Data Structures and Algorithm
Analysis (CSC317)

Introduction: sorting as example



Sorting

« We're looking at sorting as an example of developing
an algorithm and analyzing run time



Sorting as example: Insertion sort

Animation example:

http://cs.armstrong.edu/liang/animation/web/InsertionSortNew.html



http://cs.armstrong.edu/liang/animation/web/InsertionSortNew.html

Insertion sort: analysis of run time

 Repeat polls...



Insertion sort: summary

* Input: size n
- Best case: e.g., already sorted, grows like n

- Worst case: e.g., reverse sorted, grows like n squared



Insertion sort: summary

Input: size n

Best case: e.g., already sorted, grows like n

Worst case: e.g., reverse sorted, grows like n squared

Average case often roughly as bad as worst case



Insertion sort: summary

* |nput: size n

» Best case: e.g., already sorted, grows like n

» Worst case: e.g., reverse sorted, grows like n squared
« Average case often roughly as bad as worst case

* So we say that Insertion Sort grows like n squared



Sorting as example

. 7 . ” 2
 Insertion sort “grows like™ n

« Can we do better?? How?




Sorting as example

. « o w2
 Insertion sort “grows like™ n

« Can we do better?? How?

Split in half ... What should we do?



Sorting as example: Towards Merge sort

A, size n

n/2 n/2
L R Split left, right




Sorting as example: Towards Merge sort

A, size n

n/2 n/2
L R Split left, right

n/2 n/2
L' R’ Sort left, right




Sorting as example: Towards Merge sort

A, size n
n/2 n/2
L R Split left, right
n/2 n/2
L' R’ Sort left, right

How do we sort left and right??



Sorting as example: Towards Merge sort

A, size n
n/2 n/2
L R Split left, right
n/2 n/2
L' R’ Sort left, right

How do we sort left and right?? e.g., use Insertion Sort



Sorting as example: Towards Merge sort

n/2 n/2

n/2 n/2

\ A sorted, size n /

A, size n
R Split left, right
R’ Sort left, right

Merge



Example of Merge

A:82753946
L: 8275 R:3946

':2578. R:3469



Example of Merge

Merging L' and R’:

A sorted: 2 ':2578 R:3469



Example of Merge

Merging L' and R’:

A sorted: 2 ':2578 R:3469
23 ':2578 R:3469



Example of Merge

Merging L' and R’:

A sorted: 2 ':2578
23 ':2578
234 ':2578



Example of Merge

Merging L' and R’:

A sorted: 2 ':2578

R:3469
23 :2578 R:3469
234 12578 R:3469
2345 125738 R:3469



Example of Merge

Merging L' and R’:

A sorted: 2 ':2578 R:3469
23 ':2578 R:3469
234 ':2578 R:3469
2345 ':2578 R:3469

23456 :2578 R:3469



Example of Merge

Merging L' and R’:

A sorted: 2 ':2578 R:3469
23 ':2578 R:3469
234 ':2578 R:3469
2345 ':2578 R:3469
23456 ':2578 R:3469
23456789 ':2578 R:3469

(book: add infinity at the end)



Example of Merge

What happens if reach
end of L’ first?

Merging L' and R’:

A sorted: 2 ':2578 R:3469
23 ':2578 R:3469
234 ':2578 R:3469
2345 ':2578 R:3469
23456 ':2578 R:3469
23456789 ':2578 R:3469

(book: add infinity at the end)



Example of Merge

What happens if reach
end of L’ first?

