
Data Structures and Algorithm
Analysis (CSC317)

1/20/15 1:54 PMrunning-times.gif 869×620 pixels

Page 1 of 1http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/running-times.gif

Week 2: Growth of Functions

Picture from
http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/

http://science.slc.edu/~jmarshall/courses/

First: Another loop invariant example

(Try to find a loop invariant that holds at start of each iteration
of for loop! We want y not as a function of adding y each iteration,
but to know what y would be after 2, 3, 4 , … k iterations)

This will allow us to figure out what y is after the loop termination,
and check correctness

y=0
For i=0 to n

y=y+2!
Return y

First: Another loop invariant example

(Try to find a loop invariant that holds at start of each iteration
of for loop! We want y not as a function of adding y each iteration,
but to know what y would be after 2, 3, 4 , … k iterations)

This will allow us to figure out what y is after the loop termination,
and check correctness

Try going through a few iterations of the for loop in breakout groups
and figuring out the value of y …

y=0
For i=0 to n

y=y+2!
Return y

First: Another loop invariant example

y=0
For i=0 to n

y=y+2!
Return y

Let’s try a few iterations

i=0 𝑦 = 0 (before first iteration for loop)

i=1 𝑦 = 0 + 2" = 1

i=2 𝑦 = 1 + 2# = 3

i=3 𝑦 = 3 + 2$ = 7

Is there a pattern??

First: Another loop invariant example

y=0
For i=0 to n

y=y+2!
Return y

Let’s try a few iterations

i=0 𝑦 = 0 (before first iteration for loop) 2" − 1

i=1 𝑦 = 0 + 2" = 1 2# − 1

i=2 𝑦 = 1 + 2# = 3 2$ − 1

i=3 𝑦 = 3 + 2$ = 7 2% − 1 What is y for i=4??

First: Another loop invariant example

y=0
For i=0 to n

y=y+2!
Return y

Let’s try a few iterations

i=0 𝑦 = 0 (before first iteration for loop) 2" − 1

i=1 𝑦 = 0 + 2" = 1 2# − 1

i=2 𝑦 = 1 + 2# = 3 2$ − 1

i=3 𝑦 = 3 + 2$ = 7 2% − 1

Pattern: 2! − 1

First: Another loop invariant example

y=0
For i=0 to n

y=y+2!
Return y

Loop invariant: at the start of each iteration of the for loop,
y=2! − 1

§ This can be proved inductively
§ We manually did an assert
§ Assert is common in many programming languages

i=0
y=0
Assert 𝑦 = 2! − 1
For i=0 to n

y=y+2!

First: Another loop invariant example
Python assert: AssertLoopInvariant.ipynb

8/27/18, 6:16 PMAssertLoopInvariant

Page 1 of 4http://localhost:8888/nbconvert/html/AssertLoopInvariant.ipynb?download=false

In [7]: i=0
y=0
assert y == (2**i - 1) # assert initial
n = 20
for i in range (0,n):
 assert(y == 2**(i) - 1) # true so far for i; assert for i
 print(y)
 print(2**(i) - 1)
 y = y + 2**i
 assert(y == 2**(i+1) - 1) # now assert for i+1
print(2**(n) - 1)
assert(y == 2**(n) - 1) # assert termination

First: Another loop invariant example
Python assert: AssertLoopInvariant.ipynb

8/27/18, 6:16 PMAssertLoopInvariant

Page 2 of 4http://localhost:8888/nbconvert/html/AssertLoopInvariant.ipynb?download=false

0
0
1
1
3
3
7
7
15
15
31
31
63
63
127
127
255
255
511
511
1023
1023
2047
2047
4095
4095
8191
8191
16383
16383
32767
32767
65535
65535
131071
131071
262143
262143
524287
524287
1048575

First: Another loop invariant example

8/27/18, 6:16 PMAssertLoopInvariant

Page 3 of 4http://localhost:8888/nbconvert/html/AssertLoopInvariant.ipynb?download=false

In [3]: i=0
y=0
assert y == (2**i - 1)
n = 20
for i in range (0,n):
 assert(y == 2**(i+1) - 1) # cannot assert yet for i+1
 print(y)
 print(2**(i) - 1)
 y = y + 2**i
 assert(y == 2**(i+1) - 1)

