
Greedy algorithms – part 2, and Huffman code
Two main properties:

1. Greedy choice property: At each decision point, make the choice that is best at
the moment. We typically show that if we make a greedy choice, only one
property remains (unlike dynamic programming, where we need to solve multiple
subproblems to make a choice)

2. Optimal substructure: This was also a hallmark of dynamic programming. In
greedy algorithms, we can show that having made the greedy choice, then a
combination of the optimal solution to the remaining subproblem and the greedy
choice, gives an optimal solution to the original problem. (note: this is assuming
that the greedy choice indeed leads to an optimal solution; not every greedy
choice does so).

Greedy vs dynamic:

- both dynamic programming and greedy algorithms use optimal substructure

- but when we have a dynamic programming solution to a problem, greedy
sometimes does or does not guarantee the optimal solution (when not optimal,
can often prove by contradiction; find an example in which the greedy choice
does not lead to an optimal solution)

- could be subtle differences between problems that fit into the two approaches

Example: two knapsack problems.

a. 0-1 knapsack problem

- n items worth vi dollars each, and weighing wi pounds each.

- a thief robbing a store (or someone packing for a picnic…) can carry at most w
pounds in the knapsack and wants to take the most valuable items

- It’s called 0-1, because each item can either be taken in whole, or not taken at
all.

b. Fractional knapsack problem:

- same as above, except that thief (or picnic packer) can now take fractions of
items.

Here the fractional knapsack problem (b) has a greedy strategy that is optimal
but the 0-1 problem (a) does not!

We show the figure in the book, and then give a brief explanation.

Figure:

Explanation:

a. 0-1: Consider taking items in a greedy manner based on the highest value per
pound. In the 0-1 knapsack problem, this would lead to a contradiction, since
then would take 10 the pound item first with value per pound equal to 6 (non
optimal). Note: we can only take each item one time at most.

To get the optimal solution for the 0-1 problem, we must compare the solution or
subproblem that includes the 10 pound item, with the solution or subproblem that
excludes it. There are many overlapping subproblems we must compare.

b. Fractional: The fractional does have an optimal greedy solution of filling the
highest value per pound first until the knapsack is full. This works indeed
because we can fill fractions of items, and so proceed until knapsack is entirely
full. See panel (c) in the figure.

16.2 Elements of the greedy strategy 427

10
$60

item 1 20

$100

item 2
30

$120

item 3
50

knapsack
(a)

+

$120

$100

= $220

+
$60

$100

= $160

+

$60

$120

= $180
(b)

+

$60

$100

= $240

$80

+

(c)

20

30

10

20

10

30

10

20

20
30

Figure 16.2 An example showing that the greedy strategy does not work for the 0-1 knapsack
problem. (a) The thief must select a subset of the three items shown whose weight must not exceed
50 pounds. (b) The optimal subset includes items 2 and 3. Any solution with item 1 is suboptimal,
even though item 1 has the greatest value per pound. (c) For the fractional knapsack problem, taking
the items in order of greatest value per pound yields an optimal solution.

choice. The problem formulated in this way gives rise to many overlapping sub-
problems—a hallmark of dynamic programming, and indeed, as Exercise 16.2-2
asks you to show, we can use dynamic programming to solve the 0-1 problem.

Exercises
16.2-1
Prove that the fractional knapsack problem has the greedy-choice property.
16.2-2
Give a dynamic-programming solution to the 0-1 knapsack problem that runs in
O.n W / time, where n is the number of items and W is the maximum weight of
items that the thief can put in his knapsack.
16.2-3
Suppose that in a 0-1 knapsack problem, the order of the items when sorted by
increasing weight is the same as their order when sorted by decreasing value. Give
an efficient algorithm to find an optimal solution to this variant of the knapsack
problem, and argue that your algorithm is correct.
16.2-4
Professor Gekko has always dreamed of inline skating across North Dakota. He
plans to cross the state on highway U.S. 2, which runs from Grand Forks, on the
eastern border with Minnesota, to Williston, near the western border with Montana.

Also note: These are well known problems you still hear about in conferences
today; could be for many optimization problems…

Huffman code
A useful application for greedy algorithms is for compression—storing images or
words with least amount of bits.

1. Example of coding letters (inefficiently)-

A -> 00 (“code word”)

B -> 01

C -> 10

D -> 11

AABABACA is coded by:

0000010001001000

This is wasteful; some characters might appear more often than others (for
instance, if “A” is more frequent than “D” in the English language or in a text book
that you are coding and wish to compress). But in the approach above all
characters are represented with equal number of bits.

2. More efficient: if some characters appear more frequently, then we can code
them with shorter length in bits. Let’s say A appears more frequently and than B.

A -> 0 (frequent)

B -> 10

C -> 110

D -> 111 (less frequent)

AABABACA is coded by:

001001001100

We represented the same sequence with less bits = compression. This is a
variable length code.

This is for instance relevant for the English language (“a” more frequent than “q”).
This type of approach of coding more frequent characters with fewer bits is very
useful in compression, and similar approaches also apply to compression of
images.

