Data Structures and Algorithm
Analysis (CSC317)

PR |

e
"We already have quite a few people who know
how to divide. So essentially, we're now looking
for people who know how to conquer."

Divide and conquer (part 3)

Goals

What kind of recurrences arise in algorithms
and how do we solve more generally (than what
we saw for merge sort)?

* More recurrence examples

* Reuvisit recursion trees more generally

« Master theorem as “recipe” for range of cases

e (Substitution method)

Master method

T(n)= aT(%) + f(n)
a>1:b>1 (
N

17

.
=

Master method

T(n)= aT(%) + f(n)

a subproblems
n/b size of each subproblem
f(n) cost of dividing problem and combining subproblem results

Master method

T(n)= aT(%) + f(n)

a subproblems
n/b size of each subproblem

f(n) cost of dividing problem and combining subproblem results

Competition between:

a number of recursive calls made — bad

Master method

T(n)= aT(%) + f(n)

a subproblems
n/b size of each subproblem

f(n) cost of dividing problem and combining subproblem results

Competition between:

a number of recursive calls made — bad
b how much problem size decreased each call — good

Master method

T<n>=aT<%>+f<n>

a subproblems
n/b size of each subproblem

f(n) cost of dividing problem and combining subproblem results
Competition between:
a number of recursive calls made — bad

b how much problem size decreased each call — good
f(n) determines work outside of recursive call we compare to

Master method

T<n>=aT<%>+f<n>

Competition between:

a number of recursive calls made — bad

b how much problem size decreased each call — good

f(n) determines work outside of recursive call we compare to

We’'ll be comparing:

f(n) and n'°%°

Master method

T(n)= aT(%) + f(n)

Competition between:

a number of recursive calls made — bad
b how much problem size decreased each call — good
f(n) determines work outside of recursive call we compare to

We’'ll be comparing:

f(l’l) and nlogba — alogbn

Intuitively, is there more work at the root or at the
leaves? Like what we developed in recursion tree
examples...

Master theorem

Let a>=1 and b>1 be constants, f(n) a function, and let
T(n) be defined on the nonnegative integers by the recurrence

T(n)= aT(%) + f(n)

Then T(n) has the following asymptotic bounds:

1.1f f(n)=0(n'""®""*)for some constant & > Othen:

T(n)=0(n"*")

log, a

If n polynomially larger than f(n) -> ;9% ¢dominates

Master theorem

Let a>=1 and b>1 be constants, f(n) a function, and let
T(n) be defined on the nonnegative integers by the recurrence

T(n)= aT(%) + f(n)

Then T(n) has the following asymptotic bounds:

1.1f f(n)=0(n'""®""*)for some constant & > Othen:

T(n)=0(n"*")

log, a

If n polynomially larger than f(n) -> ;9% ¢dominates

Like the leaves dominating in a recursion tree

Master theorem

Let a>=1 and b>1 be constants, f(n) a function, and let
T(n) be defined on the nonnegative integers by the recurrence

n
I'(n)=al (Z) + f(n)
Then T(n) has the following asymptotic bounds:
2.1f f(n)=0(n"*") then:

T(n)=0(n"*"logn)

If 5'°%“equals f(n)-> 1'% “logn

Master theorem

Let a>=1 and b>1 be constants, f(n) a function, and let
T(n) be defined on the nonnegative integers by the recurrence

T(m)=al()+f(n)

Then T(n) has the following asymptotic bounds:

2.1f f(n)=0n"*") then:
T(n)=0(n"*"logn)

If p'°%9%equals f(n)-> ;08¢ logn

Like merge sort - equal work each level

Master theorem

Let a>=1 and b>1 be constants, f(n) a function, and let
T(n) be defined on the nonnegative integers by the recurrence

T(n)= aT(%) + f(n)

Then T(n) has the following asymptotic bounds:

3.1f f(n)=Q(n"*“*) for some constant &> (and
regularity condition (ignore for now):

I'(n)=0(f(n))

If 7'°%¢polynomially smaller than f(n) -> f(n) dominates

Master theorem

Let a>=1 and b>1 be constants, f(n) a function, and let
T(n) be defined on the nonnegative integers by the recurrence

n
I'(n)=al (Z) + f(n)
Then T(n) has the following asymptotic bounds:

3.1f f(n)=Q(n*®***) for some constant ¢ > ()and
regularity condition (ignore for now)

I'(n)=0(f(n))

If 7'°%“polynomially smaller than f(n) -> f(n) dominates
Like the root dominatingin a recursion tree

