Data Structures and Algorithm Analysis (CSC317)

Divide and conquer (part 3)

Goals

What kind of recurrences arise in algorithms and how do we solve more generally (than what we saw for merge sort)?

- More recurrence examples
- Revisit recursion trees more generally
- Master theorem as "recipe" for range of cases
- (Substitution method)

$$T(n) = aT(\frac{n}{b}) + f(n)$$

a subproblems n/b size of each subproblem f(n) cost of dividing problem and combining subproblem results

$$T(n) = aT(\frac{n}{b}) + f(n)$$

a subproblems n/b size of each subproblem f(n) cost of dividing problem and combining subproblem results

Competition between:

a number of recursive calls made – bad

$$T(n) = aT(\frac{n}{b}) + f(n)$$

a subproblems n/b size of each subproblem f(n) cost of dividing problem and combining subproblem results

Competition between:

a number of recursive calls made – bad
b how much problem size decreased each call – good

$$T(n) = aT(\frac{n}{b}) + f(n)$$

a subproblems n/b size of each subproblem f(n) cost of dividing problem and combining subproblem results

Competition between:

a number of recursive calls made – bad
b how much problem size decreased each call – good
f(n) determines work outside of recursive call we compare to

$$T(n) = aT(\frac{n}{b}) + f(n)$$

Competition between:

a number of recursive calls made – bad
b how much problem size decreased each call – good
f(n) determines work outside of recursive call we compare to

We'll be comparing:

f(n) and $n^{\log_b a}$

$$T(n) = aT(\frac{n}{b}) + f(n)$$

Competition between:

a number of recursive calls made – bad
b how much problem size decreased each call – good
f(n) determines work outside of recursive call we compare to

We'll be comparing:

$$f(n)$$
 and $n^{\log_b a} = a^{\log_b n}$

Intuitively, is there more work at the root or at the leaves? Like what we developed in recursion tree examples...

Let a>=1 and b>1 be constants, f(n) a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(\frac{n}{b}) + f(n)$$

Then T(n) has the following asymptotic bounds:

1. If
$$f(n) = O(n^{\log_b a - \varepsilon})$$
 for some constant $\varepsilon > 0$ then:
 $T(n) = \Theta(n^{\log_b a})$

If $n^{\log_b a}$ polynomially larger than $f(n) \rightarrow n^{\log_b a}$ dominates

Let a>=1 and b>1 be constants, f(n) a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(\frac{n}{b}) + f(n)$$

Then T(n) has the following asymptotic bounds:

1. If
$$f(n) = O(n^{\log_b a - \varepsilon})$$
 for some constant $\varepsilon > 0$ then:
 $T(n) = \Theta(n^{\log_b a})$

If $n^{\log_b a}$ polynomially larger than $f(n) \rightarrow n^{\log_b a}$ dominates

Like the leaves dominating in a recursion tree

Let a>=1 and b>1 be constants, f(n) a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(\frac{n}{b}) + f(n)$$

Then T(n) has the following asymptotic bounds:

2. If
$$f(n) = O(n^{\log_b a})$$
 then:
 $T(n) = \Theta(n^{\log_b a} \log n)$

If $n^{\log_b a}$ equals $f(n) \rightarrow n^{\log_b a} \log n$

Let a>=1 and b>1 be constants, f(n) a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(\frac{n}{b}) + f(n)$$

Then T(n) has the following asymptotic bounds:

2. If
$$f(n) = O(n^{\log_b a})$$
 then:
 $T(n) = \Theta(n^{\log_b a} \log n)$

If
$$n^{\log_b a}$$
 equals $f(n) \rightarrow n^{\log_b a} \log n$

Like merge sort - equal work each level

Let a>=1 and b>1 be constants, f(n) a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(\frac{n}{b}) + f(n)$$

Then T(n) has the following asymptotic bounds:

3. If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$ and regularity condition (ignore for now):

 $T(n) = \Theta(f(n))$

If $n^{\log_b a}$ polynomially smaller than $f(n) \rightarrow f(n)$ dominates

Let a>=1 and b>1 be constants, f(n) a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(\frac{n}{b}) + f(n)$$

Then T(n) has the following asymptotic bounds:

3. If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$ and regularity condition (ignore for now)

 $T(n) = \Theta(f(n))$

If $n^{\log_b a}$ polynomially smaller than $f(n) \rightarrow f(n)$ dominates Like the root dominating in a recursion tree

Let a>=1 and b>1 be constants, f(n) a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(\frac{n}{b}) + f(n)$$

Then T(n) has the following asymptotic bounds:

