Data Structures and Algorithm
Analysis (CSC317)

Week 2: Growth of Functions

Picture from
http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/

Growth of functions

We've already been talking about “Grows as” for the
sort examples, but what does this really mean?

We already know that:
* We ignore constants and low order terms; why?

« Asymptotic analysis: we focus on large input size;
growth of function for large input; why do we care?

Complexity petting zoo

This is a petting zoo, because there are many more
complexity classes, and we are only exploring the surface...

Complexity petting zoo (see notes of prof
Burt Rosenberg:

http://blog.cs.miami.edu/burt/2014/09/01/a-
complexity-petting-zoo/)

Complexity classes

Constant time T'(1)

Example? First number in an array
Also second number...

Complexity classes

T'(logn)

Example?

Binary search: Sorted array A; find value v between range
low and high

Middle value

A=[13410 15 23 35 40 45]
Find v=4

Solution: Search in middle of array:
value found, or recursion left side, or recursion right half

Growth of functions

I'(n)

Example?
Largest number in sequence

Sum of fixed sequence
Whenever you step through entire sequence or array

Even if you have to do this 20 times

Complexity classes

T'(nlogn)

Example?
We've seen; merge sort...

Growth of functions

T(n*)

Example?
We've seen; insertion sort...

Complexity classes
T(n)
Example?

Naive matrix multiplication (for an n by n matrix) is classical
example; we shall see more later...

Complexity classes

All of these are polynomial time (class P)

T(n);T(nlogn);T(n*);T(n’)

k
I'(n") K nonnegative

Complexity classes

More than polynomial time”? Exponential

T2")

Complexity classes

What about this problem: subset sum problem?
How long to find a solution??

Input: set of integers size n
Output: is there a subset that sums to 07

A={1;4,;-3;2;9; 7}
Is there a subset that sums to 0?7

Complexity classes

What about this problem: subset sum problem?
How long to find a solution??

Input: set of integers size n
Output: is there a subset that sums to 07

A={1;4,;-3;2;9; 7}
Is there a subset that sums to 0?7

Might take exponential time if we have to go through every
possible subset (brute force)

Complexity classes

What about this problem: subset sum problem?

Input: set of integers size n
Output: is there a subset that sums to 07

A={1;4;-3;2;9; 7}
Is there a subset that sums to 0?7

What about if | hand you a subset:
{1;-3; 2}
How long to verify if this sums to 0?

Complexity classes

What about this problem: subset sum problem?

Input: set of integers size n
Output: is there a subset that sums to 07

A={1;4,;-3;2;9; 7}
Is there a subset that sums to 0?7

What about if | hand you a subset:
{1;-3; 2}
How long to verify if this sums to 0? Polynomial, linear, time.

Complexity classes

Algorithms that are verifiable in polynomial time (good)
are called NP class

But might take exponential number to go through every
possible input (possibly bad)

Example: Subset sum problem

A={1;4,;-3;2;9; 7}
|s there a subset that sums to 0?

{1; -3; 2} is verifiable to sum to 0 quickly

Complexity classes

Class NP = Nondeterministic Polynomial
Algorithms that are verifiable in polynomial time (good)
But might take exponential number to go through every

possible input! (possibly bad)

Nondeterministic = random = if | was magically handed solution.
Originally from nondeterministic Turing machine

Complexity classes
P =NP ?2?

Can problem that is quickly verifiable (ie, polynomial time)
be quickly solved (ie, polynomial time)?

Unknown; Millenium prize problem

Growth of functions & Big Oh

1200

10001

800

run time

400¢

200¢

600

——sort a
—sortb

_—

10

20

30 40 50 60
n

Which sort function is faster?

Growth of functions & Big Oh

5
2x 10
1.5¢
—sort a
© —sort b
S
—= 1
C
-
0.5
0 T]]
0 500 1000 1500 2000

n

Which sort function is faster?

Growth of functions & Big Oh

5

o X 10
1.5¢
—sort a
o —sortb
=
= a:T(n)=nlogn+1000
-}
2
b:T(n)=0.2n
0.5 _
O T 1 !
0 500 1000 1500 2000

n

Low asymptotic run time = faster

Big Oh notation

« Asymptotic upper bound; bounded from above by g(n)
for large enough n (why do we care?)

« Definition: O(g(n))={f(n): there exist positive constants ¢
and n, suchthat 0 < f(n) < cg(n)for all n 2 Ny}

cg(n)

f(n)

n
No

f(n) = 0(g(n))

Big Oh notation

« Asymptotic upper bound; bounded from above by g(n)
for large enough n

« Definition: O(g(n))={f(n): there exist positive constants ¢
and n, suchthat 0 < f(n) < cg(n)for all n 2 Ny}

There exist -> need to find cand n,
Enough to show one such pair that exists!

cg(n)

n
No

f(n) = 0(g(n))

Big Oh notation

» Definition: O(g(n))={ f(n): there exist positive constants
and n,suchthat 0 < f(n) < cg(n)forall n=n,}

- Example: f(n)=n"+10n is O(n*)

6000 5
—f(n)=n"+10n

50007 | —cg(n)=2n?

