2 2 = n1 = n

Master$theorem:$example$5

T (n) = aT (n
b
)+ f (n)

T (n) = 2T (n
2
)+ n logn

a = 2;b = 2; f (n) = n logn

n logb a = n log2 2 = n1 = n

smaller$than$ Case$3?f (n) = n logn

Master$theorem:$example$5

T (n) = aT (n
b
)+ f (n)

T (n) = 2T (n
2
)+ n logn

a = 2;b = 2; f (n) = n logn

n logb a = n log2 2 = n1 = n

smaller$than$ Case$3?f (n) = n logn
No,notpolynomially smaller

n logn
n

= logn < nε

One$more$recursion$tree

T (n) = T (n
3
)+T (2n

3
)+ cn

Compare:$(Like$Merge$Sort)

To:$(Like$an$uneven$split$Merge$Sort)

Better?$Worse?$Equal?

T (n) = T (n
2
)+T (n

2
)+ cn

One$more$recursion$tree

T (n) = T (n
3
)+T (2n

3
)+ cn4.4 The recursion-tree method for solving recurrences 91

… …

cn

cn

cn

cn

c
!

n
3

"
c

!
2n
3

"

c
!

n
9

"
c

!
2n
9

"
c

!
2n
9

"
c

!
4n
9

"
log3=2 n

Total: O.n lg n/

Figure 4.6 A recursion tree for the recurrence T .n/ D T .n=3/C T .2n=3/C cn.

is bounded from above by the constant 16=13. Since the root’s contribution to the
total cost is cn2, the root contributes a constant fraction of the total cost. In other
words, the cost of the root dominates the total cost of the tree.

In fact, if O.n2/ is indeed an upper bound for the recurrence (as we shall verify in
a moment), then it must be a tight bound. Why? The first recursive call contributes
a cost of ‚.n2/, and so !.n2/ must be a lower bound for the recurrence.

Now we can use the substitution method to verify that our guess was cor-
rect, that is, T .n/ D O.n2/ is an upper bound for the recurrence T .n/ D
3T .bn=4c/C‚.n2/. We want to show that T .n/ ! dn2 for some constant d > 0.
Using the same constant c > 0 as before, we have
T .n/ ! 3T .bn=4c/C cn2

! 3d bn=4c2 C cn2

! 3d.n=4/2 C cn2

D
3

16
dn2 C cn2

! dn2 ;

where the last step holds as long as d " .16=13/c.
In another, more intricate, example, Figure 4.6 shows the recursion tree for

T .n/ D T .n=3/C T .2n=3/CO.n/ :

(Again, we omit floor and ceiling functions for simplicity.) As before, we let c
represent the constant factor in the O.n/ term. When we add the values across the
levels of the recursion tree shown in the figure, we get a value of cn for every level.

One$more$recursion$tree

T (n) = T (n
3
)+T (2n

3
)+ cn4.4 The recursion-tree method for solving recurrences 91

… …

cn

cn

cn

cn

c
!

n
3

"
c

!
2n
3

"

c
!

n
9

"
c

!
2n
9

"
c

!
2n
9

"
c

!
4n
9

"
log3=2 n

Total: O.n lg n/

Figure 4.6 A recursion tree for the recurrence T .n/ D T .n=3/C T .2n=3/C cn.

is bounded from above by the constant 16=13. Since the root’s contribution to the
total cost is cn2, the root contributes a constant fraction of the total cost. In other
words, the cost of the root dominates the total cost of the tree.

In fact, if O.n2/ is indeed an upper bound for the recurrence (as we shall verify in
a moment), then it must be a tight bound. Why? The first recursive call contributes
a cost of ‚.n2/, and so !.n2/ must be a lower bound for the recurrence.

Now we can use the substitution method to verify that our guess was cor-
rect, that is, T .n/ D O.n2/ is an upper bound for the recurrence T .n/ D
3T .bn=4c/C‚.n2/. We want to show that T .n/ ! dn2 for some constant d > 0.
Using the same constant c > 0 as before, we have
T .n/ ! 3T .bn=4c/C cn2

! 3d bn=4c2 C cn2

! 3d.n=4/2 C cn2

D
3

16
dn2 C cn2

! dn2 ;

where the last step holds as long as d " .16=13/c.
In another, more intricate, example, Figure 4.6 shows the recursion tree for

T .n/ D T .n=3/C T .2n=3/CO.n/ :

(Again, we omit floor and ceiling functions for simplicity.) As before, we let c
represent the constant factor in the O.n/ term. When we add the values across the
levels of the recursion tree shown in the figure, we get a value of cn for every level.

