Efficient Coding

Odelia Schwartz 2020

Levels of modeling

Descriptive (what)

Mechanistic (how)

Interpretive (why)

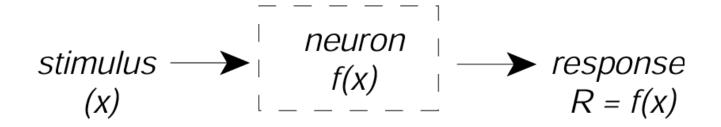
Levels of modeling

 Fitting a receptive field model to experimental data (e.g., using spiketriggered stimuli; you've seen)

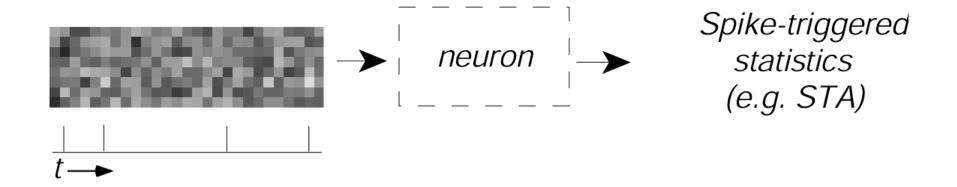
Versus

 Deriving receptive field model based on theoretical principles (e.g., statistical structure of scenes)

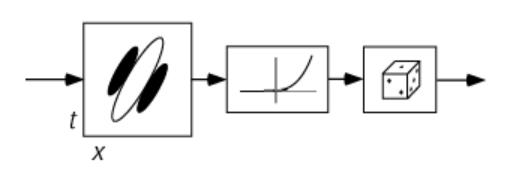
Fitting a model to data

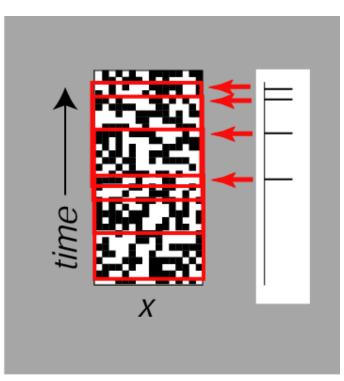


Fitting a model to data



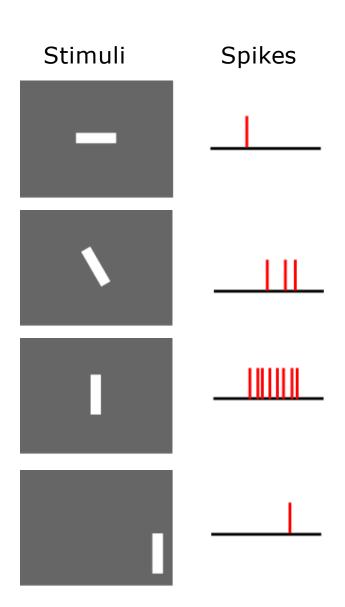
Primary visual cortex





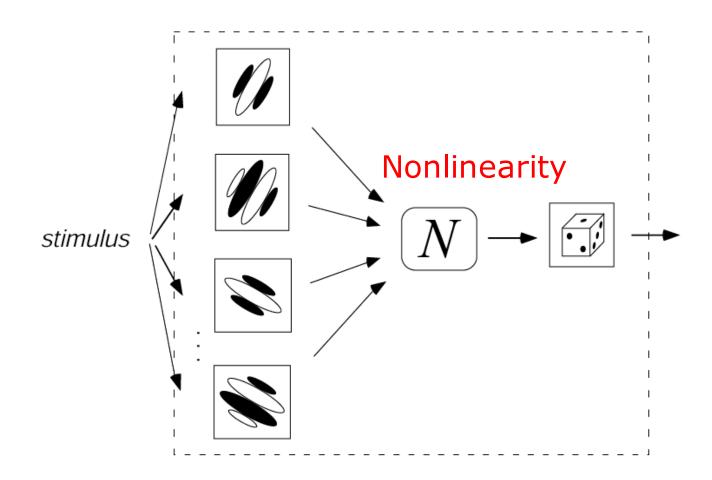
Primary visual cortex

Hubel and Wiesel, 1959



Receptive field (filter)

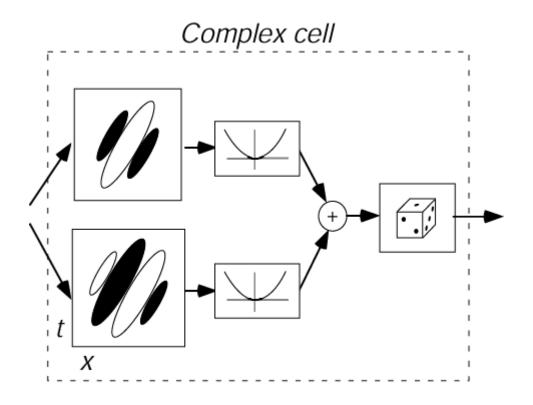
Fitting a model to spike data



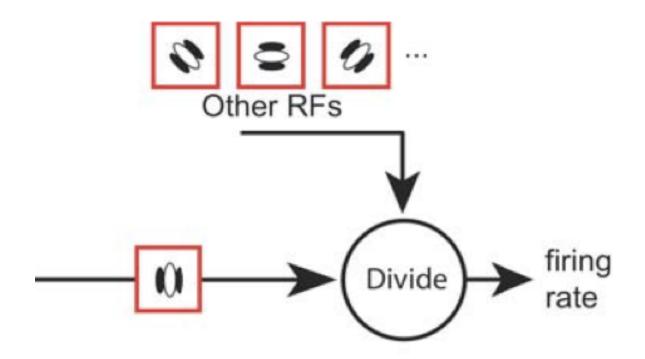
Fitting a model to spike data

What kind of nonlinearities?

