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• Descriptive (what)

• Mechanistic (how)

• Interpretive (why)

Levels of modeling
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• Fitting a receptive field model to 
experimental data (e.g., using spike-
triggered stimuli; you’ve seen)

Versus

• Deriving receptive field model based on
theoretical principles (e.g., statistical 
structure of scenes)

Levels of modeling
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Fitting a model to data
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Fitting a model to data



6

Model:

STA

Primary visual cortex
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Primary visual cortex
Hubel and Wiesel, 1959 Stimuli Spikes
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Receptive field (filter)
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Fitting a model to spike data

Nonlinearity
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Fitting a model to spike data

What kind of nonlinearities?
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Complex cell



12

Divisive normalization



13
Rust et al. 2005; Schwartz et al. 2006

Fitting a model to spike data
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• Fitting a receptive field model to 
experimental data (e.g., using spike-
triggered stimuli)

Versus

• Deriving receptive field model based on 
theoretical principles (e.g., statistical 
structure of scenes)—adding an 
interpretive layer.

Levels of modeling
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Complementary question

Can we derive or constrain a neural model by
understanding statistical regularities in scenes?
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Complementary question

Appealing hypothesis: brain evolved to capture 
probabilistic aspects of the natural environment
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Unlike…
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Also quite different from traditional experimental 
stimulus in vision experiments…
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Visual representation
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Visual 
input

Neural
model

Perception
model

? ?

SimulationsVisual input

neurophysiology Psychophysics

Experiments

• Goals:  Principled  and  predictive  understanding
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- Cortical computations as interactions of   
RFs across space, orientation, etc.

- RFs and interaction constrained by scene
statistics? Can we derive them?

Building model from scene stats
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Theory

• Helmholtz: perception as inference of the 
properties of sensory stimuli

• Attneave, Barlow: Hypothesized in the 
1950s that sensory processing matched to 
statistics of environment (reduce
redundancy; increase independence)

• Locke: The mind is a “tabula rasa” and   
only filled with knowledge after sense 
experience 
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Images are spatially redundant

Kersten, 1992 (psychophysics); 

Dierickx and Meynants, 1987 (computer)



24 Attneave 1951; “guessing game”

Images are spatially redundant



25 Attneave 1951; “ink bottle on the corner of the desk”

Images are spatially redundant
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Images are spatially redundant
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Simoncelli and Olshausen review, 2001

Statistics of images show dependencies
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Scene statistics approaches

Two main approaches for studying 
scene statistics

1.Bottom-up

2.Top-down, generative
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Scene statistics approaches

Two main approaches for studying 
scene statistics

1.Bottom-up (This class!)

2.Top-down, generative
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Bottom-up approach

Image statistics

Choose and manipulate projections, 
to optimize probabilistic and 
information-theoretic metrics
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Bottom-up approach

Image statistics

We’ll take a small detour and
talk about Information Theory…
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Intro Information Theory

Redundancy:

- Marginal distribution (eg., in English “a”more
often than “q”)

- Joint distribution (eg, ”sh”more often than “sd”)

- Analogous to images marginal and joint…
(later) 
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Intro Information Theory

Redundancy and relation to coding in bits:

Hyvarinen et al. book, 2009
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Intro Information Theory

Entropy:

€ 

H(y) = − p(y)log2 p(y)
y
∑

• Measure of uncertainty or how interesting 

• Always positive and equal to zero iff outcome is certain

• Log base 2 – expressed in bits

• Relates to minimal coding length
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Intro Information Theory

Entropy:

€ 

H(y) = − p(y)log2 p(y)
y
∑

• Example: P(A)=1/2; P(B)=1/4; P(C)=1/8; P(D)=1/8

• Entropy = 1.75 bits (compared to 2 bits if all equal)
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Intro Information Theory

Entropy:

€ 

H(y) = − p(y)log2 p(y)
y
∑

• If there are 2 possible outcomes with probability 
p and 1-p, when is the entropy maximal?



37

Intro Information Theory

Entropy:

€ 

H(y) = − p(y)log2 p(y)
y
∑

P(y=a)

entropy

Example: possible outcomes: a, b
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Intro Information Theory

Entropy:

€ 

H(y) = − p(y)log2 p(y)
y
∑

P(y=a)

entropy

Example: possible outcomes: a, b

Maximum entropy
when most random
(0.5), or more generally
for uniform distribution
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Intro Information Theory

Conditional Entropy:

€ 

H(y | x) = − p(x) p(y | x)
y
∑ log2 p(y | x)

x
∑

How much entropy left 
in y when we know x

We’ve thus far looked at marginal distributions through
one channel; we would like to also look at joint…
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Intro Information Theory

Conditional Entropy:

€ 

H(y | x) = − p(x) p(y | x)
y
∑ log2 p(y | x)

x
∑

How much entropy left 
in y when we know x

We’ve thus far looked at marginal distributions through
one channel; we would like to also look at joint…

averaged 
over all x
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Intro Information Theory

Conditional Entropy:

€ 

H(y | x) = − p(x) p(y | x)
y
∑ log2 p(y | x)

x
∑

• What happens when x and y are independent?
Dependent? Equal?

We’ve thus far looked at marginal distributions through
one channel; we would like to also look at joint…

How much entropy left 
in y when we know x

averaged 
over all x
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Intro Information Theory

Conditional Entropy:

€ 

H(y | x) = − p(x) p(y | x)
y
∑ log2 p(y | x)

x
∑

• How much entropy left in y when we know x,
averaged over all x

• What happens when x and y are independent?
Dependent?

