
Data Structures and Algorithm 
Analysis (CSC317) 

Introduction: sorting as example



Sorting

• We’re looking at sorting as an example of developing
an algorithm and analyzing run time



Sorting as example: Insertion sort

Animation example:

http://cs.armstrong.edu/liang/animation/web/InsertionSortNew.html

http://cs.armstrong.edu/liang/animation/web/InsertionSortNew.html


Insertion sort: analysis of run time

• Repeat polls…



Insertion sort: summary

• Input: size n

• Best case: e.g., already sorted, grows like n

• Worst case: e.g., reverse sorted, grows like n squared
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Insertion sort: summary

• Input: size n

• Best case: e.g., already sorted, grows like n

• Worst case: e.g., reverse sorted, grows like n squared

• Average case often roughly as bad as worst case

• So we say that Insertion Sort grows like n squared



Sorting as example

• Insertion sort “grows like” 

• Can we do better?? How?

n2



Sorting as example

• Insertion sort “grows like” 

• Can we do better?? How?

n2

Split in half … What should we do?



Sorting as example: Towards Merge sort
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A, size n
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Sorting as example: Towards Merge sort

n/2
𝑳 𝑹

n/2

n/2
𝑳′ 𝑹′

n/2

Split left, right

Sort left, right

A, size n

How do we sort left and right??  e.g., use Insertion Sort



Sorting as example: Towards Merge sort

n/2
𝑳 𝑹

n/2

n/2
𝑳′ 𝑹′

n/2

Split left, right

Sort left, right

A, size n

Merge
A sorted, size n



Example of Merge

A: 8 2 7 5 3 9 4 6

L: 8 2 7 5      R: 3 9 4 6

L’: 2 5 7 8.     R’: 3 4 6 9
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Example of Merge

A: 8 2 7 5 3 9 4 6

L: 8 2 7 5      R: 3 9 4 6

L’: 2 5 7 8.     R’: 3 4 6 9

Merging L’ and R’:

A sorted:  2                                L’: 2 5 7 8                        R’: 3 4 6 9
2 3                             L’: 2 5 7 8                        R’: 3 4 6 9
2 3 4                          L’: 2 5 7 8                        R’: 3 4 6 9
2 3 4 5                       L’: 2 5 7 8                        R’: 3 4 6 9
2 3 4 5 6                    L’: 2 5 7 8                        R’: 3 4 6 9

…

2 3 4 5 6 7 8 9           L’: 2 5 7 8                        R’: 3 4 6 9

(book: add infinity at the end)

What happens if reach 
end of L’ first?
Can copy rest of R’ over since
sorted



Sorting as example: Towards Merge sort

Animation example of Merge:

http://cs.armstrong.edu/liang/animation/web/MergeSortNew.html

http://cs.armstrong.edu/liang/animation/web/MergeSortNew.html


Sorting as example: Towards Merge sort

Breakout rooms: 5 minutes to discuss
run time of Merge for input size n



Sorting as example: Towards Merge sort

Poll: run time of Merge



Sorting as example: Towards Merge sort

2.3 Designing algorithms 31

the output pile. We repeat this step until one input pile is empty, at which time
we just take the remaining input pile and place it face down onto the output pile.
Computationally, each basic step takes constant time, since we are comparing just
the two top cards. Since we perform at most n basic steps, merging takes ‚.n/
time.

The following pseudocode implements the above idea, but with an additional
twist that avoids having to check whether either pile is empty in each basic step.
We place on the bottom of each pile a sentinel card, which contains a special value
that we use to simplify our code. Here, we use 1 as the sentinel value, so that
whenever a card with1 is exposed, it cannot be the smaller card unless both piles
have their sentinel cards exposed. But once that happens, all the nonsentinel cards
have already been placed onto the output pile. Since we know in advance that
exactly r ! pC1 cards will be placed onto the output pile, we can stop once we
have performed that many basic steps.

MERGE.A; p; q; r/

1 n1 D q ! pC1
2 n2 D r ! q
3 let LŒ1 : : n1C1! and RŒ1 : : n2C1! be new arrays
4 for i D 1 to n1

5 LŒi ! D AŒpCi ! 1!
6 for j D 1 to n2

7 RŒj ! D AŒqCj !
8 LŒn1C1! D 1
9 RŒn2C1! D 1

10 i D 1
11 j D 1
12 for k D p to r
13 if LŒi ! " RŒj !
14 AŒk! D LŒi !
15 i D i C1
16 else AŒk! D RŒj !
17 j D j C1

In detail, the MERGE procedure works as follows. Line 1 computes the length n1

of the subarray AŒp : : q!, and line 2 computes the length n2 of the subarray
AŒqC1 : : r !. We create arrays L and R (“left” and “right”), of lengths n1 C1
and n2 C1, respectively, in line 3; the extra position in each array will hold the
sentinel. The for loop of lines 4–5 copies the subarray AŒp : : q! into LŒ1 : : n1!,
and the for loop of lines 6–7 copies the subarray AŒq C1 : : r ! into RŒ1 : : n2!.
Lines 8–9 put the sentinels at the ends of the arrays L and R. Lines 10–17, illus-

p q r

p q q+1 r
A

L R

Pseudocode of Merge

(from the Cormen textbook)



