
Discussion:



VS01CH17-Kriegeskorte ARI 4 November 2015 10:24

Table 1 Historical progress toward understanding how the brain works

Elements required for
understanding how the
brain works Behaviorism

Cognitive
psychology

Cognitive
science

Cognitive
neuroscience

Classical
computational
neuroscience

Future cognitive
computational
neuroscience

Data Behavioral ! ! ! ! ! !
Neurophysiological ! ! !

Theory Cognitive ! ! ! !
Fully computationally

explicit
! ! !

Neurally plausible ! ! !
Explanation of real-world tasks

requiring rich knowledge and
complex computations

! ! !

Explanation of how high-level
neuronal populations
represent and compute

!

Backpropagation led to a second wave of interest in neural networks in cognitive science and
artificial intelligence (AI) in the 1980s. In cognitive science, neural network models of toy problems
fostered the theoretical notion of parallel distributed processing (Rumelhart & McClelland 1988).
However, backpropagation models did not work well on complex, real-world problems such as
vision. Models not as obviously inspired by the brain that used hand-engineered representations
and machine learning techniques, such as support vector machines, appeared to provide better
engineering solutions for computer vision and AI. As a consequence, neural networks fell out of
favor in the 1990s.

WHAT IS MEANT BY THE TERM NEURAL NETWORK?

The term neural network originally refers to a network of biological neurons. More broadly, the term evokes a
particular paradigm for understanding brain function, in which neurons are the essential computational units, and
computation is explained in terms of network interactions. Note that this paradigm leaves aside many biological
complexities, including functional contributions of neurochemical diffusion processes, glial cells, and hemodynamics
(Moore & Cao 2008). Although neurons are biological entities, the term neural network has come to be used as
a shorthand for artificial neural network, a class of models of parallel information processing that is inspired by
biological neural networks but commits to several further major simplifications.

Although spiking models have an important place in the computational literature, the models discussed here
are nonspiking and do not capture dendritic computation, other processes within each neuron (e.g., Gallistel &
King 2011), and distinct contributions from different types of neurons. The spatial structure of a neuron is typically
abstracted from and its spiking output is modeled as a real number analogous to the spike rate. The rate is modeled
as a weighted sum of incoming activations passed through a static nonlinearity. Despite, and perhaps also because of,
these simplifications, the neural network paradigm provides one of the most important paths toward understanding
brain information processing. It appears likely that this approach will take a central role in any comprehensive future
brain theory. Opinions diverge as to whether more biologically detailed models will ultimately be needed. However,
neural networks as used in engineering are certainly neurobiologically plausible, and their success in AI suggests
that their abstractions may be desirable, enabling us to explain at least some complex feats of brain information
processing.
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• Artificial neural networks for classification has been around 
for years

• Artificial – only very loosely mimic (inspired by) biology!
• Error: Cost function (eg, mean square error) between

desired output and current output of network

“Neural networks are an old idea, so what 
is new now?”

From Kriegeskorte, 2015
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Figure 1
Artificial neural networks: basic units and architectures. (a) A typical model unit (left) computes a linear
combination z of its inputs xi using weights wi and adding a bias b. The output y of the unit is a function of z,
known as the activation function (right). Popular activation functions include linear ( gray), threshold (black),
sigmoid (hyperbolic tangent shown here, blue), and rectified linear (red ) functions. A network is referred to as
feedforward (b,c) when its directed connections do not form cycles and as recurrent (d ) when they do form
cycles. A shallow feedforward network (b) has zero or one hidden layers. Nonlinear activation functions in
hidden units enable a shallow feedforward network to approximate any continuous function (with the
precision depending on the number of hidden units). A deep feedforward network (c) has more than one
hidden layer. Recurrent nets generate ongoing dynamics, lend themselves to the processing of temporal
sequences of inputs, and can approximate any dynamical system (given a sufficient number of units).

critical arguments, upcoming challenges, and the way ahead toward empirically justified models
of complex biological brain information processing.

A PRIMER ON NEURAL NETWORKS

A Unit Computes a Weighted Sum of Its Inputs and Activates
According to a Nonlinear Function

We refer to model neurons as units to maintain a distinction between biological reality and
highly abstracted models. The perhaps simplest model unit is a linear unit, which outputs a
linear combination of its inputs (Figure 1a). Such units, combined to form networks, can never
transcend linear combinations of the inputs. This insight is illustrated in Figure 2b, which shows
how an output unit that linearly combines intermediate-layer linear-unit activations just adds up
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Deep artificial neural networks for classification were prominent
in the late 1980s and early 1990s, with learning by back 
propagating the error, but fell out of favor…

Based on Kriegeskorte, 2015
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Artificial neural networks: basic units and architectures. (a) A typical model unit (left) computes a linear
combination z of its inputs xi using weights wi and adding a bias b. The output y of the unit is a function of z,
known as the activation function (right). Popular activation functions include linear ( gray), threshold (black),
sigmoid (hyperbolic tangent shown here, blue), and rectified linear (red ) functions. A network is referred to as
feedforward (b,c) when its directed connections do not form cycles and as recurrent (d ) when they do form
cycles. A shallow feedforward network (b) has zero or one hidden layers. Nonlinear activation functions in
hidden units enable a shallow feedforward network to approximate any continuous function (with the
precision depending on the number of hidden units). A deep feedforward network (c) has more than one
hidden layer. Recurrent nets generate ongoing dynamics, lend themselves to the processing of temporal
sequences of inputs, and can approximate any dynamical system (given a sufficient number of units).

critical arguments, upcoming challenges, and the way ahead toward empirically justified models
of complex biological brain information processing.