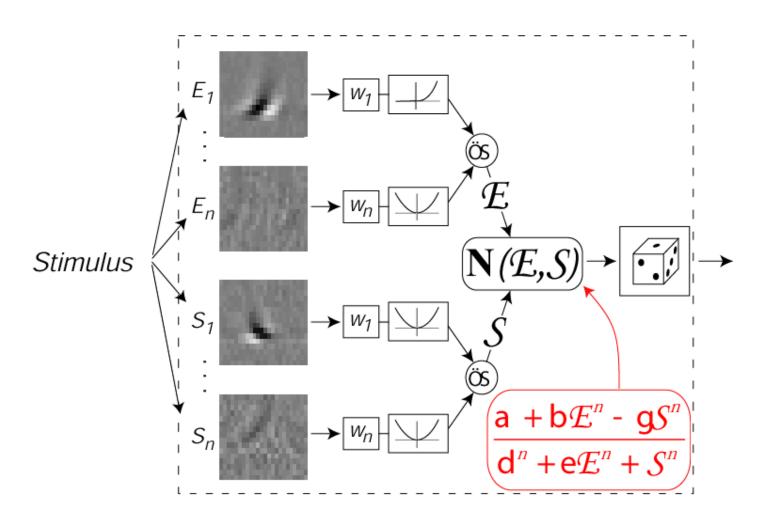
Complex cell



Divisive normalization



Fitting a model to spike data



Rust et al. 2005; Schwartz et al. 2006

Levels of modeling

 Fitting a receptive field model to experimental data (e.g., using spiketriggered stimuli)

Versus

 Deriving receptive field model based on theoretical principles (e.g., statistical structure of scenes)—adding an interpretive layer.

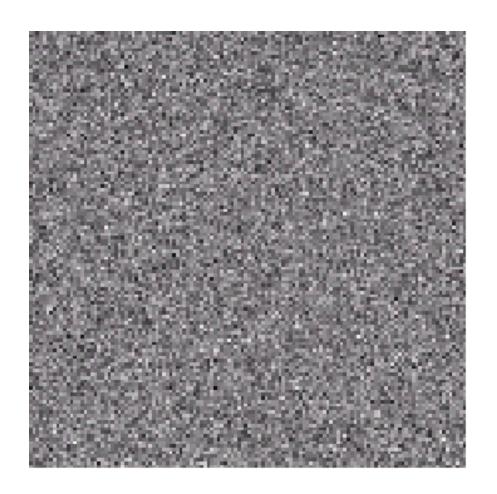
Complementary question

Can we derive or constrain a neural model by understanding statistical regularities in scenes?

Complementary question

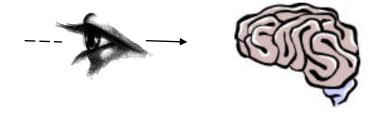
Appealing hypothesis: brain evolved to capture probabilistic aspects of the natural environment

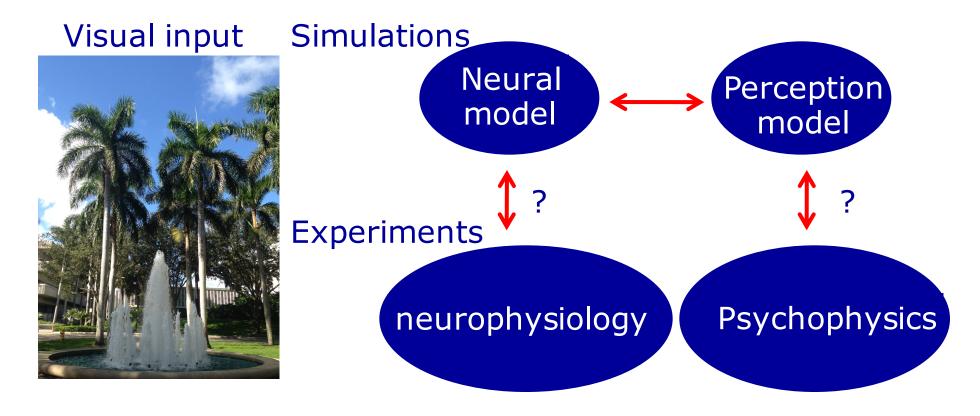
Unlike...



Also quite different from traditional experimental stimulus in vision experiments...

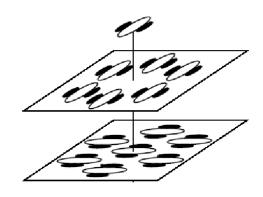
Visual representation





Goals: Principled and predictive understanding

Building model from scene stats



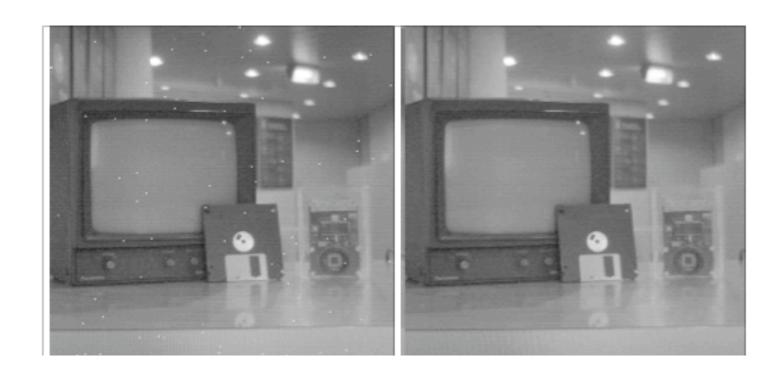
- Cortical computations as interactions of RFs across space, orientation, etc.
- RFs and interaction constrained by scene statistics? Can we derive them?