One$more$recursion$tree

T (n) = T (n
3
)+T (2n

3
)+ cn4.4 The recursion-tree method for solving recurrences 91

… …

cn

cn

cn

cn

c
!

n
3

"
c

!
2n
3

"

c
!

n
9

"
c

!
2n
9

"
c

!
2n
9

"
c

!
4n
9

"
log3=2 n

Total: O.n lg n/

Figure 4.6 A recursion tree for the recurrence T .n/ D T .n=3/C T .2n=3/C cn.

is bounded from above by the constant 16=13. Since the root’s contribution to the
total cost is cn2, the root contributes a constant fraction of the total cost. In other
words, the cost of the root dominates the total cost of the tree.

In fact, if O.n2/ is indeed an upper bound for the recurrence (as we shall verify in
a moment), then it must be a tight bound. Why? The first recursive call contributes
a cost of ‚.n2/, and so !.n2/ must be a lower bound for the recurrence.

Now we can use the substitution method to verify that our guess was cor-
rect, that is, T .n/ D O.n2/ is an upper bound for the recurrence T .n/ D
3T .bn=4c/C‚.n2/. We want to show that T .n/ ! dn2 for some constant d > 0.
Using the same constant c > 0 as before, we have
T .n/ ! 3T .bn=4c/C cn2

! 3d bn=4c2 C cn2

! 3d.n=4/2 C cn2

D
3

16
dn2 C cn2

! dn2 ;

where the last step holds as long as d " .16=13/c.
In another, more intricate, example, Figure 4.6 shows the recursion tree for

T .n/ D T .n=3/C T .2n=3/CO.n/ :

(Again, we omit floor and ceiling functions for simplicity.) As before, we let c
represent the constant factor in the O.n/ term. When we add the values across the
levels of the recursion tree shown in the figure, we get a value of cn for every level.

Work*each*level?

One$more$recursion$tree

T (n) = T (n
3
)+T (2n

3
)+ cn4.4 The recursion-tree method for solving recurrences 91

… …

cn

cn

cn

cn

c
!

n
3

"
c

!
2n
3

"

c
!

n
9

"
c

!
2n
9

"
c

!
2n
9

"
c

!
4n
9

"
log3=2 n

Total: O.n lg n/

Figure 4.6 A recursion tree for the recurrence T .n/ D T .n=3/C T .2n=3/C cn.

is bounded from above by the constant 16=13. Since the root’s contribution to the
total cost is cn2, the root contributes a constant fraction of the total cost. In other
words, the cost of the root dominates the total cost of the tree.

In fact, if O.n2/ is indeed an upper bound for the recurrence (as we shall verify in
a moment), then it must be a tight bound. Why? The first recursive call contributes
a cost of ‚.n2/, and so !.n2/ must be a lower bound for the recurrence.

Now we can use the substitution method to verify that our guess was cor-
rect, that is, T .n/ D O.n2/ is an upper bound for the recurrence T .n/ D
3T .bn=4c/C‚.n2/. We want to show that T .n/ ! dn2 for some constant d > 0.
Using the same constant c > 0 as before, we have
T .n/ ! 3T .bn=4c/C cn2

! 3d bn=4c2 C cn2

! 3d.n=4/2 C cn2

D
3

16
dn2 C cn2

! dn2 ;

where the last step holds as long as d " .16=13/c.
In another, more intricate, example, Figure 4.6 shows the recursion tree for

T .n/ D T .n=3/C T .2n=3/CO.n/ :

(Again, we omit floor and ceiling functions for simplicity.) As before, we let c
represent the constant factor in the O.n/ term. When we add the values across the
levels of the recursion tree shown in the figure, we get a value of cn for every level.

Work*each*level?

