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Sensory processing in the Drosophila antennal lobe
increases reliability and separability of ensemble
odor representations
Vikas Bhandawat1, Shawn R Olsen1,2, Nathan W Gouwens1,2, Michelle L Schlief1,2& Rachel I Wilson1

Here we describe several fundamental principles of olfactory processing in the Drosophila melanogaster antennal lobe (the analog
of the vertebrate olfactory bulb), through the systematic analysis of input and output spike trains of seven identified glomeruli.
Repeated presentations of the same odor elicit more reproducible responses in second-order projection neurons (PNs) than in
their presynaptic olfactory receptor neurons (ORNs). PN responses rise and accommodate rapidly, emphasizing odor onset.
Furthermore, weak ORN inputs are amplified in the PN layer but strong inputs are not. This nonlinear transformation broadens PN
tuning and produces more uniform distances between odor representations in PN coding space. In addition, portions of the odor
response profile of a PN are not systematically related to their direct ORN inputs, which probably indicates the presence of lateral
connections between glomeruli. Finally, we show that a linear discriminator classifies odors more accurately using PN spike trains
than using an equivalent number of ORN spike trains.

Each glomerulus in the olfactory system receives synaptic input from
many ORNs, all of which express the same odorant receptor gene. Each
second-order neuron sends a dendrite into a single glomerulus, so for
each odorant receptor gene there is an identifiable ORN type and a
corresponding type of second-order neuron. An odorant typically
activates multiple ORN types, and so each odor is represented as a
population code across different glomerular processing channels1,2 .
What happens to olfactory signals as they move through these channels?
It is technically challenging to address this question in vertebrates
because there are so many glomeruli. In Drosophila, the problem is
comparatively simpler because the antennal lobe contains only B50
glomeruli. Each of these glomeruli has a stereotyped position that is
identifiable across flies, and almost all have been matched to an
identified ORN type3–6 . For these reasons, it may be easier to discover
the basic principles of early olfactory processing in this model organism.
In general, effective information transmission requires that the

response evoked by a stimulus should be highly reliable, and that the
responses evoked by different stimuli should be distinctive. Therefore,
we have focused on two fundamental questions. First, how reprodu-
cible is the number of spikes evoked by repeated presentations of the
same odor? There has been remarkably little attention paid to the
reproducibility of olfactory responses, and the small number of
previous studies on this issue have been concerned with the precision
of spike timing rather than the reproducibility of spike counts7,8 .
Response reproducibility is a central issue in sensory processing
because the signal-to-noise ratio of a neural response limits the rate
of information transmission by that neuron.

The second fundamental question concerns the distinctiveness of
neural responses to different stimuli. How selective are ORNs, and how
does their selectivity compare with that of second-order olfactory
neurons? Three studies published more than 2 0 years ago in vertebrates
reached conflicting conclusions on this issue, but it was not feasible for
these investigators to directly compare the selectivity of pre- and
postsynaptic neurons corresponding to the same glomerulus9–11.
More recently, three studies made this direct comparison in the
Drosophila antennal lobe, but again the results were conflicting12 –14 .
Two of these studies used genetically encoded sensors, which may not
report spike trains faithfully owing to their limited dynamic range15,16 ;
the third study recorded spike trains directly, but examined only
one glomerulus.
Here we aim to resolve these issues with a systematic analysis of the

inputs and outputs of seven glomeruli in the Drosophila antennal lobe
(Supplementary Fig. 1 online). Our results show that there is a major
transformation of olfactory representations in this region of the brain.
The most important effects of this transformation are to improve the
signal-to-noise ratio of individual spike trains and to distribute odor
representations more uniformly in neuronal coding space.

RESULTS
Odor responses are more reliable in PNs than in ORNs
The variability of a neuronal response can be quantified by assessing the
variability in the number of spikes evoked by a sensory stimulus. In
most sensory systems, the spike-count variability of stimulus-evoked
responses increases at each successive level of processing in a sensory
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SIMILAR�CLINICAL�MANIFESTATIONS��SUGGESTING�THAT�
THESE� TWO�PROTEINS�OPERATE� THROUGH�COMMON�
MECHANISMS���� ,AFORIN� IS� A� PHOSPHATASE� THAT�
INTERACTS� WITH� 04'��� AND� HAS� A� FUNCTIONAL�
CARBOHYDRATEBINDING� DOMAIN�� -ALIN� IS� A�
UBIQUITIN�LIGASE�THAT�CAUSES�UBIQUITINATION�AND�
PROTEASOMEMEDIATED�DEGRADATION�OF�LAFORIN���

)N� A� SERIES� OF� ELEGANT� EXPERIMENTS���
6ILCHEZ�ET�AL���BROUGHT�THE�PIECES�OF�THE�PUZZLE�
TOGETHER�� 4HEY� SHOWED� THAT� THE� MASSIVE�
INDUCTION� OF� GLYCOGEN� SYNTHASE� ACTIVITY� AND�
OF� ABNORMAL� GLYCOGEN� DEPOSITION� INDUCED�
IN� NEURONS� WHEN� 04'� IS� OVEREXPRESSED� IS�
ABOLISHED�BY�THE�CONCOMITANT�OVEREXPRESSION�
OF� BOTH� LAFORIN� AND� MALIN�� �/VEREXPRESSING�
EITHER� ONE� ALONE� HAD� NO� EFFECT�	� 4HEY� ALSO�
DEMONSTRATED�THAT�THE�MALINLAFORIN�COMPLEX�
MARKEDLY�DECREASES�04'�AND�GLYCOGEN�SYNTHASE�
PROTEIN�LEVELS��THUS�INACTIVATING�THE�GLYCOGEN
SYNTHESIZING�MACHINERY��THROUGH�A�MECHANISM�
MEDIATED� BY� ACTIVATION� OF� THE� UBIQUITIN
PROTEASOME� PATHWAY�� )F� A� FORM� OF� MALIN�
CONTAINING�A�MUTATION�OBSERVED�IN�INDIVIDUALS�
WITH�,AFORA�DISEASE�IS�COTRANSFECTED�IN�NEURONS�
WITH�LAFORIN�INSTEAD�OF�THE�WILDTYPE�MALIN��THE�
INHIBITORY�EFFECT�ON�04'�AND�GLYCOGEN�SYNTHASE�
EXPRESSION�AND�ACTIVITY�IS�LOST�

4HESE� RESULTS� PROVIDE� AN� EXPLANATION� FOR�
PREVIOUS� PUZZLING� OBSERVATIONS� OF� GLYCOGEN�
SYNTHASE� IN� NEURONS� IN� SITU���� ALTHOUGH�
GLYCOGEN� COULD� NOT� BE� OBSERVED� IN� THESE�
CELLS�IN�THE�ADULT�BRAIN��6ILCHEZ�ET�AL���REPORT�
THAT�NEURONS�HAVE�THE�CAPACITY�TO�SYNTHESIZE�
GLYCOGEN�� (OWEVER�� GLYCOGEN� SPELLS� TROUBLE�
FOR� NEURONS� AS� IT� TRIGGERS� A� PROAPOPTOTIC�

PROGRAM��!CCORDINGLY��NEURONS�HAVE�EFFECTIVE�
AND� REDUNDANT� MECHANISMS� FOR� INHIBITING�
GLYCOGEN�SYNTHESIS��4HE�FIRST�MECHANISM�IS�TO�
KEEP�GLYCOGEN�SYNTHASE�IN�A�PHOSPHORYLATED�
�INACTIVE	�STATE��4HE�SECOND�IS�TO�DEGRADE�04'�
AND�GLYCOGEN�SYNTHASE�IN�A�TONIC��PROTEASOME
DEPENDENT�MANNER�INVOLVING�THE�MALINLAFORIN�
COMPLEX�� -UTATIONS� IN� THE� GENES� ENCODING�
THESE� ENZYMES� ARE� FOUND� IN� INDIVIDUALS�
AFFECTED� BY� ,AFORA� DISEASE�� A� CONDITION� THAT�
IS� HISTOPATHOLOGICALLY� CHARACTERIZED� BY�
THE� PRESENCE� OF� GLYCOGENLIKE� DEPOSITS� IN�
NEURONS��4HUS� IT�APPEARS� THAT�NEURONS�HAVE�
AN� AMBIVALENT� RELATIONSHIP� WITH� GLYCOGEN��
THEY�BENEFIT�FROM�IT�AS�LONG�AS�IT�IS�LOCALIZED�
IN�ASTROCYTES�AND�SO�LONG�AS�THEY�ARE�PROVIDED�
WITH�ENERGY�SUBSTRATES�DERIVING�FROM�IT��MOST�
LIKELY� LACTATE�� )NCREASING� ASTROCYTIC� GLYCOGEN�
HAS�A�NEUROPROTECTIVE�EFFECT�IN�EXPERIMENTAL�
STROKE������(OWEVER��WHEN�SYNTHESIZED�INSIDE�
OF�NEURONS��GLYCOGEN�ACTS�AS�A�4ROJAN�HORSE��
TRIGGERING�MECHANISMS�THAT�LEAD�TO�NEURONAL�
DYSFUNCTION�AND�EVENTUALLY�DEATH�

!LTHOUGH�6ILCHEZ� ET� AL��� BRING� SOME� NEW�
INSIGHTS�TO�THE�REGULATION�OF�BRAIN�GLYCOGEN�
METABOLISM��THIS�REPORT�RAISES�SEVERAL�QUESTIONS��
&OR� EXAMPLE�� THROUGH� WHAT� MECHANISM�S	�
DOES�ACCUMULATION�OF�ABNORMALLY�BRANCHED�
GLYCOGEN�TRIGGER�APOPTOSIS��7HY�ARE�ASTROCYTES�
@IMMUNE��TO�THE�DESTRUCTIVE�EFFECTS�OF�GLYCOGEN�
ACCUMULATION�� 4HE� ACTUAL� LINK� BETWEEN�
GLYCOGEN� ACCUMULATION� IN� NEURONS� AND� THE�
CLINICAL� PHENOTYPE� OF� ,AFORA� DISEASE� STILL�
REMAINS�TO�BE�ELUCIDATED��-OST�CURIOUSLY��WHY�
ARE�NEURONS�ENDOWED�WITH�THE�POTENTIAL�FOR�

GLYCOGEN�SYNTHESIS��BUT�THEN�ACTIVATE�COMPLEX�
PROTEINPROTEIN� INTERACTION� MECHANISMS� TO�
KEEP�THIS�POTENTIAL� INHIBITED��0ARADOXICALLY��
THIS� INHIBITORY� MECHANISM� IS� LIKELY� TO�
CONSUME�ENERGY��/NE�POSSIBILITY�RAISED�BY�THE�
AUTHORS�IS�THAT�GLYCOGEN�SYNTHASE�HAS�OTHER��
YET�UNDISCOVERED��ROLES�IN�NEURONAL�FUNCTIONS��
4HIS� ARTICLE� IS� LIKELY� TO� BRING� A� RENEWED�
ATTENTION�TO�THE�STUDY�OF�GLYCOGEN�REGULATION�
IN� THE� BRAIN�� A� FIELD� THAT� HAS� EVOLVED� IN� A��
LOWKEY� BUT� STEADY� FASHION� OVER� THE� LAST��
���YEARS�AND�IS�LIKELY�TO�STILL�BRING�SURPRISING�
INSIGHTS� INTO� NEURONGLIA� PHYSIOLOGY� AND�
PATHOLOGY�IN�THE�YEARS�TO�COME��

��� -AGISTRETTI�� 0�*�� "RAIN� ENERGY� METABOLISM�� IN�
&UNDAMENTAL�.EUROSCIENCE��EDS��3QUIRE��,�2��ET�AL�	�
���n�����!CADEMIC�0RESS��3AN�$IEGO������	�

��� 3WANSON�� 2�!��� -ORTON�� -�-��� 3AGAR�� 3�-�� ���
3HARP��&�2��.EUROSCIENCE��������n���������	�

��� -AGISTRETTI��0�*��*��%XP��"IOL�����������n����������	�
��� $RINGEN��2���'EBHARDT��2����(AMPRECHT��"��"RAIN�2ES��

��������n���������	�
��� "ROWN�� !�-��� 4EKKOK�� 3�"�� �� 2ANSOM�� "�2���

.EUROCHEM��)NT���������n���������	�
��� 0OITRY9AMATE�� #�,��� 0OITRY�� 3�� �� 4SACOPOULOS�� -���

*��.EUROSCI����������n����������	�
��� 6ILCHEZ�� $�� ET� AL�� .AT�� .EUROSCI�� ���� ����n�����

�����	�
��� .EWGARD�� #�"��� "RADY�� -�*��� /�$OHERTY�� 2�-�� ���

3ALTIEL��!�2��$IABETES���������n����������	�
��� !LLAMAN��)���0ELLERIN��,����-AGISTRETTI��0�*��'LIA�����

���n���������	�
����'ANESH��3���0URI��2���3INGH��3���-ITTAL��3����$UBEY��$��

*��(UM��'ENET�������n�������	�
����&ERNANDEZ3ANCHEZ��-�%��ET�AL��(UM��-OL��'ENET������

����n����������	�
����'ENTRY��-�3���7ORBY��#�!����$IXON��*�%��0ROC��.ATL��

!CAD��3CI��53!����������n����������	�
����)NOUE��.���-ATSUKADO��9���'OTO��3����-IYAMOTO��%���

*��.EUROCHEM���������n���������	�
����3WANSON��2�!����#HOI��$�7��*��#EREB��"LOOD�&LOW�-ETAB���

�������n���������	�

!�STEP�TOWARD�OPTIMAL�CODING�IN�OLFACTION
,�&�!BBOTT���3EAN�8�,UO

2ECEPTOR�NEURONS�MAY�NOT�ENCODE�SENSORY�INFORMATION�IN�AN�EFFICIENT�MANNER��!�NEW�PAPER�SUPPORTS�THE�IDEA��
THAT�THE�BRAIN�ACHIEVES�OPTIMAL�ENCODING�DOWNSTREAM�OF�SENSORY�TRANSDUCTION�THROUGH�ADDITIONAL�PROCESSING�

3ENSORY�INFORMATION�IS�CONVERTED�INTO�NEURAL�
ACTIVITY�BY�RECEPTOR�NEURONS�AND�THEN�SHAPED�
BY�SUBSEQUENT�PROCESSING�STAGES�INTO�A�NEURAL�
REPRESENTATION�THAT�CAN�DIRECT�BEHAVIOR��/UR�
UNDERSTANDING�OF�EARLY�STEPS�ALONG�THIS�PATHWAY�
HAS� BEEN� GUIDED� BY� THE� CONCEPT� OF� OPTIMAL�
CODING��2ECEPTOR�NEURONS��HAVING�TO�HANDLE�THE�
COMPLEXITIES�OF�SENSORY�TRANSDUCTION��MAY�NOT�

BE�ABLE�TO�RESPOND�IN�WAYS�THAT�OPTIMALLY�ENCODE�
INFORMATION� FOR� PARTICULAR� TASKS�� !CCORDING�
TO� THE� IDEA� OF� OPTIMAL� CODING�� SUBSEQUENT�
PROCESSING� MAY� INVOLVE� A� TRANSFORMATION� TO�
A�MORE�EFFICIENT�REPRESENTATION��)N�THIS�ISSUE��
"HANDAWAT�ET�AL����REPORTING�ON�THE�$ROSOPHILA�
OLFACTORY�SYSTEM��PROVIDE�STRONG�SUPPORT�FOR�
THIS�IDEA�AND�ALSO�RAISE�INTERESTING�QUESTIONS�

)N� THE� FLY� OLFACTORY� SYSTEM�� SENSORY�
TRANSDUCTION�TAKES�PLACE�IN�OLFACTORY�RECEPTOR�
NEURONS� �/2.S	�� AND� OLFACTORY� SIGNALS� ARE�
RELAYED�IN�THE�ANTENNAL�LOBE��THE�INSECT�ANALOG�
OF�THE�OLFACTORY�BULB	�THROUGH�GLOMERULI�THAT�
RECEIVE�DIRECT�SENSORY�INPUT�FROM�/2.S�THAT�
ALL�EXPRESS�THE�SAME�OLFACTORY�RECEPTOR�GENE�����
/UTPUT�FROM�THE�ANTENNAL�LOBE�IS�CARRIED�BY�

PROJECTION� NEURONS� THAT� EACH� RECEIVE� THEIR�
INPUT� FROM� A� SINGLE� GLOMERULUS�� )NTRINSIC�
PROJECTIONNEURON� RESPONSE� CHARACTERISTICS��
PROPERTIES� OF� THE� SYNAPTIC� CONNECTIONS�
MADE� BY� /2.S� AND� PROJECTION� NEURONS��
AND�FEATURES�OF�THE�CIRCUITRY�IN�AND�BETWEEN�
GLOMERULI� CAN� ALL� CONTRIBUTE� TO� MAKING�
PROJECTION�NEURONS�RESPOND�DIFFERENTLY�THAN�
/2.S��&IG���A	��(OWEVER��/2.S�NOT�DIRECTLY�
CONNECTED�TO�A�GIVEN�PROJECTION�NEURON�CAN�
ONLY�INFLUENCE�THAT�PROJECTION�NEURON�THROUGH�
INTERGLOMERULAR� CONNECTIONS� WITHIN� THE�
ANTENNAL�LOBE��2ECENT�STUDIES�n��HAVE�REVEALED�
INTERESTING� FEATURES� OF� INTERGLOMERULAR�
INTERACTIONS�� BUT� THEIR� FUNCTIONAL� ROLE� HAS�
REMAINED�UNCLEAR��"HANDAWAT�ET�AL���PROVIDE�

4HE�AUTHORS�ARE�IN�THE�$EPARTMENT�OF�.EUROSCIENCE�
AND�THE�$EPARTMENT�OF�0HYSIOLOGY�AND�#ELLULAR�
"IOPHYSICS��#OLUMBIA�5NIVERSITY�-EDICAL�#ENTER��
+OLB�2ESEARCH�!NNEX�������2IVERSIDE�$RIVE���
.EW�9ORK��.EW�9ORK��������53!��
EMAIL��LFA���� COLUMBIA�EDU
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Figure 1. Summary of olfactory anatomy.

Schematic representation of the olfactory
system of Drosophila. Olfactory receptor
neurons in the antennae and maxillary palps
send axons to specific glomeruli in the
antennal lobe. All olfactory receptor neurons
expressing the same odorant receptor
complement (same colour) converge at the
same glomerulus. There they form synaptic
contacts with projection neurons and local
neurons. Projection neurons send axons
either directly to the lateral horn neuropile
(green projection neuron) or indirectly via
the calyx of the mushroom bodies (red and
blue projection neurons), where they form
synapses with Kenyon cells.

receptor neuron expresses one very
specific set of odorant receptors
(usually OR83b plus one receptor, but
occasionally two or three) [9,16]. Olfac-
tory receptor neurons expressing the
same receptor converge at the same
subregion of the antennal lobe, called
a glomerulus [17], and a complete projection map has been
generated for 37 olfactory receptor neuron classes covering
almost all the odorant receptor family [9,16]. In total, there
are about 50 classes of olfactory receptor neurons and
because each glomerulus receives information exclusively
from one class of olfactory receptor neuron there are about
50 such glomeruli [18].

Anatomical Features of the Antennal Lobe
A detailed description of information processing depends in
part on understanding the relevant circuit layout. We will
therefore review what is and is not known about the anatomy
of the antennal lobe (Figure 2) before discussing the compu-
tations that it performs. There are two broad types of neurons
in the antennal lobe: projection neurons and local neurons.
Projection neurons are the only neurons that send informa-
tion to higher centres, the lateral horn and the mushroom
body. In Drosophila, projection neuron dendrites usually
innervate single glomeruli [19] and therefore receive direct
input from olfactory receptor neurons expressing the same
odorant receptor. Most of these projection neurons are
cholinergic (like other excitatory neurons in the insect central
nervous system) and leave the antennal lobe via a large axon
bundle, the inner antennocerebral tract. A smaller number of
projection neuron axons take the middle antennocerebral
tract; these include both uniglomerular and multiglomerular
projection neurons [20,21] and at least some are known to
be GABAergic [22–24].

An important feature of the olfactory receptor neuron to
projection neuron connection is the convergence of many
olfactory receptor neuron axons on a much smaller number
of projection neurons. In Drosophila, each glomerulus
receives bilateral input from an average of 50 olfactory
receptor neurons (25 per antenna) expressing the same olfac-
tory receptor where they synapse with an average of three
projection neurons [17]. It seems that each olfactory receptor
neuron contacts all the projection neurons in a glomerulus
(H. Kazama and R. Wilson, personal communication).

Although projection neurons send axons into the mush-
room body and lateral horn, there is currently no evidence

that the antennal lobe receives feedback from these
areas. This contrasts with the vertebrate olfactory system,
where the olfactory bulb receives extensive feedback. This
does not imply that the insect olfactory system is purely
feedforward. For example, there are neuromodulatory
neurons that release neuropeptides such as dopamine,
octopamine and serotonin in the antennal lobe [25,26]; this
input is believed to be important in altering the response
properties of the antennal lobe during associative learning
[27,28].

Local neurons differ from projection neurons in that they
do not form connections outside the antennal lobe. They
can be inhibitory or excitatory, releasing GABA [29,30] or
probably acetylcholine [31], respectively. Local neurons
receive input from both olfactory receptor neurons and
projection neurons [22]. Both excitatory and inhibitory local
neurons form extensive connections throughout the
antennal lobe where they connect each glomerulus with
many, if not all, other glomeruli [19,22,31,32]. The strength
of excitatory interglomerular connections is non-uniform
but stereotyped across individual flies [32], and can be
sufficient to cause spiking responses to odours in projection
neurons that do not receive direct olfactory receptor neuron
input [31,32]. The connectivity of inhibitory lateral connec-
tions is known in more detail. A significant portion of interglo-
merular inhibition is directed at olfactory receptor neuron
terminals, although there is evidence that some interglomer-
ular inhibition is postsynaptic [22,33]. Current data suggest
that the strength of interglomerular presynaptic inhibition
scales with total olfactory receptor neuron output [33]
and acts non-uniformly at different glomeruli [34]. Finally,
there is evidence suggesting that inhibition can be intraglo-
merular [34].