Can copy rest of R’ over since

o , sorted

Merging L' and R’:

A sorted: 2 ':2578 R:3469
23 ':2578 R:3469
234 ':2578 R:3469
2345 ':2578 R:3469
23456 ':2578 R:3469
23456789 ':2578 R:3469

(book: add infinity at the end)



Sorting as example: Towards Merge sort

Animation example of Merge:

http://cs.armstrong.edu/liang/animation/web/MergeSortNew.html



http://cs.armstrong.edu/liang/animation/web/MergeSortNew.html

Sorting as example: Towards Merge sort

Breakout rooms: 5 minutes to discuss
run time of Merge for input size n



Sorting as example: Towards Merge sort

Poll: run time of Merge



Sorting as example: Towards Merge sort

P g r

Pseudocode of Merge

MERGE(A, p,q,r1) P qg g+l r
n=q—p-+1 L R
n, =r—gq
let L[1..ny 4+ 1] and R[1..n, + 1] be new arrays
fori = 1ton;
Lli] = Alp+i —1]
for j = 1ton,
R[j] = Alg +J]
Lny+1] = o0
R[n, + 1] = o0
i =1
j =1
fork = ptor
13 if L[i] < R[/]
14 Alk] = LJi]
15 i =141
16 else A[k] = R][J]
17 j=Jj+1

0 ON B W=

—_—
N = OO

(from the Cormen textbook)



Sorting as example: Towards Merge sort

« Splitting array in half might pose an easier problem...

Costs:

 Divide Left and Right:




Sorting as example: Towards Merge sort

« Splitting array in half might pose an easier problem...

Costs:

- Divide Left and Right: constant C;



Sorting as example: Towards Merge sort

« Splitting array in half might pose an easier problem...

Costs:
- Divide Left and Right: constant C;
« Sort Left: with Insertion Sort

« Sort Right: with Insertion Sort



Sorting as example: Towards Merge sort

« Splitting array in half might pose an easier problem...

Costs:
- Divide Left and Right: constant C;

2
« Sort Left: with Insertion Sort cz(g)

2
» Sort Right: with Insertion Sort 62(”)
2



Sorting as example: Towards Merge sort

« Splitting array in half might pose an easier problem...

Costs:
- Divide Left and Right: constant C;

2
« Sort Left: with Insertion Sort cz(g)

2
» Sort Right: with Insertion Sort 62(”)
2

* Merge:



Sorting as example: Towards Merge sort

« Splitting array in half might pose an easier problem...

Costs:
- Divide Left and Right: constant C;

2
« Sort Left: with Insertion Sort cz(g)

2
» Sort Right: with Insertion Sort 62(”)
2

* Merge: C;1



Sorting as example: Towards Merge sort

« Splitting array in half might pose an easier problem...

Costs:
- Divide Left and Right: constant C;

2
« Sort Left: with Insertion Sort cz(g)

2
» Sort Right: with Insertion Sort 62(”)
2

* Merge C;n

e
. Total: ¢ t+2c, E TGN



Sorting as example: Towards Merge sort

« Splitting array in half might pose an easier problem...

Costs:
- Divide Left and Right: constant C;

2
« Sort Left: with Insertion Sort cz(g)

2
» Sort Right: with Insertion Sort 62(”j
2

* Merge C;n

e
. Total: ¢ t+2c, E TGN

. . 2
(Have we gained from Insertion sort? Cn )



Another example: find min

Input: Array A
Output: Find minimum value in array A

MINIMUM (A)

1 min = A[l]

2 fori = 2to A.length
3 if min > Ali]

4 min = Ali]
S5 return min

Grows like?



Another example: find min

Input: Array A
Output: Find minimum value in array A

MINIMUM (A)
1 min = A[l]
2 fori = 2to A.length
3 if min > Ali]
4 min = Ali]
5 return min

Grows like?

Costis Cn

(just go through each element keeping track of min)



Another example: find min

« Splitting array in half might pose an easier problem...

(does it always?). See also:
http://www.cs.miami.edu/~burt/learning/Csc517.101/workbook/cheaperbyhalf.html

Costs:
 Divide Left and Right: constant C,

: . (1

* Find minimum of Left c,| 2
\2)

* Find minimum of Right (n)
G| =

\2)

 Combine the two minimums Cs

« Total: ¢ +26G (g) +¢3

(Have we gained from find min on full array? Ccn). NO



Sorting as example: BACK TO Merge sort

« Splitting array in half might pose an easier problem...