• Splitting array in half might pose an easier problem…

Costs:

• Divide Left and Right:
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• Splitting array in half might pose an easier problem…
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• Divide Left and Right: constant

• Sort Left: with Insertion Sort 

• Sort Right: with Insertion Sort 

• Merge  

• Total:

Sorting as example: Towards Merge sort

c2
n
2

⎛
⎝⎜

⎞
⎠⎟
2

c2
n
2

⎛
⎝⎜

⎞
⎠⎟
2

c3n

c1

(Have we gained from Insertion sort?        )cn2
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Another example: find min

Input: Array A
Output: Find minimum value in array A

214 Chapter 9 Medians and Order Statistics

9.1 Minimum and maximum

How many comparisons are necessary to determine the minimum of a set of n
elements? We can easily obtain an upper bound of n ! 1 comparisons: examine
each element of the set in turn and keep track of the smallest element seen so
far. In the following procedure, we assume that the set resides in array A, where
A: length D n.

MINIMUM.A/

1 min D AŒ1 !
2 for i D 2 to A: length
3 if min > AŒi !
4 min D AŒi !
5 return min

We can, of course, find the maximum with n ! 1 comparisons as well.
Is this the best we can do? Yes, since we can obtain a lower bound of n ! 1

comparisons for the problem of determining the minimum. Think of any algorithm
that determines the minimum as a tournament among the elements. Each compar-
ison is a match in the tournament in which the smaller of the two elements wins.
Observing that every element except the winner must lose at least one match, we
conclude that n ! 1 comparisons are necessary to determine the minimum. Hence,
the algorithm MINIMUM is optimal with respect to the number of comparisons
performed.

Simultaneous minimum and maximum
In some applications, we must find both the minimum and the maximum of a set
of n elements. For example, a graphics program may need to scale a set of .x; y/
data to fit onto a rectangular display screen or other graphical output device. To
do so, the program must first determine the minimum and maximum value of each
coordinate.

At this point, it should be obvious how to determine both the minimum and the
maximum of n elements using ‚.n/ comparisons, which is asymptotically optimal:
simply find the minimum and maximum independently, using n ! 1 comparisons
for each, for a total of 2n ! 2 comparisons.

In fact, we can find both the minimum and the maximum using at most 3 bn=2c
comparisons. We do so by maintaining both the minimum and maximum elements
seen thus far. Rather than processing each element of the input by comparing it
against the current minimum and maximum, at a cost of 2 comparisons per element,

Grows like?



Another example: find min

Input: Array A
Output: Find minimum value in array A
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9.1 Minimum and maximum

How many comparisons are necessary to determine the minimum of a set of n
elements? We can easily obtain an upper bound of n ! 1 comparisons: examine
each element of the set in turn and keep track of the smallest element seen so
far. In the following procedure, we assume that the set resides in array A, where
A: length D n.

MINIMUM.A/

1 min D AŒ1 !
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ison is a match in the tournament in which the smaller of the two elements wins.
Observing that every element except the winner must lose at least one match, we
conclude that n ! 1 comparisons are necessary to determine the minimum. Hence,
the algorithm MINIMUM is optimal with respect to the number of comparisons
performed.

Simultaneous minimum and maximum
In some applications, we must find both the minimum and the maximum of a set
of n elements. For example, a graphics program may need to scale a set of .x; y/
data to fit onto a rectangular display screen or other graphical output device. To
do so, the program must first determine the minimum and maximum value of each
coordinate.

At this point, it should be obvious how to determine both the minimum and the
maximum of n elements using ‚.n/ comparisons, which is asymptotically optimal:
simply find the minimum and maximum independently, using n ! 1 comparisons
for each, for a total of 2n ! 2 comparisons.

In fact, we can find both the minimum and the maximum using at most 3 bn=2c
comparisons. We do so by maintaining both the minimum and maximum elements
seen thus far. Rather than processing each element of the input by comparing it
against the current minimum and maximum, at a cost of 2 comparisons per element,

Grows like?
Cost is Cn
(just go through each element keeping track of min)



• Splitting array in half might pose an easier problem… 
(does it always?). See also: 

http://www.cs.miami.edu/~burt/learning/Csc517.101/workbook/cheaperbyhalf.html

Costs:
• Divide Left and Right: constant

• Find minimum of Left

• Find minimum of Right 

• Combine the two minimums  

• Total:

Another example: find min

c2
n
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⎛
⎝⎜

⎞
⎠⎟

c2
n
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⎞
⎠⎟

c1

(Have we gained from find min on full array?        ).  NOcn

𝐶!
𝐶! + 2𝐶"

𝑛
2 + 𝑐#



• Splitting array in half might pose an easier problem…

Array A, size n

L= Left, size n/2 R=Right, size n/2

If we can split once and make the problem easier,
we can continue to do so….