Master theorem

Let a>=1 and b>1 be constants, f(n) a function, and let
T(n) be defined on the nonnegative integers by the recurrence

n
T'(n)= aT(g) + f(n)
Then T(n) has the following asymptotic bounds:

3. ... regularity condition:
n
af (;j < cf (n)

This regularity condition will hold in most examples we
look at; it's intuitively saying the root will indeed
dominate the work

Master theorem

Let a>=1 and b>1 be constants, f(n) a function, and let
T(n) be defined on the nonnegative integers by the recurrence

T(n)=aT(%)+f(n)

Then T(n) has the following asymptotic bounds:

3.1f f(n)=Q(n'""®***) for some constant ¢ > ()and
af(%j < cf(n), for some constant c<1, then:

T'(n)=0(f(n))
If 5,'°%2%polynomially smaller than f(n)-> f(n) dominates
Like the root dominatingin a recursion tree

Master theorem summary — 3 cases

n
I'(n)= aT(Z) + f(n)

1 1f 1n'°%%>f(n)-> n'°** dominates
Like the leaves dominating in a recursion tree

2 If p“equals f(n)-> ;"%]ogn

Like merge sort - equal work each level

3 If n'°%< f(n)-> f(n) dominates

Like the root dominatingin a recursion tree

Master theorem:

So in all cases we compare p'°%¢ to f(n)
and look if they are equal or for polynomial differences

Intuition: Either the leaves and recursion process dominate
the cost, or the root dominates the cost, or they are balanced

Proof: we won't show; but relies on recursion trees and
geometric sums, similar to example cases we looked at

Master theorem: examples

On the board... we’ll remember that:
n
T'(n)=al (Z)+f (n)

1 If nlogba S f(n) S T(n) _ @(nlogba)
2.1f n'*®‘equals f(n)-> T(n)=On"*" logn)
3.1f n°%® < f(n)-> T(n)=0(f(n))

Master theorem: example 1

T(n)=aT(%)+f(n)

T(n)= 8T(g) +O(n?)

Master theorem: example 1
T(n)=al)+ f(n)
T(n)= 8T(g) +O(n?)

a=8b=2;f(n)=0{n")

Familiar??

Master theorem: example 1
T(n)=al)+ f(n)
T(n)= 8T(§) +O(n?)

a=8b=2;f(n)=0{n")

Familiar??

Our first divide and conquer matrix multiplication

Master theorem: example 1

T(n)=al)+ f(n)

T(n)= 8T(g) +O(n?)
a=8b=2;f(n)=0(n")

1 |
plogrd — plogd — 43 Which case?

Master theorem: example 1

T(n)=al)+ f(n)

T(n)= 8T(g) +O(n?)
a=8b=2;f(n)=0(n")

log, a log, 8

3
n —n —n

Polynomially larger than f(n)=n" Case 1

Master theorem: example 1

T(n)=al)+ f(n)

T(n)= 8T(g) +O(n?)
a=8b=2;f(n)=0(n")

log, a log, 8 3
ngb —n g2 —n

Polynomially larger than f(n)=n" Case 1

T(n)=0m"™")=0(n)

Master theorem: example 2

T(n)=aT(%)+f(n)

T(n)= 7T(§) +O(n?)

Master theorem: example 2
T(n)= aT(%) +f(n)
T(n)= 7T(§) +O(n?)

a=T,b=2;f(n)=01n")

Familiar?? Strassen’s method!

Master theorem: example 2
T(n)=al)+ f(n)
T(n)= 8T(g) +O(n?)

a=8b=2;f(n)=0{n")

no% e = plo227 \What case is this?

Master theorem: example 2

T(n)=al)+ f(n)

T(n)= 8T(g) +O(n?)
a=8b=2;f(n)=0(n")

nlogba _ n10g27 Case 1

T(n) — @(nlogba) — @(n10g27) ~ @(nZ.S)

Master theorem: example 3
T(n)=al)+ f(n)

T(n)= T(g) +1

Master theorem: example 3
T(n)=al)+ f(n)
T(n)= T(g) |

a=1,b=3;f(n)=1

log, a log;1

0
n =n =n =1

Master theorem: example 3
T(n)=al)+ f(n)
T(n)= T(g) |

a=1,b=3;f(n)=1

log, a log;1

0
n =n =n =1

Equal to f(n)=1 Case 2

Master theorem: example 3
T(n)=al)+ f(n)
T(n)= T(g) |

a=1,b=3;f(n)=1

log, a log;1

0
n =n =n =1

Equal to f(n)=1 Case 2

T'(n)=0(f(n)logn)=0(logn)=0{ogn)