Array A, size n

L= Left, size n/2 R=Right, size n/2

If we can split once and make the problem easier,
we can continue to do so....

On the Zoom whiteboard



Sorting as example: BACK TO Merge sort

If we can split once and make the problem easier,
we can continue to do so....




Merge sort: high level pseudo code

Merge-Sort

If array larger than size 1

 Divide array into Left and Right arrays // divide

. Merge-Sort(Left array) // conquer left; recursive call

. Merge-Sort(Right array) // conquer right; recursive call
Merge sorted Left and Right arrays // combine



Merge sort: pseudo code

MERGE-SORT(A, p,r)

I ifp<r
) g = (p+71)/2] // divide
3 MERGE-SORT(A, p,q) /[ conquer left
4 MERGE-SORT(A,q + 1,r) // conquer right
5 MERGE(A’ p’Q9r) /l combine

p g r

P q q+1 r




Merge sort: run time analysis

MERGE-SORT(A, p,r)

I ifp<r

2 g =1|(p+r)/2] /I divide

3 MERGE-SORT(A4, p, q) // conquer left

4 MERGE-SORT(A,q + 1,r) // conquer right

5 MERGE(A’ p’Q9r) /| combine
Question:

At what step do we have most work?



Merge sort: run time analysis

MERGE-SORT(A, p,r)

I ifp<r

2 g =l(p+r)/2] /I divide

3 MERGE-SORT(A, p,q) /[ conquer left

4 MERGE-SORT(A,q + 1,r) // conquer right

5 MERGE(A’ P> q,l") /| combine
Question:

At what step do we have most work?

In the Merge (combine) step; the rest is just
splitting arrays...



Merge sort: run time analysis

Total work:

Divide: constant
Combine: Cn

Conquer: recursively solve two subproblems, each size n/2



Merge sort: run time analysis

Total work:

Divide: constant
Combine: Cn

Conquer: recursively solve two subproblems, each size n/2
We’'ll write out the recursion as follows:

T(n)= 2T(§) +en

recursion combine



Merge sort: run time analysis

Total work:

Divide: constant
Combine: Cn

Conquer: recursively solve two subproblems, each size n/2
We’'ll write out the recursion as follows:

T(n)= 2T(§) +en

recursion combine

Total: grows like nlog,(n) Good deal!
Compare to insertion sort




Merge sort: run time analysis

T(n)=2T(2)+cn

9) .
recursion combine

Total: grows like nlog,(n) Good deal!
Compare to insertion sort

How did we get this?

(First intuition, on the whiteboard...)




Merge sort: recursion tree

/\

T(n/2) T(n/2)

T(n)=2T(Z)+ en

9) .
recursion combine

T(n)



Merge sort: recursion tree H
Let's expand each T(n/2): T(n/2)=2T (nT)+ c(n/?2)

/\

T(n/2) T(n/2)



Merge sort: recursion tree H
Let's expand each T(n/2): T(n/2)=2T (nT)+ c(n/?2)

cn on
T(n/2) T(n/2) cn/2 cn/2

AYEYA

T(n/4) T(n/4) T(n/4) T(n/4)



Merge sort: recursion tree
Let's keep expanding...

cn/2

/A

cn/4 cnl4

ANA

ANA

llllllllllll
4

llllllllllll
4

‘I
p

Each row adds to
How much work?



Merge sort: recursion tree
Let's keep expanding...

cn/2

/A

cnl/4 cnl/4

ANA

‘I
4

/A

cnl/4 cn/4

ANA

~
llllllllllll

lllll
4

cn

cn

cn

cn

Cost per level
stays the same!

So what is the
Total cost?



Merge sort: recursion tree
Let's keep expanding...

cn/2

/A

cnl/4 cnl/4

ANA

/A

cnl/4 cn/4

ANA

~
llllllllllll
4

~
llllllllllll

lllll
4

cn

cn

cn

cn

Cost per level
stays the same!