Although the key components of the fly antennal lobe
circuitry have probably been described, there are still signif-
icant gaps in our knowledge, particularly at the synaptic
level. Electron microscopy data in cockroaches treating
olfactory receptor neurons, projection neurons and local
neurons as groups have indicated that essentially all
possible permutations of connectivity exist [35] (Figure 2).
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receives bilateral input from an average of 50 olfactory
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tory receptor where they synapse with an average of three
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neuron contacts all the projection neurons in a glomerulus
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where the olfactory bulb receives extensive feedback. This
does not imply that the insect olfactory system is purely
feedforward. For example, there are neuromodulatory
neurons that release neuropeptides such as dopamine,
octopamine and serotonin in the antennal lobe [25,26]; this
input is believed to be important in altering the response
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Local neurons differ from projection neurons in that they
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probably acetylcholine [31], respectively. Local neurons
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neurons form extensive connections throughout the
antennal lobe where they connect each glomerulus with
many, if not all, other glomeruli [19,22,31,32]. The strength
of excitatory interglomerular connections is non-uniform
but stereotyped across individual flies [32], and can be
sufficient to cause spiking responses to odours in projection
neurons that do not receive direct olfactory receptor neuron
input [31,32]. The connectivity of inhibitory lateral connec-
tions is known in more detail. A significant portion of interglo-
merular inhibition is directed at olfactory receptor neuron
terminals, although there is evidence that some interglomer-
ular inhibition is postsynaptic [22,33]. Current data suggest
that the strength of interglomerular presynaptic inhibition
scales with total olfactory receptor neuron output [33]
and acts non-uniformly at different glomeruli [34]. Finally,
there is evidence suggesting that inhibition can be intraglo-
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circuitry have probably been described, there are still signif-
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NEW�INSIGHTS�BY�COMPARING�AND�CONTRASTING�
RESPONSES�TO�A�VARIETY�OF�ODORANTS�AT�BOTH�THE�
/2.�AND�PROJECTION�NEURON�LEVELS�

.EURAL�CIRCUITS�DOWNSTREAM�OF�THE�ANTENNAL�
LOBE�MUST�DIFFERENTIATE�BETWEEN�THE�PATTERNS�
OF� ACTIVITY� THAT� ARE� GENERATED� BY� DIFFERENT�
ODORANTS�IF�THE�FLY�IS�TO�DISCRIMINATE�BETWEEN�
ODORS�� #ONVERSELY�� DISCRIMINATION� WILL� BE�
IMPOSSIBLE� IF� THE� FIRING� RATES� EVOKED� BY� A�
PAIR�OF�ODORS�ARE�TOO�CLOSE�TO�EACH�OTHER�FOR�
THESE�CIRCUITS� TO�DISTINGUISH�BETWEEN�THEM��
$ISCRIMINATION�PERFORMANCE�ACROSS�A�WHOLE�
SPECTRUM� OF� ODORS� IS� LIMITED� BY� THE� EXTENT�
TO� WHICH� OLFACTORY� RESPONSES� CLUSTER� INTO�
INDISTINGUISHABLE� GROUPS�� 2ESPONSES� ACROSS�
AN� ARRAY� OF� ODORS� CAN� BE� CHARACTERIZED�
BY� A� RESPONSE� DISTRIBUTION�� REFLECTING� THE�
PROBABILITY�THAT�RANDOMLY�SELECTED�ODORANTS�
EVOKE� VARIOUS� FIRING� RATES�� 5SING� A� SIMPLE�
MODEL�OF�DETECTION��THE�OPTIMAL�DISTRIBUTION�
OF� FIRING� RATES� FOR� DISCRIMINATION� IS� ONE�
WITH�NO�CLUSTERS�� THAT� IS�� A� FLAT�DISTRIBUTION�
WITH�EQUAL�PROBABILITY�FOR�FIRING�RATES�TO�FALL�
ANYWHERE�WITHIN�THEIR�ALLOWED�RANGES�

"HANDAWAT� ET� AL��� FOUND� THAT� /2.�
RESPONSES� ARE� NOT� UNIFORMLY� DISTRIBUTED��
THE� MAJORITY� OF� THEM� ARE� AT� LOW� RATES�� 4HIS�
AGREES�WITH�THE�DISTRIBUTION�OF�THE�RESPONSES�
REPORTED�PREVIOUSLY��FROM�A�LARGER�SAMPLE�OF�
��� OLFACTORY� RECEPTORS� GENERATING� RESPONSES�
TO� ���� ODORS� �&IG�� �B�� LEFT	�� 4HE� CLUSTERING�
OF� RESPONSES� AT� LOW� RATES� IS� PROBABLY� AN�
UNAVOIDABLE� CONSEQUENCE� OF� USING� GENERAL
PURPOSE� RECEPTORS� THAT� ARE� LIKELY� TO� BIND� TO�
MANY�MOLECULES�WEAKLY�AND�ONLY�A�FEW�STRONGLY��
THEREBY�GENERATING�A�CLUSTERING�OF�RESPONSES�
AT�LOW�FIRING�RATES��!CCORDING�TO�THE�OPTIMAL
CODING�HYPOTHESIS��THE�ANTENNAL�LOBE�SHOULD�
CHANGE�THE�EXPONENTIAL�DISTRIBUTION�OF�/2.�
RESPONSES��&IG���B��LEFT	�INTO�A�FLAT�DISTRIBUTION�
OF� PROJECTION� NEURON� RESPONSES�� MAKING�
DOWNSTREAM� DISCRIMINATION� EASIER�� 4HIS�
OPERATION��KNOWN�AS�HISTOGRAM�EQUALIZATION��
IS�EXACTLY�WHAT�"HANDAWAT�ET�AL���REPORT�

"HANDAWAT� ET� AL��� FOUND� THAT� PROJECTION�
NEURON�FIRING�RATES�OVER�THE�ODORANTS�THAT�THEY�
TESTED�ARE�MUCH�MORE�UNIFORMLY�DISTRIBUTED�
THAN� /2.� RESPONSES�� &URTHERMORE�� THEY�
UNCOVERED�THE�MECHANISM�FOR�THIS�HISTOGRAM�
EQUALIZATION�� A� NONLINEAR� DEPENDENCE� OF�
PROJECTION�NEURON�FIRING�RATES�ON�THE�RATES�OF�THE�
/2.S�THAT�PROVIDE�THEIR�DIRECT�SENSORY�INPUT��
0ROJECTION�NEURON�FIRING�RATES�RISE�SHARPLY�AS�
A� FUNCTION� OF� THE� CORRESPONDING� /2.� RATE��
BUT�SOON�SATURATE��&IG���B��CENTER	��4O�FURTHER�
SUPPORT� THIS� POINT�� IF� THE� /2.� RESPONSES�
FROM� THE� STUDY�� MENTIONED� ABOVE� �&IG�� �B��
LEFT	�ARE�PASSED�THROUGH�THE�NONLINEAR�FIRING
RATE� FUNCTION�REPORTED�BY�"HANDAWAT�ET�AL����
�&IG���B��CENTER	��THEN�THE�RESULTING�DISTRIBUTION�
IS� FLAT� �&IG���B�� RIGHT	�� )F� THE�DISTRIBUTION�OF�

/2.�RESPONSES�RECORDED�IN�THESE�EXPERIMENTS�
IS�REPRESENTATIVE�OF�RESPONSES�TO�NATURAL�ODORS��
SOMETHING� THAT� SHOULD� BE� CHECKED�� THESE�
RESULTS� PROVIDE� A� NOTABLE� ILLUSTRATION� OF� A�
MECHANISM�SUGGESTED�EARLIER�AND�ILLUSTRATED�
IN�FLY�VISION���APPROPRIATELY�SHAPED�NONLINEAR�
FIRINGRATE� CURVES� CAN� EQUALIZE� RESPONSES� TO��
ENHANCE�NEURAL�ENCODING�

!N� UNEVEN� HISTOGRAM� IS� NOT� THE� ONLY� WAY�
THAT� RESPONSES� CAN� CLUSTER�� %VEN� IF� INDIVIDUAL�
PROJECTION� NEURONS� HAVE� FLAT� RESPONSE�
HISTOGRAMS��CORRELATIONS�BETWEEN�THEIR�RESPONSES�
CAN� CAUSE� CLUSTERING� ACROSS� THE� PROJECTION�
NEURON� POPULATION�� "ECAUSE� ANY� CORRELATION�
OR� REDUNDANCY� THAT� EXISTS� BETWEEN� OLFACTORY�
RESPONSES�MAKES�DISCRIMINATING�BETWEEN�ODORS�
MORE� DIFFICULT�� OPTIMAL� ENCODING� DEMANDS�
THAT� THEY� BE� REMOVED���� 5NLIKE� HISTOGRAM�
EQUALIZATION�� THIS� REQUIRES� INTERGLOMERULAR�
INTERACTIONS��/2.�RESPONSES�ARE�CORRELATED�����
WHICH� IS� PROBABLY� ANOTHER� UNAVOIDABLE�
CONSEQUENCE� OF� BINDING� ODORANT� MOLECULES�
TO� A� FAMILY� OF� RELATED� RECEPTOR� PROTEINS�� 4HIS�
APPEARS� TO� BE� A� PROBLEM� THAT� IS� NOT� SOLVED�
BY� THE� ANTENNAL� LOBE�� "HANDAWAT� ET� AL����
DID�NOT� FIND�ANY�SUBSTANTIAL� REDUCTION� IN� THE�
CORRELATION� OF� PROJECTION� NEURON� RESPONSES�
RELATIVE�TO�THOSE�OF�THE�/2.S��!S�FAR�AS�OPTIMAL�
CODING�IS�CONCERNED��THE�ANTENNAL�LOBE�DOES�PART�
�HISTOGRAM�EQUALIZATION�OF�INDIVIDUAL�PROJECTION�
NEURONS	�� BUT� NOT� ALL� �DECORRELATION� ACROSS��
PROJECTION�NEURONS	��OF�THE�JOB�

$ECORRELATION�MAY�NOT�BE�AS�IMPORTANT�FOR�
ODOR� DISCRIMINATION� AS� THE� SIMPLE� READOUT�

MODEL� THAT� IS� BEING� CONSIDERED� SUGGESTS�� OR�
PERHAPS� DECORRELATION� TAKES� PLACE� AT� A� LATER�
STAGE�IN�THE�ODORPROCESSING�PATHWAY����)F�THE�
ANTENNAL�LOBE�IS�NOT�USING�ITS�INTERGLOMERULAR�
CONNECTIONS�TO�DECORRELATE�PROJECTION�NEURON�
RESPONSES�� WHAT� OTHER� FUNCTIONS� MIGHT� THEY�
HAVE��0ERHAPS�THEY�ARE�INVOLVED�IN�ADAPTATION�OR�
LEARNING����OR�ARE�A�TARGET�FOR�NEUROMODULATION��
!LTERNATIVELY��THE�CROSSCHANNEL�SIGNAL�CARRIED�
BY�ANTENNAL� LOBE�CIRCUITRY�MAY�BE�AN�OVERALL�
ODOR� INTENSITY�OR� SALIENCE� SIGNAL�� RATHER� THAN�
IDENTIFYING�OR�REPRESENTING�SPECIFIC�ODORS��4HESE�
ISSUES�REMAIN�TO�BE�CLARIFIED��BUT��AT�LEAST�AT�THE�
SINGLEOLFACTORY�CHANNEL�LEVEL��"HANDAWAT�ET�AL���
HAVE�UNCOVERED�AN�INTERESTING�TRANSFORMATION�
GENERATED�BY�THE�ANTENNAL� LOBE�CIRCUITRY�AND�
HAVE�PROVIDED�A� SATISFYING� EXPLANATION�OF� ITS�
ROLE�IN�OLFACTORY�PROCESSING�

��� "HANDAWAT�� 6��� /LSEN�� 3�2��� 'OUWENS�� .�7�� ���
3CHLIET��-��.AT��.EUROSCI����������n����������	�

��� 6OSSHALL�� ,�"��� 7ONG�� !�-�� �� !XEL�� 2�� #ELL� ������
���n���������	�

��� 'AO�� 1��� 9UAN�� "�� �� #HESS�� !�� .AT�� .EUROSCI�� ����
���n���������	�

��� /LSEN��3�2���"HANDAWAT��6����7ILSON��2�)��.EURON�����
��n���������	�

��� 3CHLIEF�� -�,�� �� 7ILSON�� 2�)�� .AT�� .EUROSCI�� �����
���n���������	�

��� 2OOT��#�-���3EMMELHACK��*�,���7ONG��!�-���&LORES��*���
�� 7ANG�� *�7�� 0ROC�� .ATL�� !CAD�� 3CI�� 53!� ������
�����n�����������	�

��� 3HANG��9���#LARIDGE#HANG��!���3JULSON��,���0YPAERT��-��
��-IESENBOCK��'��#ELL���������n���������	�

��� (ALLEM�� %�!�� �� #ARLSON�� *�2�� #ELL� ����� ���n����
�����	�

��� ,AUGHLIN��3��:��.ATURFORSCH�;#=���������n���������	�
����,AURENT��'��.AT��2EV��.EUROSCI��������n���������	�
����9U�� $��� 0ONOMAREV�� !�� �� $AVIS�� 2�,�� .EURON� �����

���n���������	�

&IGURE����4RANSFORMATION�OF�OLFACTORY�RESPONSES�IN�THE�ANTENNAL�LOBE���A	�3CHEMATIC�OF�THE�ANTENNAL�LOBE�
CIRCUITRY��(ERE��EACH�/2.�PROVIDES�INPUT�TO�ONE�GLOMERULUS�AND�EACH�PROJECTION�NEURON��0.	�RECEIVES�INPUT�
FROM�ONE�GLOMERULUS��)NTERACTIONS�WITHIN�INDIVIDUAL�GLOMERULI��GREEN�SQUARES	�ALLOW�FOR�SINGLECHANNEL�
PROCESSING�AND�CONNECTIONS�BETWEEN�GLOMERULI��CURVED�ARROWS	�ALLOW�FOR�CROSSCHANNEL�PROCESSING���
�B	�4HE�TRANSFORMATION�FROM�/2.�RESPONSES�TO�0.�RESPONSES�APPLIED�TO�DATA�FROM�A�PREVIOUS�STUDY��FIGURE�
MODIFIED�FROM�REF���	��,EFT��/2.�RESPONSES�OVER�THE�ENSEMBLE�OF�ODORANTS�ARE�DISTRIBUTED�IN�AN�EXPONENTIAL�
MANNER�WITH�MOST�OF�THE�RESPONSES�OCCURRING�AT�LOW�RATES��#ENTER��THE�NONLINEAR�TRANSFORMATION�LINKING�
/2.�RESPONSES�TO�0.�RESPONSES��AS�DETERMINED�BY�"HANDAWAT�ET�AL����2IGHT��THE�DISTRIBUTION�OF�0.�RATES�
GENERATED�BY�THE�/2.�RATES��LEFT	��TRANSFORMED�BY�THE�FIRING�RATE�RELATION��CENTER	��IS�APPROXIMATELY�FLAT�
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system17–19 . However, in the Drosophila antennal lobe, B40 ORNs
with the same receptive field converge onto B4 PNs in each
glomerulus20–22. Thus, by pooling across these inputs, PNs might be
able to reduce their response variability. We therefore compared the
reliability of odor-evoked spike counts in ORNs and PNs.
We presented an odor stimulus in multiple consecutive trials to the

same cell (a ‘block’ of trials; Fig. 1a). To quantify the spike-count
reliability across trials, we divided each set of repeated responses into
50-ms windows that overlapped by 25 ms. In each time window, we
computed the mean and the standard deviation of the spike count
across repeated responses by the same cell to the same odor. Odors
typically evoked more vigorous responses in PNs than in ORNs
(Fig. 1a,b and Supplementary Fig. 2 online). So, although the typical
standard deviation of PN responses is slightly greater than that of
ORN responses (Fig. 1c), PN responses are less variable in proportion
to the magnitude of the response (P o 10!15, whether comparing
over the entire stimulus period or the 100-ms epoch at the response
peak, Mann-Whitney U-test, n ¼ 779 ORN responses and 843 PN
responses; Fig. 1d). Thus, individual PNs are more reliable than
individual ORNs, which should tend to make their responses
more informative.
We also compared the standard deviations of ORN and PN spike

counts as a function of the mean spike count for each time window. For
all mean spike counts, PNs have a lower standard deviation than
ORNs (Fig. 1e). Furthermore, the standard deviation is not strongly
dependent on the mean, and so stronger responses have a lower
coefficient of variation. Because PN responses are on average stronger
than ORN responses (Fig. 1b), this also tends to make PNs more
reliable than ORNs.

PNs preferentially transmit the rising phase of ORN signals
ORN responses typically do not peak until 100–3 00 ms after odor
onset21. This is probably because spiking is coupled to odorant receptor
activation by the generation of second messengers. However, odors can
trigger rapid behavioral responses in flies, with a total latency from
stimulus to motor reaction of less than 3 00 ms23 . This suggests that
neurons in the brain are preferentially tuned to detect the rising phase
of ORN signals, rather than the response peak. This motivated us to
compare the onset kinetics of odor responses in synaptically connected
ORNs and PNs.

Comparing peri-stimulus time histograms averaged across all odor
responses in all cells, we noted that PN responses rise more rapidly
than ORN responses (Fig. 2a). Furthermore, PN responses begin to
decay while ORN responses are still growing. This is also clear in most
direct comparisons between synaptically connected ORNs and PNs
(Figs. 1a and 2b,c). Overall, PN responses peak significantly faster than
ORN responses (P o 10!7, paired t-test, n ¼ 69 odor-glomerulus
combinations; Fig. 2d), and the time to half-decay of the response is
shorter for PNs than for their presynaptic ORNs (P o 10!5, paired
t-test; Fig. 2e). Taken together, faster rise and faster decay mean that a
more excitatory drive to third-order neurons occurs within an early
epoch of the odor response (P o 10!11, paired t-test; Fig. 2f). There-
fore, PNs act as high-pass filters that preferentially signal the rising
phase of the ORN response.
Because PN responses accommodate rapidly, we chose to quantify

response magnitudes in PNs by measuring the average firing rates
during an early epoch of the response (a 100-ms time window
beginning 100 ms after odor onset; Fig. 1b). Because a fruitfly can
respond rapidly after encountering an odor, this early epoch should be
particularly informative to downstream neurons. Throughout this
study, we also quantified PN responses in a different way: following
other investigators21,24, we measured the average spike rates over the
entire 500-ms stimulus period. The main conclusions from this study
are the same for both of these response metrics.

ORNs and PNs differ in odor selectivity and odor preferences
Setting aside the issues of trial-to-trial reliability and response kinetics,
we examined the average response magnitudes for each cell type to
our odor stimuli (Fig. 3 a). How does the response profile of each
PN type compare with the response profile of its corresponding
ORNs? We began by asking simply whether these responses are
linearly correlated. For each glomerulus we found a statistically
significant correlation between the ORN and PN response profile
(P o 0.05 for all seven glomerular comparisons, Pearson’s correla-
tion; Supplementary Table 1 online), but r2 values are only in the
range of 0.26–0.81. This means that a linear scaling of ORN
responses explains only 26–81% of the odor-dependent variance in
PN responses.
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aFigure 1 Odor responses are more reliable in PNs than in ORNs. (a) Odor
responses of an ORN and PN pre- and postsynaptic to the glomerulus
(glomerulus VA2, odor is geranyl acetate). Each tick represents a spike, and
each row in a raster represents a different trial. The gray bar indicates a
500-ms odor stimulus period. (b) Mean odor responses are larger in PNs
(magenta) than in ORNs (green). Spikes were counted in 50-ms bins and
averaged across five trials with the same odor, then averaged across all blocks
of trials (all odors and all experiments). The gray bar indicates the stimulus
period; the black bar indicates a 100-ms period when average PN firing rates
are maximal. (c) Standard deviations (s.d.) of spike counts in five trials
with the same odor, averaged across all blocks of trials (all odors and all
experiments). (d) Coefficient of variation (s.d./mean) of spike counts in five
trials with the same odor, averaged across all blocks of trials. Note that the
coefficient of variation of PN responses drops again after odor offset. This is
because some responses contain zero spikes for an epoch following odor
offset, so the s.d. in these bins is zero for some responses. (e) The average
s.d. of spike counts is lower for PNs than for ORNs even when mean firing
rates are matched. s.d. values were measured for all counting windows in all
blocks of trials, binned according to mean firing rate and averaged across all
counting windows in the same bin. Note that because the s.d. deviation
depends sublinearly on the mean, the average coefficient of variation is larger
than (the average s.d.)/(the average mean).
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system17–19 . However, in the Drosophila antennal lobe, B40 ORNs
with the same receptive field converge onto B4 PNs in each
glomerulus20–22. Thus, by pooling across these inputs, PNs might be
able to reduce their response variability. We therefore compared the
reliability of odor-evoked spike counts in ORNs and PNs.
We presented an odor stimulus in multiple consecutive trials to the

same cell (a ‘block’ of trials; Fig. 1a). To quantify the spike-count
reliability across trials, we divided each set of repeated responses into
50-ms windows that overlapped by 25 ms. In each time window, we
computed the mean and the standard deviation of the spike count
across repeated responses by the same cell to the same odor. Odors
typically evoked more vigorous responses in PNs than in ORNs
(Fig. 1a,b and Supplementary Fig. 2 online). So, although the typical
standard deviation of PN responses is slightly greater than that of
ORN responses (Fig. 1c), PN responses are less variable in proportion
to the magnitude of the response (P o 10!15, whether comparing
over the entire stimulus period or the 100-ms epoch at the response
peak, Mann-Whitney U-test, n ¼ 779 ORN responses and 843 PN
responses; Fig. 1d). Thus, individual PNs are more reliable than
individual ORNs, which should tend to make their responses
more informative.
We also compared the standard deviations of ORN and PN spike

counts as a function of the mean spike count for each time window. For
all mean spike counts, PNs have a lower standard deviation than
ORNs (Fig. 1e). Furthermore, the standard deviation is not strongly
dependent on the mean, and so stronger responses have a lower
coefficient of variation. Because PN responses are on average stronger
than ORN responses (Fig. 1b), this also tends to make PNs more
reliable than ORNs.

PNs preferentially transmit the rising phase of ORN signals
ORN responses typically do not peak until 100–3 00 ms after odor
onset21. This is probably because spiking is coupled to odorant receptor
activation by the generation of second messengers. However, odors can
trigger rapid behavioral responses in flies, with a total latency from
stimulus to motor reaction of less than 3 00 ms23 . This suggests that
neurons in the brain are preferentially tuned to detect the rising phase
of ORN signals, rather than the response peak. This motivated us to
compare the onset kinetics of odor responses in synaptically connected
ORNs and PNs.

Comparing peri-stimulus time histograms averaged across all odor
responses in all cells, we noted that PN responses rise more rapidly
than ORN responses (Fig. 2a). Furthermore, PN responses begin to
decay while ORN responses are still growing. This is also clear in most
direct comparisons between synaptically connected ORNs and PNs
(Figs. 1a and 2b,c). Overall, PN responses peak significantly faster than
ORN responses (P o 10!7, paired t-test, n ¼ 69 odor-glomerulus
combinations; Fig. 2d), and the time to half-decay of the response is
shorter for PNs than for their presynaptic ORNs (P o 10!5, paired
t-test; Fig. 2e). Taken together, faster rise and faster decay mean that a
more excitatory drive to third-order neurons occurs within an early
epoch of the odor response (P o 10!11, paired t-test; Fig. 2f). There-
fore, PNs act as high-pass filters that preferentially signal the rising
phase of the ORN response.
Because PN responses accommodate rapidly, we chose to quantify

response magnitudes in PNs by measuring the average firing rates
during an early epoch of the response (a 100-ms time window
beginning 100 ms after odor onset; Fig. 1b). Because a fruitfly can
respond rapidly after encountering an odor, this early epoch should be
particularly informative to downstream neurons. Throughout this
study, we also quantified PN responses in a different way: following
other investigators21,24, we measured the average spike rates over the
entire 500-ms stimulus period. The main conclusions from this study
are the same for both of these response metrics.

ORNs and PNs differ in odor selectivity and odor preferences
Setting aside the issues of trial-to-trial reliability and response kinetics,
we examined the average response magnitudes for each cell type to
our odor stimuli (Fig. 3 a). How does the response profile of each
PN type compare with the response profile of its corresponding
ORNs? We began by asking simply whether these responses are
linearly correlated. For each glomerulus we found a statistically
significant correlation between the ORN and PN response profile
(P o 0.05 for all seven glomerular comparisons, Pearson’s correla-
tion; Supplementary Table 1 online), but r2 values are only in the
range of 0.26–0.81. This means that a linear scaling of ORN
responses explains only 26–81% of the odor-dependent variance in
PN responses.
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aFigure 1 Odor responses are more reliable in PNs than in ORNs. (a) Odor
responses of an ORN and PN pre- and postsynaptic to the glomerulus
(glomerulus VA2, odor is geranyl acetate). Each tick represents a spike, and
each row in a raster represents a different trial. The gray bar indicates a
500-ms odor stimulus period. (b) Mean odor responses are larger in PNs
(magenta) than in ORNs (green). Spikes were counted in 50-ms bins and
averaged across five trials with the same odor, then averaged across all blocks
of trials (all odors and all experiments). The gray bar indicates the stimulus
period; the black bar indicates a 100-ms period when average PN firing rates
are maximal. (c) Standard deviations (s.d.) of spike counts in five trials
with the same odor, averaged across all blocks of trials (all odors and all
experiments). (d) Coefficient of variation (s.d./mean) of spike counts in five
trials with the same odor, averaged across all blocks of trials. Note that the
coefficient of variation of PN responses drops again after odor offset. This is
because some responses contain zero spikes for an epoch following odor
offset, so the s.d. in these bins is zero for some responses. (e) The average
s.d. of spike counts is lower for PNs than for ORNs even when mean firing
rates are matched. s.d. values were measured for all counting windows in all
blocks of trials, binned according to mean firing rate and averaged across all
counting windows in the same bin. Note that because the s.d. deviation
depends sublinearly on the mean, the average coefficient of variation is larger
than (the average s.d.)/(the average mean).