Prefix codes: We consider only codes in which no code word is a prefix for the
other one (= a start for the other one).

[so we’re really only considering non prefix codes, although that’s the word that is
used]

Prefix codes are useful because as we’ll see, it is easier to decode (go from
001001001100 to the characters).

Example from book:

Fixed: Coding entire file: 3 bits every character: 3 x 100000 = 300,000 bits

Variable: (45 x 1 + 13 x 3 + 12 x 3 + 16 x 3 + 9 x 4 + 5 x 4) x 1000 = 224,000 bits

Trees corresponding to the coding examples:

16.3 Huffman codes 429

a b c d e f
Frequency (in thousands) 45 13 12 16 9 5
Fixed-length codeword 000 001 010 011 100 101
Variable-length codeword 0 101 100 111 1101 1100

Figure 16.3 A character-coding problem. A data file of 100,000 characters contains only the char-
acters a–f, with the frequencies indicated. If we assign each character a 3-bit codeword, we can
encode the file in 300,000 bits. Using the variable-length code shown, we can encode the file in only
224,000 bits.

in which each character is represented by a unique binary string, which we call a
codeword. If we use a fixed-length code, we need 3 bits to represent 6 characters:
a = 000, b = 001, . . . , f = 101. This method requires 300,000 bits to code the
entire file. Can we do better?

A variable-length code can do considerably better than a fixed-length code, by
giving frequent characters short codewords and infrequent characters long code-
words. Figure 16.3 shows such a code; here the 1-bit string 0 represents a, and the
4-bit string 1100 represents f. This code requires
.45 ! 1 C 13 ! 3 C 12 ! 3 C 16 ! 3 C 9 ! 4 C 5 ! 4/ ! 1,000 D 224,000 bits
to represent the file, a savings of approximately 25%. In fact, this is an optimal
character code for this file, as we shall see.

Prefix codes
We consider here only codes in which no codeword is also a prefix of some other
codeword. Such codes are called prefix codes.3 Although we won’t prove it here, a
prefix code can always achieve the optimal data compression among any character
code, and so we suffer no loss of generality by restricting our attention to prefix
codes.

Encoding is always simple for any binary character code; we just concatenate the
codewords representing each character of the file. For example, with the variable-
length prefix code of Figure 16.3, we code the 3-character file abc as 0!101!100 D
0101100, where “!” denotes concatenation.

Prefix codes are desirable because they simplify decoding. Since no codeword
is a prefix of any other, the codeword that begins an encoded file is unambiguous.
We can simply identify the initial codeword, translate it back to the original char-

3Perhaps “prefix-free codes” would be a better name, but the term “prefix codes” is standard in the
literature.

430 Chapter 16 Greedy Algorithms

a:45 b:13 c:12 d:16 e:9 f:5

58 28 14

86 14

100

0 1 0 1 0 1

0 1 0

0 1

e:9f:5

14
0 1

c:12 b:13

25
0 1

d:16

30
0 1

55
0 1

a:45

100
0 1

(a) (b)

Figure 16.4 Trees corresponding to the coding schemes in Figure 16.3. Each leaf is labeled with
a character and its frequency of occurrence. Each internal node is labeled with the sum of the fre-
quencies of the leaves in its subtree. (a) The tree corresponding to the fixed-length code a = 000, . . . ,
f = 101. (b) The tree corresponding to the optimal prefix code a = 0, b = 101, . . . , f = 1100.

acter, and repeat the decoding process on the remainder of the encoded file. In our
example, the string 001011101 parses uniquely as 0 ! 0 ! 101 ! 1101, which decodes
to aabe.

The decoding process needs a convenient representation for the prefix code so
that we can easily pick off the initial codeword. A binary tree whose leaves are
the given characters provides one such representation. We interpret the binary
codeword for a character as the simple path from the root to that character, where 0
means “go to the left child” and 1 means “go to the right child.” Figure 16.4 shows
the trees for the two codes of our example. Note that these are not binary search
trees, since the leaves need not appear in sorted order and internal nodes do not
contain character keys.

An optimal code for a file is always represented by a full binary tree, in which
every nonleaf node has two children (see Exercise 16.3-2). The fixed-length code
in our example is not optimal since its tree, shown in Figure 16.4(a), is not a full bi-
nary tree: it contains codewords beginning 10. . . , but none beginning 11. . . . Since
we can now restrict our attention to full binary trees, we can say that if C is the
alphabet from which the characters are drawn and all character frequencies are pos-
itive, then the tree for an optimal prefix code has exactly jC j leaves, one for each
letter of the alphabet, and exactly jC j " 1 internal nodes (see Exercise B.5-3).

Given a tree T corresponding to a prefix code, we can easily compute the number
of bits required to encode a file. For each character c in the alphabet C , let the
attribute c: freq denote the frequency of c in the file and let dT .c/ denote the depth

Some notes on the trees:

- Later: how to construct tree and the frequency nodes.