On the Zoom whiteboard

Sorting as example: BACK TO Merge sort



If we can split once and make the problem easier,
we can continue to do so….

Sorting as example: BACK TO Merge sort



Merge sort: high level pseudo code

• Merge-Sort

• If array larger than size 1
• Divide array into Left and Right arrays // divide
• Merge-Sort(Left array)  // conquer left; recursive call
• Merge-Sort(Right array) // conquer right; recursive call
• Merge sorted Left and Right arrays // combine



Merge sort: pseudo code

34 Chapter 2 Getting Started

To see that the MERGE procedure runs in ‚.n/ time, where n D r ! p C 1,
observe that each of lines 1–3 and 8–11 takes constant time, the for loops of
lines 4–7 take ‚.n1 C n2/ D ‚.n/ time,7 and there are n iterations of the for
loop of lines 12–17, each of which takes constant time.

We can now use the MERGE procedure as a subroutine in the merge sort al-
gorithm. The procedure MERGE-SORT.A; p; r/ sorts the elements in the subar-
ray AŒp : : r !. If p " r , the subarray has at most one element and is therefore
already sorted. Otherwise, the divide step simply computes an index q that par-
titions AŒp : : r ! into two subarrays: AŒp : : q!, containing dn=2e elements, and
AŒq C 1 : : r !, containing bn=2c elements.8

MERGE-SORT.A; p; r/

1 if p < r
2 q D b.p C r/=2c
3 MERGE-SORT.A; p; q/
4 MERGE-SORT.A; q C 1; r/
5 MERGE.A; p; q; r/

To sort the entire sequence A D hAŒ1!; AŒ2!; : : : ; AŒn!i, we make the initial call
MERGE-SORT.A; 1; A: length/, where once again A: length D n. Figure 2.4 il-
lustrates the operation of the procedure bottom-up when n is a power of 2. The
algorithm consists of merging pairs of 1-item sequences to form sorted sequences
of length 2, merging pairs of sequences of length 2 to form sorted sequences of
length 4, and so on, until two sequences of length n=2 are merged to form the final
sorted sequence of length n.

2.3.2 Analyzing divide-and-conquer algorithms
When an algorithm contains a recursive call to itself, we can often describe its
running time by a recurrence equation or recurrence, which describes the overall
running time on a problem of size n in terms of the running time on smaller inputs.
We can then use mathematical tools to solve the recurrence and provide bounds on
the performance of the algorithm.

7We shall see in Chapter 3 how to formally interpret equations containing ‚-notation.
8The expression dxe denotes the least integer greater than or equal to x, and bxc denotes the greatest
integer less than or equal to x. These notations are defined in Chapter 3. The easiest way to verify
that setting q to b.p C r/=2c yields subarrays AŒp : : q! and AŒq C 1 : : r ! of sizes dn=2e and bn=2c,
respectively, is to examine the four cases that arise depending on whether each of p and r is odd or
even.

p q r

p q q+1 r

// divide
// conquer left
// conquer right
// combine



Merge sort: run time analysis

Question:
At what step do we have most work?
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observe that each of lines 1–3 and 8–11 takes constant time, the for loops of
lines 4–7 take ‚.n1 C n2/ D ‚.n/ time,7 and there are n iterations of the for
loop of lines 12–17, each of which takes constant time.

We can now use the MERGE procedure as a subroutine in the merge sort al-
gorithm. The procedure MERGE-SORT.A; p; r/ sorts the elements in the subar-
ray AŒp : : r !. If p " r , the subarray has at most one element and is therefore
already sorted. Otherwise, the divide step simply computes an index q that par-
titions AŒp : : r ! into two subarrays: AŒp : : q!, containing dn=2e elements, and
AŒq C 1 : : r !, containing bn=2c elements.8
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To sort the entire sequence A D hAŒ1!; AŒ2!; : : : ; AŒn!i, we make the initial call
MERGE-SORT.A; 1; A: length/, where once again A: length D n. Figure 2.4 il-
lustrates the operation of the procedure bottom-up when n is a power of 2. The
algorithm consists of merging pairs of 1-item sequences to form sorted sequences
of length 2, merging pairs of sequences of length 2 to form sorted sequences of
length 4, and so on, until two sequences of length n=2 are merged to form the final
sorted sequence of length n.

2.3.2 Analyzing divide-and-conquer algorithms
When an algorithm contains a recursive call to itself, we can often describe its
running time by a recurrence equation or recurrence, which describes the overall
running time on a problem of size n in terms of the running time on smaller inputs.
We can then use mathematical tools to solve the recurrence and provide bounds on
the performance of the algorithm.

7We shall see in Chapter 3 how to formally interpret equations containing ‚-notation.
8The expression dxe denotes the least integer greater than or equal to x, and bxc denotes the greatest
integer less than or equal to x. These notations are defined in Chapter 3. The easiest way to verify
that setting q to b.p C r/=2c yields subarrays AŒp : : q! and AŒq C 1 : : r ! of sizes dn=2e and bn=2c,
respectively, is to examine the four cases that arise depending on whether each of p and r is odd or
even.

