Data Structures and Algorithm Analysis (CSC317)

Week 2: Growth of Functions (cont)

Picture from

http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/

Summary Oh, Omega, Theta

Oh
$$cg(n)$$
 asymptotic upper, like $\leq cg(n)$ $f(n)$ Omega $\Omega(n)$ asymptotic lower, like $\geq cg(n)$ Theta $Cg(n)$ asymptotic tight, like $cg(n)$ $cg(n)$ $cg(n)$

Theorem: $f(n) = \theta(n)$

if and only if (iff)

Theorem: $f(n) = \theta(n)$ if and only if (iff) $f(n) = O(n) \text{ and } f(n) = \Omega(n)$

Example: Is $f(n) = n^2 + 5$ $\Omega(n^3)$?

Example: Is $f(n) = n^2 + 5$ $\Omega(n^3)$?

(Is f(n) bounded below by?)

Answer: no.

Proof by contradiction: Suppose $f(n) = \Omega(n^3)$

Example: Is
$$f(n) = n^2 + 5$$
 $\Omega(n^3)$?

(Is f(n) bounded below by?)

Answer: no.

Proof by contradiction: Suppose $f(n) = \Omega(n^3)$

Then there exist n_0 ; c such that for all : $n \ge n_0$

$$n^2 + 5 \ge cn^3$$
;

$$n^2 + 5n^2 \ge cn^3$$
;

$$6n^2 \ge cn^3$$
:

$$6 \ge cn$$

Can't be true for all $n \ge n_0$

```
Transitivity: f(n) = \Theta(g(n)) and g(n) = \Theta(h(n)) then f(n) = \Theta(h(n)) (same for \Omega; O??)
```

Reflexivity: $f(n) = \Theta(f(n))$

(same for $\Omega; O$??)

Symmetry:
$$f(n) = \Theta(g(n))$$

iff $g(n) = \Theta(f(n))$
(same for $\Omega; O$??)

Symmetry:
$$f(n) = \Theta(g(n))$$
 iff $g(n) = \Theta(f(n))$ (same for $\Omega; O$??) No. Only for Θ (why?)

Summary: properties of Oh, Omega, Theta

Transitivity:
$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n))$ then $f(n) = \Theta(h(n))$ (same for $\Omega; O$)

Reflexivity: $f(n) = \Theta(f(n))$ (same for $\Omega; O$)

Symmetry: $f(n) = \Theta(g(n))$ iff $g(n) = \Theta(f(n))$ (only for Θ)

Final thoughts: Oh, Omega, Theta

• Useful comparison formula of functions in book (section 3.2)