3. ... regularity condition:

 $af\left(\frac{n}{b}\right) \le cf(n)$

This regularity condition will hold in most examples we look at; it's intuitively saying the root will indeed dominate the work

Let a>=1 and b>1 be constants, f(n) a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(\frac{n}{b}) + f(n)$$

Then T(n) has the following asymptotic bounds:

3. If
$$f(n) = \Omega(n^{\log_b a + \varepsilon})$$
 for some constant $\varepsilon > 0$ and $af\left(\frac{n}{b}\right) \le cf(n)$, for some constant c<1, then:
 $T(n) = \Theta(f(n))$

If $n^{\log_b a}$ polynomially smaller than $f(n) \rightarrow f(n)$ dominates Like the root dominating in a recursion tree Master theorem summary – 3 cases

$$T(n) = aT(\frac{n}{b}) + f(n)$$

1 If $n^{\log_b a} > f(n) \rightarrow n^{\log_b a}$ dominates

Like the leaves dominating in a recursion tree

2 If $n^{\log_b a}$ equals f(n) -> $n^{\log_b a} \log n$ Like merge sort - equal work each level

3 If $n^{\log_b a} < f(n) \rightarrow f(n)$ dominates

Like the root dominating in a recursion tree

So in all cases we compare $n^{\log_b a}$ to f(n) and look if they are equal or for polynomial differences

Intuition: Either the leaves and recursion process dominate the cost, or the root dominates the cost, or they are balanced

Proof: we won't show; but relies on recursion trees and geometric sums, similar to example cases we looked at

On the board... we'll remember that:

$$T(n) = aT(\frac{n}{b}) + f(n)$$

1. If
$$n^{\log_b a} > f(n) \rightarrow T(n) = \Theta(n^{\log_b a})$$

2. If
$$n^{\log_b a}$$
 equals $f(n) \rightarrow T(n) = \Theta(n^{\log_b a} \log n)$
3. If $n^{\log_b a} < f(n) \rightarrow T(n) = \Theta(f(n))$

$$T(n) = aT(\frac{n}{b}) + f(n)$$
$$T(n) = 8T(\frac{n}{2}) + \Theta(n^2)$$

)

$$T(n) = aT(\frac{n}{b}) + f(n)$$
$$T(n) = 8T(\frac{n}{2}) + \Theta(n^2)$$
$$a = 8; b = 2; f(n) = \Theta(n^2)$$

Familiar??

$$T(n) = aT(\frac{n}{b}) + f(n)$$
$$T(n) = 8T(\frac{n}{2}) + \Theta(n^2)$$
$$a = 8; b = 2; f(n) = \Theta(n^2)$$

Familiar??

Our first divide and conquer matrix multiplication

$$T(n) = aT(\frac{n}{b}) + f(n)$$
$$T(n) = 8T(\frac{n}{2}) + \Theta(n^2)$$
$$a = 8; b = 2; f(n) = \Theta(n^2)$$

$$n^{\log_b a} = n^{\log_2 8} = n^3$$
 Which case?

$$T(n) = aT(\frac{n}{b}) + f(n)$$
$$T(n) = 8T(\frac{n}{2}) + \Theta(n^2)$$
$$a = 8; b = 2; f(n) = \Theta(n^2)$$

$$n^{\log_b a} = n^{\log_2 8} = n^3$$

Polynomially larger than $f(n) = n^2$ Case 1

)

$$T(n) = aT(\frac{n}{b}) + f(n)$$
$$T(n) = 8T(\frac{n}{2}) + \Theta(n^2)$$
$$a = 8; b = 2; f(n) = \Theta(n^2)$$

$$n^{\log_b a} = n^{\log_2 8} = n^3$$

Polynomially larger than $f(n) = n^2$ Case 1

)

$$T(n) = \Theta(n^{\log_b a}) = \Theta(n^3)$$

$$T(n) = aT(\frac{n}{b}) + f(n)$$
$$T(n) = 7T(\frac{n}{2}) + \Theta(n^2)$$

$$T(n) = aT(\frac{n}{b}) + f(n)$$
$$T(n) = 7T(\frac{n}{2}) + \Theta(n^2)$$
$$a = 7; b = 2; f(n) = \Theta(n^2)$$

Familiar?? Strassen's method!

$$T(n) = aT(\frac{n}{b}) + f(n)$$
$$T(n) = 8T(\frac{n}{2}) + \Theta(n^2)$$
$$a = 8; b = 2; f(n) = \Theta(n^2)$$

$$n^{\log_b a} = n^{\log_2 7}$$
 What case is this?