--

AssertionError Traceback (most recent call
last)
<ipython-input-3-f947adf92b02> in <module>()
 4 n = 20
 5 for i in range (0,n):
----> 6 assert(y == 2**(i+1) - 1) # cannot assert yet
 7 print(y)
 8 print(2**(i) - 1)

AssertionError:

In [8]: # if we had wrong loop invariant
i=0
y=0
n = 20
for i in range (0,n):
 assert(y == 2**(i)) # true so far for i?
 print(y)
 print(2**(i) - 1)
 y = y + 2**i
print(2**(n) - 1)
assert(y == 2**(n) - 1) # assert termination

--

AssertionError Traceback (most recent call
last)
<ipython-input-8-d7ee22c282cd> in <module>()
 4 n = 20
 5 for i in range (0,n):
----> 6 assert(y == 2**(i)) # true so far for i?
 7 print(y)
 8 print(2**(i) - 1)

AssertionError:

Python assert: AssertLoopInvariant.ipynb

First: Another loop invariant example

8/27/18, 6:16 PMAssertLoopInvariant

Page 3 of 4http://localhost:8888/nbconvert/html/AssertLoopInvariant.ipynb?download=false

In [3]: i=0
y=0
assert y == (2**i - 1)
n = 20
for i in range (0,n):
 assert(y == 2**(i+1) - 1) # cannot assert yet for i+1
 print(y)
 print(2**(i) - 1)
 y = y + 2**i
 assert(y == 2**(i+1) - 1)

--

AssertionError Traceback (most recent call
last)
<ipython-input-3-f947adf92b02> in <module>()
 4 n = 20
 5 for i in range (0,n):
----> 6 assert(y == 2**(i+1) - 1) # cannot assert yet
 7 print(y)
 8 print(2**(i) - 1)

AssertionError:

In [8]: # if we had wrong loop invariant
i=0
y=0
n = 20
for i in range (0,n):
 assert(y == 2**(i)) # true so far for i?
 print(y)
 print(2**(i) - 1)
 y = y + 2**i
print(2**(n) - 1)
assert(y == 2**(n) - 1) # assert termination

--

AssertionError Traceback (most recent call
last)
<ipython-input-8-d7ee22c282cd> in <module>()
 4 n = 20
 5 for i in range (0,n):
----> 6 assert(y == 2**(i)) # true so far for i?
 7 print(y)
 8 print(2**(i) - 1)

AssertionError:

Python assert: AssertLoopInvariant.ipynb

Growth of functions
We’ve already been talking about “Grows as” for the
sort examples, but what does this really mean?

We already know that:

• We ignore constants and low order terms; why?

• Asymptotic analysis: we focus on large input size;
growth of function for large input; why do we care?

Complexity petting zoo

This is a petting zoo, because there are many more
complexity classes, and we are only exploring the surface…

Complexity petting zoo (see notes of prof
Burt Rosenberg:
http://blog.cs.miami.edu/burt/2014/09/01/a-
complexity-petting-zoo/)

http://blog.cs.miami.edu/burt/2014/09/01/a-complexity-petting-zoo/
http://blog.cs.miami.edu/burt/2014/09/01/a-complexity-petting-zoo/

T (1)Constant time

Example? First number in an array
Also second number…

Complexity classes

T (logn)

Example?

Complexity classes

T (logn)

Example?

Binary search: Sorted array A; find value v between range
low and high

Complexity classes

A = [1 3 4 10 15 23 35 40 45]
Find v=4

Solution: Search in middle of array:
value found, or recursion left side, or recursion right half

Middle value

Growth of functions

T (n)

Example?

Growth of functions

T (n)

Example?
Largest number in sequence
Sum of fixed sequence
Whenever you step through entire sequence or array
Even if you have to do this 20 times

Also … Merge function we did last class

T (n logn)

Example?
We’ve seen; merge sort…

Complexity classes

Growth of functions

T (n2)

Example?
We’ve seen; insertion sort…

T (n3)

Example?
Naive matrix multiplication (for an n by n matrix) is classical
example; we shall see more later…

Complexity classes

T (n);T (n logn);T (n2);T (n3)

All of these are polynomial time (class P)

T (nk)

Complexity classes

K nonnegative

More than polynomial time??

Complexity classes

More than polynomial time? Exponential

T (2n)

Complexity classes

What about this problem: subset sum problem?
How long to find a solution??

