SPIKE TRIGGERED APPROACHES

Odelia Schwartz Computational Neuroscience Course 2021

LINEAR NONLINEAR MODELS

DESCRIPTIVE MODELS: DIVISIVE NORMALIZATION

- Canonical computation (Carandini, Heeger, 2013)
- Has been applied to primary visual cortex (V1)
- More broadly, to other systems and modalities, multimodal processing, value encoding, etc

DESCRIPTIVE MODELS: COMPLEX CELLS AND INVARIANCE

o after Adelson & Bergen, 1985

FITTING DESCRIPTIVE MODELS TO DATA

REMINDER: RECEPTIVE FIELD

REMINDER: RECEPTIVE FIELD

RECEPTIVE FIELD

EFFECT OF NONLINEARITY IN MODEL?

EFFECT OF NONLINEARITY IN MODEL?

EFFECT OF NONLINEARITY IN MODEL?

BUT STA DOES NOT ALWAYS WORK

BUT STA DOES NOT ALWAYS WORK

WHAT HAPPENED??

CHANGE IN THE VARIANCE

- Figure from Schwartz et al. 2006; see also Rust et al. 2005, de Ruyter & Bialek 1988
- Approach estimates linear subspace and nonlinearity
- (stixel = space time pixel)

CHANGE IN VARIANCE (STC)

CHANGE IN VARIANCE (STC)

CHANGE IN VARIANCE (STC)

SECOND FILTER SUPPRESSIVE (E.G., DIVISIVE)

SECOND FILTER SUPPRESSIVE (E.G., DIVISIVE)

SECOND FILTER SUPPRESSIVE (E.G., DIVISIVE)

SPIKE TRIGGERED APPROACES

MORE GENERAL CLASS OF MODEL

Look for changes in both the mean and the variance...

APPLICATION: V1 EXPERIMENT

V1 NEURAL DATA: SPIKE-TRIGGERED COVARIANCE

V1 NEURAL DATA: RECALL THE STANDARD MODELS

But...

Data show multiple filters (excitatory and suppressive) for both.

Are these really two different classes of neurons, or is there a continuum??

STC ISSUES: HOW MANY SPIKES?

STC CAVEATS

- Analysis forces filters that are 90 degrees apart!
 Filters should not be taken literally as physiological mechanisms
- Spiking in neuron may be non Poisson (bursts; refractory period; etc.)
 Filters should not be taken literally as physiological mechanisms
- There might be more filters affecting neural response than what analysis finds
- STC guaranteed to work only for Gaussian stimuli
- There might be changes that are not in the mean or variance (other approaches; e.g., info theory)

EXAMPLE: FITTING LN-LN MODEL

- Figure from Pagan et al. 2015 describing retina and V1 with subunits (see Rust et al. 2005; Vintch et al. 2015)
- In Pagan et al. 2015 addressing higher level brain areas
- \circ See also Rowekamp et al. 2017 addressing area V2

EXAMPLE: GENERALIZED LINEAR MODEL