Theory

• **Locke:** The mind is a "tabula rasa" and only filled with knowledge after sense experience

• **Helmholtz:** perception as inference of the properties of sensory stimuli

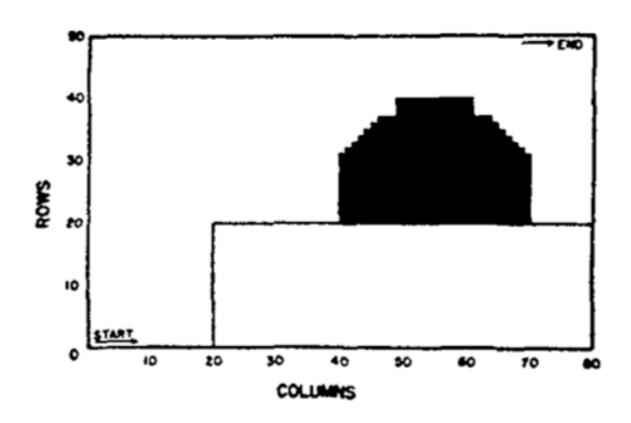
• Attneave, Barlow: Hypothesized in the 1950s that sensory processing matched to statistics of environment (reduce redundancy; increase independence)



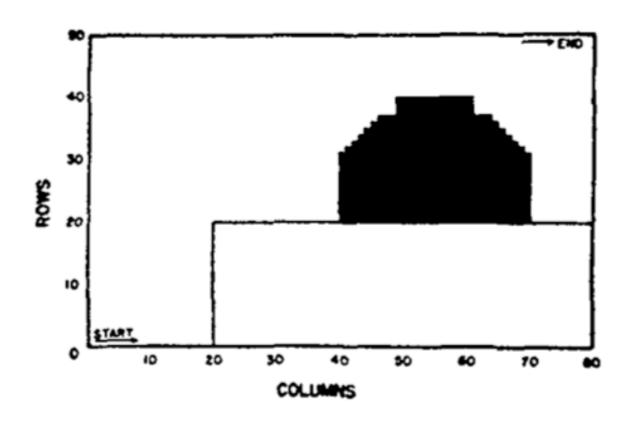
Kersten, 1992 (psychophysics);

23

Dierickx and Meynants, 1987 (computer)

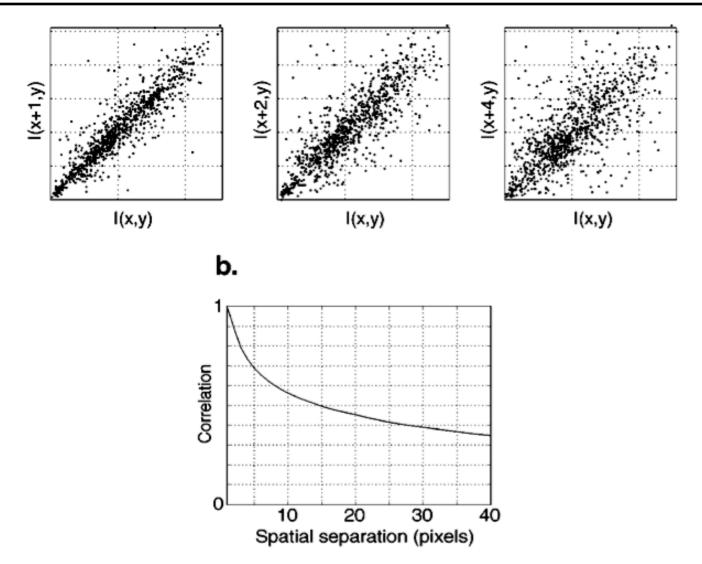


Attneave 1951; "guessing game"



25 Attneave 1951; "ink bottle on the corner of the desk"

Statistics of images show dependencies



Simoncelli and Olshausen review, 2001

Scene statistics approaches

Two main approaches for studying scene statistics

- 1. Bottom-up
- 2. Top-down, generative

Scene statistics approaches

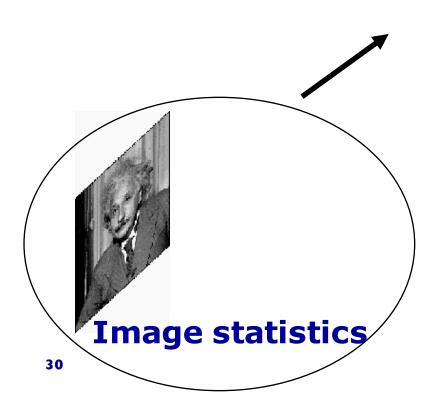
Two main approaches for studying scene statistics

1. Bottom-up (This class!)

2. Top-down, generative

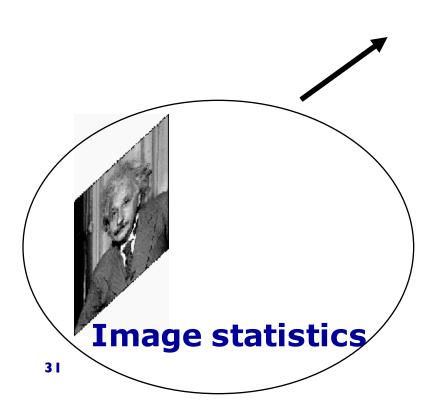
Bottom-up approach

Choose and manipulate projections, to optimize probabilistic and information-theoretic metrics



Bottom-up approach

We'll take a small detour and talk about Information Theory...