So what is the
Total cost?

Need to know
height of tree



Merge sort: recursion tree

Level 1:

N | S

Level 2: _—

4

n
2

n

22

Do you see a pattern??

Level k? -

2k

N

cnl?2

/A

cnl4 cnl/4

ANA

/A

cn/4 cnl4

1 1 [ \
1 \ 1 \
1 \ 1 1

cn

cn



N

cn/2 CN/2  sssssssssssisisssnnn

AV

cn/4 cn/4 cnl/4 cnld e

ANARNANE

n

1:_ c c c c c c C e

2k
Level of leaf nodes, we know that n=1: need to find level k.

Why do we care? Level k will give us height of the tree

cn

cn

cn

cn



Merge sort: recursion tree e

N\

N2 i ¢
cn/4 cn/4 cn/4 Ccnld e
n
1 — _k
2
k
2=n

k =log,(n)



Merge sort: recursion tree

Number of levels:

Work at each level:

N

cnl?2

/A

cnl4 cnl/4

ANA

k =log,(n)
cn

/A

cn/4 cnl4

1 1 [ \
1 \ 1 \
1 \ 1 1

cn

cn

cn

cn



Merge sort: run time analysis

Number of levels: log, (n)
Work at each level: cn
Total work: cnlog,(n)

As usual, we'll ignore constants. Grows as nlog,(n)

What happens for the best case in Merge sort?



Merge sort: run time analysis

Number of levels: log, (n)
Work at each level: cn
Total work: cnlog,(n)

As usual, we'll ignore constants. Grows as nlog,(n)

What happens for the best case in Merge sort? Same!



Merge sort: run time analysis

Summary:
Insertion sort: grows as n’

Merge sort: grows as nlog,(n)



Merge sort: run time analysis

Summary:
Insertion sort: grows as n’

Merge sort: grows as nlog,(n)

Is Merge sort always faster than Insertion sort?

Any disadvantages relative to insertion sort?



Poll on sorting so far...



Some sort animations



Sorting as example: Insertion sort

Animation example:

http://cs.armstrong.edu/liang/animation/web/InsertionSortNew.html



http://cs.armstrong.edu/liang/animation/web/InsertionSortNew.html

Merge two lists

Animation example:

http://cs.armstrong.edu/liang/animation/web/MergeSortNew.html|



http://cs.armstrong.edu/liang/animation/web/MergeSortNew.html

Correctness &
loop Invariants



Correctness and loop invariants

* How do we know that an algorithm is correct, i.e., always
gives the right answer?

 We use loop invariants



Loop invariants

 Invariant = something that does not change

* Loop invariant = a property about the algorithm that
does not change at every iteration before the loop

* This is usually the property we would like to prove
IS correct about the algorithm!

 The essence is intuitive, but we would like to state
mathematically



Loop invariant example: insertion sort

* |nsertion sort pseudo code 4 5 6
(a) 613
INSERTION-SORT (A)
I for j = 2to A.length
2 key = A[j]
3 // Insert A[j] into the sorted sequence A[l..j — 1].
4 i=ji—1
5 while i > 0 and A[i] > key
6 Ali + 1] = AJi]
7 I =1—1
8 Ali + 1] = key

What invariant property would make this algorithm correct?



Loop invariant example: insertion sort

KEY
* Insertion sort pseudo code 1 2.3 4 5 6
(a) %94 6]1]3

1. Forj=2ton

2. Key=A[]]

3. Insert Key into sorted array A[1 .. J-1]
by comparing and swapping into
correct position

What invariant property would make this algorithm correct?



