Data Structures and Algorithm Analysis (CSC317)

Week 2: Growth of Functions

Picture from http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/

Growth of functions

We've already been talking about "Grows as" for the sort examples, but what does this really mean?

We already know that:

- We ignore constants and low order terms; why?
- Asymptotic analysis: we focus on large input size; growth of function for large input; why do we care?

Complexity petting zoo

This is a petting zoo, because there are many more complexity classes, and we are only exploring the surface...

<u>Complexity petting zoo</u> (see notes of prof Burt Rosenberg: <u>http://blog.cs.miami.edu/burt/2014/09/01/a-</u> <u>complexity-petting-zoo/</u>)

Constant time T(1)

Example? First number in an array Also second number...

 $T(\log n)$

Example?

Binary search: Sorted array A; find value v between range low and high A = [1 3 4 10 15 23 35 40 45]Find v=4

Solution: Search in middle of array: value found, or recursion left side, or recursion right half

Growth of functions

T(n)

Example? Largest number in sequence Sum of fixed sequence Whenever you step through entire sequence or array Even if you have to do this 20 times

 $T(n\log n)$

Example? We've seen; merge sort...

Growth of functions

 $T(n^2)$

Example? We've seen; insertion sort...

 $T(n^3)$

Example? Naïve matrix multiplication (for an n by n matrix) is classical example; we shall see more later...

All of these are polynomial time (class P)

$$T(n);T(n\log n);T(n^2);T(n^3)$$

$$T(n^k)$$
 K nonnegative

More than polynomial time? Exponential

What about this problem: subset sum problem? How long to find a solution??

Input: set of integers size n Output: is there a subset that sums to 0?

A={1; 4; -3; 2; 9; 7} Is there a subset that sums to 0?

What about this problem: subset sum problem? How long to find a solution??

Input: set of integers size n Output: is there a subset that sums to 0?

A={1; 4; -3; 2; 9; 7} Is there a subset that sums to 0?

Might take exponential time if we have to go through every possible subset (brute force)

What about this problem: subset sum problem?

Input: set of integers size n Output: is there a subset that sums to 0?

A={1; 4; -3; 2; 9; 7} Is there a subset that sums to 0?

What about if I hand you a subset: {1; -3; 2} How long to verify if this sums to 0?

What about this problem: subset sum problem?

Input: set of integers size n Output: is there a subset that sums to 0?

A={1; 4; -3; 2; 9; 7} Is there a subset that sums to 0?

What about if I hand you a subset: {1; -3; 2} How long to verify if this sums to 0? Polynomial, linear, time.

Algorithms that are *verifiable* in polynomial time (good) are called NP class

But might take exponential number to go through every possible input (possibly bad)

Example: Subset sum problem

A={1; 4; -3; 2; 9; 7} Is there a subset that sums to 0?

{1; -3; 2} is verifiable to sum to 0 quickly

Class NP = Nondeterministic Polynomial

Algorithms that are verifiable in polynomial time (good)

But might take exponential number to go through every possible input! (possibly bad)

Nondeterministic = random = if I was magically handed solution. Originally from nondeterministic Turing machine

P = NP ???

Can problem that is quickly verifiable (ie, polynomial time) be quickly solved (ie, polynomial time)?

Unknown; Millenium prize problem

Growth of functions & Big Oh

Growth of functions & Big Oh $2^{\times 10^5}$

Growth of functions & Big Oh

- Asymptotic upper bound; bounded from above by g(n) for large enough n (why do we care?)
- **Definition:** $O(g(n)) = \{ f(n): \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$

- Asymptotic upper bound; bounded from above by g(n) for large enough n
- **Definition:** $O(g(n)) = \{ f(n): \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$

There exist -> need to find c and n_0 Enough to show one such pair that exists!

- **Definition:** $O(g(n)) = \{ f(n): \text{ there exist positive constants } _{C} \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$
- Example: $f(n) = n^2 + 10n$ is $O(n^2)$

- **Definition:** $O(g(n)) = \{ f(n): \text{ there exist positive constants } _C \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$
- Example of functions f(n) in $O(n^2)$

$$f(n) = n^{2};$$

$$f(n) = n^{2} + n$$

$$f(n) = n^{2} + 1000n$$

- All bound above asymptotically by n^2
- Intuitively, constants and lower order don't matter...