- We can easily use tree for decoding – keep going down until reach a leaf as
you go through 101 (b) 0 (a) 1101 (f) (in the variable length).

- Variable length is a full binary tree (two children for every node until reach
leaves). Fixed length is not.

Main greedy approach for constructing the Huffman tree: Begins with a set of
leaves, and each time identifies the two least frequent objects to merge together.
When we merge the two objects, the result is now an object whose sum is the
frequency of the merged objects.

Example constructing Huffman code tree:

432 Chapter 16 Greedy Algorithms

e:9f:5

14
0 1

c:12 b:13

25
0 1

d:16

30
0 1

55
0 1

a:45

100
0 1

e:9f:5

14
0 1

c:12 b:13

25
0 1

d:16

30
0 1

55
0 1

a:45

e:9f:5

14
0 1

c:12 b:13

25
0 1

d:16

30
0 1

a:45

e:9f:5

14
0 1

c:12 b:13

25
0 1

d:16 a:45

e:9f:5

14
0 1

c:12 b:13 d:16 a:45e:9f:5 c:12 b:13 d:16 a:45(a)

(c)

(e)

(b)

(d)

(f)

Figure 16.5 The steps of Huffman’s algorithm for the frequencies given in Figure 16.3. Each part
shows the contents of the queue sorted into increasing order by frequency. At each step, the two
trees with lowest frequencies are merged. Leaves are shown as rectangles containing a character
and its frequency. Internal nodes are shown as circles containing the sum of the frequencies of their
children. An edge connecting an internal node with its children is labeled 0 if it is an edge to a left
child and 1 if it is an edge to a right child. The codeword for a letter is the sequence of labels on the
edges connecting the root to the leaf for that letter. (a) The initial set of n D 6 nodes, one for each
letter. (b)–(e) Intermediate stages. (f) The final tree.

from the queue, replacing them in the queue with a new node ´ representing their
merger. The frequency of ´ is computed as the sum of the frequencies of x and y
in line 7. The node ´ has x as its left child and y as its right child. (This order is
arbitrary; switching the left and right child of any node yields a different code of
the same cost.) After n ! 1 mergers, line 9 returns the one node left in the queue,
which is the root of the code tree.

Although the algorithm would produce the same result if we were to excise the
variables x and y—assigning directly to ´: left and ´:right in lines 5 and 6, and
changing line 7 to ´: freq D ´: left: freq C ´:right: freq—we shall use the node

Pseudo code:

Main idea Huffman pseudo code: Here C are the characters. Repeatedly extracts
two minimum frequencies from a priority queue Q (eg, a heap) and merges them
as a new node in the queue. At the end, returns the one node left in the queue,
which is the optimal tree.

Run time: Huffman code:

For loop runs n-1 times O(n)

Each extracting min requires O(log n)

Total: O(n log n)

(the queue also needs to be initialized with the characters and their frequencies,
but does not change the overall run time)

16.3 Huffman codes 431

of c’s leaf in the tree. Note that dT .c/ is also the length of the codeword for
character c. The number of bits required to encode a file is thus
B.T / D

X

c2C

c: freq ! dT .c/ ; (16.4)

which we define as the cost of the tree T .

Constructing a Huffman code
Huffman invented a greedy algorithm that constructs an optimal prefix code called
a Huffman code. In line with our observations in Section 16.2, its proof of cor-
rectness relies on the greedy-choice property and optimal substructure. Rather
than demonstrating that these properties hold and then developing pseudocode, we
present the pseudocode first. Doing so will help clarify how the algorithm makes
greedy choices.

In the pseudocode that follows, we assume that C is a set of n characters and
that each character c 2 C is an object with an attribute c: freq giving its frequency.
The algorithm builds the tree T corresponding to the optimal code in a bottom-up
manner. It begins with a set of jC j leaves and performs a sequence of jC j " 1
“merging” operations to create the final tree. The algorithm uses a min-priority
queue Q, keyed on the freq attribute, to identify the two least-frequent objects to
merge together. When we merge two objects, the result is a new object whose
frequency is the sum of the frequencies of the two objects that were merged.

HUFFMAN.C /

1 n D jC j
2 Q D C
3 for i D 1 to n " 1
4 allocate a new node ´
5 ´: left D x D EXTRACT-MIN.Q/
6 ´:right D y D EXTRACT-MIN.Q/
7 ´: freq D x: freqC y: freq
8 INSERT.Q; ´/
9 return EXTRACT-MIN.Q/ // return the root of the tree

For our example, Huffman’s algorithm proceeds as shown in Figure 16.5. Since
the alphabet contains 6 letters, the initial queue size is n D 6, and 5 merge steps
build the tree. The final tree represents the optimal prefix code. The codeword for
a letter is the sequence of edge labels on the simple path from the root to the letter.

Line 2 initializes the min-priority queue Q with the characters in C . The for
loop in lines 3–8 repeatedly extracts the two nodes x and y of lowest frequency