$$T(n) = aT(\frac{n}{b}) + f(n)$$
$$T(n) = 8T(\frac{n}{2}) + \Theta(n^2)$$
$$a = 8; b = 2; f(n) = \Theta(n^2)$$

$$n^{\log_b a} = n^{\log_2 7}$$
 Case 1

$$T(n) = \Theta(n^{\log_b a}) = \Theta(n^{\log_2 7}) \approx \Theta(n^{2.8})$$

)

$$T(n) = aT(\frac{n}{b}) + f(n)$$
$$T(n) = T(\frac{n}{3}) + 1$$

$$T(n) = aT(\frac{n}{b}) + f(n)$$
$$T(n) = T(\frac{n}{3}) + 1$$
$$a = 1; b = 3; f(n) = 1$$
$$n^{\log_b a} = n^{\log_3 1} = n^0 = 1$$

$$T(n) = aT(\frac{n}{b}) + f(n)$$

$$T(n) = T(\frac{n}{3}) + 1$$

$$a = 1; b = 3; f(n) = 1$$

$$n^{\log_{b} a} = n^{\log_{3} 1} = n^{0} = 1$$

Equal to f(n)=1 Case 2

$$T(n) = aT(\frac{n}{b}) + f(n)$$

$$T(n) = T(\frac{n}{3}) + 1$$

$$a = 1; b = 3; f(n) = 1$$

$$n^{\log_{b} a} = n^{\log_{3} 1} = n^{0} = 1$$

Equal to f(n)=1 Case 2

 $T(n) = \Theta(f(n)\log n) = \Theta(1\log n) = \Theta(\log n)$

$$T(n) = aT(\frac{n}{b}) + f(n)$$
$$T(n) = 3T(\frac{n}{4}) + n\log n$$

$$T(n) = aT(\frac{n}{b}) + f(n)$$

$$T(n) = 3T(\frac{n}{4}) + n\log n$$

$$a = 3; b = 4; f(n) = n\log n$$

$$n^{\log_b a} = n^{\log_4 3} = n^{0.793}$$
$$T(n) = aT(\frac{n}{b}) + f(n)$$

$$T(n) = 3T(\frac{n}{4}) + n\log n$$

$$a = 3; b = 4; f(n) = n\log n$$

$$n^{\log_b a} = n^{\log_4 3} = n^{0.793}$$

polynomially smaller than f(n) Case 3

$$T(n) = \Theta(f(n)) = \Theta(n \log n)$$

$$T(n) = aT(\frac{n}{b}) + f(n)$$

$$T(n) = 3T(\frac{n}{4}) + n\log n$$

$$a = 3; b = 4; f(n) = n\log n$$

$$n^{\log_b a} = n^{\log_4 3} = n^{0.793}$$

polynomially smaller than f(n) Case 3

$$T(n) = \Theta(f(n)) = \Theta(n \log n)$$

Note: need to verify regularity condition holds

$$T(n) = aT(\frac{n}{b}) + f(n)$$
$$T(n) = 2T(\frac{n}{2}) + n\log n$$

$$T(n) = aT(\frac{n}{b}) + f(n)$$

$$T(n) = 2T(\frac{n}{2}) + n\log n$$

$$a = 2; b = 2; f(n) = n\log n$$

$$n^{\log_b a} = n^{\log_2 2} = n^1 = n$$

$$T(n) = aT(\frac{n}{b}) + f(n)$$

$$T(n) = 2T(\frac{n}{2}) + n\log n$$

$$a = 2; b = 2; f(n) = n\log n$$

$$n^{\log_b a} = n^{\log_2 2} = n^1 = n$$

smaller than $f(n) = n \log n$ Case 3?

$$T(n) = aT(\frac{n}{b}) + f(n)$$
$$T(n) = 2T(\frac{n}{2}) + n\log n$$
$$a = 2; b = 2; f(n) = n\log n$$

$$n^{\log_b a} = n^{\log_2 2} = n^1 = n$$

smaller than $f(n) = n \log n$ Case 3?