4000¢
3000;
2000¢
1000¢

O 10 20 30 40 50
n

Big Oh notation

* Definition: O(g(n))={ f(n): there exist positive constants
and 7, such that 0 < f(n) < cg(n)forall 12 ny

« Example of functions f(n) in O(n)
fm)y=n;

f(n)=n"+n

f(n)=n"+1000n

 All bound above asymptotically by n’
 Intuitively, constants and lower order don’t matter...

Big Oh notation

* Definition: O(g(n))={ f(n): there exist positive constants
and 7, such that 0 < f(n) < cg(n)forall 12 ny

« Example of functions f(n) in O(n)

f(n)=n’;
f(n)=n"+n
f(n)=n"+1000n

 \What about?

f(n)=mn;

Big Oh notation

* Definition: O(g(n))={ f(n): there exist positive constants
and 7, such that 0 < f(n) < cg(n)forall 12 ny

 \What about?

f(n)=n;

Yes. g(n) = n’ is not a tight upper bound but it's an
upper bound.

n<ln’

Forall n>1

Big Oh notation

* Definition: O(g(n))={ f(n): there exist positive constants
and 7, such that 0 < f(n) < cg(n)forall 12 ny

 \What about?

f(n)=n;

Yes. g(n) =n’isnota tight upper bound butit’s an
upper bound.

n<ln’
Forall n>1

There thus exists ¢ =1;n, =1suchthat 0 < f(n)< g(n)

Big Oh notation

» Definition: O(g(n))={ f(n): there exist positive constants
and n,suchthat 0 < f(n) < cg(n)forall n=n,}

+ Example: f(n)=nis O(n?)

10000;

—f(n)=n
8000- |—cg(n)=n

2

6000

4000¢

2000;

0

100

Big Oh notation

+ Example: f(n)=a,n"+.+an' +a,

Then
f(n)=0(n")

 Intuition: we can ignore lower order terms and constants

Big Oh notation

+ Example: f(n)=a,n"+.+an' +a,

Then
f(n)=0(n")

» Proof : we want to find n,;c such that f(n) < cn*

Big Oh notation

- Example: f(n) = aknk bt alnl +d,,

<

<

a,

a,

a,>0

Then: f(n)= O(Hk)

* Proof : we want to find n,;¢ such that f(n) < cn’
f(n)=an"+..+an +a,

n“+ ..+

n*+ ..+

a,

a

1
n'+|a,

k k _ k
n +‘a0‘n —(‘ak‘+..‘al‘+‘ao‘)n

What are? n,;c

* Notealso f(n)=0

Big Oh: Most commonly used!

« Asymptotic upper bound; bounded from above by g(n)
for large enough n

* Definition: O(g(n))={f(n): there exist positive constants ¢
and n, suchthat 0 < f(n) < cg(n) forall n 2 N}

cg(n)

no

f(n) = 0(g(n))

But there are other bounds

Big Omega

« Asymptotic lower bound; bounded from below by g(n)
for large enough n

» Definition:((g(n)={ f(n): there exist positive constants ¢
and n, suchthat 0 <cg(n)< f(n)forall n 2 Ny}

no

f(n) = Q(gn))

Big Omega

« Asymptotic lower bound; bounded from below by g(n)
for large enough n

» Definition:((g(n)={ f(n): there exist positive constants ¢
and n, suchthat 0 <cg(n)< f(n)forall n 2 Ny}

no

f(n) = Q(g(n))
Why is this less often used?

Big Theta

« Asymptotic tight bound; bounded from below and above by g(n)
for large enough n

» Definition:Q(g(n)={ f(n): there exist positive constants C;;C,
and n, such that () < clg(n) < f(n) < ng(n) forall n2ngy

c28(n)

f(n)

c18(n)

n
no

f(n) = 0(g(n))
Stronger statement (note literature sometimes
sloppy and says Oh when actually Theta)

Examples Oh, Omega, Theta

» Example of functions f(n) in O(n*)

fmy=n"f(m)=n"+nlf(n)=n

Example of functions f(n) in Q(n?)

fy=nf(ny=n’+n;f(n)=n"

« Example of functions f(n) in @(n)

fy=n*;f(n)=n"—n

Summary Oh, Omega, Theta

Oh cg(n)
* O(n) asymptotic upper, like < f(n)
Omega f(n)
« (n) asymptotic lower, like 2
(n) ymp cg(n)
Theta C (l’l)
. O(n) asymptotic tight, like = ijg(n)

c,g(n)

More on Oh, Omega, Theta
Theorem: f(n)=0(n)

if and only if (iff)

More on Oh, Omega, Theta
Theorem: f(n) = 6(n)
if and only if (iff)
f(n)=0(n)and f(n)="L(n)