A PRIMER ON NEURAL NETWORKS

A Unit Computes a Weighted Sum of Its Inputs and Activates
According to a Nonlinear Function

We refer to model neurons as units to maintain a distinction between biological reality and
highly abstracted models. The perhaps simplest model unit is a linear unit, which outputs a
linear combination of its inputs (Figure 1a). Such units, combined to form networks, can never
transcend linear combinations of the inputs. This insight is illustrated in Figure 2b, which shows
how an output unit that linearly combines intermediate-layer linear-unit activations just adds up
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forward backward

“Deep neural networks are an old idea, so 
what is new now?”



• Neural networks from the 1950s …

• Deep learning methods based on neural networks 
were around in the late 1980s and early 1990s (eg, LeCun)

• Modern versions: Huge data sets with labels, crowdsourcing,
and strong machines (GPU)

• Modern versions: Clever “tricks” for the learning 
(LeCun, Hinton, etc.)

• Notable that some of the same people who worked on these
approaches in the 1990s pushed ahead recent progress
(e.g., Hinton, LeCun)

“Deep neural networks are an old idea, so 
what is new now?”
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Figure 1
Artificial neural networks: basic units and architectures. (a) A typical model unit (left) computes a linear
combination z of its inputs xi using weights wi and adding a bias b. The output y of the unit is a function of z,
known as the activation function (right). Popular activation functions include linear ( gray), threshold (black),
sigmoid (hyperbolic tangent shown here, blue), and rectified linear (red ) functions. A network is referred to as
feedforward (b,c) when its directed connections do not form cycles and as recurrent (d ) when they do form
cycles. A shallow feedforward network (b) has zero or one hidden layers. Nonlinear activation functions in
hidden units enable a shallow feedforward network to approximate any continuous function (with the
precision depending on the number of hidden units). A deep feedforward network (c) has more than one
hidden layer. Recurrent nets generate ongoing dynamics, lend themselves to the processing of temporal
sequences of inputs, and can approximate any dynamical system (given a sufficient number of units).

critical arguments, upcoming challenges, and the way ahead toward empirically justified models
of complex biological brain information processing.

A PRIMER ON NEURAL NETWORKS

A Unit Computes a Weighted Sum of Its Inputs and Activates
According to a Nonlinear Function

We refer to model neurons as units to maintain a distinction between biological reality and
highly abstracted models. The perhaps simplest model unit is a linear unit, which outputs a
linear combination of its inputs (Figure 1a). Such units, combined to form networks, can never
transcend linear combinations of the inputs. This insight is illustrated in Figure 2b, which shows
how an output unit that linearly combines intermediate-layer linear-unit activations just adds up
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Figure 2
Networks with nonlinear hidden units can approximate arbitrary nonlinear functions. (a) A feedforward neural network with a single
hidden layer. (b) Activation of the pink and blue hidden units as a function of the input pattern (x1, x2) when the hidden units have
linear activation functions. Each output unit ( y2) will compute a weighted combination of the ramp-shaped (i.e., linear) activations of
the hidden units. Thus, the output remains a linear combination of the input pattern. A linear hidden layer is not useful because the
resulting network is equivalent to a linear network without a hidden layer intervening between input and output. (c) Activation of the
pink and blue hidden units when these have sigmoid activation functions. Arbitrary continuous functions can be approximated in the
output units ( y2) by weighted combinations of a sufficient number of nonlinear hidden-unit outputs ( y1).

Universal function
approximator:
model family that can
approximate any
function that maps
input patterns to
output patterns (with
arbitrary precision
when allowed enough
parameters)

ramp functions, and thus itself computes a ramp function. A multilayer network of linear units is
equivalent to a single-layer network whose weights matrix W′ is the product of the weights matrices
Wi of the multilayer network. Nonlinear units are essential because their outputs provide building
blocks (Figure 2c) whose linear combination one level up enables us to approximate any desired
mapping from inputs to outputs, as described in the next section.

A unit in a neural network uses its input weights w to compute a weighted sum z of its input
activities x and passes the result through a (typically monotonic) nonlinear function f to generate its
activation y (Figure 1a). In early models, the nonlinearity was simply a step function (McCulloch
& Pitts 1943, Rosenblatt 1958, Minsky & Papert 1972), making each unit a linear discriminant
imposing a binary threshold. For a single threshold unit, the perceptron learning algorithm pro-
vides a method for iteratively adjusting the weights (starting with zeros or random weights) so as
to get as many training input–output pairs as possible right. However, hard thresholding entails
that, for a given pair of an input pattern and a desired output pattern, small changes to the weights
will often make no difference to the output. This makes it difficult to learn the weights for a multi-
layer network by gradient descent, where small adjustments to the weights are made to iteratively
reduce the errors. If the hard threshold is replaced by a soft threshold that continuously varies,
such as a sigmoid function, gradient descent can be used for learning.