Input: set of integers size n
Output: is there a subset that sums to 0?

A={1; 4; -3; 2; 9; 7}
Is there a subset that sums to 0?

(Any subset; need not be continuous. Is there a subset
here??)

Complexity classes

What about this problem: subset sum problem?
How long to find a solution??

Input: set of integers size n
Output: is there a subset that sums to 0?

A={1; 4; -3; 2; 9; 7}
Is there a subset that sums to 0?

Might take exponential time if we have to go through every
possible subset (brute force)

Complexity classes

What about this problem: subset sum problem?

Input: set of integers size n
Output: is there a subset that sums to 0?

A={1; 4; -3; 2; 9; 7}
Is there a subset that sums to 0?

What about if I hand you a subset:
{1; -3; 2}
How long to verify if this sums to 0?

Complexity classes

What about this problem: subset sum problem?

Input: set of integers size n
Output: is there a subset that sums to 0?

A={1; 4; -3; 2; 9; 7}
Is there a subset that sums to 0?

What about if I hand you a subset:
{1; -3; 2}
How long to verify if this sums to 0? Polynomial, linear, time.

Complexity classes

Algorithms that are verifiable in polynomial time (good)
are called NP class

But might take exponential number to go through every
possible input (possibly bad)

Example: Subset sum problem

A={1; 4; -3; 2; 9; 7}
Is there a subset that sums to 0?

{1; -3; 2} is verifiable to sum to 0 quickly

Complexity classes

Class NP = Nondeterministic Polynomial

Algorithms that are verifiable in polynomial time (good)

But might take exponential number to go through every
possible input! (possibly bad)

Nondeterministic = random = if I was magically handed solution.
Originally from nondeterministic Turing machine

Complexity classes

P = NP ???

Can problem that is quickly verifiable (ie, polynomial time)
be quickly solved (ie, polynomial time)?

Unknown; Millenium prize problem

Complexity classes

https://www.claymath.org/millennium-problems

Growth of functions & Big Oh

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

n

ru
n

tim
e

sort a
sort b

Which sort function is faster?

Growth of functions & Big Oh

Which sort function is faster?

0 500 1000 1500 2000
0

0.5

1

1.5

2 x 105

n

ru
n

tim
e

sort a
sort b

Growth of functions & Big Oh

0 500 1000 1500 2000
0

0.5

1

1.5

2 x 105

n

ru
n

tim
e

sort a
sort b

a :T (n) = n logn +1000
b :T (n) = 0.2n2

Low asymptotic run time = faster

Big Oh notation

• Asymptotic upper bound; f(n) bounded from above by g(n)
for large enough n (why do we care?)

For large enough n, c g(n) is above f(n)

Big Oh notation

• Asymptotic upper bound; f(n) bounded from above by g(n)
for large enough n (why do we care?)

For large enough n, c g(n) is above f(n)

If an algorithm run time
f(n) is bounded above by
g(n) = 𝑛! or 3𝑛!or 500𝑛!
(any constant c) that is 𝑂 𝑛! ,
then complexity won’t
be larger than 𝑛!
Running the algorithm
is 𝑛! at most!

Big Oh notation

• Asymptotic upper bound; f(n) bounded from above by g(n)
for large enough n (why do we care?)

For large enough n, c g(n) is above f(n)

If an algorithm run time
f(n) is bounded above by
g(n) = 𝑛! or 3𝑛!or 500𝑛!
(any constant c) that is 𝑂 𝑛! ,
then complexity won’t
be larger than 𝑛!
Running the algorithm
is 𝑛! at most!

These graphs should
give intuition for
what we mean by
asymptotic upper
bound

Big Oh notation

• Asymptotic upper bound; f(n) bounded from above by g(n)
for large enough n (why do we care?)