2 ADVAN CE ON LIN E PU BLICATION NATURE NEUROSCIENCE

ART ICLES

Firing rate PNs on average higher

ORN -> PN



7

system17–19 . However, in the Drosophila antennal lobe, B40 ORNs
with the same receptive field converge onto B4 PNs in each
glomerulus20–22. Thus, by pooling across these inputs, PNs might be
able to reduce their response variability. We therefore compared the
reliability of odor-evoked spike counts in ORNs and PNs.
We presented an odor stimulus in multiple consecutive trials to the

same cell (a ‘block’ of trials; Fig. 1a). To quantify the spike-count
reliability across trials, we divided each set of repeated responses into
50-ms windows that overlapped by 25 ms. In each time window, we
computed the mean and the standard deviation of the spike count
across repeated responses by the same cell to the same odor. Odors
typically evoked more vigorous responses in PNs than in ORNs
(Fig. 1a,b and Supplementary Fig. 2 online). So, although the typical
standard deviation of PN responses is slightly greater than that of
ORN responses (Fig. 1c), PN responses are less variable in proportion
to the magnitude of the response (P o 10!15, whether comparing
over the entire stimulus period or the 100-ms epoch at the response
peak, Mann-Whitney U-test, n ¼ 779 ORN responses and 843 PN
responses; Fig. 1d). Thus, individual PNs are more reliable than
individual ORNs, which should tend to make their responses
more informative.
We also compared the standard deviations of ORN and PN spike

counts as a function of the mean spike count for each time window. For
all mean spike counts, PNs have a lower standard deviation than
ORNs (Fig. 1e). Furthermore, the standard deviation is not strongly
dependent on the mean, and so stronger responses have a lower
coefficient of variation. Because PN responses are on average stronger
than ORN responses (Fig. 1b), this also tends to make PNs more
reliable than ORNs.

PNs preferentially transmit the rising phase of ORN signals
ORN responses typically do not peak until 100–3 00 ms after odor
onset21. This is probably because spiking is coupled to odorant receptor
activation by the generation of second messengers. However, odors can
trigger rapid behavioral responses in flies, with a total latency from
stimulus to motor reaction of less than 3 00 ms23 . This suggests that
neurons in the brain are preferentially tuned to detect the rising phase
of ORN signals, rather than the response peak. This motivated us to
compare the onset kinetics of odor responses in synaptically connected
ORNs and PNs.

Comparing peri-stimulus time histograms averaged across all odor
responses in all cells, we noted that PN responses rise more rapidly
than ORN responses (Fig. 2a). Furthermore, PN responses begin to
decay while ORN responses are still growing. This is also clear in most
direct comparisons between synaptically connected ORNs and PNs
(Figs. 1a and 2b,c). Overall, PN responses peak significantly faster than
ORN responses (P o 10!7, paired t-test, n ¼ 69 odor-glomerulus
combinations; Fig. 2d), and the time to half-decay of the response is
shorter for PNs than for their presynaptic ORNs (P o 10!5, paired
t-test; Fig. 2e). Taken together, faster rise and faster decay mean that a
more excitatory drive to third-order neurons occurs within an early
epoch of the odor response (P o 10!11, paired t-test; Fig. 2f). There-
fore, PNs act as high-pass filters that preferentially signal the rising
phase of the ORN response.
Because PN responses accommodate rapidly, we chose to quantify

response magnitudes in PNs by measuring the average firing rates
during an early epoch of the response (a 100-ms time window
beginning 100 ms after odor onset; Fig. 1b). Because a fruitfly can
respond rapidly after encountering an odor, this early epoch should be
particularly informative to downstream neurons. Throughout this
study, we also quantified PN responses in a different way: following
other investigators21,24, we measured the average spike rates over the
entire 500-ms stimulus period. The main conclusions from this study
are the same for both of these response metrics.

ORNs and PNs differ in odor selectivity and odor preferences
Setting aside the issues of trial-to-trial reliability and response kinetics,
we examined the average response magnitudes for each cell type to
our odor stimuli (Fig. 3 a). How does the response profile of each
PN type compare with the response profile of its corresponding
ORNs? We began by asking simply whether these responses are
linearly correlated. For each glomerulus we found a statistically
significant correlation between the ORN and PN response profile
(P o 0.05 for all seven glomerular comparisons, Pearson’s correla-
tion; Supplementary Table 1 online), but r2 values are only in the
range of 0.26–0.81. This means that a linear scaling of ORN
responses explains only 26–81% of the odor-dependent variance in
PN responses.
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aFigure 1 Odor responses are more reliable in PNs than in ORNs. (a) Odor
responses of an ORN and PN pre- and postsynaptic to the glomerulus
(glomerulus VA2, odor is geranyl acetate). Each tick represents a spike, and
each row in a raster represents a different trial. The gray bar indicates a
500-ms odor stimulus period. (b) Mean odor responses are larger in PNs
(magenta) than in ORNs (green). Spikes were counted in 50-ms bins and
averaged across five trials with the same odor, then averaged across all blocks
of trials (all odors and all experiments). The gray bar indicates the stimulus
period; the black bar indicates a 100-ms period when average PN firing rates
are maximal. (c) Standard deviations (s.d.) of spike counts in five trials
with the same odor, averaged across all blocks of trials (all odors and all
experiments). (d) Coefficient of variation (s.d./mean) of spike counts in five
trials with the same odor, averaged across all blocks of trials. Note that the
coefficient of variation of PN responses drops again after odor offset. This is
because some responses contain zero spikes for an epoch following odor
offset, so the s.d. in these bins is zero for some responses. (e) The average
s.d. of spike counts is lower for PNs than for ORNs even when mean firing
rates are matched. s.d. values were measured for all counting windows in all
blocks of trials, binned according to mean firing rate and averaged across all
counting windows in the same bin. Note that because the s.d. deviation
depends sublinearly on the mean, the average coefficient of variation is larger
than (the average s.d.)/(the average mean).
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system17–19 . However, in the Drosophila antennal lobe, B40 ORNs
with the same receptive field converge onto B4 PNs in each
glomerulus20–22. Thus, by pooling across these inputs, PNs might be
able to reduce their response variability. We therefore compared the
reliability of odor-evoked spike counts in ORNs and PNs.
We presented an odor stimulus in multiple consecutive trials to the

same cell (a ‘block’ of trials; Fig. 1a). To quantify the spike-count
reliability across trials, we divided each set of repeated responses into
50-ms windows that overlapped by 25 ms. In each time window, we
computed the mean and the standard deviation of the spike count
across repeated responses by the same cell to the same odor. Odors
typically evoked more vigorous responses in PNs than in ORNs
(Fig. 1a,b and Supplementary Fig. 2 online). So, although the typical
standard deviation of PN responses is slightly greater than that of
ORN responses (Fig. 1c), PN responses are less variable in proportion
to the magnitude of the response (P o 10!15, whether comparing
over the entire stimulus period or the 100-ms epoch at the response
peak, Mann-Whitney U-test, n ¼ 779 ORN responses and 843 PN
responses; Fig. 1d). Thus, individual PNs are more reliable than
individual ORNs, which should tend to make their responses
more informative.
We also compared the standard deviations of ORN and PN spike

counts as a function of the mean spike count for each time window. For
all mean spike counts, PNs have a lower standard deviation than
ORNs (Fig. 1e). Furthermore, the standard deviation is not strongly
dependent on the mean, and so stronger responses have a lower
coefficient of variation. Because PN responses are on average stronger
than ORN responses (Fig. 1b), this also tends to make PNs more
reliable than ORNs.

PNs preferentially transmit the rising phase of ORN signals
ORN responses typically do not peak until 100–3 00 ms after odor
onset21. This is probably because spiking is coupled to odorant receptor
activation by the generation of second messengers. However, odors can
trigger rapid behavioral responses in flies, with a total latency from
stimulus to motor reaction of less than 3 00 ms23 . This suggests that
neurons in the brain are preferentially tuned to detect the rising phase
of ORN signals, rather than the response peak. This motivated us to
compare the onset kinetics of odor responses in synaptically connected
ORNs and PNs.

Comparing peri-stimulus time histograms averaged across all odor
responses in all cells, we noted that PN responses rise more rapidly
than ORN responses (Fig. 2a). Furthermore, PN responses begin to
decay while ORN responses are still growing. This is also clear in most
direct comparisons between synaptically connected ORNs and PNs
(Figs. 1a and 2b,c). Overall, PN responses peak significantly faster than
ORN responses (P o 10!7, paired t-test, n ¼ 69 odor-glomerulus
combinations; Fig. 2d), and the time to half-decay of the response is
shorter for PNs than for their presynaptic ORNs (P o 10!5, paired
t-test; Fig. 2e). Taken together, faster rise and faster decay mean that a
more excitatory drive to third-order neurons occurs within an early
epoch of the odor response (P o 10!11, paired t-test; Fig. 2f). There-
fore, PNs act as high-pass filters that preferentially signal the rising
phase of the ORN response.
Because PN responses accommodate rapidly, we chose to quantify

response magnitudes in PNs by measuring the average firing rates
during an early epoch of the response (a 100-ms time window
beginning 100 ms after odor onset; Fig. 1b). Because a fruitfly can
respond rapidly after encountering an odor, this early epoch should be
particularly informative to downstream neurons. Throughout this
study, we also quantified PN responses in a different way: following
other investigators21,24, we measured the average spike rates over the
entire 500-ms stimulus period. The main conclusions from this study
are the same for both of these response metrics.

ORNs and PNs differ in odor selectivity and odor preferences
Setting aside the issues of trial-to-trial reliability and response kinetics,
we examined the average response magnitudes for each cell type to
our odor stimuli (Fig. 3 a). How does the response profile of each
PN type compare with the response profile of its corresponding
ORNs? We began by asking simply whether these responses are
linearly correlated. For each glomerulus we found a statistically
significant correlation between the ORN and PN response profile
(P o 0.05 for all seven glomerular comparisons, Pearson’s correla-
tion; Supplementary Table 1 online), but r2 values are only in the
range of 0.26–0.81. This means that a linear scaling of ORN
responses explains only 26–81% of the odor-dependent variance in
PN responses.
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aFigure 1 Odor responses are more reliable in PNs than in ORNs. (a) Odor
responses of an ORN and PN pre- and postsynaptic to the glomerulus
(glomerulus VA2, odor is geranyl acetate). Each tick represents a spike, and
each row in a raster represents a different trial. The gray bar indicates a
500-ms odor stimulus period. (b) Mean odor responses are larger in PNs
(magenta) than in ORNs (green). Spikes were counted in 50-ms bins and
averaged across five trials with the same odor, then averaged across all blocks
of trials (all odors and all experiments). The gray bar indicates the stimulus
period; the black bar indicates a 100-ms period when average PN firing rates
are maximal. (c) Standard deviations (s.d.) of spike counts in five trials
with the same odor, averaged across all blocks of trials (all odors and all
experiments). (d) Coefficient of variation (s.d./mean) of spike counts in five
trials with the same odor, averaged across all blocks of trials. Note that the
coefficient of variation of PN responses drops again after odor offset. This is
because some responses contain zero spikes for an epoch following odor
offset, so the s.d. in these bins is zero for some responses. (e) The average
s.d. of spike counts is lower for PNs than for ORNs even when mean firing
rates are matched. s.d. values were measured for all counting windows in all
blocks of trials, binned according to mean firing rate and averaged across all
counting windows in the same bin. Note that because the s.d. deviation
depends sublinearly on the mean, the average coefficient of variation is larger
than (the average s.d.)/(the average mean).
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Two features of PN odor responses diminish this linear correlation.
First, for each glomerulus, PNs are less selective than their presynaptic
ORNs (Po 0.05, Wilcoxon signed-rank test; Fig. 3b, similar results in
Supplementary Fig. 3 online). To test the generality of this result, we
also compared ORN and PN selectivity for glomerulus DM4 at three
odor concentrations. As with our standard concentration (1:1,000
dilution), weaker stimuli (1:10,000 and 1:100,000 dilutions) produce
PN response profiles that were less selective than the corresponding
ORN response profiles (Fig. 4 ; see also Supplementary Fig. 4 online).
Other investigators who used identical stimulus conditions have shown
that ORN responses are very sparse at the 1:100,000 dilution, indicating
that this concentration is near the bottom of the dynamic range of this
system21,22,24,25. These results show that broad PN tuning is a phenom-
enon that is not limited to high odor concentrations.
Another factor that diminishes this linear correlation is that the rank

order of odor preferences differs for ORNs and PNs. For example,
whereas ethyl butyrate is the 3rd-ranked odor of DL1 PNs, it is only
ranked 16th among the odor responses of DL1 ORNs (Fig. 3a). Some
of this difference is due to errors in estimating each average response
profile on the basis of a limited sample of individual experiments.
However, sampling error cannot completely account for this result.
This can be shown by pairing an individual ORN with a corresponding
individual PNand computing the correlation between their odor ranks,
and then comparing the distribution of these correlations with the
correlations obtained from ORN-ORN or PN-PN pairings. Because we
were not able to test every odor in every experiment, we assembled
many simulated response profiles by drawing randomly from a normal
distribution defined by the mean and standard deviation of each
average response profile (Fig. 5a; see also Supplementary Methods

online). The median correlation between ORN and PN ranks was only
0.47, which is substantially lower than the correlation betweenORNs of
the same type or between PNs of the same type (0.65 and 0.61,
respectively; Fig. 5). The simplest explanation for this result is that
the odor preferences of a PN are influenced by lateral connections
between glomeruli26,27.

A nonlinear transformation function for each glomerulus
So, the output of a glomerulus is not a simple a linear scaling of its
inputs. Furthermore, because ORNs and PNs differ in their ranked
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Figure 2 PNs preferentially transmit the rising phase of ORN signals.
(a) Average peak-normalized peri-stimulus time histograms (PSTHs),
averaged across all odors and all glomeruli (±s.e.m.). Note that PN responses
rise and decay more rapidly than ORN responses. Odor stimulation begins at
0 ms and ends at 500 ms. (b) An example comparing the responses of pre-
and postsynaptic neurons to the same odor. PSTHs show the average
response of ORNs and PNs in glomerulus VA2 to geranyl acetate (mean ±
s.e.m., averaged across experiments). Note that the PN response is robust
at a time point when the ORNs have just begun to respond, and the PN
response begins decaying before the ORNs have peaked. (c) Another example
of PSTHs for ORNs and PNs in glomerulus DM1 showing responses to ethyl
butyrate. The PN response rises faster and peaks earlier, even though in this
case the PN peak is smaller. (d) Compared with ORN responses, PN
responses have a shorter latency to reach 90% of the response peak
(mean ± s.e.m., across all blocks of trials; see Supplementary Methods).
(e) PN responses have a faster decay from peak to half-peak. (f) A larger
percentage of the total spike count occurs in the first 200 ms after odor
onset for PN responses compared with ORN responses.
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Figure 3 ORNs and PNs differ in their odor selectivity. (a) Response profiles
of synaptically connected ORNs (green) and PNs (magenta) for seven
glomeruli. Bars show averages across all experiments (±s.e.m.; see
Supplementary Table 2 for n). Responses are measured as the mean spike
rate during the 100-ms epoch when firing rates are peaking (black bar in
Fig. 1b–d), minus the baseline firing rate. Results are similar over the entire
500-ms stimulus period (Supplementary Fig. 3). (b) The selectivity
of each response profile is quantified as lifetime sparseness29,48 (see
Supplementary Methods; 0 ¼ nonselective, 1 ¼ maximally selective). ORNs
and PNs that correspond to the same glomeruli are connected. PNs are
consistently less selective than their corresponding ORNs. The highest ORN
sparseness value is for glomerulus DL1 and the lowest is for glomerulus VM2.
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Two features of PN odor responses diminish this linear correlation.
First, for each glomerulus, PNs are less selective than their presynaptic
ORNs (Po 0.05, Wilcoxon signed-rank test; Fig. 3b, similar results in
Supplementary Fig. 3 online). To test the generality of this result, we
also compared ORN and PN selectivity for glomerulus DM4 at three
odor concentrations. As with our standard concentration (1:1,000
dilution), weaker stimuli (1:10,000 and 1:100,000 dilutions) produce
PN response profiles that were less selective than the corresponding
ORN response profiles (Fig. 4 ; see also Supplementary Fig. 4 online).
Other investigators who used identical stimulus conditions have shown
that ORN responses are very sparse at the 1:100,000 dilution, indicating
that this concentration is near the bottom of the dynamic range of this
system21,22,24,25. These results show that broad PN tuning is a phenom-
enon that is not limited to high odor concentrations.
Another factor that diminishes this linear correlation is that the rank

order of odor preferences differs for ORNs and PNs. For example,
whereas ethyl butyrate is the 3rd-ranked odor of DL1 PNs, it is only
ranked 16th among the odor responses of DL1 ORNs (Fig. 3a). Some
of this difference is due to errors in estimating each average response
profile on the basis of a limited sample of individual experiments.
However, sampling error cannot completely account for this result.
This can be shown by pairing an individual ORN with a corresponding
individual PNand computing the correlation between their odor ranks,
and then comparing the distribution of these correlations with the
correlations obtained from ORN-ORN or PN-PN pairings. Because we
were not able to test every odor in every experiment, we assembled
many simulated response profiles by drawing randomly from a normal
distribution defined by the mean and standard deviation of each
average response profile (Fig. 5a; see also Supplementary Methods

online). The median correlation between ORN and PN ranks was only
0.47, which is substantially lower than the correlation betweenORNs of
the same type or between PNs of the same type (0.65 and 0.61,
respectively; Fig. 5). The simplest explanation for this result is that
the odor preferences of a PN are influenced by lateral connections
between glomeruli26,27.

A nonlinear transformation function for each glomerulus
So, the output of a glomerulus is not a simple a linear scaling of its
inputs. Furthermore, because ORNs and PNs differ in their ranked
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Figure 2 PNs preferentially transmit the rising phase of ORN signals.
(a) Average peak-normalized peri-stimulus time histograms (PSTHs),
averaged across all odors and all glomeruli (±s.e.m.). Note that PN responses
rise and decay more rapidly than ORN responses. Odor stimulation begins at
0 ms and ends at 500 ms. (b) An example comparing the responses of pre-
and postsynaptic neurons to the same odor. PSTHs show the average
response of ORNs and PNs in glomerulus VA2 to geranyl acetate (mean ±
s.e.m., averaged across experiments). Note that the PN response is robust
at a time point when the ORNs have just begun to respond, and the PN
response begins decaying before the ORNs have peaked. (c) Another example
of PSTHs for ORNs and PNs in glomerulus DM1 showing responses to ethyl
butyrate. The PN response rises faster and peaks earlier, even though in this
case the PN peak is smaller. (d) Compared with ORN responses, PN
responses have a shorter latency to reach 90% of the response peak
(mean ± s.e.m., across all blocks of trials; see Supplementary Methods).
(e) PN responses have a faster decay from peak to half-peak. (f) A larger
percentage of the total spike count occurs in the first 200 ms after odor
onset for PN responses compared with ORN responses.
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Figure 3 ORNs and PNs differ in their odor selectivity. (a) Response profiles
of synaptically connected ORNs (green) and PNs (magenta) for seven
glomeruli. Bars show averages across all experiments (±s.e.m.; see
Supplementary Table 2 for n). Responses are measured as the mean spike
rate during the 100-ms epoch when firing rates are peaking (black bar in
Fig. 1b–d), minus the baseline firing rate. Results are similar over the entire
500-ms stimulus period (Supplementary Fig. 3). (b) The selectivity
of each response profile is quantified as lifetime sparseness29,48 (see
Supplementary Methods; 0 ¼ nonselective, 1 ¼ maximally selective). ORNs
and PNs that correspond to the same glomeruli are connected. PNs are
consistently less selective than their corresponding ORNs. The highest ORN
sparseness value is for glomerulus DL1 and the lowest is for glomerulus VM2.
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11 Two features of PN odor responses diminish this linear correlation.
First, for each glomerulus, PNs are less selective than their presynaptic
ORNs (Po 0.05, Wilcoxon signed-rank test; Fig. 3b, similar results in
Supplementary Fig. 3 online). To test the generality of this result, we
also compared ORN and PN selectivity for glomerulus DM4 at three
odor concentrations. As with our standard concentration (1:1,000
dilution), weaker stimuli (1:10,000 and 1:100,000 dilutions) produce
PN response profiles that were less selective than the corresponding
ORN response profiles (Fig. 4 ; see also Supplementary Fig. 4 online).
Other investigators who used identical stimulus conditions have shown
that ORN responses are very sparse at the 1:100,000 dilution, indicating
that this concentration is near the bottom of the dynamic range of this
system21,22,24,25. These results show that broad PN tuning is a phenom-
enon that is not limited to high odor concentrations.
Another factor that diminishes this linear correlation is that the rank

order of odor preferences differs for ORNs and PNs. For example,
whereas ethyl butyrate is the 3rd-ranked odor of DL1 PNs, it is only
ranked 16th among the odor responses of DL1 ORNs (Fig. 3a). Some
of this difference is due to errors in estimating each average response
profile on the basis of a limited sample of individual experiments.
However, sampling error cannot completely account for this result.
This can be shown by pairing an individual ORN with a corresponding
individual PNand computing the correlation between their odor ranks,
and then comparing the distribution of these correlations with the
correlations obtained from ORN-ORN or PN-PN pairings. Because we
were not able to test every odor in every experiment, we assembled
many simulated response profiles by drawing randomly from a normal
distribution defined by the mean and standard deviation of each
average response profile (Fig. 5a; see also Supplementary Methods

online). The median correlation between ORN and PN ranks was only
0.47, which is substantially lower than the correlation betweenORNs of
the same type or between PNs of the same type (0.65 and 0.61,
respectively; Fig. 5). The simplest explanation for this result is that
the odor preferences of a PN are influenced by lateral connections
between glomeruli26,27.

A nonlinear transformation function for each glomerulus
So, the output of a glomerulus is not a simple a linear scaling of its
inputs. Furthermore, because ORNs and PNs differ in their ranked
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Figure 2 PNs preferentially transmit the rising phase of ORN signals.
(a) Average peak-normalized peri-stimulus time histograms (PSTHs),
averaged across all odors and all glomeruli (±s.e.m.). Note that PN responses
rise and decay more rapidly than ORN responses. Odor stimulation begins at
0 ms and ends at 500 ms. (b) An example comparing the responses of pre-
and postsynaptic neurons to the same odor. PSTHs show the average
response of ORNs and PNs in glomerulus VA2 to geranyl acetate (mean ±
s.e.m., averaged across experiments). Note that the PN response is robust
at a time point when the ORNs have just begun to respond, and the PN
response begins decaying before the ORNs have peaked. (c) Another example
of PSTHs for ORNs and PNs in glomerulus DM1 showing responses to ethyl
butyrate. The PN response rises faster and peaks earlier, even though in this
case the PN peak is smaller. (d) Compared with ORN responses, PN
responses have a shorter latency to reach 90% of the response peak
(mean ± s.e.m., across all blocks of trials; see Supplementary Methods).
(e) PN responses have a faster decay from peak to half-peak. (f) A larger
percentage of the total spike count occurs in the first 200 ms after odor
onset for PN responses compared with ORN responses.
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Figure 3 ORNs and PNs differ in their odor selectivity. (a) Response profiles
of synaptically connected ORNs (green) and PNs (magenta) for seven
glomeruli. Bars show averages across all experiments (±s.e.m.; see
Supplementary Table 2 for n). Responses are measured as the mean spike
rate during the 100-ms epoch when firing rates are peaking (black bar in
Fig. 1b–d), minus the baseline firing rate. Results are similar over the entire
500-ms stimulus period (Supplementary Fig. 3). (b) The selectivity
of each response profile is quantified as lifetime sparseness29,48 (see
Supplementary Methods; 0 ¼ nonselective, 1 ¼ maximally selective). ORNs
and PNs that correspond to the same glomeruli are connected. PNs are
consistently less selective than their corresponding ORNs. The highest ORN
sparseness value is for glomerulus DL1 and the lowest is for glomerulus VM2.
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Two features of PN odor responses diminish this linear correlation.
First, for each glomerulus, PNs are less selective than their presynaptic
ORNs (Po 0.05, Wilcoxon signed-rank test; Fig. 3b, similar results in
Supplementary Fig. 3 online). To test the generality of this result, we
also compared ORN and PN selectivity for glomerulus DM4 at three
odor concentrations. As with our standard concentration (1:1,000
dilution), weaker stimuli (1:10,000 and 1:100,000 dilutions) produce
PN response profiles that were less selective than the corresponding
ORN response profiles (Fig. 4 ; see also Supplementary Fig. 4 online).
Other investigators who used identical stimulus conditions have shown
that ORN responses are very sparse at the 1:100,000 dilution, indicating
that this concentration is near the bottom of the dynamic range of this
system21,22,24,25. These results show that broad PN tuning is a phenom-
enon that is not limited to high odor concentrations.
Another factor that diminishes this linear correlation is that the rank

order of odor preferences differs for ORNs and PNs. For example,
whereas ethyl butyrate is the 3rd-ranked odor of DL1 PNs, it is only
ranked 16th among the odor responses of DL1 ORNs (Fig. 3a). Some
of this difference is due to errors in estimating each average response
profile on the basis of a limited sample of individual experiments.
However, sampling error cannot completely account for this result.
This can be shown by pairing an individual ORN with a corresponding
individual PNand computing the correlation between their odor ranks,
and then comparing the distribution of these correlations with the
correlations obtained from ORN-ORN or PN-PN pairings. Because we
were not able to test every odor in every experiment, we assembled
many simulated response profiles by drawing randomly from a normal
distribution defined by the mean and standard deviation of each
average response profile (Fig. 5a; see also Supplementary Methods

online). The median correlation between ORN and PN ranks was only
0.47, which is substantially lower than the correlation betweenORNs of
the same type or between PNs of the same type (0.65 and 0.61,
respectively; Fig. 5). The simplest explanation for this result is that
the odor preferences of a PN are influenced by lateral connections
between glomeruli26,27.