Networks with Nonlinear Hidden Units Are Universal Function Approximators
The particular shape of the nonlinear activation function does not matter to the class of input–
output mappings that can be represented. Feedforward networks with at least one layer of hidden
units intervening between input and output layers are universal function approximators: Given
a sufficient number of hidden units, a network can approximate any function of the inputs in
the output units. Continuous functions can be approximated with arbitrary precision by adding
a sufficient number of hidden units and suitably setting the weights (Schäfer & Zimmermann
2007, Hornik 1991, Cybenko 1989). Figure 2c illustrates this process for two-dimensional inputs:
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Deep Neural Networks untangling

• Di Carlo and Cox, 2007

graphically show the difference between a ‘good’ and ‘bad’
representation for directly supporting object recognition.
The representation in Figure 1b is good: it is easy to
determine if Joe is present, in spite of pose variation, by
simply placing the linear decision function (i.e. a hyper-
plane) between Joe’s manifold and the other potential
images in the visual world (just images of Sam in this
case, but see Figure I in Box 2). By contrast, the repres-
entation in Figure 1c is bad: the object manifolds are
tangled, such that it is impossible to reliably separate
Joe from the rest of the visual world with a linear decision
function. Figure 1d shows that this problem is not aca-
demic – the manifolds of two real-world objects are hope-
lessly tangled together in the retinal representation.

Note, however, that the two manifolds in Figure 1c,d do
not cross or superimpose – they are like two sheets of paper
crumpled together. This means that, although the retinal
representation cannot directly support recognition, it

implicitly contains the information to distinguish which
of the two individuals was seen. We argue that this
describes the computational crux of ‘everyday’ recognition:
the problem is typically not a lack of information or noisy
information, but that the information is badly formatted in
the retinal representation – it is tangled (but also see Box
1). Although Figure 1 shows only two objects, the same
arguments apply when more objects are in the world of
possible objects – it just makes the problem harder, but for
exactly the same reasons.

One way of viewing the overarching goal of the brain’s
object recognition machinery, then, is as a transformation
from visual representations that are easy to build (e.g.
center-surround filters in the retina), but are not easily
decoded (as in Figure 1c,d), into representations that we do
not yet know how to build (e.g. representations in IT), but
are easily decoded (e.g. Figure 1b). Although the idea of
representational transformation has been stated under

Figure 1. Illustration of object tangling. In a neuronal population space, each cardinal axis is one neuron’s activity (e.g. firing rate over an !200 ms interval) and the
dimensionality of the space is equal to the number of neurons. Although such high-dimensional spaces cannot be visualized, the three-dimensional views portrayed here
provide fundamental insight. (a) A given image of a single object (here, a particular face) is one point in retinal image space. As the face’s pose is varied, the point travels
along curved paths in the space, and all combinations of left/right and up/down pose (two degrees of freedom) lie on a two-dimensional surface, called the object manifold
(in blue). Although only two degrees of freedom are shown for clarity, the same idea applies when other identity-preserving transformations (e.g. size, position) are applied.
(b) The manifolds of two objects (two faces, red and blue) are shown in a common neuronal population space. In this case, a decision (hyper-) plane can be drawn cleanly
between them. If the world only consisted of this set of images, this neuronal representation would be ‘good’ for supporting visual recognition. (c) In this case, the two
object manifolds are intertwined, or tangled. A decision plane can no longer separate the manifolds, no matter how it is tipped or translated. (d) Pixel (retina-like) manifolds
generated from actual models of faces (14,400-dimensional data; 120 " 120 images) for two face objects were generated from mild variation in their pose, position, scale
and lighting (for clarity, only the pose-induced portion of the manifold is displayed). The three-dimensional display axes were chosen to be the projections that best
separate identity, pose azimuth and pose elevation. Even though this simple example only exercises a fraction of typical real-world variation, the object manifolds are
hopelessly tangled. Although the manifolds appear to cross in this three-dimensional projection, they do not cross in the high-dimensional space in which they live.

Opinion TRENDS in Cognitive Sciences Vol.11 No.8 335
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Imagenet database

• Krizhevsky, Sutskever, Hinton, 2012 (large scale 
learning; 1.2 million images)



Deep learning: Convolutional Neural Networks

  

Convolutional Neural Network (CNN)

● End-to-end recognition system. 

● Input: Raw pixels 

● Output: Labels

Figure from https://medium.com/@RaghavPrabhu/understanding-of-
convolutional-neural-network-cnn-deep-learning-99760835f148

• Popularized for object recognition in computer vision
• Series of linear and nonlinear computations
• The architecture and the computations differ across artificial 

neural networks; common building blocks include:
convolution; rectification; pooling; normalization



Convolutional Neural Networks: 
convolution



Convolutional Neural Networks: 
convolution

• Neural unit convolved / replicated across all spatial locations
• Amounts to sharing of weights across different locations in 

the image – reduces number of parameters to learn 
• Each neural unit captures feature in the image (here 

orientation)



Convolutional Neural Networks: 
convolution

From http://cs231n.github.io/convolutional-networks/
Fei Fei, Karpathy, Johnson

  

Convolutional layer

● Find a single feature in the whole image by sharing the weights

● Link to the Stanford CS231n class
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Convolutional
network:
network in which the
preactivation of a layer
(before the
nonlinearity)
implements
convolutions of the
previous layer with a
number of
weight-template
patterns

Receptive field
modeling: predictive
modeling of the
response to arbitrary
sensory inputs of
neurons (or measured
channels of brain
activity)

can be pretrained layer by layer in the autoencoder framework using a large set of unlabeled images.
Once the network has learned a reasonable representation of natural images, it can more easily be
trained with backpropagation to predict the correct image labels.

FEEDFORWARD NEURAL NETWORKS FOR VISUAL
OBJECT RECOGNITION
Computer vision has recently come to be dominated by a particular type of deep neural network: the
deep feedforward convolutional network. These networks now robustly outperform the previous
state of the art, which consisted in hand-engineered visual features (e.g., Lowe 1999) forming the
input to shallow machine learning classifiers such as support vector machines. Interestingly, some
of the earlier systems inserted an intermediate representation, often acquired by unsupervised
learning, between the hand-engineered features and the supervised classifier. The insertion of this
representation might have helped address the need for a deeper architecture.