Redundancy:

- Marginal distribution (eg., in English "a" more often than "q")
- Joint distribution (eg, "sh" more often than "sd")
- Analogous to images marginal and joint...
 (later)

Redundancy and relation to coding in bits:

BABABABADABACAABAACABDAAAAABAAAAAAAAADBCA

```
A \rightarrow 00
B \rightarrow 01
C \rightarrow 10
D \rightarrow 11
A \rightarrow 0
B \rightarrow 10
C \rightarrow 10
D \rightarrow 11
```

Hyvarinen et al. book, 2009

Entropy:

$$H(y) = -\sum_{y} p(y) \log_2 p(y)$$

- Measure of uncertainty or how interesting
- Always positive and equal to zero iff outcome is certain
- Log base 2 expressed in bits
- Relates to minimal coding length

Entropy:

$$H(y) = -\sum_{y} p(y) \log_2 p(y)$$

- Example: P(A)=1/2; P(B)=1/4; P(C)=1/8; P(D)=1/8
- Entropy = 1.75 bits (compared to 2 bits if all equal)

Entropy:

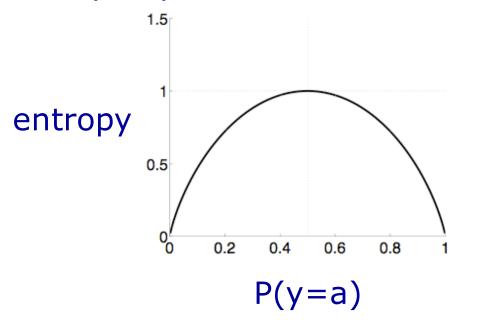
$$H(y) = -\sum_{y} p(y) \log_2 p(y)$$

• If there are 2 possible outcomes with probability p and 1-p, when is the entropy maximal?

Entropy:

$$H(y) = -\sum_{y} p(y) \log_2 p(y)$$

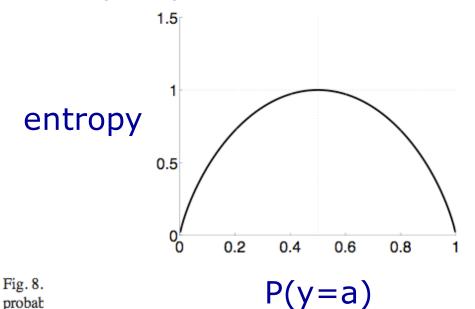
Example: possible outcomes: a, b



Entropy:

$$H(y) = -\sum_{y} p(y) \log_2 p(y)$$

Example: possible outcomes: a, b



Maximum entropy when most random (0.5), or more generally for uniform distribution

We've thus far looked at marginal distributions through one channel; we would like to also look at joint...

Conditional Entropy:

$$H(y \mid x) = -\sum_{x} p(x) \sum_{y} p(y \mid x) \log_2 p(y \mid x)$$

How much entropy left in y when we know x

We've thus far looked at marginal distributions through one channel; we would like to also look at joint...

Conditional Entropy:

$$H(y \mid x) = -\sum_{x} p(x) \sum_{y} p(y \mid x) \log_2 p(y \mid x)$$

averaged over all x

How much entropy left in y when we know x

We've thus far looked at marginal distributions through one channel; we would like to also look at joint...

Conditional Entropy:

$$H(y \mid x) = -\sum_{x} p(x) \sum_{y} p(y \mid x) \log_2 p(y \mid x)$$

averaged over all x

How much entropy left in y when we know x

What happens when x and y are independent?
 Dependent? Equal?

Conditional Entropy:

$$H(y \mid x) = -\sum_{x} p(x) \sum_{y} p(y \mid x) \log_2 p(y \mid x)$$

- How much entropy left in y when we know x, averaged over all x
- What happens when x and y are independent?
 Dependent?

Independent: H(y | x) = H(y)

Dependent: H(y|x) < H(y)

Equal: H(y | x) = 0

Mutual information:

$$I(x,y) = H(y) - H(y \mid x)$$

 What is the mutual information if x and y are independent?

Mutual information:

$$I(x,y) = h(y) - h(y \mid x) = \dots$$
$$\sum_{x,y} p(x,y) \log_2 \left(\frac{p(x,y)}{p(x)p(y)} \right)$$

- What is the mutual information if x and y are independent?
- Also Kullback-Leibler between...

Marginal and joint entropy:

$$H(y_1, y_2, ...y_n) \le H(y_1) + H(y_2) + ... + H(y_n)$$

Equality iff independent: $p(y_1, y_2, ... y_n) = p(y_1)p(y_2)...p(y_n)$

Marginal and joint entropy:

$$H(y_1, y_2, ...y_n) \le H(y_1) + H(y_2) + ... + H(y_n)$$

Equality iff independent: $p(y_1, y_2, ... y_n) = p(y_1)p(y_2)...p(y_n)$

Maximal entropy when:

- Outputs through a single channel as random as possible (but subject to constraints on channel)
- Independent. In general, hard to achieve. Restrict to, eg, linear.

