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LINEAR NONLINEAR MODELS

Linear

Nonlinear

o Often constrain to some form of Linear, Nonlinear 
computations, e.g. visual receptive fields or filters, 
followed by nonlinear  interactions



LINEAR NONLINEAR MODELS

What type of nonlinearities?



o Canonical computation (Carandini, Heeger, 2013)
o Has been applied to primary visual cortex (V1)
o More broadly, to other systems and modalities, 

multimodal processing, value encoding, etc

DESCRIPTIVE MODELS: DIVISIVE NORMALIZATION



DESCRIPTIVE MODELS: COMPLEX CELLS AND INVARIANCE

o after Adelson & Bergen, 1985 



FITTING DESCRIPTIVE MODELS TO DATA

Linear

Nonlinear

(i.e., a lookup table; Anzai, Ohzawa, & Freeman, 1999;
Chichilnisky, 2001; deBoer & Kuyper, 1968; Eggermont
et al., 1983). For some classes of nonlinearity, it has also
been shown that one can write down a closed-form
solution for the estimates of the linear filter and non-
linearity in a single step (Nykamp & Ringach, 2002).
This methodology may be extended to the recovery of

multiple filters (i.e., a low-dimensional subspace) and the
nonlinear combination rule. One approach to finding a low-
dimensional subspace is the spike-triggered covariance
(STC; Bialek & de Ruyter van Steveninck, 2005; de Ruyter
van Steveninck & Bialek, 1988). STC has been used to
characterize multidimensional models and a nonlinear
combination rule in systems ranging from the invertebrate
motion system (Bialek & de Ruyter van Steveninck, 2005;
Brenner, Bialek & de Ruyter van Steveninck, 2000; de
Ruyter van Steveninck & Bialek, 1988) to songbird
forebrain auditory neurons (Sen, Wright, Doupe, & Bialek,
2000) to vertabrate retina cells (Pillow, Simoncelli, &
Chichilnisky, 2003; Schwartz, Chichilnisky, & Simoncelli,
2002) and mammalian cortex (Horwitz, Chichilnisky, &
Albright, 2005; Rust, Schwartz, Movshon, & Simoncelli,
2004, 2005; Touryan, Lau, & Dan, 2002). In addition,
several authors have recently developed subspace estima-
tion methods that use higher order statistical measures
(Paninski, 2003; Sharpee, Rust, & Bialek, 2003, 2004). A
review of spike-triggered subspace approaches may also be
found in Ringach (2004) and Simoncelli, Pillow, Paninski,
& Schwartz (2004).
Despite the theoretical elegance and experimental

applicability of the subspace methods, there are a host of
issues that an experimentalist is likely to confront when
attempting to use them: How should one choose the
stimulus space? Howmany spikes does one need to collect?
How does one know if the recovered filters are significant?
How should one interpret the filters? How do the filter

responses relate to the nonlinear firing rate function? and so
on. In this article, we describe the family of spike-triggered
subspace methods in some detail, placing emphasis on
practical experimental issues, and demonstrating these
(where possible) with simulations. We focus our discussion
on the STA and STC analyses, which have become quite
widely used experimentally. A software implementation of
the methods described is available on the Internet at http://

The linear–nonlinear Poisson
(LNP) model

Experimental approaches to characterizing neurons are
generally based on an underlying response model. Here, we
assume a model constructed from a cascade of three
operations:

1. a set of linear filters, fk
Y

1Ik
Y

mg,
2. a nonlinear transformation that maps the instanta-

neous responses of these filters to a scalar firing rate,
and

3. a Poisson spike generation process, whose instanta-
neous firing rate is determined by the output of the
nonlinear stage.