The deep convolutional nets widely used computer vision today share several architectural
features, some of which are loosely inspired by biological vision systems (Hubel & Wiesel 1968).

! Deep hierarchy: Like the primate ventral visual stream, these networks process information
through a deep hierarchy of representations (typically 5 to 20 layers; see Figure 3 for an
example), gradually transforming a visual representation, whose spatial layout matches the
image, to a semantic representation that enables the recognition of object categories.
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Figure 3
Deep convolutional feedforward architecture for object recognition. The figure shows the architecture used by Krizhevsky et al. (2012).
The information flows from the input pixel image (left) (224 × 224 pixels, 3 color channels) through 7 hidden layers to the category
output (right) (1,000 category detector units). The large boxes represent stacks of feature maps. For layer 2, for example, the lower large
box represents 128 feature maps of size 27 (horizontal image positions) × 27 (vertical image positions). Note that the dimensions of the
boxes are not drawn to scale. The small boxes represent the feature templates that are convolved with the representation in a given
layer. Because convolution and max-pooling operate at strides greater than 1 pixel, the spatial extent of the feature maps decreases
along the sequence of representations (224, 55, 27, 13, 13, 13, 1, 1, 1). The upper and lower large boxes represent the division of labor
between two graphics processing units.
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• Krizhevsky, Sutskever, Hinton, 2012 (large scale 
learning; 1.2 million images; 5 convolutional layers)
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nonlinearity)
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convolutions of the
previous layer with a
number of
weight-template
patterns

Receptive field
modeling: predictive
modeling of the
response to arbitrary
sensory inputs of
neurons (or measured
channels of brain
activity)

can be pretrained layer by layer in the autoencoder framework using a large set of unlabeled images.
Once the network has learned a reasonable representation of natural images, it can more easily be
trained with backpropagation to predict the correct image labels.

FEEDFORWARD NEURAL NETWORKS FOR VISUAL
OBJECT RECOGNITION
Computer vision has recently come to be dominated by a particular type of deep neural network: the
deep feedforward convolutional network. These networks now robustly outperform the previous
state of the art, which consisted in hand-engineered visual features (e.g., Lowe 1999) forming the
input to shallow machine learning classifiers such as support vector machines. Interestingly, some
of the earlier systems inserted an intermediate representation, often acquired by unsupervised
learning, between the hand-engineered features and the supervised classifier. The insertion of this
representation might have helped address the need for a deeper architecture.

The deep convolutional nets widely used computer vision today share several architectural
features, some of which are loosely inspired by biological vision systems (Hubel & Wiesel 1968).

! Deep hierarchy: Like the primate ventral visual stream, these networks process information
through a deep hierarchy of representations (typically 5 to 20 layers; see Figure 3 for an
example), gradually transforming a visual representation, whose spatial layout matches the
image, to a semantic representation that enables the recognition of object categories.
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layer. Because convolution and max-pooling operate at strides greater than 1 pixel, the spatial extent of the feature maps decreases
along the sequence of representations (224, 55, 27, 13, 13, 13, 1, 1, 1). The upper and lower large boxes represent the division of labor
between two graphics processing units.
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can be pretrained layer by layer in the autoencoder framework using a large set of unlabeled images.
Once the network has learned a reasonable representation of natural images, it can more easily be
trained with backpropagation to predict the correct image labels.

FEEDFORWARD NEURAL NETWORKS FOR VISUAL
OBJECT RECOGNITION
Computer vision has recently come to be dominated by a particular type of deep neural network: the
deep feedforward convolutional network. These networks now robustly outperform the previous
state of the art, which consisted in hand-engineered visual features (e.g., Lowe 1999) forming the
input to shallow machine learning classifiers such as support vector machines. Interestingly, some
of the earlier systems inserted an intermediate representation, often acquired by unsupervised
learning, between the hand-engineered features and the supervised classifier. The insertion of this
representation might have helped address the need for a deeper architecture.

The deep convolutional nets widely used computer vision today share several architectural
features, some of which are loosely inspired by biological vision systems (Hubel & Wiesel 1968).

! Deep hierarchy: Like the primate ventral visual stream, these networks process information
through a deep hierarchy of representations (typically 5 to 20 layers; see Figure 3 for an
example), gradually transforming a visual representation, whose spatial layout matches the
image, to a semantic representation that enables the recognition of object categories.
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output (right) (1,000 category detector units). The large boxes represent stacks of feature maps. For layer 2, for example, the lower large
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layer. Because convolution and max-pooling operate at strides greater than 1 pixel, the spatial extent of the feature maps decreases
along the sequence of representations (224, 55, 27, 13, 13, 13, 1, 1, 1). The upper and lower large boxes represent the division of labor
between two graphics processing units.
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can be pretrained layer by layer in the autoencoder framework using a large set of unlabeled images.
Once the network has learned a reasonable representation of natural images, it can more easily be
trained with backpropagation to predict the correct image labels.

FEEDFORWARD NEURAL NETWORKS FOR VISUAL
OBJECT RECOGNITION
Computer vision has recently come to be dominated by a particular type of deep neural network: the
deep feedforward convolutional network. These networks now robustly outperform the previous
state of the art, which consisted in hand-engineered visual features (e.g., Lowe 1999) forming the
input to shallow machine learning classifiers such as support vector machines. Interestingly, some
of the earlier systems inserted an intermediate representation, often acquired by unsupervised
learning, between the hand-engineered features and the supervised classifier. The insertion of this
representation might have helped address the need for a deeper architecture.