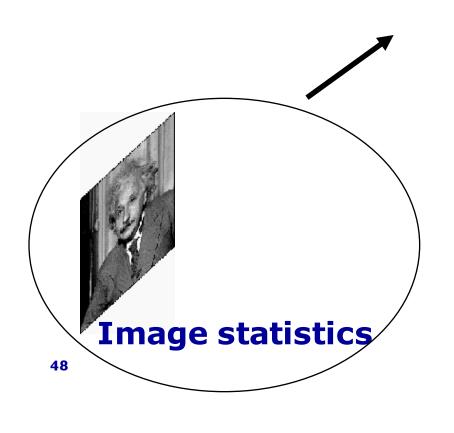
Redundancy; we can optimize...

- Marginal distribution (eg., in English "a" more often than "q")
- Joint distribution (eg, "sh" more often than "sd")

What about images...?

Bottom-up approach

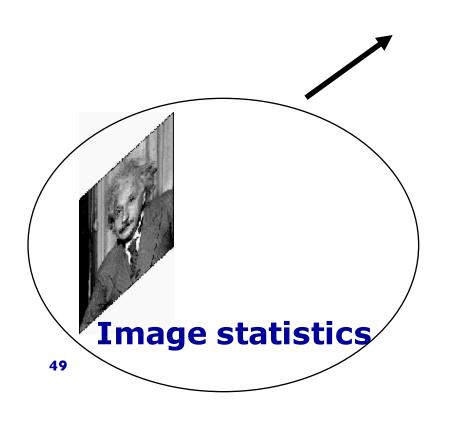
Choose and manipulate projections, to optimize probabilistic and information-theoretic metrics



We'll go through past examples in the field, building up to more recent approaches...

Bottom-up approach

Choose and manipulate projections, to optimize probabilistic and information-theoretic metrics



Optimizing marginal statistics

Efficient coding: single neuron fly vision

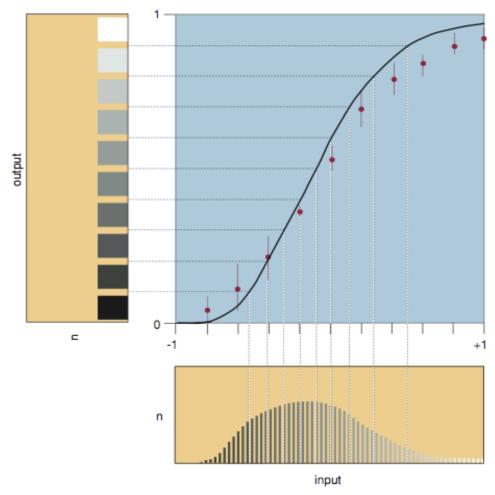
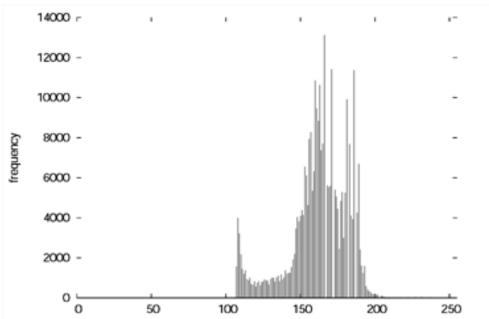
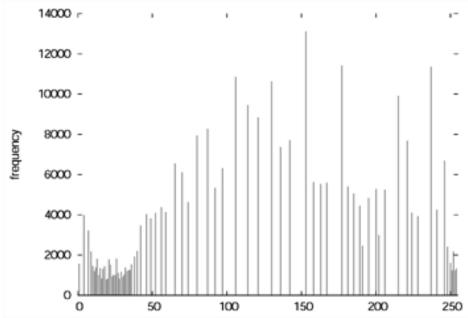
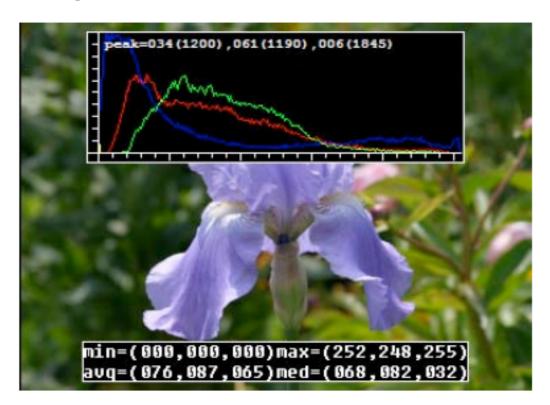


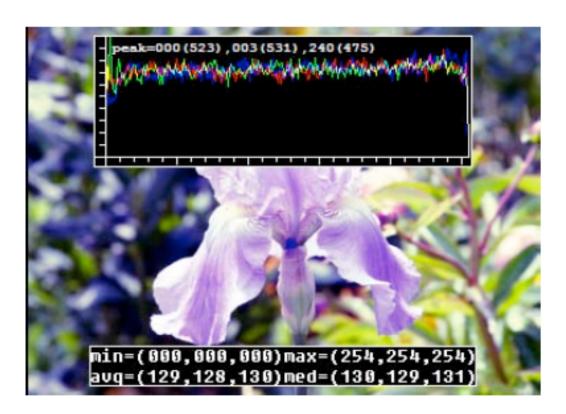
Figure from Olshausen & Field 2000; adapted from Laughlin 1981; Measured contrasts in natural scenes and showed that the membrane potential of fly visual neurons approximately transforms to uniform