// divide
// conquer left
// conquer right
// combine



Merge sort: run time analysis

Question:
At what step do we have most work?

In the Merge (combine) step; the rest is just
splitting arrays…

34 Chapter 2 Getting Started

To see that the MERGE procedure runs in ‚.n/ time, where n D r ! p C 1,
observe that each of lines 1–3 and 8–11 takes constant time, the for loops of
lines 4–7 take ‚.n1 C n2/ D ‚.n/ time,7 and there are n iterations of the for
loop of lines 12–17, each of which takes constant time.
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// divide
// conquer left
// conquer right
// combine



Merge sort: run time analysis
Total work:

Divide: constant
Combine: 
Conquer: recursively solve two subproblems, each size n/2
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Merge sort: run time analysis
Total work:

Divide: constant
Combine: 
Conquer: recursively solve two subproblems, each size n/2

We’ll write out the recursion as follows:

cn

T (n) = 2T (n
2
)+ cn

recursion combine

Total: grows like n log2(n) Good deal!
Compare to insertion sort 



Merge sort: run time analysis

T (n) = 2T (n
2
)+ cn

recursion combine

Total: grows like n log2(n) Good deal!
Compare to insertion sort 

How did we get this? 

(First intuition, on the whiteboard…)



Merge sort: recursion tree

T (n) = 2T (n
2
)+ cn

recursion combine



Merge sort: recursion tree
Let’s expand each T(n/2): T (n / 2) = 2T (n / 2

2
)+ c(n / 2)



Merge sort: recursion tree
Let’s expand each T(n/2): T (n / 2) = 2T (n / 2

2
)+ c(n / 2)



Merge sort: recursion tree
Let’s keep expanding…

Each row adds to
How much work?



Merge sort: recursion tree
Let’s keep expanding…

Cost per level
stays the same!

So what is the
Total cost?



Merge sort: recursion tree
Let’s keep expanding…

Cost per level
stays the same!

So what is the
Total cost?

Need to know
height of tree



Merge sort: recursion tree

Level k?

Do you see a pattern??

Level 1: n
2
= n
21

Level 2: n
4
= n
22

n
2k



Merge sort: recursion tree

Level of leaf nodes, we know that n=1; need to find level k.

Why do we care? Level k will give us height of the tree 

1= n
2k



Merge sort: recursion tree

1= n
2k

2k = n
k = log2(n)



Merge sort: recursion tree

k = log2(n)Number of levels:

Work at each level: cn



Merge sort: run time analysis

log2(n)Number of levels:

Work at each level: cn

Total work: cn log2(n)

As usual, we’ll ignore constants. Grows as n log2(n)

What happens for the best case in Merge sort?



Merge sort: run time analysis

log2(n)Number of levels:

Work at each level: cn

Total work: cn log2(n)

As usual, we’ll ignore constants. Grows as n log2(n)

What happens for the best case in Merge sort? Same!



Merge sort: run time analysis

Summary:

Insertion sort: grows as 

Merge sort: grows as n log2(n)

n2



Merge sort: run time analysis

Summary:

Insertion sort: grows as 

Merge sort: grows as n log2(n)

n2

Is Merge sort always faster than Insertion sort?

Any disadvantages relative to insertion sort?



Poll on sorting so far…



Some sort animations



Sorting as example: Insertion sort

Animation example:

http://cs.armstrong.edu/liang/animation/web/InsertionSortNew.html

http://cs.armstrong.edu/liang/animation/web/InsertionSortNew.html


Merge two lists

Animation example:

http://cs.armstrong.edu/liang/animation/web/MergeSortNew.html

http://cs.armstrong.edu/liang/animation/web/MergeSortNew.html


Correctness &
loop invariants



• How do we know that an algorithm is correct, i.e., always 
gives the right answer?

• We use loop invariants

Correctness and loop invariants



Loop invariants

• Invariant = something that does not change

• Loop invariant = a property about the algorithm that
does not change at every iteration before the loop

• This is usually the property we would like to prove
is correct about the algorithm!

• The essence is intuitive, but we would like to state
mathematically



Loop invariant example: insertion sort

• Insertion sort pseudo code

18 Chapter 2 Getting Started

1 2 3 4 5 6
5 2 4 6 1 3(a)

1 2 3 4 5 6
2 5 4 6 1 3(b)

1 2 3 4 5 6
2 4 5 6 1 3(c)

1 2 3 4 5 6
2 4 5 6 1 3(d)

1 2 3 4 5 6
2 4 5 61 3(e)

1 2 3 4 5 6
2 4 5 61 3(f)

Figure 2.2 The operation of INSERTION-SORT on the array A D h5; 2; 4; 6; 1; 3 i. Array indices
appear above the rectangles, and values stored in the array positions appear within the rectangles.
(a)–(e) The iterations of the for loop of lines 1–8. In each iteration, the black rectangle holds the
key taken from AŒj !, which is compared with the values in shaded rectangles to its left in the test of
line 5. Shaded arrows show array values moved one position to the right in line 6, and black arrows
indicate where the key moves to in line 8. (f) The final sorted array.