The deep convolutional nets widely used computer vision today share several architectural
features, some of which are loosely inspired by biological vision systems (Hubel & Wiesel 1968).

! Deep hierarchy: Like the primate ventral visual stream, these networks process information
through a deep hierarchy of representations (typically 5 to 20 layers; see Figure 3 for an
example), gradually transforming a visual representation, whose spatial layout matches the
image, to a semantic representation that enables the recognition of object categories.
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Deep convolutional feedforward architecture for object recognition. The figure shows the architecture used by Krizhevsky et al. (2012).
The information flows from the input pixel image (left) (224 × 224 pixels, 3 color channels) through 7 hidden layers to the category
output (right) (1,000 category detector units). The large boxes represent stacks of feature maps. For layer 2, for example, the lower large
box represents 128 feature maps of size 27 (horizontal image positions) × 27 (vertical image positions). Note that the dimensions of the
boxes are not drawn to scale. The small boxes represent the feature templates that are convolved with the representation in a given
layer. Because convolution and max-pooling operate at strides greater than 1 pixel, the spatial extent of the feature maps decreases
along the sequence of representations (224, 55, 27, 13, 13, 13, 1, 1, 1). The upper and lower large boxes represent the division of labor
between two graphics processing units.
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can be pretrained layer by layer in the autoencoder framework using a large set of unlabeled images.
Once the network has learned a reasonable representation of natural images, it can more easily be
trained with backpropagation to predict the correct image labels.

FEEDFORWARD NEURAL NETWORKS FOR VISUAL
OBJECT RECOGNITION
Computer vision has recently come to be dominated by a particular type of deep neural network: the
deep feedforward convolutional network. These networks now robustly outperform the previous
state of the art, which consisted in hand-engineered visual features (e.g., Lowe 1999) forming the
input to shallow machine learning classifiers such as support vector machines. Interestingly, some
of the earlier systems inserted an intermediate representation, often acquired by unsupervised
learning, between the hand-engineered features and the supervised classifier. The insertion of this
representation might have helped address the need for a deeper architecture.

The deep convolutional nets widely used computer vision today share several architectural
features, some of which are loosely inspired by biological vision systems (Hubel & Wiesel 1968).

! Deep hierarchy: Like the primate ventral visual stream, these networks process information
through a deep hierarchy of representations (typically 5 to 20 layers; see Figure 3 for an
example), gradually transforming a visual representation, whose spatial layout matches the
image, to a semantic representation that enables the recognition of object categories.
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Figure 3
Deep convolutional feedforward architecture for object recognition. The figure shows the architecture used by Krizhevsky et al. (2012).
The information flows from the input pixel image (left) (224 × 224 pixels, 3 color channels) through 7 hidden layers to the category
output (right) (1,000 category detector units). The large boxes represent stacks of feature maps. For layer 2, for example, the lower large
box represents 128 feature maps of size 27 (horizontal image positions) × 27 (vertical image positions). Note that the dimensions of the
boxes are not drawn to scale. The small boxes represent the feature templates that are convolved with the representation in a given
layer. Because convolution and max-pooling operate at strides greater than 1 pixel, the spatial extent of the feature maps decreases
along the sequence of representations (224, 55, 27, 13, 13, 13, 1, 1, 1). The upper and lower large boxes represent the division of labor
between two graphics processing units.
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can be pretrained layer by layer in the autoencoder framework using a large set of unlabeled images.
Once the network has learned a reasonable representation of natural images, it can more easily be
trained with backpropagation to predict the correct image labels.

FEEDFORWARD NEURAL NETWORKS FOR VISUAL
OBJECT RECOGNITION
Computer vision has recently come to be dominated by a particular type of deep neural network: the
deep feedforward convolutional network. These networks now robustly outperform the previous
state of the art, which consisted in hand-engineered visual features (e.g., Lowe 1999) forming the
input to shallow machine learning classifiers such as support vector machines. Interestingly, some
of the earlier systems inserted an intermediate representation, often acquired by unsupervised
learning, between the hand-engineered features and the supervised classifier. The insertion of this
representation might have helped address the need for a deeper architecture.

The deep convolutional nets widely used computer vision today share several architectural
features, some of which are loosely inspired by biological vision systems (Hubel & Wiesel 1968).

! Deep hierarchy: Like the primate ventral visual stream, these networks process information
through a deep hierarchy of representations (typically 5 to 20 layers; see Figure 3 for an
example), gradually transforming a visual representation, whose spatial layout matches the
image, to a semantic representation that enables the recognition of object categories.
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Figure 3
Deep convolutional feedforward architecture for object recognition. The figure shows the architecture used by Krizhevsky et al. (2012).
The information flows from the input pixel image (left) (224 × 224 pixels, 3 color channels) through 7 hidden layers to the category
output (right) (1,000 category detector units). The large boxes represent stacks of feature maps. For layer 2, for example, the lower large
box represents 128 feature maps of size 27 (horizontal image positions) × 27 (vertical image positions). Note that the dimensions of the
boxes are not drawn to scale. The small boxes represent the feature templates that are convolved with the representation in a given
layer. Because convolution and max-pooling operate at strides greater than 1 pixel, the spatial extent of the feature maps decreases
along the sequence of representations (224, 55, 27, 13, 13, 13, 1, 1, 1). The upper and lower large boxes represent the division of labor
between two graphics processing units.
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can be pretrained layer by layer in the autoencoder framework using a large set of unlabeled images.
Once the network has learned a reasonable representation of natural images, it can more easily be
trained with backpropagation to predict the correct image labels.