Independent: 

Dependent:

Equal:

H (y | x) = H (y)

H (y | x) < H (y)

H (y | x) = 0
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Intro Information Theory

Mutual information:

I(x, y) = H (y)− H (y | x)

• What is the mutual information if x and y are
independent?  
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Intro Information Theory

Mutual information:

€ 

I(x,y) = h(y) − h(y | x) = ...

p(x,y)log2
x,y
∑ p(x,y)

p(x)p(y)
$ 

% 
& 

' 

( 
) 

• What is the mutual information if x and y are
independent?

• Also Kullback-Leibler between…   
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Intro Information Theory

Marginal and joint entropy:

€ 

H(y1,y2,...yn ) ≤ H(y1) + H(y2) + ...+ H(yn )

Equality iff independent:

€ 

p(y1,y2,...yn ) = p(y1)p(y2)...p(yn )
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Intro Information Theory

Marginal and joint entropy:

Maximal entropy when:

• Outputs through a single channel as random as
possible (but subject to constraints on channel)

€ 

H(y1,y2,...yn ) ≤ H(y1) + H(y2) + ...+ H(yn )

Equality iff independent:

• Independent. In general, hard to achieve.
Restrict to, eg, linear.

€ 

p(y1,y2,...yn ) = p(y1)p(y2)...p(yn )
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Intro Information Theory

Redundancy; we can optimize…

• Marginal distribution (eg., in English “a”more
often than “q”)

• Joint distribution (eg, ”sh”more often than “sd”)

What about images…?
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Bottom-up approach

Image statistics

Choose and manipulate projections, 
to optimize probabilistic and 
information-theoretic metrics

We’ll go through past
examples in the field,
building up to more
recent approaches…
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Bottom-up approach

Image statistics

Choose and manipulate projections, 
to optimize probabilistic and 
information-theoretic metrics

Optimizing marginal
statistics



50

Efficient coding: single neuron fly vision

Figure from Olshausen & Field 2000; adapted from Laughlin 1981;
Measured contrasts in natural scenes and showed that the membrane 
potential of fly visual neurons approximately transforms to uniform
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Similar idea in image processing…
Histogram equalization
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Similar idea in image processing…
Histogram equalization
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Richard Szeliski, Computer Vision Book 2010

Similar idea in image processing…
Histogram equalization
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Richard Szeliski, Computer Vision Book 2010

Similar idea in image processing…
Histogram equalization
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Efficient coding: fly olfaction

Abbott and Luo News and Views 2007;
After Bhandawat et al. 2007
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Bottom-up approach

Image statistics

Choose and manipulate projections, 
to optimize probabilistic and 
information-theoretic metrics

Assuming a linear
system and optimizing
joint statistics:
decorrelation
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Bottom-up approach

Image statistics

Choose and manipulate projections, 
to optimize probabilistic and 
information-theoretic metrics

decorrelation

Does this guarantee
independence?

E[yiyj ]= 0;i ≠ j
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Linear Model: Theory

Find linear filters that decorrelate filter outputs 
to natural images

€ 

X1

€ 

X2



59 Simoncelli & Olshausen review, 2001

Geometric view (PCA)

Gaussian distribution
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• Principal Component Analysis on image patches
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• Power spectrum of natural images
(from Simoncelli & Olshausen review)
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Bottom-up approach

• PCA and imposing extra constraints such as
Spatially localized filters (from Hyvarinen
book; see Atick & Redlich 1992; Zhaoping 2006)
• Remember decorrelated does not mean independent
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Bottom-up approach

Image statistics

Choose and manipulate projections, 
to optimize probabilistic and 
information-theoretic metrics

Assuming a linear
system and optimizing
joint statistics:
independence



64

Linear Model: Theory

Find linear filters that maximize measure of statistical 
independence (or sparseness) between filter outputs 
to natural images (e.g., Olshausen & Field, 1996; 
Bell & Sejnowski 1997)

€ 

X1

€ 

X2
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Linear Model: Theory

• ICA filters plotted from Hoyer 
images (e.g., Olshausen & Field, 1996; 
Bell & Sejnowski 1997— here at Redwood!)

• Qualitatively related to V1 RFs
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Linear Model: Theory

Linear transform, so from filter outputs can
also go back to the image…

€ 

X1

€ 

X2
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Linear Model: Theory

• ICA basis functions; from Hoyer
• Olshausen & Field, 1996; Bell & Sejnowski 1997 
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Linear Model: Theory

• Note also more recent work explaining neural  
diversity

• Rehn and Sommer, 2007 (data: Ringach)
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Bottom-up approach

What about sparse?
(e.g., Olshausen & Field)
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Bottom-up Statistics

€ 

X1

After Field, 1987
€ 

X1
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Bottom-up Statistics

- Well described by, eg, generalized Gaussian
distribution
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Simoncelli & Olshausen
review, 2001

Geometric view (ICA)

Non Gaussian 
(sparse) 
distribution
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ICA and sparse coding

• In ICA maximizing independence assuming a 
linear transform (e.g., by maximizing joint entropy 
of the output).

• But should also assume that the outputs have
a sparse distribution… 
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Summary
• Different levels of modeling…

• We’ve considered bottom-up scene statistics, efficient
coding, and relation of linear transforms to visual filters

• Efficient coding through one channel and multiple 
channels 

• Can we propagate statistical principles (such as 
efficient coding?) and how far?

• Next class: nonlinearities