- **Definition:** $O(g(n)) = \{ f(n): \text{ there exist positive constants } _C \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$
- Example of functions f(n) in $O(n^2)$

$$f(n) = n^{2};$$

$$f(n) = n^{2} + n$$

$$f(n) = n^{2} + 1000n$$

• What about?

$$f(n) = n;$$

- **Definition:** $O(g(n)) = \{ f(n): \text{ there exist positive constants } _C \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$
- What about?

$$f(n) = n;$$

Yes. $g(n) = n^2$ is not a tight upper bound but it's an upper bound.

$$n \le 1n^2$$

For all $n \ge 1$

- **Definition:** $O(g(n)) = \{ f(n): \text{ there exist positive constants } _C \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$
- What about?

$$f(n) = n;$$

Yes. $g(n) = n^2$ is not a tight upper bound but it's an upper bound.

$$n \le 1n^2$$

For all $n \ge 1$

There thus exists c = 1; $n_0 = 1$ such that $0 \le f(n) \le g(n)$

- **Definition:** $O(g(n)) = \{f(n): \text{ there exist positive constants } _C$ and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0\}$
- Example: f(n) = n is $O(n^2)$

• **Example:**
$$f(n) = a_k n^k + ... + a_1 n^1 + a_0$$

Then

$$f(n) = O(n^k)$$

• Intuition: we can ignore lower order terms and constants

• **Example:**
$$f(n) = a_k n^k + ... + a_1 n^1 + a_0$$

Then

$$f(n) = O(n^k)$$

• **Proof** : we want to find n_0 ; c such that $f(n) \le cn^k$

• Example:
$$f(n) = a_k n^k + ... + a_1 n^1 + a_0;$$

 $a_k > 0$

Then:
$$f(n) = O(n^k)$$

- Proof : we want to find n_0 ; c such that $f(n) \le cn^k$ $f(n) = a_k n^k + ... + a_1 n^1 + a_0$ $\le |a_k| n^k + ... + |a_1| n^1 + |a_0|$ $\le |a_k| n^k + ... + |a_1| n^k + |a_0| n^k = (|a_k| + ... |a_1| + |a_0|) n^k$ What are? n_0 ; c
- Note also $f(n) \ge 0$

Big Oh: Most commonly used!

- Asymptotic upper bound; bounded from above by g(n) for large enough n
- **Definition:** $O(g(n)) = \{ f(n): \text{ there exist positive constants } c$ and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0 \}$

But there are other bounds

Big Omega

- Asymptotic lower bound; bounded from below by g(n) for large enough n
- **Definition:** $\Omega(g(n) = \{ f(n): \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$

Big Omega

- Asymptotic lower bound; bounded from below by g(n) for large enough n
- **Definition:** $\Omega(g(n) = \{ f(n): \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$

Why is this less often used?

Big Theta

- Asymptotic tight bound; bounded from below and above by g(n) for large enough n
- **Definition:** $\Theta(g(n)=\{f(n): \text{ there exist positive constants } c_1; c_2 \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$

Stronger statement (note literature sometimes sloppy and says Oh when actually Theta)

Examples Oh, Omega, Theta

• Example of functions f(n) in $O(n^2)$

$$f(n) = n^2; f(n) = n^2 + n; f(n) = n$$

- Example of functions f(n) in $\Omega(n^2)$ $f(n) = n^2; f(n) = n^2 + n; f(n) = n^5$
- Example of functions f(n) in $\Theta(n^2)$

$$f(n) = n^2; f(n) = n^2 - n$$

Summary Oh, Omega, Theta

Oh

- O(n) asymptotic upper, like \leq Omega
- $\Omega(n)$ asymptotic lower, like \geq

Theta

• $\Theta(n)$ asymptotic tight, like =

More on Oh, Omega, Theta

Theorem: $f(n) = \theta(n)$

if and only if (iff)

More on Oh, Omega, Theta

Theorem:
$$f(n) = \theta(n)$$

if and only if (iff)

$$f(n) = O(n)$$
 and $f(n) = \Omega(n)$