This LNP cascade is illustrated in Figure 2. The third
stage, which essentially amounts to an assumption that the
generation of spikes depends only on the recent stimulus
(and not on the history of previous spike times), is often
not stated explicitly but is critical to the analysis.
If we assume a discretized stimulus space, we can

express the instantaneous firing rate of the model as:

rðtÞ ¼ NðkY1 $ s
YðtÞ; kY2 $ s
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m $ s
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where s
YðtÞ is a vector containing the stimuli over an

appropriate temporal window preceding the time t. Here,
the linear response of filter i (i.e., the projection or dot
product of the filter k

Y

i with the stimuli s
YðtÞ) is given by

k
Y

i I s
YðtÞ. The nonlinear transformation N(I) operates over

the linear filter responses.

Spike-triggered analysis

We aim to characterize the LNP model by analyzing the
spike-triggered stimulus ensemble. The spike-triggered
analysis techniques proceed as follows:

1. Estimate the low-dimensional linear subspace (set of
filters). This effectively projects the high-dimension
stimulus into a low-dimensional subspace that the
neuron cares about.

Figure 2 . Block diagram of the LNP model. On each time step, the
components of the stimulus vector are linearly filtered by k

Y

0 Ik
Y

m.
The responses of the linear filters are then passed through a
nonlinear function N(I), whose output determines the instanta-
neous firing rate of a Poisson spike generator.

Journal of Vision (2006) 6, 484–507 Schwartz et al. 486

www.cns.nyu.edu/~lcv/neuralChar/.

Poisson



ROADMAP

o Simple cell – traditional approach
o Simple cell (STA)
o When STA fails
o Complex cell (STC)
o Another example (STC)
o More generic model with multiple filters 



REMINDER: RECEPTIVE FIELD

Stimuli Spikes
Hubel and Wiesel, 1959



REMINDER: RECEPTIVE FIELD

Primary Visual Cortex (V1)



RECEPTIVE FIELD

o Response of a filter 
= inner/dot product/projection of filter with stimulus



ROADMAP

o Simple cell – traditional approach
o Simple cell (STA)
o When STA fails
o Complex cell (STC)
o Another example (STC)
o More generic model with multiple filters 





SPIKE-TRIGGERED AVERAGE



SPIKE-TRIGGERED AVERAGE



SPIKE-TRIGGERED AVERAGE



SPIKE-TRIGGERED AVERAGE

STA



EFFECT OF NONLINEARITY IN MODEL?



EFFECT OF NONLINEARITY IN MODEL?



EFFECT OF NONLINEARITY IN MODEL?

o Nonlinearity sets negative filter responses to zero (firing rates 
are positive)

• Nonlinearity sets negative filter responses to zero
(firing rates are positive)• Nonlinearity sets negative filter responses to zero

(firing rates are positive)



SPIKE-TRIGGERED AVERAGE (STA)

o Stimuli that are more similar to filter are more likely to elicit a spike…

• Nonlinearity sets negative filter responses to zero
(firing rates are positive)• Nonlinearity sets negative filter responses to zero

(firing rates are positive)



SPIKE-TRIGGERED AVERAGE (STA)

• Nonlinearity sets negative filter responses to zero
(firing rates are positive)• Nonlinearity sets negative filter responses to zero

(firing rates are positive)

Model:



SPIKE-TRIGGERED AVERAGE (STA)

• Nonlinearity sets negative filter responses to zero
(firing rates are positive)• Nonlinearity sets negative filter responses to zero

(firing rates are positive)

STA response

Random filter response



SPIKE-TRIGGERED AVERAGE (STA)

• Nonlinearity sets negative filter responses to zero
(firing rates are positive)• Nonlinearity sets negative filter responses to zero

(firing rates are positive)

STA response

Random filter response

Spike stimuli
Raw stimuli

Geometrical view: change in the mean
Large filter response likely to elicit spike



SPIKE-TRIGGERED AVERAGE (STA)

• Nonlinearity sets negative filter responses to zero
(firing rates are positive)• Nonlinearity sets negative filter responses to zero

(firing rates are positive)

STA

We can also recover the nonlinearity



SPIKE-TRIGGERED AVERAGE (STA)

• Nonlinearity sets negative filter responses to zero
(firing rates are positive)• Nonlinearity sets negative filter responses to zero