Loop invariant example: insertion sort

KEY
* Insertion sort pseudo code 1 2.3 4 5 6
(a) @4 6]1]3

1. Forj=2ton

2. Key=A[]]

3. Insert Key into sorted array A[1 .. J-1]
by comparing and swapping into
correct position

What invariant property would make this algorithm correct?
That before each iteration of the for loop, the elements thus
far are sorted. We would like to state this more formally



Loop invariant example: insertion sort

* |nsertion sort pseudo code

1. Forj=2ton

2. Key=A[j]

3. Insert Key into sorted array A[1 .. J-1]
by comparing and swapping into
correct position

* Insertion sort loop invariant: at the start of each iteration
of the for loop, A[1..j-1] consists of elements originally in
A[1..}-1], but in sorted order




Loop invariants

Proving involves 3 steps:

1. Initialization: Algorithm is true prior to first iteration of
the loop (base case)

2. Maintenance: If it is true before an iteration of the loop
it remains true before the next iteration (like an induction

step)

3. When the loop terminates, the invariant gives a useful
property that shows the algorithm is correct



Loop invariants example: insertion sort

1. Initialization: Algorithm is true prior to first iteration of
the loop (base case)

When j=2, A[1] is just one element, which is the original
element in A[1], and must be already sorted. So A[1..j-1]
= A[1] which is already sorted

|=2 =—> 1. Forj=2ton
2. Key=A[j]
3. Insert Key into sorted array A[1 .. J-1]
by comparing and swapping into
correct position



Loop invariants example: insertion sort

2. Maintenance: If it is true before an iteration of the loop
it remains true before the next iteration (like an induction
step).

1 2 3

4
@ [5PH4]6
\

W |




Loop invariants example: insertion sort

2. Maintenance: If it is true before an iteration of the loop
it remains true before the next iteration (like an induction
4 5 6
(a) @ 41613 )

step)
v
Assume: True here

forj-1,that . Forj=2ton

AlTJ-11 2. Key=A[j]

sorted 3. Insert Key into sorted array A[1 .. j-1]
by comparing and swapping into
correct position

1 2 3

D | —
(\S)
w2
N

—_ |

(U0 N} Fo )




Loop invariants example: insertion sort

2. Maintenance: If for j-1 it is true that A[1..j-1] in sorted order
before start of the for loop, then for j we will have A[1..]]
In sorted order before start of next for loop iteration

1 2 3

6
3

4 5
(a)@461

2 3 4 5
1

1
) [2 w6

6
3

Assume: True here
forj-1,that 7. Forj=2ton

Al1.-1] 2,
sorted 3.

Key =A[] ]

Insert Key into sorted array A[1 .. J-1]
by comparing and swapping into
correct position



Loop invariants example: insertion sort

2. Maintenance: If for j-1 it is true that A[1..j-1] in sorted order
before start of the for loop, then for j we will have A[1..]]
In sorted order before start of next for loop iteration

1 2 3

4 5 6 1 2 3 4 5
(a) @4613 (b)2w61
True here

for J-1 1. Forj=2ton
2. Key=A[j]
3. Insert Key into sorted array A[1 .. J-1]
by comparing and swapping into
correct position  \jight not be true in loop. But
make sure here that it remains
sorted after, by pairwise swaps

6
3




Loop invariants example: insertion sort

2. Maintenance: If for j-1 it is true that A[1..j-1] in sorted order
before start of the for loop, then for j we will have A[1..]]
In sorted order before start of next for loop iteration

1 2 3 2 3 4 5
1

4 5 6 1
(a) @4613 (b)2w6
So will remain true for j that A[1..j] in sorted order
1. Forj=2ton
2. Key=A[j]
3. Insert Key into sorted array A[1 .. J-1]
by comparing and swapping into
correct position \we make sure here that it
remains sorted, by pairwise
swaps

6
3




Loop invariants example: insertion sort

2. Maintenance: If it is true before an iteration of the loop
it remains true before the next iteration (like an induction
1 2 3

step)
If A[1..]-1] sorted before iteration of loop, then for key=A[ | ],

we pairwise swap it into correct position; so now A[1..]]
IS also sorted

Do (—
|l A4
W [

6
3 (b)

o YES




Loop invariants example: insertion sort

3. When the loop terminates, the invariant gives a useful
property that shows the algorithm is correct

For loop to terminate j=n+1; for this to happen, A[1..j] must
be in sorted order, which is A[1..n] or the entire array.

