
Data Structures and Algorithm
Analysis (CSC317)

Introduction

Poll: Why study algorithms?

CSC317 Introductions

• Introductions…

Your major and what do you hope to get out of this
course?

CSC317 House Keeping

• Course homepage:
http://www.cs.miami.edu/home/odelia/teaching/csc317_fall20/index.html

• Online class
• My typed slides will be posted on a regular basis

on the course website and on Blackboard
• Recordings will be posted on Blackboard
• Assignments will be posted and submitted through

Blackboard

http://www.cs.miami.edu/home/odelia/teaching/csc317_fall20/index.html

CSC317 House Keeping

• Course homepage:
http://www.cs.miami.edu/home/odelia/teaching/csc317_fall20/index.html

• Instructor: Odelia Schwartz (odelia at cs miami
dot edu). Encouraged to email to make zoom
appointment
office hour: TBA online

• TA: Xu Pan (and also Alison Cohen, Emily
Silvershein, Dylan Aron Noah)
Xu Pan will run problem-solving sessions online.
Times TBA.

Office hours: TBA online

http://www.cs.miami.edu/home/odelia/teaching/csc317_fall20/index.html

CSC317 House Keeping

• Practicum optional CSC401: self-study
programming using dynamic HTML and Javascript

https://www.cs.miami.edu/home/odelia/teaching/csc317_fall20/practicum/i
ndex.html

TA: Alexandros Khan
Office hours online: TBA

https://www.cs.miami.edu/home/odelia/teaching/csc317_fall20/practicum/index.html

CSC317 House Keeping

• Weekly problem sets on Tuesday, due following
Tuesday by midnight on BB

• Feel free to stop me and ask questions during
online lectures; interactive

• Please turn on your camera during lecture

• Homework Assignments (around 11): 60%
Quizzes (5): 50%
No final exam

CSC317 House Keeping

• Online class structure

• Show course syllabus

Data Structures and Algorithm
Analysis (CSC317)

Introduction to Algorithms (3rd edition), Cormen,
Leiserson, Rivest and Stein (yes, it’s thick; not the
whole book…)

Algorithms – Why?

• You answer

Algorithms – Why?

• You answer

• How it has been important for me in my field…

Algorithms

• At the heart of computer science

Algorithms

• At the heart of computer science

• How to solve problems. We’ll encounter prototypical
examples – toolkit of approaches. Introduce many prototypical
cases you will most likely later come back to…

Algorithms

• At the heart of computer science

• How to solve problems. We’ll encounter prototypical
examples – toolkit of approaches. Introduce many prototypical
cases you will most likely later come back to…

• Not only solve the problems, but figure out how quickly
algorithms run; figure our correctness of solution

Algorithms

• At the heart of computer science

• How to solve problems. We’ll encounter prototypical
examples – toolkit of approaches. Introduce many prototypical
cases you will most likely later come back to…

• Not only solve the problems, but figure out how quickly
algorithms run; figure our correctness of solution

• Many possible languages that can then implement
an algorithm

Algorithms

• At the heart of computer science

• How to solve problems. We’ll encounter prototypical
examples – toolkit of approaches. Introduce many prototypical
cases you will most likely later come back to…

• Not only solve the problems, but figure out how quickly
algorithms run; figure our correctness of solution

• Many possible languages that can then implement
an algorithm

• Algorithms are important in job interviews…

When have you last used an algorithm??

In the news …

New York Times, 2016:

“Instagram May Change Your Feed, Personalizing It With An
Algorithm … That could mean that if your best friend posted a
photo of her new Bernese mountain dog’s puppies five hours
ago while you were on a flight without Internet connectivity,
Instagram might place that image at the top of your feed the
next time you open the app. Based on your history of interaction
with that friend, Instagram knows you probably would not want
to miss that picture.”

In the news …

New York Times, J
an 2018:

Facebook Is Changing. What Does That Mean for Your
News Feed?

“Facebook is making the changes to the News Feed by
tinkering under the hood and reconfiguring the algorithms.”

In the news …

New York Times, 2015:

“Can an Algorithm Hire Better Than a Human?...
A new wave of start-ups — including Gild, Entelo, Textio, Doxa
and GapJumpers — is trying various ways to automate hiring.
They say that software can do the job more effectively and
efficiently than people can…”

In the news …

New York Times, 2020:

https://www.nytimes.com/2020/03/10/us/algorithms-learn-our-workplace-biases-can-they-help-us-unlearn-them.html

“Algorithms Learn Our Workplace Biases. Can They Help Us
Unlearn Them?”

https://www.nytimes.com/2020/03/10/us/algorithms-learn-our-workplace-biases-can-they-help-us-unlearn-them.html

In the news …

Washington Post, 2015:

“The algorithm was given this photo of buildings, left, and a copy
of Vincent Van Gogh’s “The Starry Night.” In about an hour it
taught itself to mimic Van Gogh’s style, and apply it to the photo
of the buildings. (University of Tuebingen)” How? Deep learning.