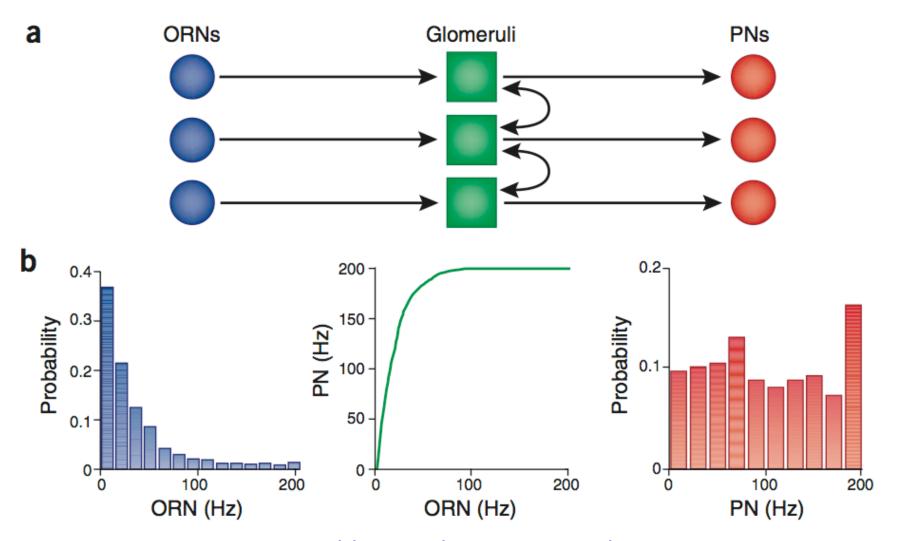


Richard Szeliski, Computer Vision Book 2010



Richard Szeliski, Computer Vision Book 2010

Efficient coding: fly olfaction



Abbott and Luo News and Views 2007; After Bhandawat et al. 2007

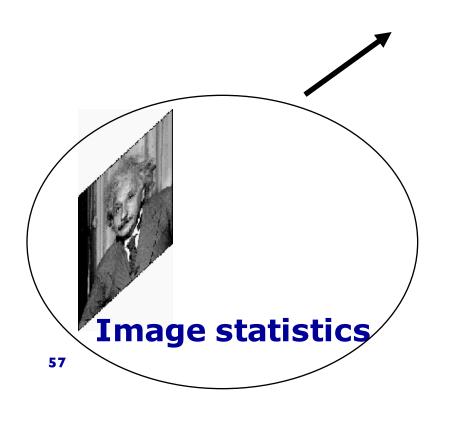
Bottom-up approach

Choose and manipulate projections, to optimize probabilistic and information-theoretic metrics

Assuming a linear system and optimizing joint statistics: decorrelation

Bottom-up approach

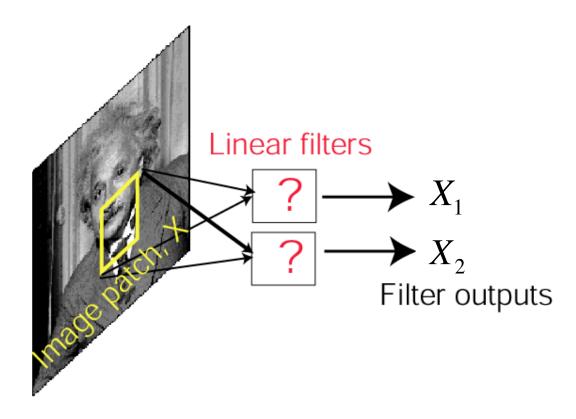
Choose and manipulate projections, to optimize probabilistic and information-theoretic metrics



decorrelation

$$E[y_i y_j] = 0; i \neq j$$

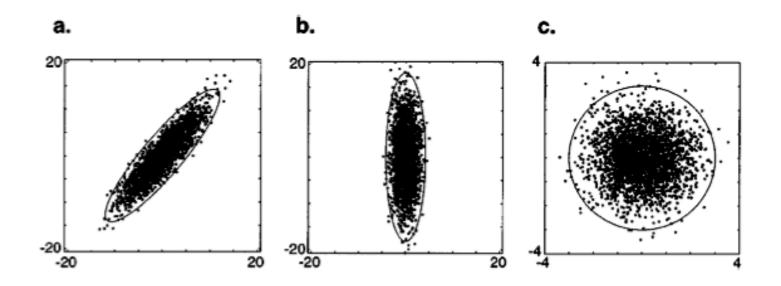
Does this guarantee independence?