One$more$recursion$tree

T (n) = T (n
3
)+T (2n

3
)+ cn4.4 The recursion-tree method for solving recurrences 91

… …

cn

cn

cn

cn

c
!

n
3

"
c

!
2n
3

"

c
!

n
9

"
c

!
2n
9

"
c

!
2n
9

"
c

!
4n
9

"
log3=2 n

Total: O.n lg n/

Figure 4.6 A recursion tree for the recurrence T .n/ D T .n=3/C T .2n=3/C cn.

is bounded from above by the constant 16=13. Since the root’s contribution to the
total cost is cn2, the root contributes a constant fraction of the total cost. In other
words, the cost of the root dominates the total cost of the tree.

In fact, if O.n2/ is indeed an upper bound for the recurrence (as we shall verify in
a moment), then it must be a tight bound. Why? The first recursive call contributes
a cost of ‚.n2/, and so !.n2/ must be a lower bound for the recurrence.

Now we can use the substitution method to verify that our guess was cor-
rect, that is, T .n/ D O.n2/ is an upper bound for the recurrence T .n/ D
3T .bn=4c/C‚.n2/. We want to show that T .n/ ! dn2 for some constant d > 0.
Using the same constant c > 0 as before, we have
T .n/ ! 3T .bn=4c/C cn2

! 3d bn=4c2 C cn2

! 3d.n=4/2 C cn2

D
3

16
dn2 C cn2

! dn2 ;

where the last step holds as long as d " .16=13/c.
In another, more intricate, example, Figure 4.6 shows the recursion tree for

T .n/ D T .n=3/C T .2n=3/CO.n/ :

(Again, we omit floor and ceiling functions for simplicity.) As before, we let c
represent the constant factor in the O.n/ term. When we add the values across the
levels of the recursion tree shown in the figure, we get a value of cn for every level.

Height?

One$more$recursion$tree

T (n) = T (n
3
)+T (2n

3
)+ cn

Height?
Longest*path*root*to*leaf: n

2
3
n

2
3

⎛
⎝⎜

⎞
⎠⎟
2

n

1

…

One$more$recursion$tree

T (n) = T (n
3
)+T (2n

3
)+ cn

Height?
At*the*leaf: 2

3
⎛
⎝⎜

⎞
⎠⎟
k

n =1

One$more$recursion$tree

T (n) = T (n
3
)+T (2n

3
)+ cn

Height?
At*the*leaf: 2

3
⎛
⎝⎜

⎞
⎠⎟
k

n =1;

n = 3
2

⎛
⎝⎜

⎞
⎠⎟
k

;

k = log3
2

n

One$more$recursion$tree

T (n) = T (n
3
)+T (2n

3
)+ cn4.4 The recursion-tree method for solving recurrences 91

… …

cn

cn

cn

cn

c
!

n
3

"
c

!
2n
3

"

c
!

n
9

"
c

!
2n
9

"
c

!
2n
9

"
c

!
4n
9

"
log3=2 n

Total: O.n lg n/

Figure 4.6 A recursion tree for the recurrence T .n/ D T .n=3/C T .2n=3/C cn.

is bounded from above by the constant 16=13. Since the root’s contribution to the
total cost is cn2, the root contributes a constant fraction of the total cost. In other
words, the cost of the root dominates the total cost of the tree.

In fact, if O.n2/ is indeed an upper bound for the recurrence (as we shall verify in
a moment), then it must be a tight bound. Why? The first recursive call contributes
a cost of ‚.n2/, and so !.n2/ must be a lower bound for the recurrence.

Now we can use the substitution method to verify that our guess was cor-
rect, that is, T .n/ D O.n2/ is an upper bound for the recurrence T .n/ D
3T .bn=4c/C‚.n2/. We want to show that T .n/ ! dn2 for some constant d > 0.
Using the same constant c > 0 as before, we have
T .n/ ! 3T .bn=4c/C cn2

! 3d bn=4c2 C cn2

! 3d.n=4/2 C cn2

D
3

16
dn2 C cn2

! dn2 ;

where the last step holds as long as d " .16=13/c.
In another, more intricate, example, Figure 4.6 shows the recursion tree for

T .n/ D T .n=3/C T .2n=3/CO.n/ :

(Again, we omit floor and ceiling functions for simplicity.) As before, we let c
represent the constant factor in the O.n/ term. When we add the values across the
levels of the recursion tree shown in the figure, we get a value of cn for every level.