No, not polynomially smaller

$$\frac{n\log n}{n} = \log n < n^{\varepsilon}$$

Compare: (Like Merge Sort) $T(n) = T(\frac{n}{2}) + T(\frac{n}{2}) + cn$

To: (Like an uneven split Merge Sort) $T(n) = T(\frac{n}{3}) + T(\frac{2n}{3}) + cn$

Better? Worse? Equal?

$$T(n) = T(\frac{n}{3}) + T(\frac{2n}{3}) + cn$$

$$T(n) = T(\frac{n}{3}) + T(\frac{2n}{3}) + cn$$
Work each level?
$$c(\frac{n}{3}) \qquad c(\frac{2n}{3}) \qquad \dots \qquad \dots \qquad \dots$$

$$c(\frac{n}{3}) \qquad c(\frac{2n}{9}) \qquad c(\frac{2n}{9}) \qquad \dots \qquad \dots \qquad \dots$$

$$c(\frac{n}{9}) \qquad c(\frac{2n}{9}) \qquad c(\frac{2n}{9}) \qquad c(\frac{4n}{9}) \qquad \dots \qquad \dots \qquad \dots$$

$$\vdots$$

$$T(n) = T(\frac{n}{3}) + T(\frac{2n}{3}) + cn$$

Height?

Longest path root to leaf:

n

$$\frac{\frac{2}{3}n}{\left(\frac{2}{3}\right)^2}n$$

1

$$T(n) = T(\frac{n}{3}) + T(\frac{2n}{3}) + cn$$

Height? At the leaf: $\left(\frac{2}{3}\right)^k n = 1$

$$T(n) = T(\frac{n}{3}) + T(\frac{2n}{3}) + cn$$

Height? At the leaf: $\left(\frac{2}{3}\right)^k n = 1;$ $n = \left(\frac{3}{2}\right)^k;$ $k = \log_3 n$

$$T(n) = T(\frac{n}{3}) + T(\frac{2n}{3}) + cn$$

$$c (\frac{n}{3}) c (\frac{2n}{3}) c (\frac$$

-

Also note, we ignored base of algorithm, since constant factor:

$$\log_b a = \frac{\log_c a}{\log_c b}$$

Compare: (Like Merge Sort) $T(n) = T(\frac{n}{2}) + T(\frac{n}{2}) + cn$

To: (Like an uneven split Merge Sort) $T(n) = T(\frac{n}{3}) + T(\frac{2n}{3}) + cn$

Better? Worse? Equal? Asymptotically, similar

Goals

What kind of recurrences arise in algorithms and how do we solve more generally (than what we saw for merge sort)?

- More recurrence examples
- Revisit recursion trees more generally
- Master theorem as "recipe" for range of cases
- Substitution method

Substitution method

• Guess a bound

Substitution method

• Guess a bound (we need a guess!!)

Substitution method

- Guess a bound (we need a guess!!)
- Prove correct by induction
- Find constants in this process

Prove that
$$T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n$$
 is $O(n \log n)$

Prove that
$$T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n$$
 is $O(n \log n)$

We need to prove that $T(n) \leq cn \log n$

For appropriate choice of constant c>0

(can't use big Oh in substitution because of induction, need to write out definition with constants!)

Induction step: assume

$$T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) \le c\left(\left\lfloor \frac{n}{2} \right\rfloor\right) \log\left(\left\lfloor \frac{n}{2} \right\rfloor\right)$$

$$T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n \le$$

Induction step: assume

$$T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) \le c\left(\left\lfloor \frac{n}{2} \right\rfloor\right) \log\left(\left\lfloor \frac{n}{2} \right\rfloor\right)$$

$$T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n \le 2c\left(\left\lfloor \frac{n}{2} \right\rfloor\right)\log\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n$$

Induction step: assume

$$T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) \le c\left(\left\lfloor \frac{n}{2} \right\rfloor\right) \log\left(\left\lfloor \frac{n}{2} \right\rfloor\right)$$

$$T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n \le 2c\left(\left\lfloor \frac{n}{2} \right\rfloor\right)\log\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n$$

...we want
$$T(n) \le cn \log(n)$$

Induction step: assume

$$T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) \le c\left(\left\lfloor \frac{n}{2} \right\rfloor\right) \log\left(\left\lfloor \frac{n}{2} \right\rfloor\right)$$

Then

$$T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n \le 2c\left(\left\lfloor \frac{n}{2} \right\rfloor\right)\log\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n \le cn\log\left(\frac{n}{2}\right) + n =$$

$$T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n \le 2c\left(\left\lfloor \frac{n}{2} \right\rfloor\right) \log\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n \le cn \log\left(\frac{n}{2}\right) + n = cn \log n - cn \log 2 + n$$

$$T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n \le 2c\left(\left\lfloor \frac{n}{2} \right\rfloor\right)\log\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n \le cn\log\left(\frac{n}{2}\right) + n = cn\log(n - cn\log(2 + n))$$

Then

$$T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n \le 2c\left(\left\lfloor \frac{n}{2} \right\rfloor\right)\log\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n \le cn\log\left(\frac{n}{2}\right) + n = cn\log n - cn\log 2 + n = cn\log n - cn\log 2 + n = cn\log n - cn + n$$

Then

$$T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n \le 2c\left(\left\lfloor \frac{n}{2} \right\rfloor\right) \log\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n \le cn \log\left(\frac{n}{2}\right) + n = cn \log n - cn \log 2 + n = cn \log n - cn + n \le cn \log n - cn + n \le cn \log n$$
 When?