(firing rates are positive)

We can also recover the nonlinearity



STEPS

1.Assume a model (filter/s, nonlinearity)
(we assumed one filter and asymmetric 
nonlinearity)

2. Estimate model components (filter/s, nonlinearity)
(we looked for changes in mean: STA)



ROADMAP

o Simple cell – traditional approach
o Simple cell (STA)
o When STA fails
o Complex cell (STC)
o Another example (STC)
o More generic model with multiple filters 



BUT STA DOES NOT ALWAYS WORK

• Nonlinearity sets negative filter responses to zero
(firing rates are positive)• Nonlinearity sets negative filter responses to zero

(firing rates are positive)

STA filter??



BUT STA DOES NOT ALWAYS WORK

• Nonlinearity sets negative filter responses to zero
(firing rates are positive)

STA filter!



WHAT HAPPENED??

• Nonlinearity sets negative filter responses to zero
(firing rates are positive)

Nonlinearity sets negative filter responses to positive
(firing rates are positive)



WHAT HAPPENED??

• Nonlinearity sets negative filter responses to zero
(firing rates are positive)

Large or small filter response likely to elicit spike
Mean stimuli eliciting spikes = 0

Random filter response

Model
filter

Spike stimuli
Raw stimuli

STA filter!



CHANGE IN THE VARIANCE

Large or small filter response likely to elicit spike

Random filter response

Spike stimuli
Raw stimuli

Model 
filter

0

Positive

Negative

STA filter!



Standard algebra techniques (eigenvector analysis)
recovers changes in variance

Random filter response

Spike stimuli
Raw stimuli

Model 
filter

0

Positive

Negative

SPIKE-TRIGGERED COVARIANCE (STC)



We can also recover the nonlinearity

Random filter response

Model
filter

SPIKE-TRIGGERED COVARIANCE (STC)



STEPS

1.Assume a model (filter/s, nonlinearity)
(we assumed one filter and symmetric  
nonlinearity)

2. Estimate model components (filter/s, nonlinearity)
(STA failed)
(we looked for changes in variance: STC)



SPIKE-TRIGGERED COVARIANCE (STC)

o Figure from Schwartz et al. 2006; see also Rust et al. 2005, de Ruyter & Bialek 1988
o Approach estimates linear subspace and nonlinearity
o (stixel = space time pixel)

Spike-triggered covariance

The STA only recovers a single filter. Additional filters
may be recovered seeking directions in the stimulus space
in which the variance of the spike-triggered ensemble
differs from that of the raw ensemble. Assuming that the
raw stimuli have spherical covariance, this is achieved by
computing the STC matrix:

Ĉ ¼ 1

Nj1
~
N

n¼1

s
Y
tnð Þj Â

! "
s
Y
tnð Þj Â

! "
T; ð3Þ

where the [I]T indicates the transpose of the vector. Again,
the tn are binned in practice, and this means that each term
should be multiplied by the number of spikes occurring in
the associated time bin.
The STCmatrix embodies the multidimensional variance

structure of the spike-triggered ensemble. Specifically, the
variance of the ensemble in any direction specified by a unit
vector, û , is simply û TĈû . The surface swept out by all
such unit vectors scaled by the square root of their
associated variance is a multidimensional ellipsoid. The
principle axes of this ellipsoid, along with the associated
variances, may be recovered as the eigenvectors and
associated eigenvalues of the STC matrix. This is

illustrated in Figure 4. The consistency of the STC
estimate is guaranteed, provided that the input stimuli are
Gaussian (Paninski, 2003) and the nonlinearity of the
model is such that it leads to a change in the variance of
the spike-triggered ensemble relative to the raw ensem-
ble. Note that the Gaussianity is a more severe require-
ment than the spherical symmetry required for STA
analysis (see Limitations and potential failures section
and Experimental issues section).
The STA and STC filters together form a low-