A nonlinear transformation function for each glomerulus
So, the output of a glomerulus is not a simple a linear scaling of its
inputs. Furthermore, because ORNs and PNs differ in their ranked
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Figure 2 PNs preferentially transmit the rising phase of ORN signals.
(a) Average peak-normalized peri-stimulus time histograms (PSTHs),
averaged across all odors and all glomeruli (±s.e.m.). Note that PN responses
rise and decay more rapidly than ORN responses. Odor stimulation begins at
0 ms and ends at 500 ms. (b) An example comparing the responses of pre-
and postsynaptic neurons to the same odor. PSTHs show the average
response of ORNs and PNs in glomerulus VA2 to geranyl acetate (mean ±
s.e.m., averaged across experiments). Note that the PN response is robust
at a time point when the ORNs have just begun to respond, and the PN
response begins decaying before the ORNs have peaked. (c) Another example
of PSTHs for ORNs and PNs in glomerulus DM1 showing responses to ethyl
butyrate. The PN response rises faster and peaks earlier, even though in this
case the PN peak is smaller. (d) Compared with ORN responses, PN
responses have a shorter latency to reach 90% of the response peak
(mean ± s.e.m., across all blocks of trials; see Supplementary Methods).
(e) PN responses have a faster decay from peak to half-peak. (f) A larger
percentage of the total spike count occurs in the first 200 ms after odor
onset for PN responses compared with ORN responses.
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Figure 3 ORNs and PNs differ in their odor selectivity. (a) Response profiles
of synaptically connected ORNs (green) and PNs (magenta) for seven
glomeruli. Bars show averages across all experiments (±s.e.m.; see
Supplementary Table 2 for n). Responses are measured as the mean spike
rate during the 100-ms epoch when firing rates are peaking (black bar in
Fig. 1b–d), minus the baseline firing rate. Results are similar over the entire
500-ms stimulus period (Supplementary Fig. 3). (b) The selectivity
of each response profile is quantified as lifetime sparseness29,48 (see
Supplementary Methods; 0 ¼ nonselective, 1 ¼ maximally selective). ORNs
and PNs that correspond to the same glomeruli are connected. PNs are
consistently less selective than their corresponding ORNs. The highest ORN
sparseness value is for glomerulus DL1 and the lowest is for glomerulus VM2.

N ATU RE N EU ROSCIEN CE ADVAN CE ON LIN E PU BLICATION 3

ART ICLES

PNs and ORNs differ in odor selectivity
(ethyl butyrate is the 3rd-ranked odor of DL1 PNs, 
16th among the odor responses of DL1 ORNs )

ORN -> PN



13

Two features of PN odor responses diminish this linear correlation.
First, for each glomerulus, PNs are less selective than their presynaptic
ORNs (Po 0.05, Wilcoxon signed-rank test; Fig. 3b, similar results in
Supplementary Fig. 3 online). To test the generality of this result, we
also compared ORN and PN selectivity for glomerulus DM4 at three
odor concentrations. As with our standard concentration (1:1,000
dilution), weaker stimuli (1:10,000 and 1:100,000 dilutions) produce
PN response profiles that were less selective than the corresponding
ORN response profiles (Fig. 4 ; see also Supplementary Fig. 4 online).
Other investigators who used identical stimulus conditions have shown
that ORN responses are very sparse at the 1:100,000 dilution, indicating
that this concentration is near the bottom of the dynamic range of this
system21,22,24,25. These results show that broad PN tuning is a phenom-
enon that is not limited to high odor concentrations.
Another factor that diminishes this linear correlation is that the rank

order of odor preferences differs for ORNs and PNs. For example,
whereas ethyl butyrate is the 3rd-ranked odor of DL1 PNs, it is only
ranked 16th among the odor responses of DL1 ORNs (Fig. 3a). Some
of this difference is due to errors in estimating each average response
profile on the basis of a limited sample of individual experiments.
However, sampling error cannot completely account for this result.
This can be shown by pairing an individual ORN with a corresponding
individual PNand computing the correlation between their odor ranks,
and then comparing the distribution of these correlations with the
correlations obtained from ORN-ORN or PN-PN pairings. Because we
were not able to test every odor in every experiment, we assembled
many simulated response profiles by drawing randomly from a normal
distribution defined by the mean and standard deviation of each
average response profile (Fig. 5a; see also Supplementary Methods

online). The median correlation between ORN and PN ranks was only
0.47, which is substantially lower than the correlation betweenORNs of
the same type or between PNs of the same type (0.65 and 0.61,
respectively; Fig. 5). The simplest explanation for this result is that
the odor preferences of a PN are influenced by lateral connections
between glomeruli26,27.

A nonlinear transformation function for each glomerulus
So, the output of a glomerulus is not a simple a linear scaling of its
inputs. Furthermore, because ORNs and PNs differ in their ranked
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Figure 2 PNs preferentially transmit the rising phase of ORN signals.
(a) Average peak-normalized peri-stimulus time histograms (PSTHs),
averaged across all odors and all glomeruli (±s.e.m.). Note that PN responses
rise and decay more rapidly than ORN responses. Odor stimulation begins at
0 ms and ends at 500 ms. (b) An example comparing the responses of pre-
and postsynaptic neurons to the same odor. PSTHs show the average
response of ORNs and PNs in glomerulus VA2 to geranyl acetate (mean ±
s.e.m., averaged across experiments). Note that the PN response is robust
at a time point when the ORNs have just begun to respond, and the PN
response begins decaying before the ORNs have peaked. (c) Another example
of PSTHs for ORNs and PNs in glomerulus DM1 showing responses to ethyl
butyrate. The PN response rises faster and peaks earlier, even though in this
case the PN peak is smaller. (d) Compared with ORN responses, PN
responses have a shorter latency to reach 90% of the response peak
(mean ± s.e.m., across all blocks of trials; see Supplementary Methods).
(e) PN responses have a faster decay from peak to half-peak. (f) A larger
percentage of the total spike count occurs in the first 200 ms after odor
onset for PN responses compared with ORN responses.
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Figure 3 ORNs and PNs differ in their odor selectivity. (a) Response profiles
of synaptically connected ORNs (green) and PNs (magenta) for seven
glomeruli. Bars show averages across all experiments (±s.e.m.; see
Supplementary Table 2 for n). Responses are measured as the mean spike
rate during the 100-ms epoch when firing rates are peaking (black bar in
Fig. 1b–d), minus the baseline firing rate. Results are similar over the entire
500-ms stimulus period (Supplementary Fig. 3). (b) The selectivity
of each response profile is quantified as lifetime sparseness29,48 (see
Supplementary Methods; 0 ¼ nonselective, 1 ¼ maximally selective). ORNs
and PNs that correspond to the same glomeruli are connected. PNs are
consistently less selective than their corresponding ORNs. The highest ORN
sparseness value is for glomerulus DL1 and the lowest is for glomerulus VM2.
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Two features of PN odor responses diminish this linear correlation.
First, for each glomerulus, PNs are less selective than their presynaptic
ORNs (Po 0.05, Wilcoxon signed-rank test; Fig. 3b, similar results in
Supplementary Fig. 3 online). To test the generality of this result, we
also compared ORN and PN selectivity for glomerulus DM4 at three
odor concentrations. As with our standard concentration (1:1,000
dilution), weaker stimuli (1:10,000 and 1:100,000 dilutions) produce
PN response profiles that were less selective than the corresponding
ORN response profiles (Fig. 4 ; see also Supplementary Fig. 4 online).
Other investigators who used identical stimulus conditions have shown
that ORN responses are very sparse at the 1:100,000 dilution, indicating
that this concentration is near the bottom of the dynamic range of this
system21,22,24,25. These results show that broad PN tuning is a phenom-
enon that is not limited to high odor concentrations.
Another factor that diminishes this linear correlation is that the rank

order of odor preferences differs for ORNs and PNs. For example,
whereas ethyl butyrate is the 3rd-ranked odor of DL1 PNs, it is only
ranked 16th among the odor responses of DL1 ORNs (Fig. 3a). Some
of this difference is due to errors in estimating each average response
profile on the basis of a limited sample of individual experiments.
However, sampling error cannot completely account for this result.
This can be shown by pairing an individual ORN with a corresponding
individual PNand computing the correlation between their odor ranks,
and then comparing the distribution of these correlations with the
correlations obtained from ORN-ORN or PN-PN pairings. Because we
were not able to test every odor in every experiment, we assembled
many simulated response profiles by drawing randomly from a normal
distribution defined by the mean and standard deviation of each
average response profile (Fig. 5a; see also Supplementary Methods

online). The median correlation between ORN and PN ranks was only
0.47, which is substantially lower than the correlation betweenORNs of
the same type or between PNs of the same type (0.65 and 0.61,
respectively; Fig. 5). The simplest explanation for this result is that
the odor preferences of a PN are influenced by lateral connections
between glomeruli26,27.

A nonlinear transformation function for each glomerulus
So, the output of a glomerulus is not a simple a linear scaling of its
inputs. Furthermore, because ORNs and PNs differ in their ranked
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Figure 2 PNs preferentially transmit the rising phase of ORN signals.
(a) Average peak-normalized peri-stimulus time histograms (PSTHs),
averaged across all odors and all glomeruli (±s.e.m.). Note that PN responses
rise and decay more rapidly than ORN responses. Odor stimulation begins at
0 ms and ends at 500 ms. (b) An example comparing the responses of pre-
and postsynaptic neurons to the same odor. PSTHs show the average
response of ORNs and PNs in glomerulus VA2 to geranyl acetate (mean ±
s.e.m., averaged across experiments). Note that the PN response is robust
at a time point when the ORNs have just begun to respond, and the PN
response begins decaying before the ORNs have peaked. (c) Another example
of PSTHs for ORNs and PNs in glomerulus DM1 showing responses to ethyl
butyrate. The PN response rises faster and peaks earlier, even though in this
case the PN peak is smaller. (d) Compared with ORN responses, PN
responses have a shorter latency to reach 90% of the response peak
(mean ± s.e.m., across all blocks of trials; see Supplementary Methods).
(e) PN responses have a faster decay from peak to half-peak. (f) A larger
percentage of the total spike count occurs in the first 200 ms after odor
onset for PN responses compared with ORN responses.
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Figure 3 ORNs and PNs differ in their odor selectivity. (a) Response profiles
of synaptically connected ORNs (green) and PNs (magenta) for seven
glomeruli. Bars show averages across all experiments (±s.e.m.; see
Supplementary Table 2 for n). Responses are measured as the mean spike
rate during the 100-ms epoch when firing rates are peaking (black bar in
Fig. 1b–d), minus the baseline firing rate. Results are similar over the entire
500-ms stimulus period (Supplementary Fig. 3). (b) The selectivity
of each response profile is quantified as lifetime sparseness29,48 (see
Supplementary Methods; 0 ¼ nonselective, 1 ¼ maximally selective). ORNs
and PNs that correspond to the same glomeruli are connected. PNs are
consistently less selective than their corresponding ORNs. The highest ORN
sparseness value is for glomerulus DL1 and the lowest is for glomerulus VM2.
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Odor representations in multiglomerular coding space
Third-order neurons receive convergent input from multiple PN
types29–32. It is therefore important to examine odor representations
in multiglomerular coding space. In the simplest case, histogram
equalization in one dimension should also produce a more uniform
distribution of odors in multiple dimensions. To visualize odor
representations in seven-dimensional space, we reduced the dimen-
sionality of this space by performing principal components analysis.
The first two principal components define the two-dimensional pro-
jection that maximizes the variance of the data. In this projection, most
odors are still clustered near the origin of the ORN space, with only a
few odors located far from this cluster (Fig. 7a). In the equivalent PN
space, odors fill the available coding space more uniformly (Fig. 7b).
Thus, as a result of the ORN-to-PN transformation, odor represen-

tations are distributed more efficiently in multiglomerular coding
space. In concrete terms, the ensemble patterns of spiking activity
elicited by any two odors become more different. We quantified this by
measuring Euclidean distances between odors in seven-dimensional
space for all possible pairwise combinations of odors ([18 choose 2]¼
15 3 pairs). During the early epoch of odor responses, distances are
significantly larger in PN space than in ORN space (Po 0.0001, paired
t-test, n¼ 15 3). Moreover, the distribution of distances is narrower for
PNs than for ORNs over the entire stimulus period (note the differing
interquartile ranges in Fig. 7c,d). This means that odors are distributed
more uniformly in PN coding space. Some odor distances decrease, but
others increase.
Is the separation of odors in multidimensional space larger or

smaller than we would predict, based solely on the independent odor
separation in each one-dimensional coding channel? The answer
depends on the degree of correlation between the different glomeruli.
Lateral connections shape PN odor responses26 ,27 (Fig. 5 ); if these
connections increase correlations between different PN types, this
would decrease inter-odor distances in multidimensional space. To
address this issue, we constructed a simulated data set that preserves the
distribution of response magnitudes for each glomerular cell type,
but breaks any dependencies between odor responses in different

glomeruli. We achieved this by independently
shuffling the odor labels on each glomerular
response profile. We then measured inter-
odor distances in seven-dimensional space

for all possible pairwise combinations of odors. When we repeated
this simulation many times, the range of distances we obtained was
indistinguishable from the distances we measured in our real data set
(Fig. 7c,d). This means the separation between ensemble odor repre-
sentations is roughly what we would predict, based solely on histogram
equalization in each glomerulus individually.

Correlations between cell types and odors
We have seen that PNs use all parts of their dynamic range with
approximately equal frequency, and in this sense encode odors more
efficiently than ORNs do28 . However, the term ‘efficient coding’ has
also been applied to the idea that the responses of different neurons
should be maximally independent from each other33. We measured the
independence of different glomerular coding channels by computing
the percentage of the variance in the ensemble odor responses that is
captured by each of the seven principal components of the seven-
dimensional ORN or PN coding space. If all seven cell types were
completely correlated, then the first principal component would
account for 100% of the variance in the data. In other words, all the
data would lie along a single line in multidimensional space. Con-
versely, if all cell types were perfectly decorrelated, and if the data were
drawn from a multidimensional Gaussian distribution, then each
principal component would account for an equal amount of the total
variance (100% C 7 ¼ B14 %). (Even in this case, we would need a
very large odor set to discern this perfect decorrelation.)
The principal components of our ORN data set fall between these

hypothetical extremes (Fig. 8a). In part, this reflects the limited size of
our odor set and the non-Gaussian distribution of the ORN response
histograms (Fig. 6b). We demonstrated this by independently and
randomly shuffling the odor labels on each of the seven ORN response
profiles and re-computing the principal components of this simulated
data set. These simulations always produced a first principal compo-
nent that accounted for a disproportionately large share of the variance
(usually 30–4 0%; Fig. 8a). However, the principal components of the
real (non-shuffled) data set are even more skewed, with the first
principal component accounting for 5 4 % of the variance. This
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a Figure 6 PN odor responses are partly explained
by a highly nonlinear transformation of their direct
ORN inputs. (a) For each glomerulus, the average
PN response to an odor is plotted against the
average ORN response to that odor (black
symbols, ± s.e.m.). Curves are exponential fits
(y ¼ y0 + A"ekx). Green and magenta symbols are
projections of the data onto the x and y axes,
showing that odor responses generally occupy the
dynamic range of a PN more evenly than they
occupy that of an ORN. Responses are measured
as the mean spike rate during the 100-ms epoch
when firing rates are peaking (with no baseline
subtraction), but results are similar if responses
are measured as the mean spike rate during the
entire 500-ms stimulus period (Supplementary
Fig. 5). (b) Histograms of ORN and PN response
magnitudes. Each histogram is accumulated
across all 126 response magnitudes (¼ 7
glomeruli # 18 odors). The PN histogram is flatter
than the ORN histogram, indicating that PNs use
their dynamic range more efficiently.
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Curves exponential fits
Green and magenta projection of data onto axes:
Makes use of all available response range)
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Odor representations in multiglomerular coding space
Third-order neurons receive convergent input from multiple PN
types29–32. It is therefore important to examine odor representations
in multiglomerular coding space. In the simplest case, histogram
equalization in one dimension should also produce a more uniform
distribution of odors in multiple dimensions. To visualize odor
representations in seven-dimensional space, we reduced the dimen-
sionality of this space by performing principal components analysis.
The first two principal components define the two-dimensional pro-
jection that maximizes the variance of the data. In this projection, most
odors are still clustered near the origin of the ORN space, with only a
few odors located far from this cluster (Fig. 7a). In the equivalent PN
space, odors fill the available coding space more uniformly (Fig. 7b).
Thus, as a result of the ORN-to-PN transformation, odor represen-

tations are distributed more efficiently in multiglomerular coding
space. In concrete terms, the ensemble patterns of spiking activity
elicited by any two odors become more different. We quantified this by
measuring Euclidean distances between odors in seven-dimensional
space for all possible pairwise combinations of odors ([18 choose 2]¼
15 3 pairs). During the early epoch of odor responses, distances are
significantly larger in PN space than in ORN space (Po 0.0001, paired
t-test, n¼ 15 3). Moreover, the distribution of distances is narrower for
PNs than for ORNs over the entire stimulus period (note the differing
interquartile ranges in Fig. 7c,d). This means that odors are distributed
more uniformly in PN coding space. Some odor distances decrease, but
others increase.
Is the separation of odors in multidimensional space larger or

smaller than we would predict, based solely on the independent odor
separation in each one-dimensional coding channel? The answer
depends on the degree of correlation between the different glomeruli.
Lateral connections shape PN odor responses26 ,27 (Fig. 5 ); if these
connections increase correlations between different PN types, this
would decrease inter-odor distances in multidimensional space. To
address this issue, we constructed a simulated data set that preserves the
distribution of response magnitudes for each glomerular cell type,
but breaks any dependencies between odor responses in different

glomeruli. We achieved this by independently
shuffling the odor labels on each glomerular
response profile. We then measured inter-
odor distances in seven-dimensional space

for all possible pairwise combinations of odors. When we repeated
this simulation many times, the range of distances we obtained was
indistinguishable from the distances we measured in our real data set
(Fig. 7c,d). This means the separation between ensemble odor repre-
sentations is roughly what we would predict, based solely on histogram
equalization in each glomerulus individually.

Correlations between cell types and odors
We have seen that PNs use all parts of their dynamic range with
approximately equal frequency, and in this sense encode odors more
efficiently than ORNs do28 . However, the term ‘efficient coding’ has
also been applied to the idea that the responses of different neurons
should be maximally independent from each other33. We measured the
independence of different glomerular coding channels by computing
the percentage of the variance in the ensemble odor responses that is
captured by each of the seven principal components of the seven-
dimensional ORN or PN coding space. If all seven cell types were
completely correlated, then the first principal component would
account for 100% of the variance in the data. In other words, all the
data would lie along a single line in multidimensional space. Con-
versely, if all cell types were perfectly decorrelated, and if the data were
drawn from a multidimensional Gaussian distribution, then each
principal component would account for an equal amount of the total
variance (100% C 7 ¼ B14 %). (Even in this case, we would need a
very large odor set to discern this perfect decorrelation.)
The principal components of our ORN data set fall between these

hypothetical extremes (Fig. 8a). In part, this reflects the limited size of
our odor set and the non-Gaussian distribution of the ORN response
histograms (Fig. 6b). We demonstrated this by independently and
randomly shuffling the odor labels on each of the seven ORN response
profiles and re-computing the principal components of this simulated
data set. These simulations always produced a first principal compo-
nent that accounted for a disproportionately large share of the variance
(usually 30–4 0%; Fig. 8a). However, the principal components of the
real (non-shuffled) data set are even more skewed, with the first
principal component accounting for 5 4 % of the variance. This
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a Figure 6 PN odor responses are partly explained
by a highly nonlinear transformation of their direct
ORN inputs. (a) For each glomerulus, the average
PN response to an odor is plotted against the
average ORN response to that odor (black
symbols, ± s.e.m.). Curves are exponential fits
(y ¼ y0 + A"ekx). Green and magenta symbols are
projections of the data onto the x and y axes,
showing that odor responses generally occupy the
dynamic range of a PN more evenly than they
occupy that of an ORN. Responses are measured
as the mean spike rate during the 100-ms epoch
when firing rates are peaking (with no baseline
subtraction), but results are similar if responses
are measured as the mean spike rate during the
entire 500-ms stimulus period (Supplementary
Fig. 5). (b) Histograms of ORN and PN response
magnitudes. Each histogram is accumulated
across all 126 response magnitudes (¼ 7
glomeruli # 18 odors). The PN histogram is flatter
than the ORN histogram, indicating that PNs use
their dynamic range more efficiently.
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Odor representations in multiglomerular coding space
Third-order neurons receive convergent input from multiple PN
types29–32. It is therefore important to examine odor representations
in multiglomerular coding space. In the simplest case, histogram
equalization in one dimension should also produce a more uniform
distribution of odors in multiple dimensions. To visualize odor
representations in seven-dimensional space, we reduced the dimen-
sionality of this space by performing principal components analysis.
The first two principal components define the two-dimensional pro-
jection that maximizes the variance of the data. In this projection, most
odors are still clustered near the origin of the ORN space, with only a
few odors located far from this cluster (Fig. 7a). In the equivalent PN
space, odors fill the available coding space more uniformly (Fig. 7b).
Thus, as a result of the ORN-to-PN transformation, odor represen-

tations are distributed more efficiently in multiglomerular coding
space. In concrete terms, the ensemble patterns of spiking activity
elicited by any two odors become more different. We quantified this by
measuring Euclidean distances between odors in seven-dimensional
space for all possible pairwise combinations of odors ([18 choose 2]¼
15 3 pairs). During the early epoch of odor responses, distances are
significantly larger in PN space than in ORN space (Po 0.0001, paired
t-test, n¼ 15 3). Moreover, the distribution of distances is narrower for
PNs than for ORNs over the entire stimulus period (note the differing
interquartile ranges in Fig. 7c,d). This means that odors are distributed
more uniformly in PN coding space. Some odor distances decrease, but
others increase.
Is the separation of odors in multidimensional space larger or

smaller than we would predict, based solely on the independent odor
separation in each one-dimensional coding channel? The answer
depends on the degree of correlation between the different glomeruli.
Lateral connections shape PN odor responses26 ,27 (Fig. 5 ); if these
connections increase correlations between different PN types, this
would decrease inter-odor distances in multidimensional space. To
address this issue, we constructed a simulated data set that preserves the
distribution of response magnitudes for each glomerular cell type,
but breaks any dependencies between odor responses in different

glomeruli. We achieved this by independently
shuffling the odor labels on each glomerular
response profile. We then measured inter-
odor distances in seven-dimensional space

for all possible pairwise combinations of odors. When we repeated
this simulation many times, the range of distances we obtained was
indistinguishable from the distances we measured in our real data set
(Fig. 7c,d). This means the separation between ensemble odor repre-
sentations is roughly what we would predict, based solely on histogram
equalization in each glomerulus individually.