At$some$point,$tree$actuallyis

Incomplete,butthisisupper$bound

One$more$recursion$tree

T (n) = T (n
3
)+T (2n

3
)+ cn4.4 The recursion-tree method for solving recurrences 91

… …

cn

cn

cn

cn

c
!

n
3

"
c

!
2n
3

"

c
!

n
9

"
c

!
2n
9

"
c

!
2n
9

"
c

!
4n
9

"
log3=2 n

Total: O.n lg n/

Figure 4.6 A recursion tree for the recurrence T .n/ D T .n=3/C T .2n=3/C cn.

is bounded from above by the constant 16=13. Since the root’s contribution to the
total cost is cn2, the root contributes a constant fraction of the total cost. In other
words, the cost of the root dominates the total cost of the tree.

In fact, if O.n2/ is indeed an upper bound for the recurrence (as we shall verify in
a moment), then it must be a tight bound. Why? The first recursive call contributes
a cost of ‚.n2/, and so !.n2/ must be a lower bound for the recurrence.

Now we can use the substitution method to verify that our guess was cor-
rect, that is, T .n/ D O.n2/ is an upper bound for the recurrence T .n/ D
3T .bn=4c/C‚.n2/. We want to show that T .n/ ! dn2 for some constant d > 0.
Using the same constant c > 0 as before, we have
T .n/ ! 3T .bn=4c/C cn2

! 3d bn=4c2 C cn2

! 3d.n=4/2 C cn2

D
3

16
dn2 C cn2

! dn2 ;

where the last step holds as long as d " .16=13/c.
In another, more intricate, example, Figure 4.6 shows the recursion tree for

T .n/ D T .n=3/C T .2n=3/CO.n/ :

(Again, we omit floor and ceiling functions for simplicity.) As before, we let c
represent the constant factor in the O.n/ term. When we add the values across the
levels of the recursion tree shown in the figure, we get a value of cn for every level.

We$ignore$constant$factors$in$big

O$notation

One$more$recursion$tree

Also$note,$we$ignored$baseofalgorithm,$since

constant$factor:

logb a =
logc a
logc b

One$more$recursion$tree

T (n) = T (n
3
)+T (2n

3
)+ cn

Compare:$(Like$Merge$Sort)

To:$(Like$an$uneven$split$Merge$Sort)

Better?$Worse?$Equal?

Asymptotically,$similar

T (n) = T (n
2
)+T (n

2
)+ cn

Goals

What$kind$of$recurrences$ariseinalgorithms

andhowdowesolve$more$generally$(than$what

wesawfor$merge$sort)?

• More$recurrence$examples

• Revisit$recursion$trees$more$generally

• Master$theorem$as$“recipe”$for$range$of$cases

• Substitution$method

Substitution$method

• Guessabound

Substitution$method

• Guessabound$(we$needaguess!!)

Substitution$method

• Guessabound$(we$needaguess!!)

• Prove$correct$by$induction

• Find$constants$in$this$process

Example

Prove$that$$is

O(n logn)

T (n) = 2T n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n

Example

Prove$that$$is

We$need$to$prove$that

For$appropriate$choiceofconstant$c>0

(can’tusebigOhin$substitution$becauseofinduction,$

needtowriteoutdefinition$with$constants!)$

O(n logn)

T (n) ≤ cn logn

T (n) = 2T n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n

Example

Induction$step:$assume$$

Then

T (n) = 2T n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n ≤

T n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
≤ c n

2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
log n

2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

Example

Induction$step:$assume$$

Then

2c n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
log n

2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ nT (n) = 2T n

2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n ≤

T n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
≤ c n

2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
log n

2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

Example

Induction$step:$assume$$

Then

2c n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
log n

2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ nT (n) = 2T n

2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n ≤

T n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
≤ c n

2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
log n

2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

…we$want T n() ≤ cn log n()

Example

Induction$step:$assume$$

Then

2c n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
log n

2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n ≤

cn log n
2

⎛
⎝⎜

⎞
⎠⎟ + n =

T (n) = 2T n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n ≤

T n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
≤ c n

2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
log n

2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

…we$want T n() ≤ cn log n()

Example

Then

2c n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
log n

2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n ≤

cn log n
2

⎛
⎝⎜

⎞
⎠⎟ + n =

cn logn − cn log2 + n

T (n) = 2T n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n ≤

…we$want T n() ≤ cn log n()