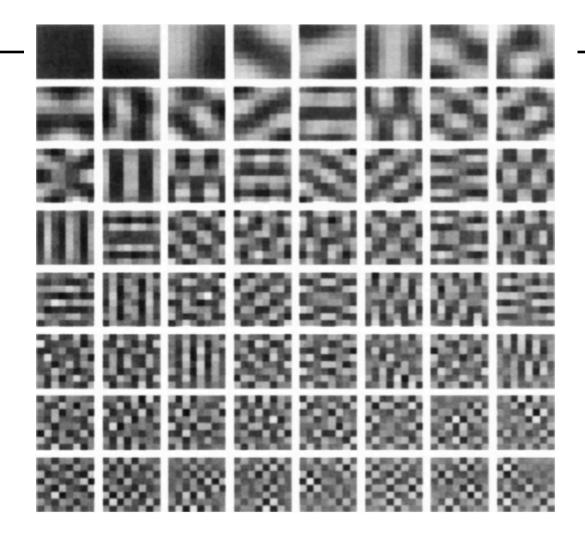


Find linear filters that decorrelate filter outputs to natural images

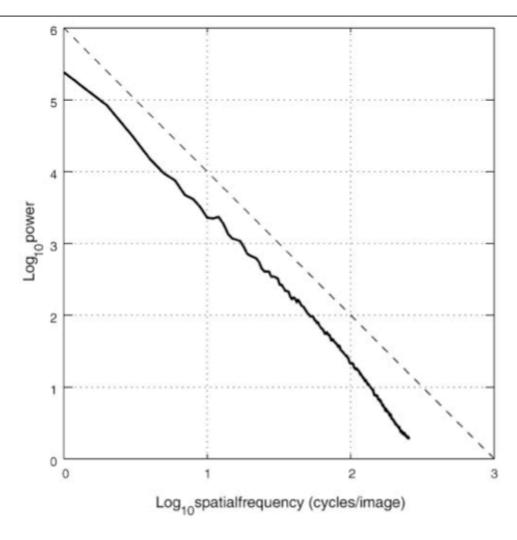
Geometric view (PCA)

Gaussian distribution





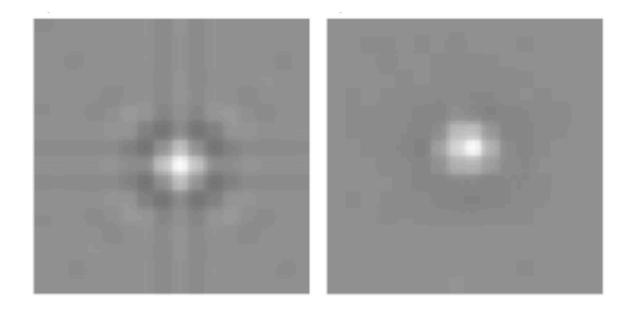
• Principal Component Analysis on image patches



 Power spectrum of natural images (from Simoncelli & Olshausen review)

6 I

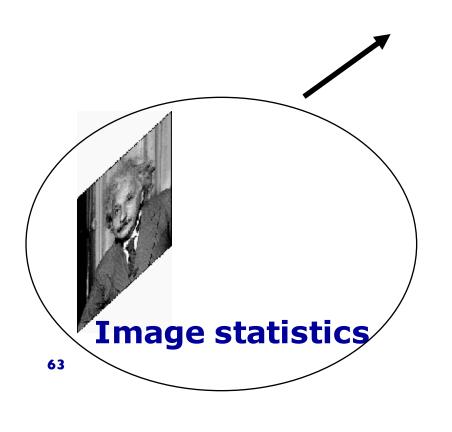
Bottom-up approach



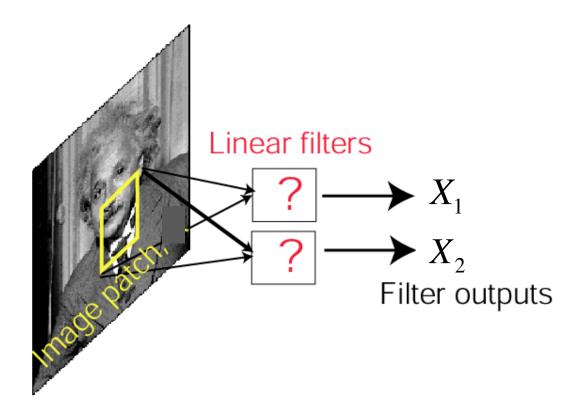
- PCA and imposing extra constraints such as Spatially localized filters (from Hyvarinen book; see Atick & Redlich 1992; Zhaoping 2006)
- Remember decorrelated does not mean independent

Bottom-up approach

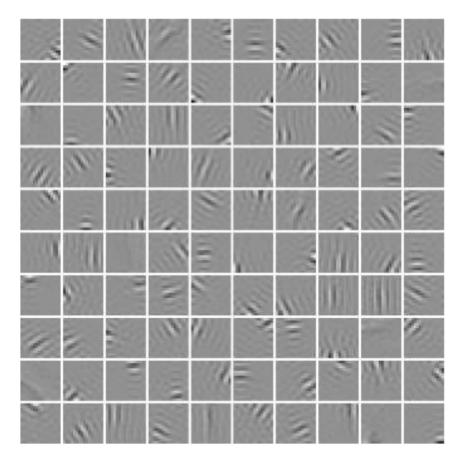
Choose and manipulate projections, to optimize probabilistic and information-theoretic metrics



Assuming a linear system and optimizing joint statistics: independence

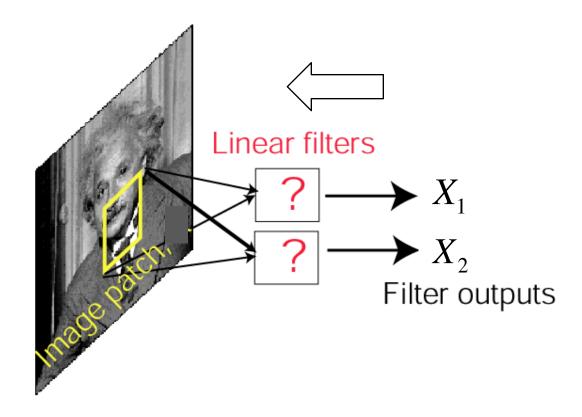


Find linear filters that maximize measure of statistical independence (or sparseness) between filter outputs to natural images (e.g., *Olshausen* & Field, 1996; *Bell* & Sejnowski 1997)