FEEDFORWARD NEURAL NETWORKS FOR VISUAL
OBJECT RECOGNITION
Computer vision has recently come to be dominated by a particular type of deep neural network: the
deep feedforward convolutional network. These networks now robustly outperform the previous
state of the art, which consisted in hand-engineered visual features (e.g., Lowe 1999) forming the
input to shallow machine learning classifiers such as support vector machines. Interestingly, some
of the earlier systems inserted an intermediate representation, often acquired by unsupervised
learning, between the hand-engineered features and the supervised classifier. The insertion of this
representation might have helped address the need for a deeper architecture.

The deep convolutional nets widely used computer vision today share several architectural
features, some of which are loosely inspired by biological vision systems (Hubel & Wiesel 1968).

! Deep hierarchy: Like the primate ventral visual stream, these networks process information
through a deep hierarchy of representations (typically 5 to 20 layers; see Figure 3 for an
example), gradually transforming a visual representation, whose spatial layout matches the
image, to a semantic representation that enables the recognition of object categories.
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Figure 3
Deep convolutional feedforward architecture for object recognition. The figure shows the architecture used by Krizhevsky et al. (2012).
The information flows from the input pixel image (left) (224 × 224 pixels, 3 color channels) through 7 hidden layers to the category
output (right) (1,000 category detector units). The large boxes represent stacks of feature maps. For layer 2, for example, the lower large
box represents 128 feature maps of size 27 (horizontal image positions) × 27 (vertical image positions). Note that the dimensions of the
boxes are not drawn to scale. The small boxes represent the feature templates that are convolved with the representation in a given
layer. Because convolution and max-pooling operate at strides greater than 1 pixel, the spatial extent of the feature maps decreases
along the sequence of representations (224, 55, 27, 13, 13, 13, 1, 1, 1). The upper and lower large boxes represent the division of labor
between two graphics processing units.
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can be pretrained layer by layer in the autoencoder framework using a large set of unlabeled images.
Once the network has learned a reasonable representation of natural images, it can more easily be
trained with backpropagation to predict the correct image labels.

FEEDFORWARD NEURAL NETWORKS FOR VISUAL
OBJECT RECOGNITION
Computer vision has recently come to be dominated by a particular type of deep neural network: the
deep feedforward convolutional network. These networks now robustly outperform the previous
state of the art, which consisted in hand-engineered visual features (e.g., Lowe 1999) forming the
input to shallow machine learning classifiers such as support vector machines. Interestingly, some
of the earlier systems inserted an intermediate representation, often acquired by unsupervised
learning, between the hand-engineered features and the supervised classifier. The insertion of this
representation might have helped address the need for a deeper architecture.

The deep convolutional nets widely used computer vision today share several architectural
features, some of which are loosely inspired by biological vision systems (Hubel & Wiesel 1968).

! Deep hierarchy: Like the primate ventral visual stream, these networks process information
through a deep hierarchy of representations (typically 5 to 20 layers; see Figure 3 for an
example), gradually transforming a visual representation, whose spatial layout matches the
image, to a semantic representation that enables the recognition of object categories.
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Figure 3
Deep convolutional feedforward architecture for object recognition. The figure shows the architecture used by Krizhevsky et al. (2012).
The information flows from the input pixel image (left) (224 × 224 pixels, 3 color channels) through 7 hidden layers to the category
output (right) (1,000 category detector units). The large boxes represent stacks of feature maps. For layer 2, for example, the lower large
box represents 128 feature maps of size 27 (horizontal image positions) × 27 (vertical image positions). Note that the dimensions of the
boxes are not drawn to scale. The small boxes represent the feature templates that are convolved with the representation in a given
layer. Because convolution and max-pooling operate at strides greater than 1 pixel, the spatial extent of the feature maps decreases
along the sequence of representations (224, 55, 27, 13, 13, 13, 1, 1, 1). The upper and lower large boxes represent the division of labor
between two graphics processing units.
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Convolutional
network:
network in which the
preactivation of a layer
(before the
nonlinearity)
implements
convolutions of the
previous layer with a
number of
weight-template
patterns

Receptive field
modeling: predictive
modeling of the
response to arbitrary
sensory inputs of
neurons (or measured
channels of brain
activity)

can be pretrained layer by layer in the autoencoder framework using a large set of unlabeled images.
Once the network has learned a reasonable representation of natural images, it can more easily be
trained with backpropagation to predict the correct image labels.

FEEDFORWARD NEURAL NETWORKS FOR VISUAL
OBJECT RECOGNITION
Computer vision has recently come to be dominated by a particular type of deep neural network: the
deep feedforward convolutional network. These networks now robustly outperform the previous
state of the art, which consisted in hand-engineered visual features (e.g., Lowe 1999) forming the
input to shallow machine learning classifiers such as support vector machines. Interestingly, some
of the earlier systems inserted an intermediate representation, often acquired by unsupervised
learning, between the hand-engineered features and the supervised classifier. The insertion of this
representation might have helped address the need for a deeper architecture.

The deep convolutional nets widely used computer vision today share several architectural
features, some of which are loosely inspired by biological vision systems (Hubel & Wiesel 1968).