In the news …

Jan 2018: Google arts & culture app

What is an algorithm?

• Description of a problem and expected input and output

• Solution to the problem; method of providing required
output for every valid input

In my field… Computational neuroscience

Brain receives input, processes information, and computes
outputs. What algorithms does the brain use??

What is an algorithm?

Marr’s (1982) three levels of analysis

The three levels at which any machine carrying out an
Information processing task must be understood

1. Computational theory: goal of the computation; why is
it important…?

2. Representation and algorithm: How can this computational
theory be solved? In particular, what is the representation
for the input and output, and what is the algorithm for the
transformation?

3. Hardware implementation: How can the representation
and algorithm be realized physically?

What is an algorithm?

• Description of a problem and expected input and output

• Solution to the problem; method of providing required
output for every valid input

Correct algorithm solves the problem properly for every
Possible input

Incorrect algorithm doesn’t stop for every input or provides
wrong output

What is an algorithm?

• Description of a problem and expected input and output

• Solution to the problem; method of providing required
output for every valid input

Is there a unique algorithm for solving each problem?

What is an algorithm?

Correct algorithm solves the problem properly for every
possible input

Incorrect algorithm doesn’t stop for every input or provides
wrong output

Do we always require correct answer?

What is an algorithm?

Tradeoffs are…

• Correctness

• Efficiency (Why do we care?)

What is an algorithm?

Tradeoffs are…

• Correctness

• Efficiency (Why do we care?)

Computers are getting faster but…

Big data (genome; image web search; social networks; etc)

What is an algorithm?

Tradeoffs are…

• Correctness

• Efficiency (Do we need to be efficient for every possible input?)

• Deterministic versus probabilistic. Modern algorithms often
probabilistic…

What is an algorithm?

Tradeoffs are…

• Correctness

• Efficiency (Do we need to be efficient for every possible input?)

• Deterministic versus probabilistic. Modern algorithms often
probabilistic…

• “Hard” problems

Steps in solving a problem?

• Determine input and output

• Define abstract mathematical model to represent the problem

• Find an algorithm to solve the problem

High level description

More detailed description (Pseudo code; data structures)

• Tests and proof of correctness

• Analysis of efficiency, run time, complexity…

CSC317 Main topics
• Introduction to algorithms
• Sorting as example
• Correctness
• Growth of functions and Big-Oh notation
• Divide and conquer and solving recursion equations
• Randomized algorithms
• Introduction/review of data structures
• Hashing
• Trees and Red Black Trees
• Algorithmic paradigms: Dynamic programming, Greedy

algorithms
• Graph Algorithms
• Some recent/modern applications

Sorting

“The roomate pulled a sock out of the clean laundry hamper.
Next he pulled another sock out at random. If it didn’t match
the first one, he tossed it back in. Then he continued this
process, pulling out socks one by one and tossing them back
in until he found a match for the first… It was enough to
make any budding computer scientist request a room transfer…”

Sorting

“With just 10 different pairs of socks … on average 19 pulls
merely to complete first pair, and 17 more pulls to complete
the second … in total … fishing in the hamper 110 times
just to pair 20 socks”

Sorting

To introduce some of the concepts

Why sort?

Sorting as example: Insertion sort

• Input: n numbers
• Output: sorted numbers, e.g., in increasing order

Sorting as example: Insertion sort

Animation example:

http://cs.armstrong.edu/liang/animation/web/InsertionSort.html

http://cs.armstrong.edu/liang/animation/web/InsertionSort.html

Pseudo code: (book; more formal version)

Sorting as example: Insertion sort

• Input: n numbers
• Output: sorted numbers, e.g., in increasing order

18 Chapter 2 Getting Started

1 2 3 4 5 6
5 2 4 6 1 3(a)

1 2 3 4 5 6
2 5 4 6 1 3(b)

1 2 3 4 5 6
2 4 5 6 1 3(c)

1 2 3 4 5 6
2 4 5 6 1 3(d)

1 2 3 4 5 6
2 4 5 61 3(e)

1 2 3 4 5 6
2 4 5 61 3(f)

Figure 2.2 The operation of INSERTION-SORT on the array A D h5; 2; 4; 6; 1; 3 i. Array indices
appear above the rectangles, and values stored in the array positions appear within the rectangles.
(a)–(e) The iterations of the for loop of lines 1–8. In each iteration, the black rectangle holds the
key taken from AŒj !, which is compared with the values in shaded rectangles to its left in the test of
line 5. Shaded arrows show array values moved one position to the right in line 6, and black arrows
indicate where the key moves to in line 8. (f) The final sorted array.