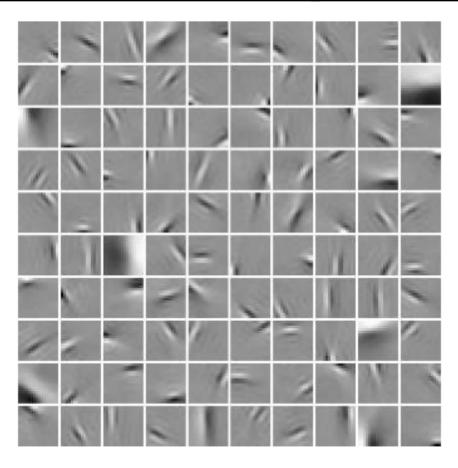


- ICA filters plotted from Hoyer images (e.g., Olshausen & Field, 1996; Bell & Sejnowski 1997— here at Redwood!)
- Qualitatively related to V1 RFs

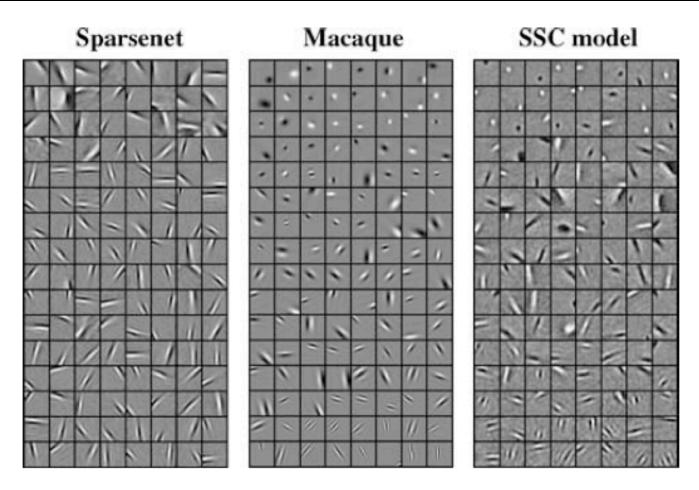
65



Linear transform, so from filter outputs can also go back to the image...



- ICA basis functions; from Hoyer
- Olshausen & Field, 1996; Bell & Sejnowski 1997

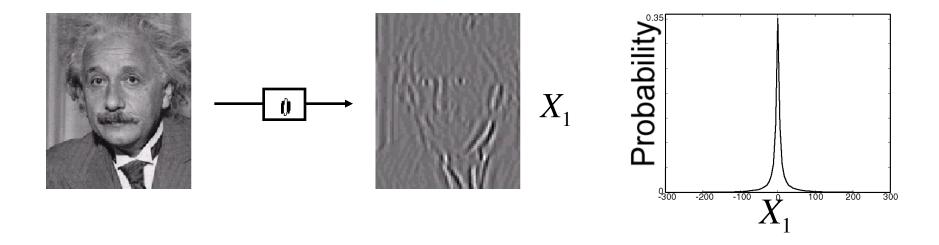


- Note also more recent work explaining neural diversity
- Rehn and Sommer, 2007 (data: Ringach)

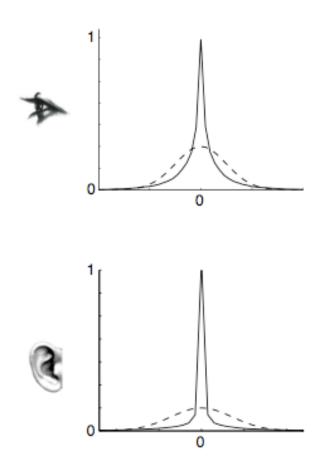
Bottom-up approach

What about sparse? (e.g., Olshausen & Field)

Bottom-up Statistics

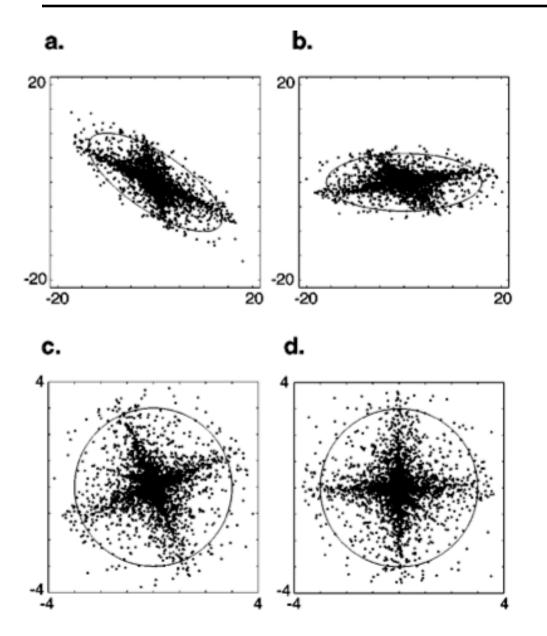


Bottom-up Statistics



- Well described by, eg, generalized Gaussian distribution

Geometric view (ICA)



Non Gaussian (sparse) distribution

Simoncelli & Olshausen review, 2001

ICA and sparse coding

- In ICA maximizing independence assuming a linear transform (e.g., by maximizing joint entropy of the output).
- But should also assume that the outputs have a sparse distribution...

<u>Summary</u>

- Different levels of modeling...
- We've considered bottom-up scene statistics, efficient coding, and relation of linear transforms to visual filters
- Efficient coding through one channel and multiple channels
- Can we propagate statistical principles (such as efficient coding?) and how far?
- Next class: nonlinearities