! Deep hierarchy: Like the primate ventral visual stream, these networks process information
through a deep hierarchy of representations (typically 5 to 20 layers; see Figure 3 for an
example), gradually transforming a visual representation, whose spatial layout matches the
image, to a semantic representation that enables the recognition of object categories.
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Figure 3
Deep convolutional feedforward architecture for object recognition. The figure shows the architecture used by Krizhevsky et al. (2012).
The information flows from the input pixel image (left) (224 × 224 pixels, 3 color channels) through 7 hidden layers to the category
output (right) (1,000 category detector units). The large boxes represent stacks of feature maps. For layer 2, for example, the lower large
box represents 128 feature maps of size 27 (horizontal image positions) × 27 (vertical image positions). Note that the dimensions of the
boxes are not drawn to scale. The small boxes represent the feature templates that are convolved with the representation in a given
layer. Because convolution and max-pooling operate at strides greater than 1 pixel, the spatial extent of the feature maps decreases
along the sequence of representations (224, 55, 27, 13, 13, 13, 1, 1, 1). The upper and lower large boxes represent the division of labor
between two graphics processing units.
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Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Figure 4
Deep supervised learning produces feature selectivities that are qualitatively consistent with
neurophysiological findings. To understand representations in deep neural networks, we can visualize which
image elements drive a given unit in a deep network. For 20 example units (4 from each of 5 layers), the
images shown visualize what caused the response in the context of a particular image that strongly drove the
unit. The visualization technique used here involves two steps: selection of an input image that strongly
drives the unit, and inversion of the feedforward computation to generate the image element responsible.
Convolutions along the feedforward pass are inverted by deconvolution (using the transposes of the
convolution matrices). Max-pooling operations are inverted by storing the identity of the connection to the
pooling unit that was maximally active in the feedforward pass. Note that a unit deep in a network does not
perform a simple template-matching operation on the image and therefore cannot be fully characterized by
any visual template. However, performing the above visualization for many images that drive a unit (not
shown) can help us understand its selectivity and tolerances. The deconvolutional visualization technique
shown was developed by Zeiler & Fergus (2014). The deep network is from Chatfield et al. (2014). The
analysis was performed by Güçlü & van Gerven (2015). Figure adapted with permission from Güçlü & van
Gerven (2015).

to those shown may be the exception rather than the rule, and it is unclear whether they are
essential to the functionality of the network. For example, meaningful selectivities could reside in
linear combinations of units rather than in single units, with weak distributed activities encoding
essential information.

The representational hierarchy appears to gradually transform a space-based visual to a shape-
based and semantic representation. The network acquires complex knowledge about the kinds of
shapes associated with each category. In this context, shape refers to luminance- and color-defined
features of various levels of complexity. High-level units appear to learn representations of shapes
occurring in natural images, such as faces, human bodies, animals, natural scenes, buildings, and
cars. The selectivities learned are not restricted to the categories detected by the output layer, but
may include selectivities to parts of these objects or even to context elements. For example, the
network by Krizhevsky et al. (2012) contains units that appear to be selective for text (Yosinski et al.

www.annualreviews.org • Deep Neural Networks 429

A
nn

u.
 R

ev
. V

is
. S

ci
. 2

01
5.

1:
41

7-
44

6.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 U

ni
ve

rs
ity

 o
f M

ia
m

i o
n 

02
/1

9/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



From Zeiler and Fergus, 2014

824 M.D. Zeiler and R. Fergus
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Fig. 2. Visualization of features in a fully trained model. For layers 2-5 we show the top
9 activations in a random subset of feature maps across the validation data, projected
down to pixel space using our deconvolutional network approach. Our reconstructions
are not samples from the model: they are reconstructed patterns from the validation set
that cause high activations in a given feature map. For each feature map we also show
the corresponding image patches. Note: (i) the the strong grouping within each feature
map, (ii) greater invariance at higher layers and (iii) exaggeration of discriminative
parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in
electronic form. The compression artifacts are a consequence of the 30Mb submission
limit, not the reconstruction algorithm itself.
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a rectified linear threshold or a sigmoid, (iii) pooling, a nonlinear  
aggregation operation—typically the mean or maximum of local  
values13, and (iv) divisive normalization, correcting output values to 
a standard range17. Not all HCNN incarnations use these operations 
in this order, but most are reasonably similar. All the basic operations 
exist within a single HCNN layer, which is then typically mapped to 
a single cortical area.

Analogously to neural receptive fields, all HCNN operations are 
applied locally, over a fixed-size input zone that is typically smaller 
than the full spatial extent of the input (Fig. 1c). For example, on a 
256 × 256 pixel image, a layer’s receptive fields might be 7 × 7 pixels. 

Because they are spatially overlapping, the filter and pooling operations  
are typically ‘strided’, meaning that output is retained for only a  
fraction of positions along each spatial dimension: a stride of 2 in 
image convolution will skip every second row and column.