Correlations between cell types and odors
We have seen that PNs use all parts of their dynamic range with
approximately equal frequency, and in this sense encode odors more
efficiently than ORNs do28 . However, the term ‘efficient coding’ has
also been applied to the idea that the responses of different neurons
should be maximally independent from each other33. We measured the
independence of different glomerular coding channels by computing
the percentage of the variance in the ensemble odor responses that is
captured by each of the seven principal components of the seven-
dimensional ORN or PN coding space. If all seven cell types were
completely correlated, then the first principal component would
account for 100% of the variance in the data. In other words, all the
data would lie along a single line in multidimensional space. Con-
versely, if all cell types were perfectly decorrelated, and if the data were
drawn from a multidimensional Gaussian distribution, then each
principal component would account for an equal amount of the total
variance (100% C 7 ¼ B14 %). (Even in this case, we would need a
very large odor set to discern this perfect decorrelation.)
The principal components of our ORN data set fall between these

hypothetical extremes (Fig. 8a). In part, this reflects the limited size of
our odor set and the non-Gaussian distribution of the ORN response
histograms (Fig. 6b). We demonstrated this by independently and
randomly shuffling the odor labels on each of the seven ORN response
profiles and re-computing the principal components of this simulated
data set. These simulations always produced a first principal compo-
nent that accounted for a disproportionately large share of the variance
(usually 30–4 0%; Fig. 8a). However, the principal components of the
real (non-shuffled) data set are even more skewed, with the first
principal component accounting for 5 4 % of the variance. This
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a Figure 6 PN odor responses are partly explained
by a highly nonlinear transformation of their direct
ORN inputs. (a) For each glomerulus, the average
PN response to an odor is plotted against the
average ORN response to that odor (black
symbols, ± s.e.m.). Curves are exponential fits
(y ¼ y0 + A"ekx). Green and magenta symbols are
projections of the data onto the x and y axes,
showing that odor responses generally occupy the
dynamic range of a PN more evenly than they
occupy that of an ORN. Responses are measured
as the mean spike rate during the 100-ms epoch
when firing rates are peaking (with no baseline
subtraction), but results are similar if responses
are measured as the mean spike rate during the
entire 500-ms stimulus period (Supplementary
Fig. 5). (b) Histograms of ORN and PN response
magnitudes. Each histogram is accumulated
across all 126 response magnitudes (¼ 7
glomeruli # 18 odors). The PN histogram is flatter
than the ORN histogram, indicating that PNs use
their dynamic range more efficiently.
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(Makes use of all available response range; histogram
Equalization
Histogram across 7 glomeruli, 18 odors = 126 points
of collected response magnitude)
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NEW�INSIGHTS�BY�COMPARING�AND�CONTRASTING�
RESPONSES�TO�A�VARIETY�OF�ODORANTS�AT�BOTH�THE�
/2.�AND�PROJECTION�NEURON�LEVELS�

.EURAL�CIRCUITS�DOWNSTREAM�OF�THE�ANTENNAL�
LOBE�MUST�DIFFERENTIATE�BETWEEN�THE�PATTERNS�
OF� ACTIVITY� THAT� ARE� GENERATED� BY� DIFFERENT�
ODORANTS�IF�THE�FLY�IS�TO�DISCRIMINATE�BETWEEN�
ODORS�� #ONVERSELY�� DISCRIMINATION� WILL� BE�
IMPOSSIBLE� IF� THE� FIRING� RATES� EVOKED� BY� A�
PAIR�OF�ODORS�ARE�TOO�CLOSE�TO�EACH�OTHER�FOR�
THESE�CIRCUITS� TO�DISTINGUISH�BETWEEN�THEM��
$ISCRIMINATION�PERFORMANCE�ACROSS�A�WHOLE�
SPECTRUM� OF� ODORS� IS� LIMITED� BY� THE� EXTENT�
TO� WHICH� OLFACTORY� RESPONSES� CLUSTER� INTO�
INDISTINGUISHABLE� GROUPS�� 2ESPONSES� ACROSS�
AN� ARRAY� OF� ODORS� CAN� BE� CHARACTERIZED�
BY� A� RESPONSE� DISTRIBUTION�� REFLECTING� THE�
PROBABILITY�THAT�RANDOMLY�SELECTED�ODORANTS�
EVOKE� VARIOUS� FIRING� RATES�� 5SING� A� SIMPLE�
MODEL�OF�DETECTION��THE�OPTIMAL�DISTRIBUTION�
OF� FIRING� RATES� FOR� DISCRIMINATION� IS� ONE�
WITH�NO�CLUSTERS�� THAT� IS�� A� FLAT�DISTRIBUTION�
WITH�EQUAL�PROBABILITY�FOR�FIRING�RATES�TO�FALL�
ANYWHERE�WITHIN�THEIR�ALLOWED�RANGES�

"HANDAWAT� ET� AL��� FOUND� THAT� /2.�
RESPONSES� ARE� NOT� UNIFORMLY� DISTRIBUTED��
THE� MAJORITY� OF� THEM� ARE� AT� LOW� RATES�� 4HIS�
AGREES�WITH�THE�DISTRIBUTION�OF�THE�RESPONSES�
REPORTED�PREVIOUSLY��FROM�A�LARGER�SAMPLE�OF�
��� OLFACTORY� RECEPTORS� GENERATING� RESPONSES�
TO� ���� ODORS� �&IG�� �B�� LEFT	�� 4HE� CLUSTERING�
OF� RESPONSES� AT� LOW� RATES� IS� PROBABLY� AN�
UNAVOIDABLE� CONSEQUENCE� OF� USING� GENERAL
PURPOSE� RECEPTORS� THAT� ARE� LIKELY� TO� BIND� TO�
MANY�MOLECULES�WEAKLY�AND�ONLY�A�FEW�STRONGLY��
THEREBY�GENERATING�A�CLUSTERING�OF�RESPONSES�
AT�LOW�FIRING�RATES��!CCORDING�TO�THE�OPTIMAL
CODING�HYPOTHESIS��THE�ANTENNAL�LOBE�SHOULD�
CHANGE�THE�EXPONENTIAL�DISTRIBUTION�OF�/2.�
RESPONSES��&IG���B��LEFT	�INTO�A�FLAT�DISTRIBUTION�
OF� PROJECTION� NEURON� RESPONSES�� MAKING�
DOWNSTREAM� DISCRIMINATION� EASIER�� 4HIS�
OPERATION��KNOWN�AS�HISTOGRAM�EQUALIZATION��
IS�EXACTLY�WHAT�"HANDAWAT�ET�AL���REPORT�

"HANDAWAT� ET� AL��� FOUND� THAT� PROJECTION�
NEURON�FIRING�RATES�OVER�THE�ODORANTS�THAT�THEY�
TESTED�ARE�MUCH�MORE�UNIFORMLY�DISTRIBUTED�
THAN� /2.� RESPONSES�� &URTHERMORE�� THEY�
UNCOVERED�THE�MECHANISM�FOR�THIS�HISTOGRAM�
EQUALIZATION�� A� NONLINEAR� DEPENDENCE� OF�
PROJECTION�NEURON�FIRING�RATES�ON�THE�RATES�OF�THE�
/2.S�THAT�PROVIDE�THEIR�DIRECT�SENSORY�INPUT��
0ROJECTION�NEURON�FIRING�RATES�RISE�SHARPLY�AS�
A� FUNCTION� OF� THE� CORRESPONDING� /2.� RATE��
BUT�SOON�SATURATE��&IG���B��CENTER	��4O�FURTHER�
SUPPORT� THIS� POINT�� IF� THE� /2.� RESPONSES�
FROM� THE� STUDY�� MENTIONED� ABOVE� �&IG�� �B��
LEFT	�ARE�PASSED�THROUGH�THE�NONLINEAR�FIRING
RATE� FUNCTION�REPORTED�BY�"HANDAWAT�ET�AL����
�&IG���B��CENTER	��THEN�THE�RESULTING�DISTRIBUTION�
IS� FLAT� �&IG���B�� RIGHT	�� )F� THE�DISTRIBUTION�OF�

/2.�RESPONSES�RECORDED�IN�THESE�EXPERIMENTS�
IS�REPRESENTATIVE�OF�RESPONSES�TO�NATURAL�ODORS��
SOMETHING� THAT� SHOULD� BE� CHECKED�� THESE�
RESULTS� PROVIDE� A� NOTABLE� ILLUSTRATION� OF� A�
MECHANISM�SUGGESTED�EARLIER�AND�ILLUSTRATED�
IN�FLY�VISION���APPROPRIATELY�SHAPED�NONLINEAR�
FIRINGRATE� CURVES� CAN� EQUALIZE� RESPONSES� TO��
ENHANCE�NEURAL�ENCODING�

!N� UNEVEN� HISTOGRAM� IS� NOT� THE� ONLY� WAY�
THAT� RESPONSES� CAN� CLUSTER�� %VEN� IF� INDIVIDUAL�
PROJECTION� NEURONS� HAVE� FLAT� RESPONSE�
HISTOGRAMS��CORRELATIONS�BETWEEN�THEIR�RESPONSES�
CAN� CAUSE� CLUSTERING� ACROSS� THE� PROJECTION�
NEURON� POPULATION�� "ECAUSE� ANY� CORRELATION�
OR� REDUNDANCY� THAT� EXISTS� BETWEEN� OLFACTORY�
RESPONSES�MAKES�DISCRIMINATING�BETWEEN�ODORS�
MORE� DIFFICULT�� OPTIMAL� ENCODING� DEMANDS�
THAT� THEY� BE� REMOVED���� 5NLIKE� HISTOGRAM�
EQUALIZATION�� THIS� REQUIRES� INTERGLOMERULAR�
INTERACTIONS��/2.�RESPONSES�ARE�CORRELATED�����
WHICH� IS� PROBABLY� ANOTHER� UNAVOIDABLE�
CONSEQUENCE� OF� BINDING� ODORANT� MOLECULES�
TO� A� FAMILY� OF� RELATED� RECEPTOR� PROTEINS�� 4HIS�
APPEARS� TO� BE� A� PROBLEM� THAT� IS� NOT� SOLVED�
BY� THE� ANTENNAL� LOBE�� "HANDAWAT� ET� AL����
DID�NOT� FIND�ANY�SUBSTANTIAL� REDUCTION� IN� THE�
CORRELATION� OF� PROJECTION� NEURON� RESPONSES�
RELATIVE�TO�THOSE�OF�THE�/2.S��!S�FAR�AS�OPTIMAL�
CODING�IS�CONCERNED��THE�ANTENNAL�LOBE�DOES�PART�
�HISTOGRAM�EQUALIZATION�OF�INDIVIDUAL�PROJECTION�
NEURONS	�� BUT� NOT� ALL� �DECORRELATION� ACROSS��
PROJECTION�NEURONS	��OF�THE�JOB�

$ECORRELATION�MAY�NOT�BE�AS�IMPORTANT�FOR�
ODOR� DISCRIMINATION� AS� THE� SIMPLE� READOUT�

MODEL� THAT� IS� BEING� CONSIDERED� SUGGESTS�� OR�
PERHAPS� DECORRELATION� TAKES� PLACE� AT� A� LATER�
STAGE�IN�THE�ODORPROCESSING�PATHWAY����)F�THE�
ANTENNAL�LOBE�IS�NOT�USING�ITS�INTERGLOMERULAR�
CONNECTIONS�TO�DECORRELATE�PROJECTION�NEURON�
RESPONSES�� WHAT� OTHER� FUNCTIONS� MIGHT� THEY�
HAVE��0ERHAPS�THEY�ARE�INVOLVED�IN�ADAPTATION�OR�
LEARNING����OR�ARE�A�TARGET�FOR�NEUROMODULATION��
!LTERNATIVELY��THE�CROSSCHANNEL�SIGNAL�CARRIED�
BY�ANTENNAL� LOBE�CIRCUITRY�MAY�BE�AN�OVERALL�
ODOR� INTENSITY�OR� SALIENCE� SIGNAL�� RATHER� THAN�
IDENTIFYING�OR�REPRESENTING�SPECIFIC�ODORS��4HESE�
ISSUES�REMAIN�TO�BE�CLARIFIED��BUT��AT�LEAST�AT�THE�
SINGLEOLFACTORY�CHANNEL�LEVEL��"HANDAWAT�ET�AL���
HAVE�UNCOVERED�AN�INTERESTING�TRANSFORMATION�
GENERATED�BY�THE�ANTENNAL� LOBE�CIRCUITRY�AND�
HAVE�PROVIDED�A� SATISFYING� EXPLANATION�OF� ITS�
ROLE�IN�OLFACTORY�PROCESSING�

��� "HANDAWAT�� 6��� /LSEN�� 3�2��� 'OUWENS�� .�7�� ���
3CHLIET��-��.AT��.EUROSCI����������n����������	�

��� 6OSSHALL�� ,�"��� 7ONG�� !�-�� �� !XEL�� 2�� #ELL� ������
���n���������	�

��� 'AO�� 1��� 9UAN�� "�� �� #HESS�� !�� .AT�� .EUROSCI�� ����
���n���������	�

��� /LSEN��3�2���"HANDAWAT��6����7ILSON��2�)��.EURON�����
��n���������	�

��� 3CHLIEF�� -�,�� �� 7ILSON�� 2�)�� .AT�� .EUROSCI�� �����
���n���������	�

��� 2OOT��#�-���3EMMELHACK��*�,���7ONG��!�-���&LORES��*���
�� 7ANG�� *�7�� 0ROC�� .ATL�� !CAD�� 3CI�� 53!� ������
�����n�����������	�

��� 3HANG��9���#LARIDGE#HANG��!���3JULSON��,���0YPAERT��-��
��-IESENBOCK��'��#ELL���������n���������	�

��� (ALLEM�� %�!�� �� #ARLSON�� *�2�� #ELL� ����� ���n����
�����	�

��� ,AUGHLIN��3��:��.ATURFORSCH�;#=���������n���������	�
����,AURENT��'��.AT��2EV��.EUROSCI��������n���������	�
����9U�� $��� 0ONOMAREV�� !�� �� $AVIS�� 2�,�� .EURON� �����

���n���������	�

&IGURE����4RANSFORMATION�OF�OLFACTORY�RESPONSES�IN�THE�ANTENNAL�LOBE���A	�3CHEMATIC�OF�THE�ANTENNAL�LOBE�
CIRCUITRY��(ERE��EACH�/2.�PROVIDES�INPUT�TO�ONE�GLOMERULUS�AND�EACH�PROJECTION�NEURON��0.	�RECEIVES�INPUT�
FROM�ONE�GLOMERULUS��)NTERACTIONS�WITHIN�INDIVIDUAL�GLOMERULI��GREEN�SQUARES	�ALLOW�FOR�SINGLECHANNEL�
PROCESSING�AND�CONNECTIONS�BETWEEN�GLOMERULI��CURVED�ARROWS	�ALLOW�FOR�CROSSCHANNEL�PROCESSING���
�B	�4HE�TRANSFORMATION�FROM�/2.�RESPONSES�TO�0.�RESPONSES�APPLIED�TO�DATA�FROM�A�PREVIOUS�STUDY��FIGURE�
MODIFIED�FROM�REF���	��,EFT��/2.�RESPONSES�OVER�THE�ENSEMBLE�OF�ODORANTS�ARE�DISTRIBUTED�IN�AN�EXPONENTIAL�
MANNER�WITH�MOST�OF�THE�RESPONSES�OCCURRING�AT�LOW�RATES��#ENTER��THE�NONLINEAR�TRANSFORMATION�LINKING�
/2.�RESPONSES�TO�0.�RESPONSES��AS�DETERMINED�BY�"HANDAWAT�ET�AL����2IGHT��THE�DISTRIBUTION�OF�0.�RATES�
GENERATED�BY�THE�/2.�RATES��LEFT	��TRANSFORMED�BY�THE�FIRING�RATE�RELATION��CENTER	��IS�APPROXIMATELY�FLAT�
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means that ORNs in different glomeruli have odor preferences that are
more highly correlated than we would expect, based solely on the
distribution of response magnitudes in each glomerular channel.
Similarly, about half the variance in the PN data is captured by

the first principal component (5 1 %; Fig. 8b). This is mainly due
to the limited size of our odor set and the non-Gaussian distribution
of the PN response histograms, as shuffling the odor labels on
each PN response profile always produced a skewed distribution of
principal component contributions (Fig. 8b). Because real PN
data produced a distribution that was even more skewed than the
simulated data, PNs (like ORNs) are more correlated than we would
expect, based solely on the distribution of responsemagnitudes for each
PN type.
In summary, sensory processing in the Drosophila antennal lobe

does not change the degree of independence between different
glomerular coding channels. The conclusions of this analysis are
similar regardless of whether we measure spike rates around the
response peak (Fig. 8) or over the entire stimulus period (Supplemen-
tary Fig. 6 online).

PN responses are more linearly separable than ORN responses
Increased PN reliability andmore uniform odor distances in PN coding
space should mean that odors are more discriminable on the basis of
PN spike trains than on the basis of an equivalent number of ORN
spike trains. We tested this prediction by measuring the ability of an
algorithm to identify the odor stimulus on the basis of the ensemble
neural response elicited by that odor. Because our data come from
single (not multiple) unit ORN and PN recordings, we simulated
‘multi-unit’ responses by assembling data from different glomerular
classes. Each simulated data set consisted of 9 0 multi-unit responses
(1 8 odors with 5 spike trains per odor per cell). We performed linear
discriminant analysis to identify the linear combinations of input
variables that best separated all 1 8 odor response clusters from each
other. To evaluate the quality of these discriminations, we withheld 1
multi-unit odor response from the data set, trained the algorithm with
the remaining 89 , and predicted the odor corresponding to the
one withheld response. The predicted odor was then compared

with the actual odor. We repeated this analysis with many
independently assembled multi-unit responses at each time point in
the odor response.
Before odor onset, the prediction success rate hovers near chance

(Fig. 9a). (The success rate is slightly above chance because different
cells have different spontaneous firing rates, and spontaneous firing
rates sometimes drift during experiments; thus, spontaneous firing
rates were slightly ‘predictive’ of the odor because successive trials with
an odor were presented consecutively rather than interleaved). After
odor stimulus onset, success rates rise rapidly. As expected, including
more glomerular classes in the data set produced higher success rates
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Figure 7 Odors are distributed more uniformly in ensemble PN coding space
than in ensemble ORN coding space. (a) Average odor responses from seven
ORN types projected onto the space defined by the first two principal
components. Each point represents a different odor. (b) Same as a for PN
data (with the same color conventions), showing a more uniform separation
between odor representations. (c) The difference between ensemble ORN
responses to different odors is quantified as the Euclidean distance between
odor representations in seven-dimensional space. Distances are computed for
all 153 pairwise combinations of the 18 odor stimuli, and the median and
interquartile range of this distribution are plotted here for each time point. The
interquartile range is wide because some odors are well separated in ORN
space, but many are poorly separated. Blue bands indicate the range of results
obtained by shuffling odor labels on each glomerular response profile (see
Supplementary Methods). The gray bar indicates the 500-ms stimulus period
and the black bar indicates the 100-ms period when firing rates were
measured for a and b. (d) Same as c for PN responses. At the peak of the
response (black bar), distances are significantly larger in PN space compared
with ORN space. PN responses then quickly accommodate (Fig. 2), and so
inter-odor distances shrink. However, the interquartile range of distances
remains smaller than in ORN space. This indicates a more uniform distribution
of distances. As in c, shuffling odor labels on each glomerular response profile
produces a range of results (blue bands) that resembles the real data.
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Figure 8 Correlations between different glomeruli are similar for ORNs and
PNs. (a) Principal components analysis (PCA) was applied to the 18 ! 7
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Methods). Comparing the data and the simulation shows that ORNs are less
independent in their odor responses than we would expect, based solely on
the distribution of response magnitudes within each glomerular coding
channel. (b) Same as a for the 18 ! 7 PN response matrix. Correlations
between PN types are similar to correlations between ORN types.
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means that ORNs in different glomeruli have odor preferences that are
more highly correlated than we would expect, based solely on the
distribution of response magnitudes in each glomerular channel.
Similarly, about half the variance in the PN data is captured by

the first principal component (5 1 %; Fig. 8b). This is mainly due
to the limited size of our odor set and the non-Gaussian distribution
of the PN response histograms, as shuffling the odor labels on
each PN response profile always produced a skewed distribution of
principal component contributions (Fig. 8b). Because real PN
data produced a distribution that was even more skewed than the
simulated data, PNs (like ORNs) are more correlated than we would
expect, based solely on the distribution of responsemagnitudes for each
PN type.
In summary, sensory processing in the Drosophila antennal lobe

does not change the degree of independence between different
glomerular coding channels. The conclusions of this analysis are
similar regardless of whether we measure spike rates around the
response peak (Fig. 8) or over the entire stimulus period (Supplemen-
tary Fig. 6 online).

PN responses are more linearly separable than ORN responses
Increased PN reliability andmore uniform odor distances in PN coding
space should mean that odors are more discriminable on the basis of
PN spike trains than on the basis of an equivalent number of ORN
spike trains. We tested this prediction by measuring the ability of an
algorithm to identify the odor stimulus on the basis of the ensemble
neural response elicited by that odor. Because our data come from
single (not multiple) unit ORN and PN recordings, we simulated
‘multi-unit’ responses by assembling data from different glomerular
classes. Each simulated data set consisted of 9 0 multi-unit responses
(1 8 odors with 5 spike trains per odor per cell). We performed linear
discriminant analysis to identify the linear combinations of input
variables that best separated all 1 8 odor response clusters from each
other. To evaluate the quality of these discriminations, we withheld 1
multi-unit odor response from the data set, trained the algorithm with
the remaining 89 , and predicted the odor corresponding to the
one withheld response. The predicted odor was then compared

with the actual odor. We repeated this analysis with many
independently assembled multi-unit responses at each time point in
the odor response.
Before odor onset, the prediction success rate hovers near chance

(Fig. 9a). (The success rate is slightly above chance because different
cells have different spontaneous firing rates, and spontaneous firing
rates sometimes drift during experiments; thus, spontaneous firing
rates were slightly ‘predictive’ of the odor because successive trials with
an odor were presented consecutively rather than interleaved). After
odor stimulus onset, success rates rise rapidly. As expected, including
more glomerular classes in the data set produced higher success rates
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Figure 7 Odors are distributed more uniformly in ensemble PN coding space
than in ensemble ORN coding space. (a) Average odor responses from seven
ORN types projected onto the space defined by the first two principal
components. Each point represents a different odor. (b) Same as a for PN
data (with the same color conventions), showing a more uniform separation
between odor representations. (c) The difference between ensemble ORN
responses to different odors is quantified as the Euclidean distance between
odor representations in seven-dimensional space. Distances are computed for
all 153 pairwise combinations of the 18 odor stimuli, and the median and
interquartile range of this distribution are plotted here for each time point. The
interquartile range is wide because some odors are well separated in ORN
space, but many are poorly separated. Blue bands indicate the range of results
obtained by shuffling odor labels on each glomerular response profile (see
Supplementary Methods). The gray bar indicates the 500-ms stimulus period
and the black bar indicates the 100-ms period when firing rates were
measured for a and b. (d) Same as c for PN responses. At the peak of the
response (black bar), distances are significantly larger in PN space compared
with ORN space. PN responses then quickly accommodate (Fig. 2), and so
inter-odor distances shrink. However, the interquartile range of distances
remains smaller than in ORN space. This indicates a more uniform distribution
of distances. As in c, shuffling odor labels on each glomerular response profile
produces a range of results (blue bands) that resembles the real data.
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Figure 8 Correlations between different glomeruli are similar for ORNs and
PNs. (a) Principal components analysis (PCA) was applied to the 18 ! 7
ORN response matrix. The magnitude of the variance accounted for by each
principal component (green circles) is a measure of the correlations between
different ORN types. Blue bands indicate the range of results obtained by
shuffling odor labels on each glomerular response profile (see Supplementary
Methods). Comparing the data and the simulation shows that ORNs are less
independent in their odor responses than we would expect, based solely on
the distribution of response magnitudes within each glomerular coding
channel. (b) Same as a for the 18 ! 7 PN response matrix. Correlations
between PN types are similar to correlations between ORN types.
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(Fig. 9b). Because success rates using PN data plateau at 100% for some
classifications that use data from more than three glomeruli, this
procedure underestimates the difference between ORN and PN
responses. Nevertheless, success rates were significantly higher for PN
data than for ORN data for all conditions in Figure 9b (P o 0.005,
Mann-Whitney U-tests, n ¼ 20 runs of the classification procedure for
ORNs and PNs for each condition). This demonstrates that a linear
discriminator can classify odors more accurately with responses from
several PNs than with responses from the same number of ORNs.