• Definition: O(g(n))={ f(n): there exist positive constants
and such that for all }0 ≤ f (n) ≤ cg(n) n ≥ n0n0

c

For large enough n, c g(n) is above f(n)

Big Oh notation

There exist -> need to find and
Enough to show one such pair that exists!

c n0

• Asymptotic upper bound; f(n) bounded from above by g(n)
for large enough n

• Definition: O(g(n))={ f(n): there exist positive constants
and such that for all }0 ≤ f (n) ≤ cg(n) n ≥ n0n0

c

Big Oh notation

• Example: is

n
0 10 20 30 40 500

1000

2000

3000

4000

5000

6000

f(n)=n2+10n
cg(n)=2n2

f (n) = n2 +10n O(n2)

f(n) bounded above by
c g(n) or 2𝑛! for large
enough n

Can see this
holds by plotting

Big Oh notation

• Example: is f (n) = n2 +10n O(n2)

Proof:

𝑓 𝑛 = 𝑛$ + 10𝑛

Big Oh notation

• Example: is f (n) = n2 +10n O(n2)

Proof:

𝑓 𝑛 = 𝑛$ + 10𝑛 ≤ 𝑛$ + 10𝑛$

Big Oh notation

• Example: is f (n) = n2 +10n O(n2)

Proof:

𝑓 𝑛 = 𝑛$ + 10𝑛 ≤ 𝑛$ + 10𝑛$ = 11𝑛$

Big Oh notation

• Example: is f (n) = n2 +10n O(n2)

Proof:

𝑓 𝑛 = 𝑛$ + 10𝑛 ≤ 𝑛$ + 10𝑛$ = 11𝑛$

So there exists 𝑐 = 11 and 𝑛" = 1 such that

0 ≤ 𝑛$ + 10𝑛 ≤ 𝑐𝑛$

Big Oh notation

• Definition: O(g(n))={ f(n): there exist positive constants
and such that for all }

• Example of functions f(n) in

• All bound above asymptotically by
• Intuitively, constants and lower order don’t matter…

n0
c

0 ≤ f (n) ≤ cg(n) n ≥ n0

O(n2)
f (n) = n2;
f (n) = n2 + n
f (n) = n2 +1000n

n2

Big Oh notation

• Definition: O(g(n))={ f(n): there exist positive constants
and such that for all }

• Example of functions f(n) in

• What about?

n0
c

0 ≤ f (n) ≤ cg(n) n ≥ n0

O(n2)
f (n) = n2;
f (n) = n2 + n
f (n) = n2 +1000n

f (n) = n;

Big Oh notation

• Definition: O(g(n))={ f(n): there exist positive constants
and such that for all }

• What about?

n0
c

0 ≤ f (n) ≤ cg(n) n ≥ n0

f (n) = n;

Yes. is not a tight upper bound but it’s an
upper bound.

g(n) = n2

𝑓 𝑛 = 𝑛 ≤ 1𝑛"
For all 𝑛 ≥ 1

Big Oh notation

• Definition: O(g(n))={ f(n): there exist positive constants
and such that for all }

• What about?

n0
c

0 ≤ f (n) ≤ cg(n) n ≥ n0

f (n) = n;

Yes. is not a tight upper bound but it’s an
upper bound.

g(n) = n2

n ≤1n2
For all

There thus exists such that

n ≥1

c =1;n0 =1 0 ≤ f (n) ≤ g(n)

Big Oh notation

• Example: is

n

f (n) = n O(n2)

0 50 1000

2000

4000

6000

8000

10000

f(n)=n
cg(n)=n2

We can again look
at this by graphing the
functions and get the
intuition

n is clearly bounded above
by 𝑛!

Big Oh notation

• Example:

Then

• Intuition: we can ignore lower order terms and constants

f (n) = akn
k
+ .. + a1n

1 + a0

f (n) =O(nk)

Big Oh notation

• Example:

Then

• Proof : we want to find such thatn0;c

f (n) = akn
k
+ .. + a1n

1 + a0

f (n) ≤ cnk
f (n) =O(nk)

Big Oh notation
• Example:

Then:

• Proof : we want to find such that

• Note also

n0;c

f (n) = akn
k
+ .. + a1n

1 + a0;
ak > 0

f (n) ≤ cnk
f (n) =O(nk)

f (n) = akn
k + .. + a1n

1 + a0
≤ ak n

k + .. + a1 n
1 + a0

≤ ak n
k + .. + a1 n

k + a0 n
k = (ak + .. a1 + a0)n

k

f (n) ≥ 0
What are? n0;c

Big Oh notation
• Example:

Then:

• Proof : we want to find such that

• Note also

n0;c

f (n) = akn
k
+ .. + a1n

1 + a0;
ak > 0

f (n) ≤ cnk
f (n) =O(nk)

f (n) = akn
k + .. + a1n

1 + a0
≤ ak n

k + .. + a1 n
1 + a0

≤ ak n
k + .. + a1 n

k + a0 n
k = (ak + .. a1 + a0)n

k

f (n) ≥ 0
What are? n0;c

Big Oh notation
• Example:

Then:

• Proof : we want to find such that

• Note also

n0;c

f (n) = akn
k
+ .. + a1n

1 + a0;
ak > 0

f (n) ≤ cnk
f (n) =O(nk)

f (n) = akn
k + .. + a1n

1 + a0
≤ ak n

k + .. + a1 n
1 + a0

≤ ak n
k + .. + a1 n

k + a0 n
k = (ak + .. a1 + a0)n

k

f (n) ≥ 0
What are? n0;c

Big Oh notation
• Example:

Then:

• Proof : we want to find such thatn0;c

f (n) = akn
k
+ .. + a1n

1 + a0;
ak > 0

f (n) ≤ cnk
f (n) =O(nk)

f (n) = akn
k + .. + a1n

1 + a0
≤ ak n

k + .. + a1 n
1 + a0

≤ ak n
k + .. + a1 n

k + a0 n
k = (ak + .. a1 + a0)n

k

What are? n0;c

Big Oh notation
• Example:

Then:

• Proof : we want to find such thatn0;c

f (n) = akn
k
+ .. + a1n

1 + a0;
ak > 0

f (n) ≤ cnk
f (n) =O(nk)

f (n) = akn
k + .. + a1n

1 + a0
≤ ak n

k + .. + a1 n
1 + a0

≤ ak n
k + .. + a1 n

k + a0 n
k = (ak + .. a1 + a0)n

k

What are? n0;c
Holds for all 𝑛 ≥ 1

Big Oh: Most commonly used!

• Asymptotic upper bound; f(n) bounded from above by g(n)
for large enough n

• Definition: O(g(n))={ f(n): there exist positive constants c
and 𝑛" such that 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔(𝑛) for all 𝑛 ≥ 𝑛" }

But there are other bounds

Big Omega

• Asymptotic lower bound; f(n) bounded from below by g(n)
for large enough n

Big Omega

• Asymptotic lower bound; f(n) bounded from below by g(n)
for large enough n

• Definition: ={ f(n): there exist positive constants
and such that for all } n0

c
0 ≤ cg(n) ≤ f (n) n ≥ n0

Ω(g(n)

Big Omega

• Asymptotic lower bound; f(n) bounded from below by g(n)
for large enough n

Why is this less often used?

Big Omega

• Asymptotic lower bound; f(n) bounded from below by g(n)
for large enough n

Why is this less often used?

Example:
If 𝑓 𝑛 = 𝑛"##
bounded below by
g(n)=1, that’s less
useful to know!!
Like if I said Insertion
Sort is bounded below
By g(n)=1

Big Theta

• Asymptotic tight bound; f(n) bounded from below and above
by g(n) for large enough n

Stronger statement (note literature sometimes
sloppy and says Oh when actually Theta)

Big Theta

• Asymptotic tight bound; f(n) bounded from below and above
by g(n) for large enough n

• Definition: ={ f(n): there exist positive constants
and such that for all } n0

c1;c2
0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) n ≥ n0

Θ(g(n)

Stronger statement (note literature sometimes
sloppy and says Oh when actually Theta)

Summary Oh, Omega, Theta

• asymptotic upper, like

• asymptotic lower, like

• asymptotic tight, like

O(n) ≤

Ω(n) ≥

Θ(n)

Oh

Omega

Theta

cg(n)f (n)

cg(n)f (n)

c2g(n)f (n)c1g(n) ≤≤

Examples Oh, Omega, Theta

Polls…

Examples Oh, Omega, Theta

• Example of functions f(n) in

• Example of functions f(n) in

• Example of functions f(n) in

O(n2)
f (n) = n2; f (n) = n2 + n; f (n) = n

Ω(n2)
f (n) = n2; f (n) = n2 + n; f (n) = n5

f (n) = n2; f (n) = n2 − n

Θ(n2)

More on Oh, Omega, Theta

f (n) =θ (n)Theorem:

if and only if (iff)

More on Oh, Omega, Theta

f (n) =θ (n)Theorem:

if and only if (iff)

and f (n) =O(n) f (n) =Ω(n)