J=n+1 .
—> 1. Forj=2ton
2. Key=A[j]
3. Insert Key into sorted array A[1 .. J-1]
by comparing and swapping into
correct position



Loop invariants example: find min

Input: Array A
Output: Find minimum value in array A

MINIMUM (A)

1 min = A[l]

2 fori = 2to A.length
3 if min > Ali]

4 min = Ali]
5 return min

What invariant would make this algorithm correct?



Loop invariants example: find min

Input: Array A
Output: Find minimum value in array A

MINIMUM (A)

1 min = A[l]
2 fori = 2to A.length
3 if min > Ali]
4 min = Ali]
5 return min
What invariant would make this algorithm correct? That at each

iteration of the loop, we have identified the smallest element
thus far. Stated more formally...



Loop invariants example: find min

Input: Array A
Output: Find minimum value in array A

MINIMUM(A)

1 min = A[l]

2 fori = 2to A.length
3 if min > Ali]

4 min = Ali]
5 return min

Loop invariant: At the start of each iteration of the for loop,
min is the smallest element in A[1 .. I-1]




Loop invariants example: find min

Animation example (Burt Rosenberq)
http://www.cs.miami.edu/~burt/learning/Csc517.101/workbook/findmin.html

Input: Array A
Output: Find minimum value in array A

MINIMUM (A)

1 min = A[l]

2 fori = 2to A.length
3 if min > Ali]

4 min = Ali]
5 return min


http://www.cs.miami.edu/~burt/learning/Csc517.101/workbook/findmin.html

Loop invariant of Merge

MERGE(A, p,q,r)

0N N bW

—_— —
—_ O \O

g

13
14
15
16
17

P

A

P

ng=qg—p+1 L
Ny, =T1—¢

let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,

Lli] = Alp+i—1]
for j = 1ton,

R[j] = Alg +J]
Lny+1] = o0
R[n, + 1] = o0
i =1
i=1
fork = ptor

if L[] < R[/]

Alk] = LJi]

i =i+1
else A[k] = R[/]

J=J+1




Loop invariant of Merge k

p q ‘1: r

A
MERGE(A, p,q,r1) D q C]+1
2 n,=r—gq L
3 letL[l..n;+ 1]and R[1..n, 4+ 1] be new arrays
4 fori = 1ton,
5 Llil] = Alp +i —1] : :
6 forj = 1ton, I J
7 R[j] = Alg + /]
8 L[n+1] =00
9 Rln, +1] = oo Loop invariant: At the start of each
}(1) lJ:: 11 iteration of the for loop, A[p.. k-1 ]
—3 12 fork = ptor contains the k-p smallest elements, in
13 if L[i] < R[j] sorted order.
14 Alk] = LJi]
15 i=i+1
16 else A[k] = R][J]
17 j=Jj+1




Loop invariant of Merge k

p q ‘1: r

A

MERGE(A, p,q,r1) D q C]+1

2 n,=r—gq L

3 letL[l..n;+ 1] and R[1..n, + 1] be new arrays

4 fori = 1ton;

5 Lli]=Alp+i—1] : :

6 forj = 1ton, I J

7 R[j] = Alg +J]

8 Llni+1] = o0

9 Rln, +1] = oo Loop invariant: At the start of each
}(1) lJ:: 11 iteration of the for loop, A[p.. k-1 ]

—3 12 fork = ptor contains the k-p smallest elements, in

13 if L[i] < R[/] sorted order. Also, L[i]and R[] are
14 Alk] = L[i] smallest elements of their arrays not
15 i =i+1 : -

> else AJk] = R[/] yet copied back into A

17 j=Jj+1