DISCUSSION
An improved signal-to-noise ratio
Studies in other systems have implied that the variability of stimulus-
evoked spike counts almost always increases at successively higher levels
of sensory processing34. For example, the visual responses of higher
cortical neurons are often very noisy17 , in contrast to the reliability of
retinal ganglion cells35. A direct comparison of the responses evoked by
identical stimuli in the retina, thalamus and visual cortex has con-
firmed that spike-count reliability decreases at each successively higher
level of the visual stream18 . This is despite the fact that a simple cell in
primary visual cortex pools signals from B30 thalamic neurons36 ,
which should improve its reliability. Similarly, a direct comparison of
spike trains at successive levels of an insect auditory circuit has found
that noise increases at successively higher levels19. Our results show a
different trend: spike counts in individual PNs are more consistent than
spike counts in individual ORNs. This is partly because PNs tend to fire
more vigorously than their presynaptic ORNs in response to the same
stimulus, and stronger responses are more reliable for both ORNs and
PNs. This may imply an increasingly deterministic control of spike
timing at high firing rates owing to intrinsic refractoriness37 . However,
even at the same firing rates, PN responses are more reliable than ORN
responses. This may reflect the benefits of pooling: each PN is
postsynaptic to many ORNs, and all these ORNs respond in a similar
way to odors21,22,38 . If noise is uncorrelated across ORNs, then pooling
these inputs should improve the reliability of PN responses.
On balance, the improvement in reliability is smaller than one might

predict. Each glomerulus corresponds toB40 ORNs andB4 PNs; this

means the average PN pool inputs from 10–40 ORNs (depending on
whether each ORN contacts all PNs in a glomerulus). Because pooling
N ORN inputs should decrease the variability of the pooled average by
ON, we would expect the coefficient of variation to improve byO10 to
O40. The effect we describe is on the low end of this range, suggesting
that eachORN contacts only a single PN, or that PNs receive additional
noise from other neuronal sources.

High-pass filtering of olfactory signals
Our results show that PNs can be extremely sensitive to small
differences between weak ORN inputs. Even a small increase in ORN
spike rate above the baseline can produce a robust response in
postsynaptic PNs. As a result, PN responses rise rapidly even when
ORN responses build slowly. This is particularly useful because the
onset kinetics of ORNs are intrinsically limited by the speed of the
signal transduction cascades that link odorant receptor activation to
spike initiation. PN responses then rapidly decline while ORN spike
rates continue to rise. This means that PNs act as high-pass filters,
transmitting the rising phase of ORN responses preferentially over the
tonic component of ORN responses. This rapid accommodation might
be due to any of several mechanisms, including short-term synaptic
depression at the ORN-to-PN synapse.
Taken together, a faster rise and a faster decay should sharpen the

estimate of odor arrival time by downstream neurons. For a fly in flight,
this should translate to an improved estimate of odor plume location.
Notably, Drosophila can turn in flight less than 300 ms after encounter-
ing an odor plume23. A similar phenomenon operates in the visual
system: sluggish photoreceptor responses trigger speedy depolari-
zations in downstream neurons39 and ultimately rapid behavioral
responses to visual stimuli.
We note that Drosophila PN responses differ from the responses of

locust PNs, which typically show more complex temporal pattern-
ing29,40,41. Locust PNs also show a higher average level of maintained
activity throughout the odor response (relative to the response peak)
and often show excitatory responses to odor offset41. By contrast,
Drosophila PNs accommodate rapidly and typically do not burst after
stimulus offset (but for some exceptions see Supplementary Fig. 2 f).

A nonlinear transformation increases coding efficiency
An important finding from this study is that although PNs inherit a
substantial portion of their odor tuning from their presynaptic ORNs,
this relationship is nonlinear. This nonlinearity disproportionately
amplifies small differences between weak ORN inputs. By contrast,
small differences between strong ORN inputs are not amplified to the
same degree. Most ORN odor responses cluster in the weak end of the
dynamic range of the ORN. As a result of this nonlinear transforma-
tion, PNs use their dynamic range more uniformly than ORNs do. If all
portions of the dynamic range of a neuron are used with equal
frequency, the carrying capacity of that information channel is maxi-
mized because the entropy of the neuron’s response is maximized. This
tends to protect signals from contamination by noise added at later
stages in the processing channel42. This has long been recognized as a
useful computation in sensory processing28 . If broader tuning curves
are useful, why has evolution not simply produced broadly tuned
ORNs? ORN responses are directly linked to the way odorant receptor
proteins interact with odor molecules; therefore, broadening ORN
tuning might require changing the biophysics of odorant receptors in
ways that are unfavorable for other reasons.
Broad PN tuning may seem counterintuitive: we tend to think of

higher-order neurons as being more selective than their presynaptic
inputs. These expectations are founded in part on the paradigm of
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Figure 9 A linear discriminator can classify odors more accurately with
responses from multiple PNs than with responses from the same number of
ORNs. (a) Odor classification success rate from linear discriminator analysis
with data sets that include cells from three glomerular classes. All possible
combinations of three glomeruli were sampled. Points are the mean ± s.e.m.,
averaged across 20 runs of the classification procedure. The dotted line
represents chance performance. (b) Success rate is higher for PN data than
for ORN data, regardless of how many glomerular classes are included in the
data set. Points are the mean ± s.e.m., averaged over the 100-ms window
shown in a, and then averaged across 20 runs of the classification procedure.
Dashed green and magenta lines plot the classification success rate during
the baseline period before odor onset; this is an artifact of varying
spontaneous activity rates (see text), and ORN and PN performance is
similar. Dotted black lines indicate perfect and chance performance.

N ATU RE N EU ROSCIEN CE ADVAN CE ON LIN E PU BLICATION 7

ART ICLES

Linear discriminator (3 Glomeruli)

PN responses more linearly separable than ORN
(success rate classifying odor; total 18 odors)

ORN -> PN



22

(Fig. 9b). Because success rates using PN data plateau at 100% for some
classifications that use data from more than three glomeruli, this
procedure underestimates the difference between ORN and PN
responses. Nevertheless, success rates were significantly higher for PN
data than for ORN data for all conditions in Figure 9b (P o 0.005,
Mann-Whitney U-tests, n ¼ 20 runs of the classification procedure for
ORNs and PNs for each condition). This demonstrates that a linear
discriminator can classify odors more accurately with responses from
several PNs than with responses from the same number of ORNs.

DISCUSSION
An improved signal-to-noise ratio
Studies in other systems have implied that the variability of stimulus-
evoked spike counts almost always increases at successively higher levels
of sensory processing34. For example, the visual responses of higher
cortical neurons are often very noisy17 , in contrast to the reliability of
retinal ganglion cells35. A direct comparison of the responses evoked by
identical stimuli in the retina, thalamus and visual cortex has con-
firmed that spike-count reliability decreases at each successively higher
level of the visual stream18 . This is despite the fact that a simple cell in
primary visual cortex pools signals from B30 thalamic neurons36 ,
which should improve its reliability. Similarly, a direct comparison of
spike trains at successive levels of an insect auditory circuit has found
that noise increases at successively higher levels19. Our results show a
different trend: spike counts in individual PNs are more consistent than
spike counts in individual ORNs. This is partly because PNs tend to fire
more vigorously than their presynaptic ORNs in response to the same
stimulus, and stronger responses are more reliable for both ORNs and
PNs. This may imply an increasingly deterministic control of spike
timing at high firing rates owing to intrinsic refractoriness37 . However,
even at the same firing rates, PN responses are more reliable than ORN
responses. This may reflect the benefits of pooling: each PN is
postsynaptic to many ORNs, and all these ORNs respond in a similar
way to odors21,22,38 . If noise is uncorrelated across ORNs, then pooling
these inputs should improve the reliability of PN responses.
On balance, the improvement in reliability is smaller than one might

predict. Each glomerulus corresponds toB40 ORNs andB4 PNs; this

means the average PN pool inputs from 10–40 ORNs (depending on
whether each ORN contacts all PNs in a glomerulus). Because pooling
N ORN inputs should decrease the variability of the pooled average by
ON, we would expect the coefficient of variation to improve byO10 to
O40. The effect we describe is on the low end of this range, suggesting
that eachORN contacts only a single PN, or that PNs receive additional
noise from other neuronal sources.

High-pass filtering of olfactory signals
Our results show that PNs can be extremely sensitive to small
differences between weak ORN inputs. Even a small increase in ORN
spike rate above the baseline can produce a robust response in
postsynaptic PNs. As a result, PN responses rise rapidly even when
ORN responses build slowly. This is particularly useful because the
onset kinetics of ORNs are intrinsically limited by the speed of the
signal transduction cascades that link odorant receptor activation to
spike initiation. PN responses then rapidly decline while ORN spike
rates continue to rise. This means that PNs act as high-pass filters,
transmitting the rising phase of ORN responses preferentially over the
tonic component of ORN responses. This rapid accommodation might
be due to any of several mechanisms, including short-term synaptic
depression at the ORN-to-PN synapse.
Taken together, a faster rise and a faster decay should sharpen the

estimate of odor arrival time by downstream neurons. For a fly in flight,
this should translate to an improved estimate of odor plume location.
Notably, Drosophila can turn in flight less than 300 ms after encounter-
ing an odor plume23. A similar phenomenon operates in the visual
system: sluggish photoreceptor responses trigger speedy depolari-
zations in downstream neurons39 and ultimately rapid behavioral
responses to visual stimuli.
We note that Drosophila PN responses differ from the responses of

locust PNs, which typically show more complex temporal pattern-
ing29,40,41. Locust PNs also show a higher average level of maintained
activity throughout the odor response (relative to the response peak)
and often show excitatory responses to odor offset41. By contrast,
Drosophila PNs accommodate rapidly and typically do not burst after
stimulus offset (but for some exceptions see Supplementary Fig. 2 f).

A nonlinear transformation increases coding efficiency
An important finding from this study is that although PNs inherit a
substantial portion of their odor tuning from their presynaptic ORNs,
this relationship is nonlinear. This nonlinearity disproportionately
amplifies small differences between weak ORN inputs. By contrast,
small differences between strong ORN inputs are not amplified to the
same degree. Most ORN odor responses cluster in the weak end of the
dynamic range of the ORN. As a result of this nonlinear transforma-
tion, PNs use their dynamic range more uniformly than ORNs do. If all
portions of the dynamic range of a neuron are used with equal
frequency, the carrying capacity of that information channel is maxi-
mized because the entropy of the neuron’s response is maximized. This
tends to protect signals from contamination by noise added at later
stages in the processing channel42. This has long been recognized as a
useful computation in sensory processing28 . If broader tuning curves
are useful, why has evolution not simply produced broadly tuned
ORNs? ORN responses are directly linked to the way odorant receptor
proteins interact with odor molecules; therefore, broadening ORN
tuning might require changing the biophysics of odorant receptors in
ways that are unfavorable for other reasons.
Broad PN tuning may seem counterintuitive: we tend to think of

higher-order neurons as being more selective than their presynaptic
inputs. These expectations are founded in part on the paradigm of
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Figure 9 A linear discriminator can classify odors more accurately with
responses from multiple PNs than with responses from the same number of
ORNs. (a) Odor classification success rate from linear discriminator analysis
with data sets that include cells from three glomerular classes. All possible
combinations of three glomeruli were sampled. Points are the mean ± s.e.m.,
averaged across 20 runs of the classification procedure. The dotted line
represents chance performance. (b) Success rate is higher for PN data than
for ORN data, regardless of how many glomerular classes are included in the
data set. Points are the mean ± s.e.m., averaged over the 100-ms window
shown in a, and then averaged across 20 runs of the classification procedure.
Dashed green and magenta lines plot the classification success rate during
the baseline period before odor onset; this is an artifact of varying
spontaneous activity rates (see text), and ORN and PN performance is
similar. Dotted black lines indicate perfect and chance performance.
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graphically show the difference between a ‘good’ and ‘bad’
representation for directly supporting object recognition.
The representation in Figure 1b is good: it is easy to
determine if Joe is present, in spite of pose variation, by
simply placing the linear decision function (i.e. a hyper-
plane) between Joe’s manifold and the other potential
images in the visual world (just images of Sam in this
case, but see Figure I in Box 2). By contrast, the repres-
entation in Figure 1c is bad: the object manifolds are
tangled, such that it is impossible to reliably separate
Joe from the rest of the visual world with a linear decision
function. Figure 1d shows that this problem is not aca-
demic – the manifolds of two real-world objects are hope-
lessly tangled together in the retinal representation.

Note, however, that the two manifolds in Figure 1c,d do
not cross or superimpose – they are like two sheets of paper
crumpled together. This means that, although the retinal
representation cannot directly support recognition, it

implicitly contains the information to distinguish which
of the two individuals was seen. We argue that this
describes the computational crux of ‘everyday’ recognition:
the problem is typically not a lack of information or noisy
information, but that the information is badly formatted in
the retinal representation – it is tangled (but also see Box
1). Although Figure 1 shows only two objects, the same
arguments apply when more objects are in the world of
possible objects – it just makes the problem harder, but for
exactly the same reasons.

One way of viewing the overarching goal of the brain’s
object recognition machinery, then, is as a transformation
from visual representations that are easy to build (e.g.
center-surround filters in the retina), but are not easily
decoded (as in Figure 1c,d), into representations that we do
not yet know how to build (e.g. representations in IT), but
are easily decoded (e.g. Figure 1b). Although the idea of
representational transformation has been stated under

Figure 1. Illustration of object tangling. In a neuronal population space, each cardinal axis is one neuron’s activity (e.g. firing rate over an !200 ms interval) and the
dimensionality of the space is equal to the number of neurons. Although such high-dimensional spaces cannot be visualized, the three-dimensional views portrayed here
provide fundamental insight. (a) A given image of a single object (here, a particular face) is one point in retinal image space. As the face’s pose is varied, the point travels
along curved paths in the space, and all combinations of left/right and up/down pose (two degrees of freedom) lie on a two-dimensional surface, called the object manifold
(in blue). Although only two degrees of freedom are shown for clarity, the same idea applies when other identity-preserving transformations (e.g. size, position) are applied.
(b) The manifolds of two objects (two faces, red and blue) are shown in a common neuronal population space. In this case, a decision (hyper-) plane can be drawn cleanly
between them. If the world only consisted of this set of images, this neuronal representation would be ‘good’ for supporting visual recognition. (c) In this case, the two
object manifolds are intertwined, or tangled. A decision plane can no longer separate the manifolds, no matter how it is tipped or translated. (d) Pixel (retina-like) manifolds
generated from actual models of faces (14,400-dimensional data; 120 " 120 images) for two face objects were generated from mild variation in their pose, position, scale
and lighting (for clarity, only the pose-induced portion of the manifold is displayed). The three-dimensional display axes were chosen to be the projections that best
separate identity, pose azimuth and pose elevation. Even though this simple example only exercises a fraction of typical real-world variation, the object manifolds are
hopelessly tangled. Although the manifolds appear to cross in this three-dimensional projection, they do not cross in the high-dimensional space in which they live.

Opinion TRENDS in Cognitive Sciences Vol.11 No.8 335

www.sciencedirect.com
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graphically show the difference between a ‘good’ and ‘bad’
representation for directly supporting object recognition.
The representation in Figure 1b is good: it is easy to
determine if Joe is present, in spite of pose variation, by
simply placing the linear decision function (i.e. a hyper-
plane) between Joe’s manifold and the other potential
images in the visual world (just images of Sam in this
case, but see Figure I in Box 2). By contrast, the repres-
entation in Figure 1c is bad: the object manifolds are
tangled, such that it is impossible to reliably separate
Joe from the rest of the visual world with a linear decision
function. Figure 1d shows that this problem is not aca-
demic – the manifolds of two real-world objects are hope-
lessly tangled together in the retinal representation.

Note, however, that the two manifolds in Figure 1c,d do
not cross or superimpose – they are like two sheets of paper
crumpled together. This means that, although the retinal
representation cannot directly support recognition, it

implicitly contains the information to distinguish which
of the two individuals was seen. We argue that this
describes the computational crux of ‘everyday’ recognition:
the problem is typically not a lack of information or noisy
information, but that the information is badly formatted in
the retinal representation – it is tangled (but also see Box
1). Although Figure 1 shows only two objects, the same
arguments apply when more objects are in the world of
possible objects – it just makes the problem harder, but for
exactly the same reasons.

One way of viewing the overarching goal of the brain’s
object recognition machinery, then, is as a transformation
from visual representations that are easy to build (e.g.
center-surround filters in the retina), but are not easily
decoded (as in Figure 1c,d), into representations that we do
not yet know how to build (e.g. representations in IT), but
are easily decoded (e.g. Figure 1b). Although the idea of
representational transformation has been stated under

Figure 1. Illustration of object tangling. In a neuronal population space, each cardinal axis is one neuron’s activity (e.g. firing rate over an !200 ms interval) and the
dimensionality of the space is equal to the number of neurons. Although such high-dimensional spaces cannot be visualized, the three-dimensional views portrayed here
provide fundamental insight. (a) A given image of a single object (here, a particular face) is one point in retinal image space. As the face’s pose is varied, the point travels
along curved paths in the space, and all combinations of left/right and up/down pose (two degrees of freedom) lie on a two-dimensional surface, called the object manifold
(in blue). Although only two degrees of freedom are shown for clarity, the same idea applies when other identity-preserving transformations (e.g. size, position) are applied.
(b) The manifolds of two objects (two faces, red and blue) are shown in a common neuronal population space. In this case, a decision (hyper-) plane can be drawn cleanly
between them. If the world only consisted of this set of images, this neuronal representation would be ‘good’ for supporting visual recognition. (c) In this case, the two
object manifolds are intertwined, or tangled. A decision plane can no longer separate the manifolds, no matter how it is tipped or translated. (d) Pixel (retina-like) manifolds
generated from actual models of faces (14,400-dimensional data; 120 " 120 images) for two face objects were generated from mild variation in their pose, position, scale
and lighting (for clarity, only the pose-induced portion of the manifold is displayed). The three-dimensional display axes were chosen to be the projections that best
separate identity, pose azimuth and pose elevation. Even though this simple example only exercises a fraction of typical real-world variation, the object manifolds are
hopelessly tangled. Although the manifolds appear to cross in this three-dimensional projection, they do not cross in the high-dimensional space in which they live.
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graphically show the difference between a ‘good’ and ‘bad’
representation for directly supporting object recognition.
The representation in Figure 1b is good: it is easy to
determine if Joe is present, in spite of pose variation, by
simply placing the linear decision function (i.e. a hyper-
plane) between Joe’s manifold and the other potential
images in the visual world (just images of Sam in this
case, but see Figure I in Box 2). By contrast, the repres-
entation in Figure 1c is bad: the object manifolds are
tangled, such that it is impossible to reliably separate
Joe from the rest of the visual world with a linear decision
function. Figure 1d shows that this problem is not aca-
demic – the manifolds of two real-world objects are hope-
lessly tangled together in the retinal representation.

Note, however, that the two manifolds in Figure 1c,d do
not cross or superimpose – they are like two sheets of paper
crumpled together. This means that, although the retinal
representation cannot directly support recognition, it

implicitly contains the information to distinguish which
of the two individuals was seen. We argue that this
describes the computational crux of ‘everyday’ recognition:
the problem is typically not a lack of information or noisy
information, but that the information is badly formatted in
the retinal representation – it is tangled (but also see Box
1). Although Figure 1 shows only two objects, the same
arguments apply when more objects are in the world of
possible objects – it just makes the problem harder, but for
exactly the same reasons.

One way of viewing the overarching goal of the brain’s
object recognition machinery, then, is as a transformation
from visual representations that are easy to build (e.g.
center-surround filters in the retina), but are not easily
decoded (as in Figure 1c,d), into representations that we do
not yet know how to build (e.g. representations in IT), but
are easily decoded (e.g. Figure 1b). Although the idea of
representational transformation has been stated under

Figure 1. Illustration of object tangling. In a neuronal population space, each cardinal axis is one neuron’s activity (e.g. firing rate over an !200 ms interval) and the
dimensionality of the space is equal to the number of neurons. Although such high-dimensional spaces cannot be visualized, the three-dimensional views portrayed here
provide fundamental insight. (a) A given image of a single object (here, a particular face) is one point in retinal image space. As the face’s pose is varied, the point travels
along curved paths in the space, and all combinations of left/right and up/down pose (two degrees of freedom) lie on a two-dimensional surface, called the object manifold
(in blue). Although only two degrees of freedom are shown for clarity, the same idea applies when other identity-preserving transformations (e.g. size, position) are applied.
(b) The manifolds of two objects (two faces, red and blue) are shown in a common neuronal population space. In this case, a decision (hyper-) plane can be drawn cleanly
between them. If the world only consisted of this set of images, this neuronal representation would be ‘good’ for supporting visual recognition. (c) In this case, the two
object manifolds are intertwined, or tangled. A decision plane can no longer separate the manifolds, no matter how it is tipped or translated. (d) Pixel (retina-like) manifolds
generated from actual models of faces (14,400-dimensional data; 120 " 120 images) for two face objects were generated from mild variation in their pose, position, scale
and lighting (for clarity, only the pose-induced portion of the manifold is displayed). The three-dimensional display axes were chosen to be the projections that best
separate identity, pose azimuth and pose elevation. Even though this simple example only exercises a fraction of typical real-world variation, the object manifolds are
hopelessly tangled. Although the manifolds appear to cross in this three-dimensional projection, they do not cross in the high-dimensional space in which they live.
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graphically show the difference between a ‘good’ and ‘bad’
representation for directly supporting object recognition.
The representation in Figure 1b is good: it is easy to
determine if Joe is present, in spite of pose variation, by
simply placing the linear decision function (i.e. a hyper-
plane) between Joe’s manifold and the other potential
images in the visual world (just images of Sam in this
case, but see Figure I in Box 2). By contrast, the repres-
entation in Figure 1c is bad: the object manifolds are
tangled, such that it is impossible to reliably separate
Joe from the rest of the visual world with a linear decision
function. Figure 1d shows that this problem is not aca-
demic – the manifolds of two real-world objects are hope-
lessly tangled together in the retinal representation.

Note, however, that the two manifolds in Figure 1c,d do
not cross or superimpose – they are like two sheets of paper
crumpled together. This means that, although the retinal
representation cannot directly support recognition, it

implicitly contains the information to distinguish which
of the two individuals was seen. We argue that this
describes the computational crux of ‘everyday’ recognition:
the problem is typically not a lack of information or noisy
information, but that the information is badly formatted in
the retinal representation – it is tangled (but also see Box
1). Although Figure 1 shows only two objects, the same
arguments apply when more objects are in the world of
possible objects – it just makes the problem harder, but for
exactly the same reasons.

One way of viewing the overarching goal of the brain’s
object recognition machinery, then, is as a transformation
from visual representations that are easy to build (e.g.
center-surround filters in the retina), but are not easily
decoded (as in Figure 1c,d), into representations that we do
not yet know how to build (e.g. representations in IT), but
are easily decoded (e.g. Figure 1b). Although the idea of
representational transformation has been stated under

Figure 1. Illustration of object tangling. In a neuronal population space, each cardinal axis is one neuron’s activity (e.g. firing rate over an !200 ms interval) and the
dimensionality of the space is equal to the number of neurons. Although such high-dimensional spaces cannot be visualized, the three-dimensional views portrayed here
provide fundamental insight. (a) A given image of a single object (here, a particular face) is one point in retinal image space. As the face’s pose is varied, the point travels
along curved paths in the space, and all combinations of left/right and up/down pose (two degrees of freedom) lie on a two-dimensional surface, called the object manifold
(in blue). Although only two degrees of freedom are shown for clarity, the same idea applies when other identity-preserving transformations (e.g. size, position) are applied.
(b) The manifolds of two objects (two faces, red and blue) are shown in a common neuronal population space. In this case, a decision (hyper-) plane can be drawn cleanly
between them. If the world only consisted of this set of images, this neuronal representation would be ‘good’ for supporting visual recognition. (c) In this case, the two
object manifolds are intertwined, or tangled. A decision plane can no longer separate the manifolds, no matter how it is tipped or translated. (d) Pixel (retina-like) manifolds
generated from actual models of faces (14,400-dimensional data; 120 " 120 images) for two face objects were generated from mild variation in their pose, position, scale
and lighting (for clarity, only the pose-induced portion of the manifold is displayed). The three-dimensional display axes were chosen to be the projections that best
separate identity, pose azimuth and pose elevation. Even though this simple example only exercises a fraction of typical real-world variation, the object manifolds are
hopelessly tangled. Although the manifolds appear to cross in this three-dimensional projection, they do not cross in the high-dimensional space in which they live.
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graphically show the difference between a ‘good’ and ‘bad’
representation for directly supporting object recognition.
The representation in Figure 1b is good: it is easy to
determine if Joe is present, in spite of pose variation, by
simply placing the linear decision function (i.e. a hyper-
plane) between Joe’s manifold and the other potential
images in the visual world (just images of Sam in this
case, but see Figure I in Box 2). By contrast, the repres-
entation in Figure 1c is bad: the object manifolds are
tangled, such that it is impossible to reliably separate
Joe from the rest of the visual world with a linear decision
function. Figure 1d shows that this problem is not aca-
demic – the manifolds of two real-world objects are hope-
lessly tangled together in the retinal representation.