INSERTION-SORT.A/

1 for j D 2 to A: length
2 key D AŒj !
3 // Insert AŒj ! into the sorted sequence AŒ1 : : j ! 1!.
4 i D j ! 1
5 while i > 0 and AŒi ! > key
6 AŒi C 1! D AŒi !
7 i D i ! 1
8 AŒi C 1! D key

Loop invariants and the correctness of insertion sort
Figure 2.2 shows how this algorithm works for A D h5; 2; 4; 6; 1; 3 i. The in-
dex j indicates the “current card” being inserted into the hand. At the beginning
of each iteration of the for loop, which is indexed by j , the subarray consisting
of elements AŒ1 : : j ! 1! constitutes the currently sorted hand, and the remaining
subarray AŒj C 1 : : n! corresponds to the pile of cards still on the table. In fact,
elements AŒ1 : : j ! 1! are the elements originally in positions 1 through j ! 1, but
now in sorted order. We state these properties of AŒ1 : : j ! 1! formally as a loop
invariant:

At the start of each iteration of the for loop of lines 1–8, the subarray
AŒ1 : : j !1! consists of the elements originally in AŒ1 : : j !1!, but in sorted
order.

We use loop invariants to help us understand why an algorithm is correct. We
must show three things about a loop invariant:

Pseudo code: (high level)

1. For j = 2 to n
2. Key = A[j];
3. Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into correct position

Sorting as example: Insertion sort

• Input: n numbers
• Output: sorted numbers, e.g., in increasing order

Pseudo code:

1. For j = 2 to n
2. Key = A[j];
3. Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into correct position

Sorting as example: Insertion sort

KEY

Pseudo code:

1. For j = 2 to n
2. Key = A[j];
3. Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into correct position

Sorting as example: Insertion sort

KEY KEY

Pseudo code:

1. For j = 2 to n
2. Key = A[j];
3. Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into correct position

Sorting as example: Insertion sort

KEY KEY KEY

Pseudo code:

1. For j = 2 to n
2. Key = A[j];
3. Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into correct position

Sorting as example: Insertion sort

KEY KEY KEY

KEY

Pseudo code:

1. For j = 2 to n
2. Key = A[j];
3. Insert Key into sorted array A[1 .. j-1]

by comparing pairs and swapping into correct position

Sorting as example: Insertion sort

KEY KEY KEY

KEY KEY

Pseudo code:

1. For j = 2 to n
2. Key = A[j];
3. Insert Key into sorted array A[1 .. j-1]

by comparing pairs and swapping into correct position

Sorting as example: Insertion sort

KEY KEY KEY

KEY KEY

What is striking about the gray boxes??

Pseudo code:

1. For j = 2 to n
2. Key = A[j];
3. Insert Key into sorted array A[1 .. j-1]

by comparing pairs and swapping into correct position

Sorting as example: Insertion sort

KEY KEY KEY

KEY KEY

Pseudo code:

1. For j = 2 to n
2. Key = A[j];
3. Insert Key into sorted array A[1 .. j-1]

by comparing pairs and swapping into correct position

Sorting as example: Insertion sort

KEY KEY KEY

KEY KEY

We will come back to this later
when we talk about loop invariants
and proving correctness

Insertion sort: analysis of run time
1. For j = 2 to n
2. Key = A[j]
3. Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into correct position

If there are n inputs, what is the cost to perform this
algorithm?

Poll: Cost of insertion sort

Insertion sort: analysis of run time
1. For j = 2 to n
2. Key = A[j]
3. Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into correct position

We’ll go through each statement and calculate costs

Insertion sort: analysis of run time
1. For j = 2 to n
2. Key = A[j]
3. Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into correct position

Cost?

Insertion sort: analysis of run time
1. For j = 2 to n
2. Key = A[j]
3. Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into correct position

c1n
We’ll usually ignore constants… “grows like n”

Insertion sort: analysis of run time
1. For j = 2 to n
2. Key = A[j]
3. Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into correct position

c2n

We’ll usually ignore constants… “grows like n”

Insertion sort: analysis of run time
1. For j = 2 to n
2. Key = A[j]
3. Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into correct position

Cost?
Best case?

Insertion sort: analysis of run time
1. For j = 2 to n
2. Key = A[j]
3. Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into correct position

Best case: Already sorted (How many comparisons
and swaps?)
Input: [1 2 3 4 5 6]
Output: [1 2 3 4 5 6]

Cost (why?)
c3n

Insertion sort: analysis of run time
1. For j = 2 to n
2. Key = A[j]
3. Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into correct position

Best case total cost:
T (n) = c1n + c2n + c3n

We’ll usually ignore constants… “grows like n”

Insertion sort: analysis of run time
For j = 2 to n

Insert A[j] into sorted array A[1 .. j-1]
by comparing and swapping into correct position

But…

We are almost never handed a best case (eg, deck of
cards)!