dimensional linear subspace in which neural responses
are generated. A number of groups have presented
different approaches for combining the STA and STC
analyses; in practice, these variants all converge to the
same estimated subspace.3 Usually, the STA is sub-
tracted prior to computing the STC filters (Brenner,
Bialek & de Ruyter van Steveninck, 2000; de Ruyter
van Steveninck & Bialek, 1988). It is often (but not
always) the case that the STA will lie within the
subspace spanned by the significant STC axes. Depend-
ing on the nonlinear properties of the response, it could
coincide with either high- or low-variance STC axes.
To simplify visualization and interpretation of the axes,
we have chosen for all of our examples to perform the
STC analysis in a subspace orthogonal to the STA.

Figure 4. Two alternative illustrations of STC. (A) The STC is determined by constructing the covariance of the spike-triggered stimuli
(relative to the raw stimuli), followed by an eigenvector analysis of the covariance matrix. This can result in multiple filters that represent
directions in stimulus space for which the spike-triggered stimuli have lower or higher variance than the raw stimuli. (B) Geometric
depiction of STC. Black points indicate raw stimuli. White points indicate stimuli eliciting a spike. Ellipses represent the covariance of each
ensemble. Specifically, the distance from the origin to the ellipse along any particular direction is the standard deviation of the ensemble in
that direction. Raw stimuli are distributed in a circular (Gaussian) fashion. Spike-triggered stimuli are elliptically distributed, with a reduced
variance (relative to the raw stimuli) along the minor axis. The minor axis of the ellipse corresponds to a suppressive direction: Stimuli that
have a large component along this direction (either positive or negative) are less likely to elicit a spike. The variance of the major axis of
the ellipse matches that of the raw stimuli and, thus, corresponds to a direction in stimulus space that does not affect the neuron’s firing
rate.

Journal of Vision (2006) 6, 484–507 Schwartz et al. 488



ROADMAP

o Simple cell – traditional approach
o Simple cell (STA)
o When STA fails
o Complex cell (STC)
o Another example (STC)
o More generic model with multiple filters 



SPIKE-TRIGGERED COVARIANCE (STC)



CHANGE IN VARIANCE (STC)

Spike stimuli
Raw stimuli



CHANGE IN VARIANCE (STC)

STA filter!



CHANGE IN VARIANCE (STC)



STEPS

1.Assume a model (filter/s, nonlinearity)
(we assumed more than one filter and symmetric  
nonlinearity)

2. Estimate model components (filter/s, nonlinearity)
(STA failed)
(we looked for changes in variance: STC)



ROADMAP

o Simple cell – traditional approach
o Simple cell (STA)
o When STA fails
o Complex cell (STC)
o Another example (STC)
o More generic model with multiple filters 



SECOND FILTER SUPPRESSIVE (E.G., DIVISIVE)



SECOND FILTER SUPPRESSIVE (E.G., DIVISIVE)

Second filter brings about reduction in variance!

Spike stimuli
Raw stimuli



SECOND FILTER SUPPRESSIVE (E.G., DIVISIVE)

Second filter brings about reduction in variance!



STEPS

1.Assume a model (filter/s, nonlinearity)
(we assumed more than one filter and symmetric  
nonlinearity)

2. Estimate model components (filter/s, nonlinearity)
(we looked for changes in variance, this time
reduced variance: STC)



SPIKE TRIGGERED APPROACES

Change in the mean (STA)

Divisive normalization

Changes in the variance (STC)

Complex cell



ROADMAP

o Simple cell – traditional approach
o Simple cell (STA)
o When STA fails
o Complex cell (STC)
o Another example (STC)
o More generic model with multiple filters 



MORE GENERAL CLASS OF MODEL

Look for changes in both the mean and the variance…



APPLICATION: V1 EXPERIMENT



V1 NEURAL DATA: SPIKE-TRIGGERED COVARIANCE

o Example V1 neuron estimated filters from Rust et al. 2005

Neuron
948

nal orientations not present in our stimulus ensemble.
(Figure 4B).