Note, however, that the two manifolds in Figure 1c,d do
not cross or superimpose – they are like two sheets of paper
crumpled together. This means that, although the retinal
representation cannot directly support recognition, it

implicitly contains the information to distinguish which
of the two individuals was seen. We argue that this
describes the computational crux of ‘everyday’ recognition:
the problem is typically not a lack of information or noisy
information, but that the information is badly formatted in
the retinal representation – it is tangled (but also see Box
1). Although Figure 1 shows only two objects, the same
arguments apply when more objects are in the world of
possible objects – it just makes the problem harder, but for
exactly the same reasons.

One way of viewing the overarching goal of the brain’s
object recognition machinery, then, is as a transformation
from visual representations that are easy to build (e.g.
center-surround filters in the retina), but are not easily
decoded (as in Figure 1c,d), into representations that we do
not yet know how to build (e.g. representations in IT), but
are easily decoded (e.g. Figure 1b). Although the idea of
representational transformation has been stated under

Figure 1. Illustration of object tangling. In a neuronal population space, each cardinal axis is one neuron’s activity (e.g. firing rate over an !200 ms interval) and the
dimensionality of the space is equal to the number of neurons. Although such high-dimensional spaces cannot be visualized, the three-dimensional views portrayed here
provide fundamental insight. (a) A given image of a single object (here, a particular face) is one point in retinal image space. As the face’s pose is varied, the point travels
along curved paths in the space, and all combinations of left/right and up/down pose (two degrees of freedom) lie on a two-dimensional surface, called the object manifold
(in blue). Although only two degrees of freedom are shown for clarity, the same idea applies when other identity-preserving transformations (e.g. size, position) are applied.
(b) The manifolds of two objects (two faces, red and blue) are shown in a common neuronal population space. In this case, a decision (hyper-) plane can be drawn cleanly
between them. If the world only consisted of this set of images, this neuronal representation would be ‘good’ for supporting visual recognition. (c) In this case, the two
object manifolds are intertwined, or tangled. A decision plane can no longer separate the manifolds, no matter how it is tipped or translated. (d) Pixel (retina-like) manifolds
generated from actual models of faces (14,400-dimensional data; 120 " 120 images) for two face objects were generated from mild variation in their pose, position, scale
and lighting (for clarity, only the pose-induced portion of the manifold is displayed). The three-dimensional display axes were chosen to be the projections that best
separate identity, pose azimuth and pose elevation. Even though this simple example only exercises a fraction of typical real-world variation, the object manifolds are
hopelessly tangled. Although the manifolds appear to cross in this three-dimensional projection, they do not cross in the high-dimensional space in which they live.
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graphically show the difference between a ‘good’ and ‘bad’
representation for directly supporting object recognition.
The representation in Figure 1b is good: it is easy to
determine if Joe is present, in spite of pose variation, by
simply placing the linear decision function (i.e. a hyper-
plane) between Joe’s manifold and the other potential
images in the visual world (just images of Sam in this
case, but see Figure I in Box 2). By contrast, the repres-
entation in Figure 1c is bad: the object manifolds are
tangled, such that it is impossible to reliably separate
Joe from the rest of the visual world with a linear decision
function. Figure 1d shows that this problem is not aca-
demic – the manifolds of two real-world objects are hope-
lessly tangled together in the retinal representation.

Note, however, that the two manifolds in Figure 1c,d do
not cross or superimpose – they are like two sheets of paper
crumpled together. This means that, although the retinal
representation cannot directly support recognition, it

implicitly contains the information to distinguish which
of the two individuals was seen. We argue that this
describes the computational crux of ‘everyday’ recognition:
the problem is typically not a lack of information or noisy
information, but that the information is badly formatted in
the retinal representation – it is tangled (but also see Box
1). Although Figure 1 shows only two objects, the same
arguments apply when more objects are in the world of
possible objects – it just makes the problem harder, but for
exactly the same reasons.

One way of viewing the overarching goal of the brain’s
object recognition machinery, then, is as a transformation
from visual representations that are easy to build (e.g.
center-surround filters in the retina), but are not easily
decoded (as in Figure 1c,d), into representations that we do
not yet know how to build (e.g. representations in IT), but
are easily decoded (e.g. Figure 1b). Although the idea of
representational transformation has been stated under

Figure 1. Illustration of object tangling. In a neuronal population space, each cardinal axis is one neuron’s activity (e.g. firing rate over an !200 ms interval) and the
dimensionality of the space is equal to the number of neurons. Although such high-dimensional spaces cannot be visualized, the three-dimensional views portrayed here
provide fundamental insight. (a) A given image of a single object (here, a particular face) is one point in retinal image space. As the face’s pose is varied, the point travels
along curved paths in the space, and all combinations of left/right and up/down pose (two degrees of freedom) lie on a two-dimensional surface, called the object manifold
(in blue). Although only two degrees of freedom are shown for clarity, the same idea applies when other identity-preserving transformations (e.g. size, position) are applied.
(b) The manifolds of two objects (two faces, red and blue) are shown in a common neuronal population space. In this case, a decision (hyper-) plane can be drawn cleanly
between them. If the world only consisted of this set of images, this neuronal representation would be ‘good’ for supporting visual recognition. (c) In this case, the two
object manifolds are intertwined, or tangled. A decision plane can no longer separate the manifolds, no matter how it is tipped or translated. (d) Pixel (retina-like) manifolds
generated from actual models of faces (14,400-dimensional data; 120 " 120 images) for two face objects were generated from mild variation in their pose, position, scale
and lighting (for clarity, only the pose-induced portion of the manifold is displayed). The three-dimensional display axes were chosen to be the projections that best
separate identity, pose azimuth and pose elevation. Even though this simple example only exercises a fraction of typical real-world variation, the object manifolds are
hopelessly tangled. Although the manifolds appear to cross in this three-dimensional projection, they do not cross in the high-dimensional space in which they live.
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graphically show the difference between a ‘good’ and ‘bad’
representation for directly supporting object recognition.
The representation in Figure 1b is good: it is easy to
determine if Joe is present, in spite of pose variation, by
simply placing the linear decision function (i.e. a hyper-
plane) between Joe’s manifold and the other potential
images in the visual world (just images of Sam in this
case, but see Figure I in Box 2). By contrast, the repres-
entation in Figure 1c is bad: the object manifolds are
tangled, such that it is impossible to reliably separate
Joe from the rest of the visual world with a linear decision
function. Figure 1d shows that this problem is not aca-
demic – the manifolds of two real-world objects are hope-
lessly tangled together in the retinal representation.

Note, however, that the two manifolds in Figure 1c,d do
not cross or superimpose – they are like two sheets of paper
crumpled together. This means that, although the retinal
representation cannot directly support recognition, it

implicitly contains the information to distinguish which
of the two individuals was seen. We argue that this
describes the computational crux of ‘everyday’ recognition:
the problem is typically not a lack of information or noisy
information, but that the information is badly formatted in
the retinal representation – it is tangled (but also see Box
1). Although Figure 1 shows only two objects, the same
arguments apply when more objects are in the world of
possible objects – it just makes the problem harder, but for
exactly the same reasons.

One way of viewing the overarching goal of the brain’s
object recognition machinery, then, is as a transformation
from visual representations that are easy to build (e.g.
center-surround filters in the retina), but are not easily
decoded (as in Figure 1c,d), into representations that we do
not yet know how to build (e.g. representations in IT), but
are easily decoded (e.g. Figure 1b). Although the idea of
representational transformation has been stated under

Figure 1. Illustration of object tangling. In a neuronal population space, each cardinal axis is one neuron’s activity (e.g. firing rate over an !200 ms interval) and the
dimensionality of the space is equal to the number of neurons. Although such high-dimensional spaces cannot be visualized, the three-dimensional views portrayed here
provide fundamental insight. (a) A given image of a single object (here, a particular face) is one point in retinal image space. As the face’s pose is varied, the point travels
along curved paths in the space, and all combinations of left/right and up/down pose (two degrees of freedom) lie on a two-dimensional surface, called the object manifold
(in blue). Although only two degrees of freedom are shown for clarity, the same idea applies when other identity-preserving transformations (e.g. size, position) are applied.
(b) The manifolds of two objects (two faces, red and blue) are shown in a common neuronal population space. In this case, a decision (hyper-) plane can be drawn cleanly
between them. If the world only consisted of this set of images, this neuronal representation would be ‘good’ for supporting visual recognition. (c) In this case, the two
object manifolds are intertwined, or tangled. A decision plane can no longer separate the manifolds, no matter how it is tipped or translated. (d) Pixel (retina-like) manifolds
generated from actual models of faces (14,400-dimensional data; 120 " 120 images) for two face objects were generated from mild variation in their pose, position, scale
and lighting (for clarity, only the pose-induced portion of the manifold is displayed). The three-dimensional display axes were chosen to be the projections that best
separate identity, pose azimuth and pose elevation. Even though this simple example only exercises a fraction of typical real-world variation, the object manifolds are
hopelessly tangled. Although the manifolds appear to cross in this three-dimensional projection, they do not cross in the high-dimensional space in which they live.
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of visual re-representations, from V1 to V2 to V4 to IT
cortex (Figure 2). Beginning with the studies of Gross [27],
a wealth of work has shown that single neurons at the
highest level of the monkey ventral visual stream – the IT
cortex – display spiking responses that are probably useful
for object recognition. Specifically, many individual IT
neurons respond selectively to particular classes of objects,
such as faces or other complex shapes, yet show some
tolerance to changes in object position, size, pose and
illumination, and low-level shape cues. (Also see e.g.
Ref. [28] for recent related results in humans.)

How can the responses of individual ventral stream
neurons provide insight into object manifold untangling
in the brain? To approach this, we have focused on char-
acterizing the initial wave of neuronal population ‘images’
that are successively produced along the ventral visual str-
eam as the retinal image is transformed and re-represented
on its way to the IT cortex (Figure 2). For example, we and
our collaborators recently found that simple linear classi-
fiers can rapidly (within <300 ms of image onset) and
accurately decide the category of an object from the firing
rates of an IT population of!200 neurons, despite variation
in object position and size [19]. It is important to note that
using ‘stronger’ (e.g. non-linear) classifiers did not substan-
tially improve recognition performance and the same

classifiers fail when applied to a simulated V1 population
of equal size [19]. This shows thatperformance isnota result
of the classifiers themselves, but the powerful form of visual
representation conveyed by the IT cortex. Thus, compared
with early visual representations, object manifolds are less
tangled in the IT population representation.

To show this untangling graphically, Figure 3 illustrates
the manifolds of the faces of Sam and Joe from Figure 1d
(retina-like representation) re-represented in the V1 and IT
cortical population spaces. To generate these, we took popu-
lations of simulated V1-like response functions (e.g. Refs
[29,30]) and IT-like response functions (e.g. Refs [31,32]),
and applied them to all the images of Joe and Sam.
This reveals that the V1 representation, like the retinal
representation, still contains highly curved, tangled object
manifolds (Figure 3a), whereas the same object manifolds
are flattened and untangled in the IT representation
(Figure 3b). Thus, from the point of view of downstream
decisionneurons, the retinal andV1 representations are not
in a good format to separate Joe from the rest of the world,
whereas the IT representation is. In sum, the experimental
evidence suggests that the ventral stream transformation
(culminating in IT) solves object recognition by untangling
objectmanifolds.For eachvisual image striking the eye, this
total transformation happens progressively (i.e. stepwise

Figure 2. Neuronal populations along the ventral visual processing stream. The rhesus monkey is currently our best model of the human visual system. Like humans,
monkeys have high visual acuity, rely heavily on vision (!50% of macaque neocortex is devoted to vision) and easily perform visual recognition tasks. Moreover, the
monkey visual areas have been mapped and are hierarchically organized [26], and the ventral visual stream is known to be critical for complex object discrimination
(colored areas, see text). We show a lateral schematic of a rhesus monkey brain (adapted from Ref. [26]). We conceptualize each stage of the ventral stream as a new
population representation. The lower panels schematically illustrate these populations in early visual areas and at successively higher stages along the ventral visual stream
– their relative size loosely reflects their relative output dimensionality (approximate number of feed-forward projection neurons). A given pattern of photons from the world
(here, a face) is transduced into neuronal activity at the retina and is progressively and rapidly transformed and re-represented in each population, perhaps by a common
transformation (T). Solid arrows indicate the direction of visual information flow based on neuronal latency (!100 ms latency in IT), but this does not preclude fast feedback
both within and between areas (dashed arrows, see Box 1). The gray arrows across the bottom indicate the population representations for the retina, V1 and IT, which are
considered in Figures 1d and 3a,b, respectively. RGC, retinal ganglion cells; LGN, lateral geniculate nucleus.
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along the cortical stages), but rapidly (i.e.<100 ms from V1
to IT, !20 ms per cortical stage). But what is this trans-
formation? That is, how does the ventral stream do this?

How does the ventral visual stream untangle object
manifolds?
We do not yet know the answer to this question. Hubel and
Wiesel’s [30] observation that visual cortex complex cells
can pool over simple cells to build tolerance to identity-
preserving transformations (especially position) has been
computationally implemented and extended to higher cor-
tical levels, including the IT [1,12,33]. However, beyond
this early insight, systems neuroscience has not provided a
breakthrough.

Some neurophysiological effort has focused on
characterizing IT neuronal tolerance to identity-preser-
ving transformations (e.g. Refs [31,32,34–38]), which is
central to object tangling. However, much more effort
has been aimed at understanding the effects of behavioral
states, for example, task and attention (e.g. Refs [39–45]).
Although important, these studies sidestep the untangling
problem, because such effects can be measured without
understanding the format of representation.

Substantial effort has also recently been aimed at
understanding the features or shape dimensions of visual
images to which V4 and IT neurons are most sensitive (e.g.
Refs [25,46–51]). Such studies are important for defining
the feature complexity of ventral stream neuronal tuning,
which is related to manifold untangling (because ‘object’ or

feature conjunctionmanifolds arewhatmust be untangled).
Ongoing, ambitious approaches to understanding the res-
ponse functions of individual neurons (i.e. the non-linear
operatorson thevisual image)would, if successful, lead toan
implicit understanding of object representation. However,
given the enormity of this task, it is not surprising that
progress has been slow.

The object untangling perspective leads to a
complementary but qualitatively different approach. First,
it shifts thinking away from single IT neuron response
properties [17] – which is akin to studying feathers to
understand flight [22] – toward thinking about ideal popu-
lation representations, with the computational goals of the
task clearly considered (see Figure 3b versus 3c) [52].
Second, it suggests the immediate goal of determining
how well each ventral stream neuronal representation
has untangled object manifolds and shows how to quanti-
tatively measure untangling (see linear classifiers above,
Figure 1). Third, this perspective points to better ways to
compare computational models to neuronal data: whereas
model predictions at the single-unit level are typically
grossly under-constrained, population-level comparisons
might be more meaningful (e.g. the predicted degree of
untangling at each ventral stream stage). Fourth, it sugg-
ests a clear focus on the causes of tangling – identity-
preserving transformations – rather than the continuing
primary focus on ‘shape’ or ‘features’. Indeed, because we
do not understand the dimensions of ‘shape’, we speculate
that computational approaches that focus on building

Figure 3. Untangling object manifolds along the ventral visual stream. As visual information progresses through the ventral visual pathway, it is progressively re-
represented in each visual area and becomes better and better at directly supporting object recognition. (a) A population of 500 V1 neurons was simulated as a bank of
Gabor filters with firing thresholds. Display axes in this 500-dimensional population space were chosen to maximally separate two face stimuli undergoing a range of
identity-preserving transformations (pose, size, position and lighting direction), as in Figure 1. Manifolds are shown for the two objects (red and blue) undergoing two-axis
pose variation (azimuth and elevation). As with the retina-like space shown in Figure 1c, object manifolds corresponding to the two objects are hopelessly tangled together.
Below, the responses of an example single unit are shown in response to the two faces undergoing one axis of pose variation. (b) By contrast, a population of simulated IT
neurons gives rise to object manifolds that are easily separated. 500 IT neurons were simulated with broad (but not flat) unimodal Gaussian tuning with respect to identity-
preserving transformations and with varying levels of preference for one or the other face, analogous to what is observed in single unit recording in IT. In addition to being
able to separate object manifolds corresponding to different identities, such a representation also allows one to recover information about object pose. The lines going
through the two manifolds show that the manifolds are coordinated – they are lined up in such a way that multiple orthogonal attributes of the object can be extracted using
the same representation. It is important to note that, in contrast to the V1 simulation, we do not yet know how to generate single unit responses like this from real images.
(c) A textbook idealized IT representation also produces object manifolds that are easy to separate from one another in terms of identity. Here, IT neurons were simulated
with idealized, perfectly invariant receptive fields. However, although this representation may be good for recovering identity information, it ‘collapses’ all other information
about the images.
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Sequences of motor activity are encoded in many vertebrate
brains by complex spatio-temporal patterns of neural activity;
however, the neural circuit mechanisms underlying the gener-
ation of these pre-motor patterns are poorly understood. In
songbirds, one prominent site of pre-motor activity is the fore-
brain robust nucleus of the archistriatum (RA), which generates
stereotyped sequences of spike bursts during song1 and recapi-
tulates these sequences during sleep2. We show that the stereo-
typed sequences in RA are driven from nucleus HVC (high vocal
centre), the principal pre-motor input to RA3,4. Recordings of
identified HVC neurons in sleeping and singing birds show that
individual HVC neurons projecting onto RA neurons produce
bursts sparsely, at a single, precise time during the RA sequence.
These HVC neurons burst sequentially with respect to one
another. We suggest that at each time in the RA sequence, the
ensemble of active RA neurons is driven by a subpopulation of
RA-projecting HVC neurons that is active only at that time. As a
population, these HVC neurons may form an explicit represen-
tation of time in the sequence. Such a sparse representation, a
temporal analogue of the ‘grandmother cell’5 concept for object
recognition, eliminates the problem of temporal interference
during sequence generation and learning attributed to more
distributed representations6,7.

Songbirds produce highly stereotyped, learned vocalizations8,9.
Zebra finch (Taeniopygia guttata) song consists of a complex pattern
of sounds with spectral and temporal modulation over a wide range
of timescales10. A basic acoustic element is the song syllable, which
may itself be composed of a complex sequence of sounds varying on
a 10-ms timescale, or even less11. Several distinct song syllables are
organized into a single, repeated pattern of about 1 s in duration,

called a song motif. Two pre-motor nuclei have been identified for
their importance in song generation: nucleus RA and nucleus
HVC12. Premotor HVC neurons project onto RA neurons, which
in turn project with amyotopic mapping ontomotor neurons of the
vocal organ13, and to respiratory brain areas14. During singing, RA
neurons generate a highly stereotyped, complex sequence of action
potential bursts, each precisely correlated to the song vocalization
on a submillisecond timescale1,15. The average burst duration is
roughly 10ms, and each RA neuron generates a unique pattern of
roughly ten bursts per song motif, such that on average 12% of
RA neurons are active at any time (A. Leonardo, and M.S.F.,
unpublished data) (Fig. 1a).

Figure 1 RA sequences and identification of HVC neurons. a, Neurons in nucleus RA
generate complex sequences of brief action potential bursts during song vocalizations.

Spectrogram (top) and acoustic signal of the song motif, and plots of instantaneous firing

rate (bottom) of song-related spike activity in three different RA neurons recorded in one

zebra finch. Neural activity is aligned using the onset of the second syllable of each motif

(arrowhead). Two renditions are displayed for each neuron. b, Single-unit recordings were
made in pre-motor nuclei HVC and RA. HVC neurons were antidromically identified by

electrical stimulation in RA and area X. RA projects to vocal motor neurons in the nucleus

of the twelfth nerve (nXIIts). c, RA-projecting neurons and putative interneurons could be
activated from RA but not from area X. Stimulation in RA, triggered by spontaneous spikes,

resulted in spike collision for RA-projecting neurons but not for interneurons.
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Sequences of motor activity are encoded in many vertebrate
brains by complex spatio-temporal patterns of neural activity;
however, the neural circuit mechanisms underlying the gener-
ation of these pre-motor patterns are poorly understood. In
songbirds, one prominent site of pre-motor activity is the fore-
brain robust nucleus of the archistriatum (RA), which generates
stereotyped sequences of spike bursts during song1 and recapi-
tulates these sequences during sleep2. We show that the stereo-
typed sequences in RA are driven from nucleus HVC (high vocal
centre), the principal pre-motor input to RA3,4. Recordings of
identified HVC neurons in sleeping and singing birds show that
individual HVC neurons projecting onto RA neurons produce
bursts sparsely, at a single, precise time during the RA sequence.
These HVC neurons burst sequentially with respect to one
another. We suggest that at each time in the RA sequence, the
ensemble of active RA neurons is driven by a subpopulation of
RA-projecting HVC neurons that is active only at that time. As a
population, these HVC neurons may form an explicit represen-
tation of time in the sequence. Such a sparse representation, a
temporal analogue of the ‘grandmother cell’5 concept for object
recognition, eliminates the problem of temporal interference
during sequence generation and learning attributed to more
distributed representations6,7.

Songbirds produce highly stereotyped, learned vocalizations8,9.
Zebra finch (Taeniopygia guttata) song consists of a complex pattern
of sounds with spectral and temporal modulation over a wide range
of timescales10. A basic acoustic element is the song syllable, which
may itself be composed of a complex sequence of sounds varying on
a 10-ms timescale, or even less11. Several distinct song syllables are
organized into a single, repeated pattern of about 1 s in duration,

called a song motif. Two pre-motor nuclei have been identified for
their importance in song generation: nucleus RA and nucleus
HVC12. Premotor HVC neurons project onto RA neurons, which
in turn project with amyotopic mapping ontomotor neurons of the
vocal organ13, and to respiratory brain areas14. During singing, RA
neurons generate a highly stereotyped, complex sequence of action
potential bursts, each precisely correlated to the song vocalization
on a submillisecond timescale1,15. The average burst duration is
roughly 10ms, and each RA neuron generates a unique pattern of
roughly ten bursts per song motif, such that on average 12% of
RA neurons are active at any time (A. Leonardo, and M.S.F.,
unpublished data) (Fig. 1a).

Figure 1 RA sequences and identification of HVC neurons. a, Neurons in nucleus RA
generate complex sequences of brief action potential bursts during song vocalizations.