INSERTION-SORT.A/

1 for j D 2 to A: length
2 key D AŒj !
3 // Insert AŒj ! into the sorted sequence AŒ1 : : j ! 1!.
4 i D j ! 1
5 while i > 0 and AŒi ! > key
6 AŒi C 1! D AŒi !
7 i D i ! 1
8 AŒi C 1! D key

Loop invariants and the correctness of insertion sort
Figure 2.2 shows how this algorithm works for A D h5; 2; 4; 6; 1; 3 i. The in-
dex j indicates the “current card” being inserted into the hand. At the beginning
of each iteration of the for loop, which is indexed by j , the subarray consisting
of elements AŒ1 : : j ! 1! constitutes the currently sorted hand, and the remaining
subarray AŒj C 1 : : n! corresponds to the pile of cards still on the table. In fact,
elements AŒ1 : : j ! 1! are the elements originally in positions 1 through j ! 1, but
now in sorted order. We state these properties of AŒ1 : : j ! 1! formally as a loop
invariant:

At the start of each iteration of the for loop of lines 1–8, the subarray
AŒ1 : : j !1! consists of the elements originally in AŒ1 : : j !1!, but in sorted
order.

We use loop invariants to help us understand why an algorithm is correct. We
must show three things about a loop invariant:

What invariant property would make this algorithm correct?

KEY



• Insertion sort pseudo code

What invariant property would make this algorithm correct? 

Loop invariant example: insertion sort
KEY

1.  For j = 2 to n
2.      Key = A[ j ]
3.      Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into
correct position



• Insertion sort pseudo code

What invariant property would make this algorithm correct? 
That before each iteration of the for loop, the elements thus 
far are sorted. We would like to state this more formally

Loop invariant example: insertion sort
KEY

1.  For j = 2 to n
2.      Key = A[ j ]
3.      Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into
correct position



• Insertion sort pseudo code

• Insertion sort loop invariant: at the start of each iteration
of the for loop,  A[1..j-1] consists of elements originally in 
A[1..j-1], but in sorted order

Loop invariant example: insertion sort

1.  For j = 2 to n
2.      Key = A[ j ]
3.      Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into
correct position



Loop invariants

Proving involves 3 steps:

1. Initialization: Algorithm is true prior to first iteration of
the loop (base case)

2. Maintenance: If it is true before an iteration of the loop
it remains true before the next iteration (like an induction
step)

3. When the loop terminates, the invariant gives a useful
property that shows the algorithm is correct 



Loop invariants example: insertion sort

1.   Initialization: Algorithm is true prior to first iteration of
the loop (base case)

When j=2, A[1] is just one element, which is the original
element in A[1], and must be already sorted. So A[1..j-1]
= A[1] which is already sorted

j=2 1.  For j = 2 to n
2.      Key = A[ j ]
3.      Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into
correct position



2. Maintenance: If it is true before an iteration of the loop
it remains true before the next iteration (like an induction
step). 

Loop invariants example: insertion sort



2. Maintenance: If it is true before an iteration of the loop
it remains true before the next iteration (like an induction
step)

Loop invariants example: insertion sort

Assume: True here
for j-1, that
A[1..j-1]
sorted

1.  For j = 2 to n
2.      Key = A[ j ]
3.      Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into
correct position



2. Maintenance: If for j-1 it is true that A[1..j-1] in sorted order 
before start of the for loop, then for j we will have A[1..j]
in sorted order before start of next for loop iteration

Loop invariants example: insertion sort

Assume: True here
for j-1, that
A[1..j-1]
sorted

1.  For j = 2 to n
2.      Key = A[ j ]
3.      Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into
correct position



Loop invariants example: insertion sort

Might not be true in loop. But 
make sure here that it remains 
sorted after, by pairwise swaps

True here
for j-1 1.  For j = 2 to n

2.      Key = A[ j ]
3.      Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into
correct position

2. Maintenance: If for j-1 it is true that A[1..j-1] in sorted order 
before start of the for loop, then for j we will have A[1..j]
in sorted order before start of next for loop iteration



Loop invariants example: insertion sort

We make sure here that it 
remains sorted, by pairwise
swaps

So will remain true for j that A[1..j] in sorted order
1.  For j = 2 to n
2.      Key = A[ j ]
3.      Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into
correct position

2. Maintenance: If for j-1 it is true that A[1..j-1] in sorted order 
before start of the for loop, then for j we will have A[1..j]
in sorted order before start of next for loop iteration



2. Maintenance: If it is true before an iteration of the loop
it remains true before the next iteration (like an induction
step)

If A[1..j-1] sorted before iteration of loop, then for key=A[ j ],
we pairwise swap it into correct position; so now A[1..j]
is also sorted

Loop invariants example: insertion sort



Loop invariants example: insertion sort

3. When the loop terminates, the invariant gives a useful
property that shows the algorithm is correct 

For loop to terminate j=n+1; for this to happen, A[1..j] must
be in sorted order, which is A[1..n] or the entire array.

j=n+1
1.  For j = 2 to n
2.      Key = A[ j ]
3.      Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into
correct position



Loop invariants example: find min
Input: Array A
Output: Find minimum value in array A

What invariant would make this algorithm correct? 