It is important to understand that both the quality and
number of filters recovered by our analysis depend not
only on the strength of their influence on neural re-
sponse, but also on the number of spikes collected
(Aguera y Arcas and Fairhall, 2003; Paninski, 2003), a
fact that we verified experimentally (see Figure S1 in
the Supplemental Data available online). The values in
Figure 4 are therefore a lower bound on the number of
filters required to characterize the response of these
neurons accurately. In our population analysis, we only
included cells for which we collected at least 50 spikes
per spatiotemporal dimension (mean 229 spikes per di-
mension, 55,000 total spikes).

Recovering the Nonlinearity
After recovering a set of linear filters, the model is com-
pleted by estimating the nonlinear function that com-
bines the outputs of these filters to produce a firing
rate. When the number of filters is small (one or two),
this can be done directly by computing the filter re-
sponses to the stimulus sequence and evaluating the
average number of spikes observed for each binned
response combination. Figures 5A–5C show firing rate
functions for filters selected from the example simple
and complex cells of Figures 2 and 3, indicated by the
red curves along the diagonal margins of each plot. The
rate functions associated with the STA were always
half-wave rectified (Figure 5A, right hand axis), and
functions for the STC filters were always symmetric
(Figure 5A, left axis; Figures 5B and 5C, both axes).
Excitatory STC filters (those corresponding to PCA-
derived axes with increased variance) had firing rate
functions that increased monotonically with the magni-
tude of their outputs (Figures 5A and 5B), and suppres-
sive filters (those corresponding to axes with de-
creased variance) produced firing rate functions that
decreased monotonically with the magnitude of their
outputs (Figure 5C).

Important regularities emerged when we examined
firing rate as a function of the activity of pairs of excit-
atory or suppressive filters; Figures 5A–5C show exam-
ples of these joint nonlinearities as grayscale images,
where the lightness of each pixel corresponds to the
firing rate associated with the associated pair of filter
outputs; the axes drawn across the images cross at
the pixel for which both filter outputs were 0. These 2D
nonlinearities have a characteristic form: contours of
constant firing rate are well fit by ellipses with principal
axes aligned with the coordinate system, suggestingFigure 3. Model Filters Recovered for an Example Cell Classified as
that the firing rate can be expressed as a function ofComplex by a Relative Modulation of 0.1 to an Optimized Drifting

Sinusoidal Grating the weighted sum of squares of the filter responses
(A) The STA, seven excitatory, and seven suppressive filters recov- (Figures 5B and 5C). When the STA is combined with
ered from the STC shown with the same conventions as in Figure another excitatory dimension, the contours outline a
2A. The recovered weights for each filter are indicated. crescent, as would be expected if the STA response
(B) Pooled excitatory (green) and suppressive (red) filters, repre- were half-wave rectified prior to squaring (Figure 5A).sented as in Figure 2B. The temporal profiles of both signals at the

It is not feasible to directly estimate the completelevel of the twelfth (middle) bar are plotted to illustrate the delay of
nonlinear function that maps the filter outputs into asuppression relative to excitation.

(C) Pooled excitatory (green) and suppressive (red) frequency firing rate, since the number of response combinations
spectra represented as in Figure 2C. grows exponentially with the number of filters. Instead,

we exploited the regularity in the pairwise nonlinear re-
sponse functions to reduce the dimensionality of the



V1 NEURAL DATA: RECALL THE STANDARD MODELS

But…

Data show multiple
filters (excitatory
and suppressive)
for both.

Are these really two
different classes of
neurons, or is there
a continuum??



STC ISSUES: HOW MANY SPIKES?