Spectrogram (top) and acoustic signal of the song motif, and plots of instantaneous firing

rate (bottom) of song-related spike activity in three different RA neurons recorded in one

zebra finch. Neural activity is aligned using the onset of the second syllable of each motif

(arrowhead). Two renditions are displayed for each neuron. b, Single-unit recordings were
made in pre-motor nuclei HVC and RA. HVC neurons were antidromically identified by

electrical stimulation in RA and area X. RA projects to vocal motor neurons in the nucleus

of the twelfth nerve (nXIIts). c, RA-projecting neurons and putative interneurons could be
activated from RA but not from area X. Stimulation in RA, triggered by spontaneous spikes,

resulted in spike collision for RA-projecting neurons but not for interneurons.

letters to nature

NATURE |VOL 419 | 5 SEPTEMBER 2002 | www.nature.com/nature 65© 2002        Nature  Publishing Group

Hahnloser et al. 2002, Nature

RA neurons fire at multiple 
times during a song

Songbird
HVC -> RA



39

Hahnloser et al. 2002, Nature

Here, we avoid the question of how RA activity is translated into
sound, and simply ask how pre-motor burst patterns in RA are
generated. Previous studies have suggested that the syllable order
and tempo of the motif are generated by a network that resides
above RA, and includes HVC12,16, and that an HVC neural code for
syllables is transformed into a code for shorter acoustic elements
through the projection of HVC onto RA1,17. To re-examine these
issues, we have characterized the role of inputs to RA from pre-
motor nucleus HVC.
HVC contains at least three classes of neurons: neurons that

project to the RA, neurons that project to area X, and inter-
neurons18,19. We have identified HVC neuron classes by antidromic
activation20 from RA and from area X (Fig. 1b, c). Chronic single-
neuron recordings were made from identified neurons of all three
classes. Antidromically identified RA-projecting HVC neurons
(HVC(RA)) (n ¼ 16, three birds) were completely inactive in
awake, non-singing birds (,0.001 spikes s21), and burst extremely
sparsely during vocalizations, generating at most a single burst per
song motif (Fig. 2a). HVC(RA) bursts had a duration of 6.1 ^ 2ms,
and comprised 4.5 ^ 2 spikes at a firing rate of 613 ^ 210 s21

(ranges are^1 s.d. unless specified otherwise). HVC(RA) bursts were
highly stereotyped, tightly time-locked to the song motif
(0.66 ^ 0.14ms r.m.s. jitter), and occurred reliably on every rendi-
tion of the motif (Fig. 2b). Thus, on a millisecond timescale,
HVC(RA) bursts were maximally correlated to the vocalization.
Different HVC(RA) neurons tended to burst at different times in
the song, with no obvious timing relation to the onset or offset of
song syllables. Three identified HVC(RA) neurons generated no
bursts during the song, but produced a single burst during call
vocalizations. HVC neurons projecting to area X also burst sparsely
during singing (0–5 bursts per motif, n ¼ 30; data not shown). In
contrast to projection neurons, putative HVC interneurons
(n ¼ 31), most of which were spontaneously active in the non-
singing bird (11 ^ 7 spikes s21), produced high rates of spiking and

bursting activity throughout song and call vocalizations (Fig. 2b).
The firing patterns of putative HVC interneurons were similar to
those of unidentified neurons found in previous studies of HVC in
the singing bird1.

Previous observations have shown that sleep-related spike and
burst patterns in nucleus RA can closely recapitulate those gener-
ated during singing2, suggesting that a common neural mechanism
may underlie the generation of song- and sleep-related RA burst
patterns. A more detailed understanding of the role of HVC in
generating sleep-related activity in RA may provide a hint as to the
interaction of these two nuclei during singing. We next examined
the firing patterns of RA neurons and identified HVC neurons using
a new, sleeping-bird preparation where the head of the bird is fixed,
permitting simultaneous single-unit recordings in multiple brain
areas and pharmacological manipulation, which are not currently
possible in the singing bird.

Similar to the situation in the singing bird, HVC(RA) neurons
burst sparsely during sleep (0.06 ^ 0.05 bursts s21, n ¼ 116, 27
birds). Paired recordings in RA and HVC (Fig. 3a) neurons showed
that HVC(RA) neurons fired 13 ^ 3 times fewer bursts in the
sleeping bird than did RA neurons (n ¼ 53 pairs). The bursts had
properties similar to those observed during singing: duration of
bursts during sleep in RA and HVC(RA) neurons were 11.5 ^ 3.5ms
and 6.5 ^ 1.8ms, respectively. Bursts of HVC(RA) neurons during
sleep comprised 3.2 ^ 0.8 spikes per burst, and had an average
firing rate of 347 ^ 81 s21. The relationship between HVC(RA)

bursts and RA bursts is readily seen in raster plots of RA spike
trains aligned in time to the onset of bursts in HVC(RA) neurons
(Fig. 3b, c). RA neurons reliably showed a pattern of bursts locked to
the HVC(RA) bursts (n ¼ 45 of 53 pairs). Furthermore, multiple RA
neurons recorded sequentially with a single HVC(RA) neuron
(n ¼ 3) show that different RA neurons generate different patterns
of bursts, as is the case during singing. The relation between
HVC(RA) and RA spike trains was quantified using a correlation

Figure 2 Spiking activity of identified HVC neurons during singing. a, Extracellular record
of an RA-projecting HVC (HVC(RA)) neuron (bottom), with the simultaneously recorded

vocalization (top). The HVC(RA) neuron generates a single burst during each of three motif

renditions. b, Spike raster plot of ten HVC(RA) neurons and two HVC interneurons recorded
in one bird during singing (left) and call vocalizations (right). Each row of tick marks shows

spikes generated during one rendition of the song or call; roughly ten renditions are shown

for each neuron. Neural activity is aligned by the acoustic onset of the nearest syllable.

HVC(RA) neurons burst reliably at a single precise time in the song or call; however, HVC

interneurons spike or burst densely throughout the vocalizations.

letters to nature

NATURE |VOL 419 | 5 SEPTEMBER 2002 | www.nature.com/nature66 © 2002        Nature  Publishing Group

HVC neurons burst reliably at a single 
precise time in the song or call!

Songbird
HVC -> RA



40

Hahnloser et al. 2002, Nature

Here, we avoid the question of how RA activity is translated into
sound, and simply ask how pre-motor burst patterns in RA are
generated. Previous studies have suggested that the syllable order
and tempo of the motif are generated by a network that resides
above RA, and includes HVC12,16, and that an HVC neural code for
syllables is transformed into a code for shorter acoustic elements
through the projection of HVC onto RA1,17. To re-examine these
issues, we have characterized the role of inputs to RA from pre-
motor nucleus HVC.
HVC contains at least three classes of neurons: neurons that

project to the RA, neurons that project to area X, and inter-
neurons18,19. We have identified HVC neuron classes by antidromic
activation20 from RA and from area X (Fig. 1b, c). Chronic single-
neuron recordings were made from identified neurons of all three
classes. Antidromically identified RA-projecting HVC neurons
(HVC(RA)) (n ¼ 16, three birds) were completely inactive in
awake, non-singing birds (,0.001 spikes s21), and burst extremely
sparsely during vocalizations, generating at most a single burst per
song motif (Fig. 2a). HVC(RA) bursts had a duration of 6.1 ^ 2ms,
and comprised 4.5 ^ 2 spikes at a firing rate of 613 ^ 210 s21

(ranges are^1 s.d. unless specified otherwise). HVC(RA) bursts were
highly stereotyped, tightly time-locked to the song motif
(0.66 ^ 0.14ms r.m.s. jitter), and occurred reliably on every rendi-
tion of the motif (Fig. 2b). Thus, on a millisecond timescale,
HVC(RA) bursts were maximally correlated to the vocalization.
Different HVC(RA) neurons tended to burst at different times in
the song, with no obvious timing relation to the onset or offset of
song syllables. Three identified HVC(RA) neurons generated no
bursts during the song, but produced a single burst during call
vocalizations. HVC neurons projecting to area X also burst sparsely
during singing (0–5 bursts per motif, n ¼ 30; data not shown). In
contrast to projection neurons, putative HVC interneurons
(n ¼ 31), most of which were spontaneously active in the non-
singing bird (11 ^ 7 spikes s21), produced high rates of spiking and

bursting activity throughout song and call vocalizations (Fig. 2b).
The firing patterns of putative HVC interneurons were similar to
those of unidentified neurons found in previous studies of HVC in
the singing bird1.

Previous observations have shown that sleep-related spike and
burst patterns in nucleus RA can closely recapitulate those gener-
ated during singing2, suggesting that a common neural mechanism
may underlie the generation of song- and sleep-related RA burst
patterns. A more detailed understanding of the role of HVC in
generating sleep-related activity in RA may provide a hint as to the
interaction of these two nuclei during singing. We next examined
the firing patterns of RA neurons and identified HVC neurons using
a new, sleeping-bird preparation where the head of the bird is fixed,
permitting simultaneous single-unit recordings in multiple brain
areas and pharmacological manipulation, which are not currently
possible in the singing bird.

Similar to the situation in the singing bird, HVC(RA) neurons
burst sparsely during sleep (0.06 ^ 0.05 bursts s21, n ¼ 116, 27
birds). Paired recordings in RA and HVC (Fig. 3a) neurons showed
that HVC(RA) neurons fired 13 ^ 3 times fewer bursts in the
sleeping bird than did RA neurons (n ¼ 53 pairs). The bursts had
properties similar to those observed during singing: duration of
bursts during sleep in RA and HVC(RA) neurons were 11.5 ^ 3.5ms
and 6.5 ^ 1.8ms, respectively. Bursts of HVC(RA) neurons during
sleep comprised 3.2 ^ 0.8 spikes per burst, and had an average
firing rate of 347 ^ 81 s21. The relationship between HVC(RA)

bursts and RA bursts is readily seen in raster plots of RA spike
trains aligned in time to the onset of bursts in HVC(RA) neurons
(Fig. 3b, c). RA neurons reliably showed a pattern of bursts locked to
the HVC(RA) bursts (n ¼ 45 of 53 pairs). Furthermore, multiple RA
neurons recorded sequentially with a single HVC(RA) neuron
(n ¼ 3) show that different RA neurons generate different patterns
of bursts, as is the case during singing. The relation between
HVC(RA) and RA spike trains was quantified using a correlation

Figure 2 Spiking activity of identified HVC neurons during singing. a, Extracellular record
of an RA-projecting HVC (HVC(RA)) neuron (bottom), with the simultaneously recorded

vocalization (top). The HVC(RA) neuron generates a single burst during each of three motif

renditions. b, Spike raster plot of ten HVC(RA) neurons and two HVC interneurons recorded
in one bird during singing (left) and call vocalizations (right). Each row of tick marks shows

spikes generated during one rendition of the song or call; roughly ten renditions are shown

for each neuron. Neural activity is aligned by the acoustic onset of the nearest syllable.

HVC(RA) neurons burst reliably at a single precise time in the song or call; however, HVC

interneurons spike or burst densely throughout the vocalizations.
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Songbird model

Fiete et al. 2004: Temporal Sparseness of the Premotor Drive 
Is Important for Rapid Learning in a Neural Network Model of Birdsong
Also: Doya and Sejnowski 1995 (considered sparseness in a model before known)

Why ultra sparse responses in 
the songbird??

“Intuitively … minimizing 
interference between different 
synapses during learning … In 
this paper we make the intuitive 
argument more concrete.”
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Songbird model

Why ultra sparse responses in 
the songbird??

We’ll look at modeling work, and 
also introduce network modeling 
approaches…
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with

rj!t" ! f #!
i$1

Nh

Wjihi!t" " #j% (1)

and

Ok!t" ! !
j$1

Nr

Akjrj!t" (2)

where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function

C !"
0

T

dt !
k$1

No

#dk!t" " ok!t"%2 (3)

For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
ent-descent rule

&Wji ! '$
%C

%Wji
! $"

0

T

dt !
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No

2#dk!t" " ok!t"%Akj f (j hi (4)

where f(j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.

2275NEURAL NETWORK MODEL OF BIRDSONG

J Neurophysiol • VOL 92 • OCTOBER 2004 • www.jn.org

500 HVC neurons

800 RA neurons

2 Output Neurons
(number of vocal 
muscles controlled;
7 in real system)

Songbird model
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with
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and
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
ent-descent rule
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where f(j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with

rj!t" ! f #!
i$1
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Wjihi!t" " #j% (1)

and
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
ent-descent rule
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where f(j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with
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i$1
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Wjihi!t" " #j% (1)

and

Ok!t" ! !
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
ent-descent rule
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where f(j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with
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and
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
ent-descent rule
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where f(j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with
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and
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
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where f(j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with

rj!t" ! f #!
i$1

Nh

Wjihi!t" " #j% (1)

and

Ok!t" ! !
j$1

Nr

Akjrj!t" (2)

where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
ent-descent rule
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where f(j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
ent-descent rule
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where f(j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with
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and
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
ent-descent rule
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where f(j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
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where f(j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with

rj!t" ! f #!
i$1

Nh

Wjihi!t" " #j% (1)

and

Ok!t" ! !
j$1

Nr

Akjrj!t" (2)

where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function

C !"
0

T

dt !
k$1

No

#dk!t" " ok!t"%2 (3)

For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
ent-descent rule
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where f(j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with

rj!t" ! f #!
i$1

Nh

Wjihi!t" " #j% (1)

and

Ok!t" ! !
j$1

Nr

Akjrj!t" (2)

where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
ent-descent rule
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where f(j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with

rj!t" ! f #!
i$1

Nh

Wjihi!t" " #j% (1)

and

Ok!t" ! !
j$1

Nr

Akjrj!t" (2)

where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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0

T
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For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
ent-descent rule
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where f(j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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block-diagonal), and equal numbers of RA neurons project to each
output. The nonzero entries of A are chosen from a Gaussian distri-
bution with mean 1 and SD 1/4. Desired sequences dk(t) for the output
units are fixed by choosing a sequence of steps of 12-ms duration and
random heights chosen from the interval [0, Nr /(8No)], and are
smoothed with a 2-ms linear low-pass filter. The gradient-following
rule, Eq. 4, is used to update the weights W after each epoch.
To study the effects of sparse HVC activity on learning speed, we

performed 4 groups of simulations where B, the number of bursts per
HVC neuron per song motif, was fixed at B ! 1, 2, 4, or 8,
respectively. For each B, we performed several sets of learning trials
with a separate, systematically varied value of the overall learning
step-size ! for each set (more details below). Within each set of
simulations, consisting of 15 trials each with fixed !, the weights A
and W were drawn randomly and independently for every trial, as
described above. All other parameters, including the desired outputs
dk(t), were kept fixed for all B and all !. Initially 25 evenly spaced
values of ! were chosen for each B, always in a range where some of
the values were too large and resulted in divergence of the learning
curve, whereas most values resulted in decreasing errors. The (15-
trial) averaged learning curves for each ! were judged to be rapidly or
slowly converging based on the number of epochs taken to cross a
preselected, reasonably small error value (see below); only learning
curves with nonincreasing error over the length of the simulation were
considered. Typically, very small values of ! result in very slow
learning, whereas very large values lead to divergence. Thus, the best
learning speeds could be obtained by a choice of ! away from both
extremes. To make sure the learning curves chosen for comparison as
a function of B were reasonably close to the best possible curve for

each B, we picked 2 values of ! for each B that resulted in the 2 fastest
averaged learning curves, and used these as endpoints in another set
of learning trials with 10 values of ! spaced between the endpoints.
For each !, we again averaged 15 trials. By this process, a value of
! ! !* (B) was found that resulted in the fastest learning for each B.
The threshold error value at which we consider the network to have

learned the task is when it reached an error of 0.02 or better
[corresponding to "dt #k (dk $ ok)2 % 1% " dt #k dk2, thin horizontal
line in Fig. 3; for an example of the output performance in what we
consider to be a well-learned task, see Fig. 2c where " dt #k (dk $
ok)2 ! 0.15% " dt #k dk2]; learning speeds are judged by the number
of epochs taken for the learning curves to reach this value.

Parameter variations and ranges

The network converged to produce outputs close to the desired
outputs over a large range of parameters, so long as a sufficiently
small value of the learning rate parameter, !, was used. This is
expected, because with small !, the learning rule follows the gradient
of the error function, and will converge to a local minimum of the
error surface; more interestingly, the dependency of learning time on
B (see RESULTS) was also consistent across a large parameter range.
In simulation, we tried variations where W was drawn from a

Gaussian, instead of uniform, random distribution; the initial weight
dilution, Pdil, ranged from 0 to 0.6 (0–60% of the initial weights
initially diluted to 0); half of all nonzero weights from RA to each
output unit (in A) were made negative, mimicking push–pull rather
than just pull control over the outputs; the numbers of HVC, RA, and
output units were independently varied by factors of 0.5 and 2; the
simulated song length ranged from 80 to 400 ms; RA unit activation
functions were taken to be linear or sigmoidal. In all of these cases, it
was possible to find ! so that the simulations converged to the desired
output, and the dependency of learning time on B was found to be
qualitatively the same as for the specific parameters described here.
The results shown here are with parameters chosen according to the

following priorities. 1) Simulate the largest network that would run in
a reasonable amount of time. We used Nh ! 500, Nr ! 800, and No !
2, in place of Nh & 20,000, Nr & 7,000, and No & 7 in the actual bird,
where No is taken to be the number of individual vocal muscles
controlled by RA. The simulated song length T had to be scaled down

FIG. 3. Four curves track error as a function of epoch while learning with
B ! 1, 2, 4, and 8 bursts per HVC neuron per simulated song segment. For
each B, the overall weight update step size was optimized to give the fastest
possible monotonic convergence toward zero error. Number of epochs taken to
reach a prespecified learning criterion (thin horizontal line) grows sharply with
B, nearly doubling each time B doubles.

FIG. 2. A: activity of RA-projecting HVC neurons as a function of time,
shown for 20 of the 500 neurons in the simulation. Black bars indicate that the
neuron is bursting at that time, whereas otherwise the neuron is silent. b:
desired (thick line) and actual (thin line) output activity for one of the 2 output
units, before learning begins. C: desired (thick line) and actual (thin line)
activity of the same output unit after learning; the second output behaves
similarly. D–F: example of the activities of 3 RA units, after learning (see text
for further discussion).
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block-diagonal), and equal numbers of RA neurons project to each
output. The nonzero entries of A are chosen from a Gaussian distri-
bution with mean 1 and SD 1/4. Desired sequences dk(t) for the output
units are fixed by choosing a sequence of steps of 12-ms duration and
random heights chosen from the interval [0, Nr /(8No)], and are
smoothed with a 2-ms linear low-pass filter. The gradient-following
rule, Eq. 4, is used to update the weights W after each epoch.
To study the effects of sparse HVC activity on learning speed, we

performed 4 groups of simulations where B, the number of bursts per
HVC neuron per song motif, was fixed at B ! 1, 2, 4, or 8,
respectively. For each B, we performed several sets of learning trials
with a separate, systematically varied value of the overall learning
step-size ! for each set (more details below). Within each set of
simulations, consisting of 15 trials each with fixed !, the weights A
and W were drawn randomly and independently for every trial, as
described above. All other parameters, including the desired outputs
dk(t), were kept fixed for all B and all !. Initially 25 evenly spaced
values of ! were chosen for each B, always in a range where some of
the values were too large and resulted in divergence of the learning
curve, whereas most values resulted in decreasing errors. The (15-
trial) averaged learning curves for each ! were judged to be rapidly or
slowly converging based on the number of epochs taken to cross a
preselected, reasonably small error value (see below); only learning
curves with nonincreasing error over the length of the simulation were
considered. Typically, very small values of ! result in very slow
learning, whereas very large values lead to divergence. Thus, the best
learning speeds could be obtained by a choice of ! away from both
extremes. To make sure the learning curves chosen for comparison as
a function of B were reasonably close to the best possible curve for

each B, we picked 2 values of ! for each B that resulted in the 2 fastest
averaged learning curves, and used these as endpoints in another set
of learning trials with 10 values of ! spaced between the endpoints.
For each !, we again averaged 15 trials. By this process, a value of
! ! !* (B) was found that resulted in the fastest learning for each B.
The threshold error value at which we consider the network to have

learned the task is when it reached an error of 0.02 or better
[corresponding to "dt #k (dk $ ok)2 % 1% " dt #k dk2, thin horizontal
line in Fig. 3; for an example of the output performance in what we
consider to be a well-learned task, see Fig. 2c where " dt #k (dk $
ok)2 ! 0.15% " dt #k dk2]; learning speeds are judged by the number
of epochs taken for the learning curves to reach this value.

Parameter variations and ranges

The network converged to produce outputs close to the desired
outputs over a large range of parameters, so long as a sufficiently
small value of the learning rate parameter, !, was used. This is
expected, because with small !, the learning rule follows the gradient
of the error function, and will converge to a local minimum of the
error surface; more interestingly, the dependency of learning time on
B (see RESULTS) was also consistent across a large parameter range.
In simulation, we tried variations where W was drawn from a

Gaussian, instead of uniform, random distribution; the initial weight
dilution, Pdil, ranged from 0 to 0.6 (0–60% of the initial weights
initially diluted to 0); half of all nonzero weights from RA to each
output unit (in A) were made negative, mimicking push–pull rather
than just pull control over the outputs; the numbers of HVC, RA, and
output units were independently varied by factors of 0.5 and 2; the
simulated song length ranged from 80 to 400 ms; RA unit activation
functions were taken to be linear or sigmoidal. In all of these cases, it
was possible to find ! so that the simulations converged to the desired
output, and the dependency of learning time on B was found to be
qualitatively the same as for the specific parameters described here.
The results shown here are with parameters chosen according to the

following priorities. 1) Simulate the largest network that would run in
a reasonable amount of time. We used Nh ! 500, Nr ! 800, and No !
2, in place of Nh & 20,000, Nr & 7,000, and No & 7 in the actual bird,
where No is taken to be the number of individual vocal muscles
controlled by RA. The simulated song length T had to be scaled down

FIG. 3. Four curves track error as a function of epoch while learning with
B ! 1, 2, 4, and 8 bursts per HVC neuron per simulated song segment. For
each B, the overall weight update step size was optimized to give the fastest
possible monotonic convergence toward zero error. Number of epochs taken to
reach a prespecified learning criterion (thin horizontal line) grows sharply with
B, nearly doubling each time B doubles.

FIG. 2. A: activity of RA-projecting HVC neurons as a function of time,
shown for 20 of the 500 neurons in the simulation. Black bars indicate that the
neuron is bursting at that time, whereas otherwise the neuron is silent. b:
desired (thick line) and actual (thin line) output activity for one of the 2 output
units, before learning begins. C: desired (thick line) and actual (thin line)
activity of the same output unit after learning; the second output behaves
similarly. D–F: example of the activities of 3 RA units, after learning (see text
for further discussion).
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Figure 7: Unary coding in HVC helps to speed the acquisition of the motor map. A,
The activity of three hypothetical HVC neurons. The first two are each active only once in the
song motif, but the third is active twice. B, Hypothetical pitch of the tutor song (black), and the
pupil network (gray). C, Direction in which synapses should change to reduce error between tutor
and pupil pitch. Synapses from HVC neuron 3 should be strengthened (weakened) to improve the
tutor-pupil match at the first (second) activity burst. Such conflicting demands on the synapses
of neurons that are active at two or more random times in a motif cause a slow-down in learning
speed. D, Contours of iso-error in the learning surface. Learning a feedforward map in a network
with unary coding in the top layer is like learning on an isotropic cost surface, and can be fast.
Denser coding in the input layer produces correlations and makes the learning surface anisotropic.
To keep the error from diverging along the steep directions, the learning rate must be kept low. As
a result, best-case learning is slower than in the isotropic case.HVC activity tuned to acoustic

features may be helpful for generalizable learning. E, If HVC neurons fired multiple bursts,
at selected points when the acoustic features of tutor song are similar, F, rather than at random
times, there would be no interference in the learning update, F. If HVC neurons acquired such a
tuning to features in the tutor song, it could be easy for the bird to quickly reproduce a specific
heard sound, by activating the requisite sound-tuned HVC neuron.
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Figure 7: Unary coding in HVC helps to speed the acquisition of the motor map. A,
The activity of three hypothetical HVC neurons. The first two are each active only once in the
song motif, but the third is active twice. B, Hypothetical pitch of the tutor song (black), and the
pupil network (gray). C, Direction in which synapses should change to reduce error between tutor
and pupil pitch. Synapses from HVC neuron 3 should be strengthened (weakened) to improve the
tutor-pupil match at the first (second) activity burst. Such conflicting demands on the synapses
of neurons that are active at two or more random times in a motif cause a slow-down in learning
speed. D, Contours of iso-error in the learning surface. Learning a feedforward map in a network
with unary coding in the top layer is like learning on an isotropic cost surface, and can be fast.
Denser coding in the input layer produces correlations and makes the learning surface anisotropic.
To keep the error from diverging along the steep directions, the learning rate must be kept low. As
a result, best-case learning is slower than in the isotropic case.HVC activity tuned to acoustic

features may be helpful for generalizable learning. E, If HVC neurons fired multiple bursts,
at selected points when the acoustic features of tutor song are similar, F, rather than at random
times, there would be no interference in the learning update, F. If HVC neurons acquired such a
tuning to features in the tutor song, it could be easy for the bird to quickly reproduce a specific
heard sound, by activating the requisite sound-tuned HVC neuron.
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