214 Chapter 9 Medians and Order Statistics

9.1 Minimum and maximum

How many comparisons are necessary to determine the minimum of a set of n
elements? We can easily obtain an upper bound of n ! 1 comparisons: examine
each element of the set in turn and keep track of the smallest element seen so
far. In the following procedure, we assume that the set resides in array A, where
A: length D n.

MINIMUM.A/

1 min D AŒ1 !
2 for i D 2 to A: length
3 if min > AŒi !
4 min D AŒi !
5 return min

We can, of course, find the maximum with n ! 1 comparisons as well.
Is this the best we can do? Yes, since we can obtain a lower bound of n ! 1

comparisons for the problem of determining the minimum. Think of any algorithm
that determines the minimum as a tournament among the elements. Each compar-
ison is a match in the tournament in which the smaller of the two elements wins.
Observing that every element except the winner must lose at least one match, we
conclude that n ! 1 comparisons are necessary to determine the minimum. Hence,
the algorithm MINIMUM is optimal with respect to the number of comparisons
performed.

Simultaneous minimum and maximum
In some applications, we must find both the minimum and the maximum of a set
of n elements. For example, a graphics program may need to scale a set of .x; y/
data to fit onto a rectangular display screen or other graphical output device. To
do so, the program must first determine the minimum and maximum value of each
coordinate.

At this point, it should be obvious how to determine both the minimum and the
maximum of n elements using ‚.n/ comparisons, which is asymptotically optimal:
simply find the minimum and maximum independently, using n ! 1 comparisons
for each, for a total of 2n ! 2 comparisons.

In fact, we can find both the minimum and the maximum using at most 3 bn=2c
comparisons. We do so by maintaining both the minimum and maximum elements
seen thus far. Rather than processing each element of the input by comparing it
against the current minimum and maximum, at a cost of 2 comparisons per element,



Loop invariants example: find min
Input: Array A
Output: Find minimum value in array A

What invariant would make this algorithm correct? That at each
iteration of the loop, we have identified the smallest element
thus far. Stated more formally…

214 Chapter 9 Medians and Order Statistics

9.1 Minimum and maximum

How many comparisons are necessary to determine the minimum of a set of n
elements? We can easily obtain an upper bound of n ! 1 comparisons: examine
each element of the set in turn and keep track of the smallest element seen so
far. In the following procedure, we assume that the set resides in array A, where
A: length D n.

MINIMUM.A/

1 min D AŒ1 !
2 for i D 2 to A: length
3 if min > AŒi !
4 min D AŒi !
5 return min

We can, of course, find the maximum with n ! 1 comparisons as well.
Is this the best we can do? Yes, since we can obtain a lower bound of n ! 1

comparisons for the problem of determining the minimum. Think of any algorithm
that determines the minimum as a tournament among the elements. Each compar-
ison is a match in the tournament in which the smaller of the two elements wins.
Observing that every element except the winner must lose at least one match, we
conclude that n ! 1 comparisons are necessary to determine the minimum. Hence,
the algorithm MINIMUM is optimal with respect to the number of comparisons
performed.

Simultaneous minimum and maximum
In some applications, we must find both the minimum and the maximum of a set
of n elements. For example, a graphics program may need to scale a set of .x; y/
data to fit onto a rectangular display screen or other graphical output device. To
do so, the program must first determine the minimum and maximum value of each
coordinate.

At this point, it should be obvious how to determine both the minimum and the
maximum of n elements using ‚.n/ comparisons, which is asymptotically optimal:
simply find the minimum and maximum independently, using n ! 1 comparisons
for each, for a total of 2n ! 2 comparisons.

In fact, we can find both the minimum and the maximum using at most 3 bn=2c
comparisons. We do so by maintaining both the minimum and maximum elements
seen thus far. Rather than processing each element of the input by comparing it
against the current minimum and maximum, at a cost of 2 comparisons per element,



Loop invariants example: find min
Input: Array A
Output: Find minimum value in array A

Loop invariant:  At the start of each iteration of the for loop,
min is the smallest element in A[1 .. i-1 ]

214 Chapter 9 Medians and Order Statistics

9.1 Minimum and maximum

How many comparisons are necessary to determine the minimum of a set of n
elements? We can easily obtain an upper bound of n ! 1 comparisons: examine
each element of the set in turn and keep track of the smallest element seen so
far. In the following procedure, we assume that the set resides in array A, where
A: length D n.

MINIMUM.A/

1 min D AŒ1 !
2 for i D 2 to A: length
3 if min > AŒi !
4 min D AŒi !
5 return min

We can, of course, find the maximum with n ! 1 comparisons as well.
Is this the best we can do? Yes, since we can obtain a lower bound of n ! 1

comparisons for the problem of determining the minimum. Think of any algorithm
that determines the minimum as a tournament among the elements. Each compar-
ison is a match in the tournament in which the smaller of the two elements wins.
Observing that every element except the winner must lose at least one match, we
conclude that n ! 1 comparisons are necessary to determine the minimum. Hence,
the algorithm MINIMUM is optimal with respect to the number of comparisons
performed.