Insertion sort: analysis of run time
For j = 2 to n

Insert A[j] into sorted array A[1 .. j-1]
by comparing and swapping into correct position

Worst case?

Insertion sort: analysis of run time
For j = 2 to n

Insert A[j] into sorted array A[1 .. j-1]
by comparing and swapping into correct position

Worst case? In reverse order.

Input: [6 5 4 3 2 1]
Output: [1 2 3 4 5 6]

How many comparisons/swaps?

Insertion sort: analysis of run time
1. For j = 2 to n
2. Key = A[j]
3. Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into correct position

Worst case cost:

T (n) = j −1()
j=2

n

∑ =number of comparisons/swaps for j

Insertion sort: analysis of run time
1. For j = 2 to n
2. Key = A[j]
3. Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into correct position

Worst case cost (why?):

T (n) = j −1()
j=2

n

∑ =

Insertion sort: analysis of run time
1. For j = 2 to n
2. Key = A[j]
3. Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into correct position

Worst case cost (why?):

T (n) = j −1()
j=2

n

∑ =

What kind of series is this??

Insertion sort: analysis of run time
1. For j = 2 to n
2. Key = A[j]
3. Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into correct position

Worst case cost (why?):

T (n) = j −1()
j=2

n

∑ =

What kind of series is this??
Arithmetic series!

Arithmetic series

j
j=1

n

∑ = n(n +1)
2

;

j
j=2

n

∑ = n(n +1)
2

−1;

1+2+3+ … n = ?

Arithmetic series

j
j=1

n

∑ = n(n +1)
2

;

j
j=2

n

∑ = n(n +1)
2

−1;

1+2+3+ … n = ?

= ! !"#
$

Wolfram: “ … trick Gauss used as a school boy to solve
sum of 1 to 100 … classmates toiled away … when the
answers were examined, Gauss’s proved to be correct…”

Arithmetic series

j
j=1

n

∑ = n(n +1)
2

;

j
j=2

n

∑ = n(n +1)
2

−1;

1+2+3+ … n = ?

= ! !"#
$

Multiplied by
number of
elements Sum of first times last

divided by 2

1 2 n

Back to our question about Insertion Sort…

Insertion sort: analysis of run time
1. For j = 2 to n
2. Key = A[j]
3. Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into correct position

Worst case cost:

T (n) = j −1()
j=2

n

∑ =number of comparisons/swaps for j

Insertion sort: analysis of run time
1. For j = 2 to n
2. Key = A[j]
3. Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into correct position

Worst case cost (why?):

T (n) = j −1()
j=2

n

∑ =

Insertion sort: analysis of run time
1. For j = 2 to n
2. Key = A[j]
3. Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into correct position

Worst case cost. Note that (why?):

j
j=1

n

∑ = n(n +1)
2

;

j
j=2

n

∑ = n(n +1)
2

−1;

Arithmetic series

Insertion sort: analysis of run time
1. For j = 2 to n
2. Key = A[j]
3. Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into correct position

Worst case cost:

T (n) = j −1()
j=2

n

∑ = (n −1)(n)
2

= n
2

2
− n
2

Insertion sort: analysis of run time
1. For j = 2 to n
2. Key = A[j]
3. Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into correct position

Worst case cost:

T (n) = j −1()
j=2

n

∑ = (n −1)(n)
2

= n
2

2
− n
2

Whenever we see two loops, one for j going through all
or nearly all elements (here 2 to n), and the other over
1 to j-1 (or j+1 to n!) — we are in the n squared regime

Insertion sort: analysis of run time
1. For j = 2 to n
2. Key = A[j]
3. Insert Key into sorted array A[1 .. j-1]

by comparing and swapping into correct position

WORST case total:

T (n) = c1n + c2n + c3(
n2

2
− n
2
)

We’ll usually ignore constants and lower order terms for the form
(why?)

grows like n2
an2 + bn + c

Insertion sort: analysis of run time
For j = 2 to n

Insert A[j] into sorted array A[1 .. j-1]
by swapping into correct position

• Best case grows like n
• Worst case grows like n squared

Is average case more like best or worst case? Why?

Insertion sort: analysis of run time

• We’ve slightly simplified notation from book – don’t
care if repeated 2 or 3 constant times…

• We only care about limiting step relative to input size
n – ignore constant and lower order terms

• We usually care about worst case scenario

• Average case often roughly as bad as worst case

• More on “grows like” later…