Master theorem: example 4

T(n)=aT(%)+f(n)

T(n)= 3T(Z) +nlogn

Master theorem: example 4
T(n)=al)+ f(n)

T(n)= 3T(Z) +nlogn

a=3;b=4;f(n)=nlogn

log;, a log, 3 0.793

n —nNn —nNn

Master theorem: example 4
T(n)=al)+ f(n)

T(n)= 3T(%) +nlogn

a=3;b=4;f(n)=nlogn

log;, a log, 3 0.793

n —nNn —nNn

polynomially smaller than f(n) Case 3

I'(n)=0(f(n))=0(nlogn)

Master theorem: example 5
T(n)=al)+ f(n)

T(n)= 3T(%) +nlogn

a=3;b=4;f(n)=nlogn

log;, a log, 3 0.793

n —nNn —nNn

polynomially smaller than f(n) Case 3

I'(n)=0(f(n))=0(nlogn)

Note: need to verify regularity condition holds

Master theorem: example 5

T(n)=aT(%)+f(n)

T(n)= 2T(§) +nlogn

Master theorem: example 5
T(n)=al)+ f(n)

T(n)= 2T(§) +nlogn

a=2;b=2;f(n)=nlogn

log, a log, 2 1

n —nNn —n =n

Master theorem: example 5
T(n)=al)+ f(n)

T(n)= 2T(§) +nlogn

a=2;b=2;f(n)=nlogn

log, a log, 2 1

n —nNn —n =n

smaller than f(n)= nlogn Case 37

Master theorem: example 5

T(n)=aT(%)+f(n)

T(n)= 2T(§) +nlogn

a=2;b=2;f(n)=nlogn

log, a log, 2 1

n —nNn —n =n

smaller than f(n)=nlogn

No, not polynomially smaller

nlogn

=logn<n’
n

Case 3?

One more recursion tree

Compare: (Like Merge Sort)
n n
T(n)=T(—)+T1T(—)+cn
() (2) (2)

To: (Like an uneven split Merge Sort)

n 2n
T(n)= T(g) + T(?) +cn

Better? Worse? Equal?

One more recursion tree

n 2n
T(l/l) — T(E) + T(?) +cn

/ \
¢ (5) ¢ (

)
3

One more recursion tree

n 2n
T(l/l) — T(E) + T(?) +cn

One more recursion tree

n 2n
T(l”l) — T(E) + T(?) +cn

Work each level?
CN s -

One more recursion tree

n 2n
T(l”l) — T(E) + T(?) +cn

Work each level?
(69 /2L LLLLLLLELELEECLLLLL L LELELLLLLELELELLL i cn

One more recursion tree

n 2n
T(l/l) — T(E) + T(?) +cn

N
RLLELLERRNS) LE

cn

One more recursion tree
T(n)= T(%) ; T(%”) +en

Height?
Longest path root to leaf:

One more recursion tree
2
T(n)= T(%) ; T(?”) +en

Height?

At the leaf: (z)k
— | n=1
3

One more recursion tree
2
T(n)= T(%) ; T(?”) +en

Height?

At the leaf: (2
— | n=1;
3

One more recursion tree

n 2n
T(n)= T(g) + T(?) +cn

A /C”l \ ----------------------------- - cn
¢ (%) C (27'1) -------------- - cn

logs, n / \ \
() (@) (@ () e on

Y :
At some point, tree actually is

Incomplete, but this is upper bound Tk Otlgn)

One more recursion tree

n 2n
T(l”l) — T(E) + T(?) +cn

A /C” \ """"""""""""""""""" i cn
¢ (%) C (27'1) -------------- - cn

logs/, n / \ / \
(@) (@ (@) () e o

Y :
We ignore constant factors in big

O notation Total: O(nlgn)

One more recursion tree

Also note, we ignored base of algorithm, since
constant factor:

log . a

log, a =
S log b

One more recursion tree

Compare: (Like Merge Sort)
n n
T(n)=T(—)+T1T(—)+cn
() (2) (2)

To: (Like an uneven split Merge Sort)

n 2n
T(n)= T(g) + T(?) +cn

Better? Worse? Equal?
Asymptotically, similar

Goals

What kind of recurrences arise in algorithms
and how do we solve more generally (than what
we saw for merge sort)?

* More recurrence examples

* Reuvisit recursion trees more generally

« Master theorem as “recipe” for range of cases

e Substitution method

Substitution method

« (Guess a bound

Substitution method

« Guess a bound (we need a guess!!)