Filter estimate depends on:

• Spatial and time dimensionality of input stimulus
(smaller = better estimate)

• Number of spikes 
(more = better estimate)



STC CAVEATS

• Analysis forces filters that are 90 degrees apart!
Filters should not be taken literally as physiological
mechanisms



STC CAVEATS

• But true filters are linear combinations of original
(“span the same subspace”)



STC CAVEATS

• Analysis forces filters that are 90 degrees apart!
Filters should not be taken literally as physiological
mechanisms

• Spiking in neuron may be non Poisson (bursts;
refractory period; etc.)
Filters should not be taken literally as physiological
mechanisms

• There might be more filters affecting neural response
than what analysis finds

• STC guaranteed to work only for Gaussian stimuli

• There might be changes that are not in the mean or variance
(other approaches; e.g., info theory)



EXAMPLE: FITTING LN-LN MODEL2308 M. Pagan, E. Simoncelli, and N. Rust

Figure 7: A generalized encoding description of V1 computation. Shown is
the generalized LN-LN subunit model proposed to describe the conversion of
visual images into the firing rate responses of individual V1 neurons. In the first
LN stage, the stimulus is passed through a bank of linear filters followed by
squaring, with the exception of the first subunit (which is half-squared). These
responses are combined with a weighted sum, and the result is passed through
a final nonlinearity. Note the similarity between the structure of this model and
nQDA (see Figure 1b).

that is half-wave rectified and squared, the other subunits consist of linear
filters followed by squaring, and all subunit responses are combined with a
weighted sum, followed by a final response nonlinearity (see Figure 7). This
model can be fit to neural data using spike-triggered covariance (Rust et al.,
2005; Touryan et al., 2005; Lochmann et al., 2013), or more direct maximum
likelihood methods (Vintch, Movshon, & Simoncelli, 2015). The structure
of this generalized V1 model bears a remarkable resemblance to the nQDA
model framework (compare Figure 1b and Figure 7): an LN-LN model in
which one (linear) subunit combines with a bank of nonlinear subunits
whose responses are squared.

Despite their structural similarity, the V1 subunit model and the nQDA
computation aim to describe different phenomena: the V1 model is a single-
neuron description of the transformation of a visual image into a firing rate
response, whereas the nQDA framework is a population-level description
of the conversion of an input population response into the solution for a
predefined classification task. Nevertheless, a notable similarity between
the models is that the parameters recovered by both procedures are not
uniquely constrained. Consequently, care must be taken in interpreting both

o Figure from Pagan et al. 2015 describing retina and V1 with subunits (see 
Rust et al. 2005; Vintch et al. 2015)

o In Pagan et al. 2015 addressing higher level brain areas
o See also Rowekamp et al. 2017 addressing area V2



EXAMPLE: GENERALIZED LINEAR MODEL

o Figure from Pillow et al., 2008, describing retina

between receptive field centres15. We found that fitted stimulus filters
have smaller surrounds than the spike-triggered average, indicating
that a portion of the classical surround can be explained by interac-
tions between cells21 (see Supplementary Information).

To assess accuracy in capturing the statistical dependencies in
population responses, we compared the pairwise cross-correlation
function (CCF) of RGCs and simulated model spike trains (Fig. 2).
For nearby ON–ON and OFF–OFF pairs, the CCF exhibits a sharp
peak at zero, indicating the prevalence of synchronous spikes; how-
ever, for ON–OFF pairs, a trough at zero indicates an absence of
synchrony. For all 351 possible pairings, the model accurately repro-
duces the CCF (Fig. 2a–c, e, f).

To examine whether inter-neuronal coupling was necessary to
capture the response correlation structure, we re-fitted the model
without coupling filters (that is, so that each cell’s response depends
only on the stimulus and its own spike-train history). This
‘uncoupled model’ assumes that cells encode the stimulus indepen-
dently, although correlations may still arise from the overlap of
stimulus filters. However, the uncoupled model fails to reproduce
the sharp CCF peaks observed in the data. These peaks are also absent
from CCFs computed on trial-shuffled data, indicating that fast-
timescale correlations are not stimulus-induced and therefore cannot
be captured by any independent encoding model.

Higher-order statistical dependencies were considered by inspect-
ing correlations in three-neuron groups: triplet CCFs show the spike
rate of one cell as a function of the relative time to spikes in two other
cells (Fig. 2e–g)15. For adjacent neurons of the same type, triplet CCFs
have substantial peaks at zero (‘triplet synchrony’), which are well
matched by the full model.