Then

$$T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n \le 2c\left(\left\lfloor \frac{n}{2} \right\rfloor\right) \log\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n \le cn \log\left(\frac{n}{2}\right) + n = cn \log\left(\frac{n}{2}\right) + n = cn \log n - cn \log 2 + n = cn \log n - cn \log 2 + n = cn \log n - cn + n \le cn \log n - cn + n \le cn \log n$$

Induction step: assume

$$T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) \le c\left(\left\lfloor \frac{n}{2} \right\rfloor\right) \log\left(\left\lfloor \frac{n}{2} \right\rfloor\right)$$

$$T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n \le 2c\left(\left\lfloor \frac{n}{2} \right\rfloor\right)\log\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n = cn\log n - cn\log 2 + n = cn\log n - cn + n \le cn\log n$$

For c>=1

Induction needs **base condition**. For n=1, assume:

T(1) = 1

Then:

 $T(1) \le c 1 \log 1 \qquad (?)$
Induction needs **base condition**. For n=1, assume:

T(1) = 1

Then:

 $T(1) \le c 1 \log 1 = c \log 1$ (?)

 $1 = T(1) \le c 1 \log 1 = 0$ no

Induction needs **base condition**. For n=1, assume:

T(1) = 1

Then:

 $T(1) \le c 1 \log 1 = c \log 1$ (?)

 $1 = T(1) \le c 1 \log 1 = 0$ no

Asymptotic notation requires only for n>=no $T(n) \le cn \log n$

Induction needs base condition.

 $T(n) \le cn \log n$ Asymptotic notation requires only for n>=no Let's try n=3, so as not to depend directly on T(1):

$$T(1) = 1$$

$$T(2) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n = 2 + 2 = 4$$

$$T(3) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n = 2 + 3 = 5$$

Induction needs base condition.

 $T(n) \leq cn \log n$ Asymptotic notation requires only for n>=no Let's try n=3: T(1) = 1 $T(2) = 2T\left(\left|\frac{n}{2}\right|\right) + n = 2 + 2 = 4$ $T(3) = 2T\left(\left|\frac{n}{2}\right|\right) + n = 2 + 3 = 5$ $T(3) = 5 \le cn \log n = c3 \log 3 = 3c(1.58)$ Holds for c>=2

We've shown for
$$T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n$$

 $T(n) \le cn \log n$

Asymptotic notation requires only for n>=3 c>=2

(both induction step and base case)

 $T(n) = 2T(\sqrt{n}) + \log n$

$$T(n) = 2T(\sqrt{n}) + \log n$$

Define:

$$m = \log n \longrightarrow n = 2^m$$

Change of variable

$$T(n) = 2T(\sqrt{n}) + \log n$$

Define:

$$m = \log n \longrightarrow n = 2^m$$

$$T(n) = T(2^m) = 2T(2^{\frac{m}{2}}) + m$$

Familiar pattern?

$$T(2^{m}) = 2T(2^{\frac{m}{2}}) + m$$
$$S(m) = 2S(\frac{m}{2}) + m$$

$$T(2^{m}) = 2T(2^{\frac{m}{2}}) + m$$
$$S(m) = 2S(\frac{m}{2}) + m$$

Like what?

$$T(2^{m}) = 2T(2^{\frac{m}{2}}) + m$$
$$S(m) = 2S(\frac{m}{2}) + m$$

Like what? Merge Sort

$$T(2^m) = 2T(2^{\frac{m}{2}}) + m$$

$$S(m) = 2S(\frac{m}{2}) + m$$

Like what? Merge Sort
$$O(m \log m)$$

$$T(2^m) = 2T(2^{\frac{m}{2}}) + m$$
$$S(m) - 2S(\frac{m}{2}) + m$$

$$S(m) = 2S(-) + m$$

Like what? Merge Sort

 $O(m \log m) = O(\log n \log(\log n))$ Change variable back

Goals

Solving recurrences

- Revisit recursion trees more generally
- Master theorem as "recipe" for range of cases
- Substitution method

PROS / CONS?