Substitution method

« Guess a bound (we need a guess!!)
* Prove correct by induction

* Find constants in this process

Example

Prove that T(n)=2T(—)+n is
O(nlogn)

Example

Prove that T(n)=2T(i)+n is
O(nlogn)

We need to prove that T'(n) < cnlogn
For appropriate choice of constant c>0

(can’t use big Oh in substitution because of induction,
need to write out definition with constants!)

Example

Induction step: assume
T(L jﬁc(L jlog(
2. 2.

T(n):ZT(L)+n£

Example

Induction step: assume

)4
2. i
Then

n
T(n)_zT(_E

e

x

Jr

Example

Induction step: assume

5]Js((3]

o

Jn

...we want T(n) <cn log(n)

Example

Induction step: assume

(L5)=<((5])el(5)

5=

...we want T(n) <cn log(n)

Example

Then

T(n)= ZT(

N | S

+n< 2c L log Plan<
] 2] 2]

cnlog(g) +n=

cnlogn—cnlog2+n

...we want T(n) <cn log(n)

Example

Then

T(n)= ZT(

N | S

+n< 2c L log Plan<
] 2] 2]

cnlog(g) +n=

cnlogn—cnlog2+n

...we want T(n) <cn log(n)

Example

Then

T(n)= ZT(_ _j+n < 26(_g_jlog(_g_j+n <
cnlog(z)ﬂ@ =
2

cnlogn—cnlog2 +n=

N | S

cnlogn—cn+n

...we want T(n) <cn log(n)

Example

Then

T(n)= ZT(_ _j+n < 20(_g_jlog(_g_j+n <
cnlog(ﬁ)+n =
2

cnlogn—cnlog2+n=

N | S

cnlogn—cn+n
<cnlogn When?

...we want T(n) <cn log(n)

Example

Then
T(n):ZT(g)+n£ 20(g jlog(g j+ng
n

cnlog(5)+n:

Holds for:

—cn+n<0: cnlogn—cnlog2+n=

n<cn cnlogn—cn+n

c>1 <cnlogn

...we want T(n) <cn log(n)

Example

Induction step: assume

(L5)=<((5])el(5)
T(n)=2T(_g_j+nS 2c(_g_jlog(_g_j+n:

cnlogn—cnlog2 +n=

cnlogn—cn+n<cnlogn

For c>=1

Example

Induction needs base condition. For n=1, assume:

T()=1

Then:
T'(1)<cllogl (?)

Example

Induction needs base condition. For n=1, assume:

T()=1

Then:
T()<cllogl=clogl (?)

1=T(1)S CllOgl =0 no

Example

Induction needs base condition. For n=1, assume:

T(1)=1

Then:
T()<cllogl=clogl (?)

1=T(1)<cllogl=0 no

Asymptotic notation requires only for n>=no

T'(n)<cnlogn

Example

Induction needs base condition.

T(n)<cnlogn
Asymptotic notation requires only for n>=no
Let’s try n=3, so as not to depend directly on T(1):

T()=1

T(2)= ZT(

)+n=2+2:4

O | S

o | =

T(3) = ZT(

j+n:2+3=5

Example

Induction needs base condition.

T(n)<cnlogn
Asymptotic notation requires only for n>=no
Let’s try n=3:
T(1)=1
T(2):2T(g)+n:2+2:4
n
T(3):2T(> j+n=2+3=5

T'(3)=5<cnlogn=c3log3=3c(1.58) Holds for c>=2

Example

We've shown for T'(n) = ZT(L)+ n

T(n)<cnlogn

Asymptotic notation requires only for n>=3 ¢>=2

(both induction step and base case)

Change of variable

T(n)=2T(/n)+logn

Change of variable

T(n)=2T(/n)+logn

Define:

m=logn —— p=2"

Example 2

Change of variable

T(n)=2T(/n)+logn

Define:

m=logn —— p=2"

m

T(n)=T(2™)=2T(22)+m

Familiar pattern?

Change of variable

T(2") = 2T(2%) +m

S(m) = 25(%) +m

Change of variable

T(2") = 2T(2%) +m

S(m) = 25(%) +m

Like what?

Change of variable

T(2™) = 2T(2%) +m

S(m) = 25(%) +m

Like what? Merge Sort

Change of variable

T(2") = 2T(2%) +m

S(m) = 25(%) +m

Like what? Merge Sort
O(mlogm)

Change of variable

T(2") = 2T(2%) +m

S(m) = 25(%) +m

Like what? Merge Sort

O(mlogm)=0(lognlog(logn))

Change variable back

Goals

Solving recurrences

* Reuvisit recursion trees more generally

« Master theorem as “recipe” for range of cases
« Substitution method

PROS / CONS?