Although the full and uncoupled models differ substantially in
their statistical dependencies, the two models predict average light
responses in individual cells with nearly identical accuracy, capturing
80–95% of the variance in the peri-stimulus time histogram (PSTH)
in 26 out of 27 cells (Fig. 3a–c). Both models therefore accurately
describe average single-cell responses to new stimuli. However, the
full model achieves higher accuracy, predicting multi-neuronal spike
responses on a single trial (8 6 3% more bits per spike, Fig. 3d). This
discrepancy can be explained by the fact that noise is shared across

neurons. Shared variability means that population activity carries
information about a single cell’s response (owing to coupling
between cells) beyond that provided by the stimulus alone.
Individual neurons therefore appear less noisy when conditioned
on spiking activity in the rest of the population than they appear in
raster plots.

We measured the effect of correlations on single-trial, single-cell
spike-train prediction by using the model to draw samples of a single
cell’s response given both the stimulus and the spiking activity in the
rest of the population on a single trial (Fig. 3e, f). Averaging the
resulting raster plot gives a prediction of the cell’s single-trial spike
rate, or ‘population-conditioned’ PSTH for a single trial. We com-
pared these predictions with the cell’s true spike times (binned at
2 ms) across all trials and found that on nearly every trial, the model-
based prediction is more highly correlated with the observed spikes
than the neuron’s full PSTH (Fig. 3g). Note that the full PSTH
achieves the highest correlation possible for any trial-independent
prediction. Thus, by exploiting the correlation structure, the coupled
model predicts single-neuron spike times more accurately than any
independent encoding model.

Although the full model accurately captures dependencies in the
activity of RGCs, it is not obvious a priori whether these dependencies
affect the amount of sensory information conveyed by RGC res-
ponses. In principle, the correlation structure could be necessary to
predict the responses, but not to extract the stimulus information
that the responses carry13. To examine this issue directly, we used the
full and uncoupled models to perform Bayesian decoding of the
population response (Fig. 4a), which optimally reconstructs stimuli
given an accurate description of the encoding process. For compar-
ison, we also performed Bayesian decoding under a Poisson (that is,
LNP) model and optimal linear decoding6.

Each decoding method was used to estimate short (150-ms) seg-
ments of the stimulus given all relevant spike times from the full popu-
lation (Fig. 4b). Bayesian decoding under the coupled model recovers
20% more information than Bayesian decoding under the uncoupled
model, indicating that knowledge of the correlation structure is critical
for extracting all sensory information contained in the population
response. This improvement was invariant to enhancements of the
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Figure 1 | Multi-neuron encoding model and fitted parameters. a, Model
schematic for two coupled neurons: each neuron has a stimulus filter, a post-
spike filter and coupling filters that capture dependencies on spiking in other
neurons. Summed filter output passes through an exponential nonlinearity
to produce the instantaneous spike rate. b, Mosaics of 11 ON and 16 OFF
retinal ganglion cell receptive fields, tiling a small region of visual space.
Ellipses represent 1 s.d. of a Gaussian fit to each receptive field centre; the
square grid indicates stimulus pixels. c–e, Parameters for an example ON
cell. c, Temporal and spatial components of centre (red) and surround (blue)
filter components, the difference of which is the full stimulus filter.

d, Exponentiated post-spike filter, which may be interpreted as multiplying
the spike rate after a spike at time zero. It produces a brief refractory period
and gradual recovery (with a slight overshoot). e, Connectivity and coupling
filters from other cells in the population. The black filled ellipse is this cell’s
RF centre, and blue and red lines show connections from neighbouring OFF
and ON cells, respectively (line thickness indicates coupling strength).
Below, exponentiated coupling filters show the multiplicative effect on this
cell’s spike rate after a spike in a neighbouring cell. f–h, Analogous plots for
an example OFF cell.
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