Graphs part 2
Depth First Search (DFS)

Search deeply first... Explores edges out of most recently discovered vertex so
long as there are still unexplored edges leaving it... and then backtracks (like
searching in a maze). Run time as in BFS will be linear in number of vertices and
edges O(n+m)

Applications: topological sort in directed acyclic graphs (sequences of events
where one comes before another; later); strongly connected components (later).

Simple example of DFS ordering showing main idea and distinguishing from bfs:
2 3 6
v L) (o)
(s)
O— ©
> 4 7

Note the “forest” (not just a single tree).

One way to implement: Stack instead of queue. Last in first out. But often
implemented recursively.

Marking nodes in algorithm: Colors are the same:

White: Vertices are initially white;
Gray: First time vertex encountered, make gray
Black: Only when all its adjacent neighbors discovered, turn to black.

We also mark a node with a number “time stamp” both when it is first discovered
(turns gray) and when we have gone through all its neighbors (black). The
discovery time is u.d and the finish time is u.f (u.f > u.d).

Main algorithm with recursion: We’ll have a function DFS that initializes, and then
calls DFS-Visit, which is a recursive function and does the depth first search.

DFS(G) // Gis agraph
- initialize all vertices to white
- set all time stamps to 0
- for each vertex u in G.V

if u.color == white

DFS-Visit(G,u)

Recursion:
DFS-Visit(G,u)

1. time = time + 1 // white vertex u has just been discovered

2. u.d =time /I start time

3. u.color = gray /l we’ve discovered u

4. For each v in adjacency list of u

5 if v.color == white

6. v.parent = u

7 DFS-Visit(G, v)

8. u.color = black // we finished going through all of u’s neighbors
9. time =time + 1

10. u.f = time /I finish time

Example of DFS:

Run time DFS: O(n + m) with n number vertices and m number edges. Procedure
DFS-Visit is called exactly once for each vertex (only if white and then changed).
During the DFS-Visit all adjacent nodes of each vertex are used, so overall
includes all edges.

Some properties DFS:

1. Every vertex v that gets discovered between start of u and end of u, is a child
of u in the DFS tree. The v will also finish before u does (see path fromutovtoy
to x).

This can be seen in recursion: DFS-Visit(u) called first; and then calls DFS-
visit(v), which finishes first (last in first out, as in a stack)

2. There is never an edge from a black to a white node (because if a node is
black, we already visited all its neighbors).

3. White path theorem: vertex v is a descendant of vertex u if and only if when
the search discovers u, there is a path from u to v consisting entirely of white
vertices.

(example, look at panel a in example, nodes u and y, when u is discovered the
path to y is all white). Proof: induction (we won’t show).

4. Disjoint trees, contained trees, and parenthesis theorem: Consider vertices u
and v. Either:

a. [u.d u.fl and [v.d v.f] are entirely disjoint. Neither u or v is a descendant of the
other.

b. Or [u.d u.f] is contained entirely within [v.d v.f], and u is a descendant of v
(which means u was discovered after v)

c. Or vice versa; [v.d v.f] is contained entirely within [u.d u.f], and v is a
descendant of u (which means v was discovered after u)

We represent start time of u with “(u”, and end time with “u)” ...

(a)

o Y

i ééélléI6&é§ll()lllll21l3ll41I51l6
CEOEDNEWMI Y6V wn D

5. Classification of edges: edge (u,v).

We did not discuss this in class. | am keeping it in the notes for completeness,
but not required.

Tree edges: v was discovered from u, during the procedure. If this is the case,
then when we were at u and checked out its adjacency neighbor v, v was white.

Back edges: connects u to ancestor v. This happens when we are in u and
checking adjacency neighbor v, but v is already gray (so v is like a grandfather).
(This also includes self-loops.)

Forward edges: connects u to a descendant v (but not part of the tree; not direct
child that was discovered). This happens during the procedure if we are in u and
check out adjacency neighbor v, and v is black.

Cross edges: everything else. Can be between trees or in the same tree. Here
also v is black.

Note: Some ambiguity since in undirected graph, edge between u and v could
also mean edge between v and u: can classify based on which is encountered
first in procedure, or which is first in list of edge types.

Note: in undirected graph, every edge either a tree edge or back edge.

Application DFS: topological sort:

A directed edge from u to v, means that v happens after u. Topological order: All
directed edges only go forward (needs to be acyclic graph). When we have tasks
that one needs to be done before another. Again linear time in vertices and
edges O(n+m), since doing DFS.

12/15 (pants shoes) 13/14

(a) 6/7

® RO

17/18 11/16 12/15 13/14

Figure 22.7 (a) Professor Bumstead topologically sorts his clothing when getting dressed. Each
directed edge (u,v) means that garment ¥ must be put on before garment v. The discovery and
finishing times from a depth-first search are shown next to each vertex. (b) The same graph shown
topologically sorted, with its vertices arranged from left to right in order of decreasing finishing time.

All directed edges go from left to right.

Pseudo code: Topological Sort (G)

1. Call DFS(G) to compute finish times v.f for each vertex v
2. As each vertex is finished, insert into the front of a linked list

3. return the linked list of vertices

Application DFS: Strongly connected components. Next.