Simultaneous minimum and maximum
In some applications, we must find both the minimum and the maximum of a set
of n elements. For example, a graphics program may need to scale a set of .x; y/
data to fit onto a rectangular display screen or other graphical output device. To
do so, the program must first determine the minimum and maximum value of each
coordinate.

At this point, it should be obvious how to determine both the minimum and the
maximum of n elements using ‚.n/ comparisons, which is asymptotically optimal:
simply find the minimum and maximum independently, using n ! 1 comparisons
for each, for a total of 2n ! 2 comparisons.

In fact, we can find both the minimum and the maximum using at most 3 bn=2c
comparisons. We do so by maintaining both the minimum and maximum elements
seen thus far. Rather than processing each element of the input by comparing it
against the current minimum and maximum, at a cost of 2 comparisons per element,



Loop invariants example: find min

Animation example (Burt Rosenberg)
http://www.cs.miami.edu/~burt/learning/Csc517.101/workbook/findmin.html

Input: Array A
Output: Find minimum value in array A

214 Chapter 9 Medians and Order Statistics

9.1 Minimum and maximum

How many comparisons are necessary to determine the minimum of a set of n
elements? We can easily obtain an upper bound of n ! 1 comparisons: examine
each element of the set in turn and keep track of the smallest element seen so
far. In the following procedure, we assume that the set resides in array A, where
A: length D n.

MINIMUM.A/

1 min D AŒ1 !
2 for i D 2 to A: length
3 if min > AŒi !
4 min D AŒi !
5 return min

We can, of course, find the maximum with n ! 1 comparisons as well.
Is this the best we can do? Yes, since we can obtain a lower bound of n ! 1

comparisons for the problem of determining the minimum. Think of any algorithm
that determines the minimum as a tournament among the elements. Each compar-
ison is a match in the tournament in which the smaller of the two elements wins.
Observing that every element except the winner must lose at least one match, we
conclude that n ! 1 comparisons are necessary to determine the minimum. Hence,
the algorithm MINIMUM is optimal with respect to the number of comparisons
performed.

Simultaneous minimum and maximum
In some applications, we must find both the minimum and the maximum of a set
of n elements. For example, a graphics program may need to scale a set of .x; y/
data to fit onto a rectangular display screen or other graphical output device. To
do so, the program must first determine the minimum and maximum value of each
coordinate.

At this point, it should be obvious how to determine both the minimum and the
maximum of n elements using ‚.n/ comparisons, which is asymptotically optimal:
simply find the minimum and maximum independently, using n ! 1 comparisons
for each, for a total of 2n ! 2 comparisons.

In fact, we can find both the minimum and the maximum using at most 3 bn=2c
comparisons. We do so by maintaining both the minimum and maximum elements
seen thus far. Rather than processing each element of the input by comparing it
against the current minimum and maximum, at a cost of 2 comparisons per element,

http://www.cs.miami.edu/~burt/learning/Csc517.101/workbook/findmin.html


Loop invariant of Merge

2.3 Designing algorithms 31

the output pile. We repeat this step until one input pile is empty, at which time
we just take the remaining input pile and place it face down onto the output pile.
Computationally, each basic step takes constant time, since we are comparing just
the two top cards. Since we perform at most n basic steps, merging takes ‚.n/
time.

The following pseudocode implements the above idea, but with an additional
twist that avoids having to check whether either pile is empty in each basic step.
We place on the bottom of each pile a sentinel card, which contains a special value
that we use to simplify our code. Here, we use 1 as the sentinel value, so that
whenever a card with1 is exposed, it cannot be the smaller card unless both piles
have their sentinel cards exposed. But once that happens, all the nonsentinel cards
have already been placed onto the output pile. Since we know in advance that
exactly r ! pC1 cards will be placed onto the output pile, we can stop once we
have performed that many basic steps.

MERGE.A; p; q; r/

1 n1 D q ! pC1
2 n2 D r ! q
3 let LŒ1 : : n1C1! and RŒ1 : : n2C1! be new arrays
4 for i D 1 to n1

5 LŒi ! D AŒpCi ! 1!
6 for j D 1 to n2

7 RŒj ! D AŒqCj !
8 LŒn1C1! D 1
9 RŒn2C1! D 1

10 i D 1
11 j D 1
12 for k D p to r
13 if LŒi ! " RŒj !
14 AŒk! D LŒi !
15 i D i C1
16 else AŒk! D RŒj !
17 j D j C1

In detail, the MERGE procedure works as follows. Line 1 computes the length n1

of the subarray AŒp : : q!, and line 2 computes the length n2 of the subarray
AŒqC1 : : r !. We create arrays L and R (“left” and “right”), of lengths n1 C1
and n2 C1, respectively, in line 3; the extra position in each array will hold the
sentinel. The for loop of lines 4–5 copies the subarray AŒp : : q! into LŒ1 : : n1!,
and the for loop of lines 6–7 copies the subarray AŒq C1 : : r ! into RŒ1 : : n2!.
Lines 8–9 put the sentinels at the ends of the arrays L and R. Lines 10–17, illus-

p q r

p q q+1 r
A

L R

i j
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the output pile. We repeat this step until one input pile is empty, at which time
we just take the remaining input pile and place it face down onto the output pile.
Computationally, each basic step takes constant time, since we are comparing just
the two top cards. Since we perform at most n basic steps, merging takes ‚.n/
time.