Example

Then

2c n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
log n

2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n ≤

cn log n
2

⎛
⎝⎜

⎞
⎠⎟ + n =

cn logn − cn log2 + n

T (n) = 2T n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n ≤

…we$want T n() ≤ cn log n()

Example

Then

2c n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
log n

2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n ≤

cn log n
2

⎛
⎝⎜

⎞
⎠⎟ + n =

cn logn − cn log2 + n =
cn logn − cn + n

T (n) = 2T n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n ≤

…we$want T n() ≤ cn log n()

Example

Then

2c n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
log n

2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n ≤

cn log n
2

⎛
⎝⎜

⎞
⎠⎟ + n =

cn logn − cn log2 + n =
cn logn − cn + n
≤ cn logn

T (n) = 2T n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n ≤

…we$want T n() ≤ cn log n()

When?

Example

Then

2c n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
log n

2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n ≤

cn log n
2

⎛
⎝⎜

⎞
⎠⎟ + n =

cn logn − cn log2 + n =
cn logn − cn + n
≤ cn logn

T (n) = 2T n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n ≤

…we$want T n() ≤ cn log n()

−cn + n ≤ 0;
n ≤ cn
c ≥1

Holds$for:

Example

Induction$step:$assume$$

Then

2c n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
log n

2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n =

cn logn − cn log2 + n =
cn logn − cn + n ≤ cn logn

For$c>=1

T (n) = 2T n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n ≤

T n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
≤ c n

2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
log n

2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

Example

Induction$needs$base$condition.$For$n=1,$assume:

Then:

T (1) ≤ c1log1 (?)

T (1) =1

Example

Induction$needs$base$condition.$For$n=1,$assume:

Then:

1= T (1) ≤ c1log1= 0

(?)

T (1) =1

T (1) ≤ c1log1= c log1

no

Example

Induction$needs$base$condition.$For$n=1,$assume:

Then:

1= T (1) ≤ c1log1= 0

(?)

T (1) =1

T (1) ≤ c1log1= c log1

no

Asymptotic$notation$requires$only$for$n>=no

T (n) ≤ cn logn

Example

Induction$needs$base$condition.$

Asymptotic$notation$requires$only$for$n>=no

Let’stryn=3,soasnotto$depend$directlyonT(1):

T (n) ≤ cn logn

T (1) =1

T (2) = 2T n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n = 2 + 2 = 4

T (3) = 2T n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n = 2 + 3 = 5

Example

Induction$needs$base$condition.$

T (1) =1

T (2) = 2T n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n = 2 + 2 = 4

T (3) = 2T n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n = 2 + 3 = 5

T (3) = 5 ≤ cn logn = c3log3 = 3c(1.58)

Asymptotic$notation$requires$only$for$n>=no

Let’stryn=3:

T (n) ≤ cn logn

Holdsforc>=2

Example

We’ve$shown$for

Asymptotic$notation$requires$only$for$n>=3$c>=2

(both$induction$stepandbase$case)

T (n) ≤ cn logn

T (n) = 2T n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n

Changeofvariable

T (n) = 2T (n)+ logn

Define:$$$$

T (n) = 2T (n)+ logn

m = logn n = 2m

Changeofvariable

Example$2

Changeofvariable

Define:$$$

Familiar$pattern?$

T (n) = 2T (n)+ logn

T (n) = T (2m) = 2T (2
m
2)+m

m = logn n = 2m

T (2m) = 2T (2
m
2)+m

S(m) = 2S(m
2
)+m

Changeofvariable

T (2m) = 2T (2
m
2)+m

S(m) = 2S(m
2
)+m

Like$what?

Changeofvariable

T (2m) = 2T (2
m
2)+m

S(m) = 2S(m
2
)+m

Like$what?$Merge$Sort

Changeofvariable

T (2m) = 2T (2
m
2)+m

S(m) = 2S(m
2
)+m

O(m logm)
Like$what?$Merge$Sort

Changeofvariable

T (2m) = 2T (2
m
2)+m

S(m) = 2S(m
2
)+m

O(m logm) =O(logn log(logn))
Change$variable$back

Like$what?$Merge$Sort

Changeofvariable

Goals

Solving$recurrences

• Revisit$recursion$trees$more$generally

• Master$theorem$as$“recipe”$for$range$of$cases

• Substitution$method

PROS$/$CONS?