The following pseudocode implements the above idea, but with an additional
twist that avoids having to check whether either pile is empty in each basic step.
We place on the bottom of each pile a sentinel card, which contains a special value
that we use to simplify our code. Here, we use 1 as the sentinel value, so that
whenever a card with1 is exposed, it cannot be the smaller card unless both piles
have their sentinel cards exposed. But once that happens, all the nonsentinel cards
have already been placed onto the output pile. Since we know in advance that
exactly r ! pC1 cards will be placed onto the output pile, we can stop once we
have performed that many basic steps.

MERGE.A; p; q; r/

1 n1 D q ! pC1
2 n2 D r ! q
3 let LŒ1 : : n1C1! and RŒ1 : : n2C1! be new arrays
4 for i D 1 to n1

5 LŒi ! D AŒpCi ! 1!
6 for j D 1 to n2

7 RŒj ! D AŒqCj !
8 LŒn1C1! D 1
9 RŒn2C1! D 1

10 i D 1
11 j D 1
12 for k D p to r
13 if LŒi ! " RŒj !
14 AŒk! D LŒi !
15 i D i C1
16 else AŒk! D RŒj !
17 j D j C1

In detail, the MERGE procedure works as follows. Line 1 computes the length n1

of the subarray AŒp : : q!, and line 2 computes the length n2 of the subarray
AŒqC1 : : r !. We create arrays L and R (“left” and “right”), of lengths n1 C1
and n2 C1, respectively, in line 3; the extra position in each array will hold the
sentinel. The for loop of lines 4–5 copies the subarray AŒp : : q! into LŒ1 : : n1!,
and the for loop of lines 6–7 copies the subarray AŒq C1 : : r ! into RŒ1 : : n2!.
Lines 8–9 put the sentinels at the ends of the arrays L and R. Lines 10–17, illus-

p q r

p q q+1 r
A

L R

i j

Loop invariant:  At the start of each 
iteration of the for loop, A[p.. k-1 ] 
contains the k-p smallest elements, in 
sorted order.

k
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the output pile. We repeat this step until one input pile is empty, at which time
we just take the remaining input pile and place it face down onto the output pile.
Computationally, each basic step takes constant time, since we are comparing just
the two top cards. Since we perform at most n basic steps, merging takes ‚.n/
time.

The following pseudocode implements the above idea, but with an additional
twist that avoids having to check whether either pile is empty in each basic step.
We place on the bottom of each pile a sentinel card, which contains a special value
that we use to simplify our code. Here, we use 1 as the sentinel value, so that
whenever a card with1 is exposed, it cannot be the smaller card unless both piles
have their sentinel cards exposed. But once that happens, all the nonsentinel cards
have already been placed onto the output pile. Since we know in advance that
exactly r ! pC1 cards will be placed onto the output pile, we can stop once we
have performed that many basic steps.

MERGE.A; p; q; r/

1 n1 D q ! pC1
2 n2 D r ! q
3 let LŒ1 : : n1C1! and RŒ1 : : n2C1! be new arrays
4 for i D 1 to n1

5 LŒi ! D AŒpCi ! 1!
6 for j D 1 to n2

7 RŒj ! D AŒqCj !
8 LŒn1C1! D 1
9 RŒn2C1! D 1

10 i D 1
11 j D 1
12 for k D p to r
13 if LŒi ! " RŒj !
14 AŒk! D LŒi !
15 i D i C1
16 else AŒk! D RŒj !
17 j D j C1

In detail, the MERGE procedure works as follows. Line 1 computes the length n1

of the subarray AŒp : : q!, and line 2 computes the length n2 of the subarray
AŒqC1 : : r !. We create arrays L and R (“left” and “right”), of lengths n1 C1
and n2 C1, respectively, in line 3; the extra position in each array will hold the
sentinel. The for loop of lines 4–5 copies the subarray AŒp : : q! into LŒ1 : : n1!,
and the for loop of lines 6–7 copies the subarray AŒq C1 : : r ! into RŒ1 : : n2!.
Lines 8–9 put the sentinels at the ends of the arrays L and R. Lines 10–17, illus-

p q r

p q q+1 r
A

L R

i j

Loop invariant:  At the start of each 
iteration of the for loop, A[p.. k-1 ] 
contains the k-p smallest elements, in 
sorted order. Also, L[ i ] and R[ j ] are 
smallest elements of their arrays not 
yet copied back into A

k