In HCNNs, filtering is implemented via convolutional weight shar-
ing, meaning that the same filter templates are applied at all spatial 
locations. Since identical operations are applied everywhere, spatial 
variation in the output arises entirely from spatial variation in the 
input stimulus. It is unlikely the brain literally implements weight 
sharing, since the physiology of the ventral stream and other sensory 
cortices appears to rule out the existence of a single master location in 
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Figure 1 HCNNs as models of sensory  
cortex. (a) The basic framework in which  
sensory cortex is studied is one of encoding—the process by which stimuli are transformed  
into patterns of neural activity—and decoding, the process by which neural activity generates  
behavior. HCNNs have been used to make models of the encoding step; that is, they describe  
the mapping of stimuli to neural responses as measured in brain. (b) The ventral visual pathway is the most comprehensively studied sensory cascade. 
It consists of a series of connected cortical brain areas (macaque brain shown). PIT, posterior inferior temporal cortex; CIT, central; AIT, anterior; 
RGC, retinal ganglion cell; LGN, lateral geniculate nucleus. DoG, difference of Gaussians model; T(•), transformation. (c) HCNNs are multilayer neural 
networks, each of whose layers are made up of a linear-nonlinear (LN) combination of simple operations such as filtering, thresholding, pooling and 
normalization. The filter bank in each layer consists of a set of weights analogous to synaptic strengths. Each filter in the filter bank corresponds to a 
distinct template, analogous to Gabor wavelets with different frequencies and orientations; the image shows a model with four filters in layer 1, eight in 
layer 2, and so on. The operations within a layer are applied locally to spatial patches within the input, corresponding to simple, limited-size receptive 
fields (red boxes). The composition of multiple layers leads to a complex nonlinear transform of the original input stimulus. At each layer, retinopy 
decreases and effective receptive field size increases. HCNNs are good candidates for models of the ventral visual pathway. By definition, they are image 
computable, meaning that they generate responses for arbitrary input images; they are also mappable, meaning that they can be naturally identified in a 
component-wise fashion with observable structures in the ventral pathway; and, when their parameters are chosen correctly, they are predictive, meaning 
that layers within the network describe the neural response patterns to large classes of stimuli outside the domain on which the models were built.

Box 1 Minimal criteria for a sensory encoding model 

We identify three criteria that any encoding model of a sensory cortical system should meet:
Stimulus-computability: The model should accept arbitrary stimuli within the general stimulus domain of interest;
Mappability: The components of the model should correspond to experimentally definable components of the neural system; and
Predictivity: The units of the model should provide detailed predictions of stimulus-by-stimulus responses, for arbitrarily chosen neurons in each 
mapped area.
These criteria may sometimes be in tension—insisting on mappability at the finest grain might hinder identifying models that actually work for complex 
real-world stimuli, since low-level circuit tools may operate best in reduced stimulus regimes. While seeking detailed models of neural circuit connec-
tivity in simplified contexts is important, if such models do not add up in the aggregate to accurate predictors of neural responses to real-world stimuli, 
the utility of their lower-level verisimilitude is limited.

P E R S P E C T I V E

• Only very loosely designed to mimic brain hierarchy



Deep  neural  networks  and  the  brain

• Supervised  Convolutional  Neural  Networks  (CNNs;;  
figure  from  Yamins and  DiCarlo 2016)  

NATURE NEUROSCIENCE VOLUME 19 | NUMBER 3 | MARCH 2016 357

a rectified linear threshold or a sigmoid, (iii) pooling, a nonlinear  
aggregation operation—typically the mean or maximum of local  
values13, and (iv) divisive normalization, correcting output values to 
a standard range17. Not all HCNN incarnations use these operations 
in this order, but most are reasonably similar. All the basic operations 
exist within a single HCNN layer, which is then typically mapped to 
a single cortical area.

Analogously to neural receptive fields, all HCNN operations are 
applied locally, over a fixed-size input zone that is typically smaller 
than the full spatial extent of the input (Fig. 1c). For example, on a 
256 × 256 pixel image, a layer’s receptive fields might be 7 × 7 pixels. 

Because they are spatially overlapping, the filter and pooling operations  
are typically ‘strided’, meaning that output is retained for only a  
fraction of positions along each spatial dimension: a stride of 2 in 
image convolution will skip every second row and column.

In HCNNs, filtering is implemented via convolutional weight shar-
ing, meaning that the same filter templates are applied at all spatial 
locations. Since identical operations are applied everywhere, spatial 
variation in the output arises entirely from spatial variation in the 
input stimulus. It is unlikely the brain literally implements weight 
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Box 1 Minimal criteria for a sensory encoding model 

We identify three criteria that any encoding model of a sensory cortical system should meet:
Stimulus-computability: The model should accept arbitrary stimuli within the general stimulus domain of interest;
Mappability: The components of the model should correspond to experimentally definable components of the neural system; and
Predictivity: The units of the model should provide detailed predictions of stimulus-by-stimulus responses, for arbitrarily chosen neurons in each 
mapped area.
These criteria may sometimes be in tension—insisting on mappability at the finest grain might hinder identifying models that actually work for complex 
real-world stimuli, since low-level circuit tools may operate best in reduced stimulus regimes. While seeking detailed models of neural circuit connec-
tivity in simplified contexts is important, if such models do not add up in the aggregate to accurate predictors of neural responses to real-world stimuli, 
the utility of their lower-level verisimilitude is limited.
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Figure 5
Deep neural network explains early visual and inferior temporal representations of object images. Each representation in model and
brain was characterized by the dissimilarity matrix of the response patterns elicited by a set of real-world photos of objects.
(a) Representations become monotonically more similar to those of human inferior temporal (IT) cortex as we ascend the layers of the
Krizhevsky et al. (2012) neural network. When the final representational stages are linearly remixed to emphasize the same semantic
dimensions as IT using linear category discriminants (second bar from the right), and when each layer and each discriminant are assigned
a weight to model the prevalence of different computational features in IT (cross-validated to avoid overfitting to the image set;
rightmost bar), the noise ceiling ( gray shaded region) is reached, indicating that the model fully explains the data. When the same method
of linear combination with category discriminants and weighting was applied to traditional computer vision features (not shown here),
the representation did not explain the IT data. Similar results were obtained for monkey IT (not shown here). (b) Lower layers of the
deep neural network resemble the representations in the foveal confluence of early visual areas (V1–V3). Asterisks indicate accuracy
above chance as follows: ns, not significant; ∗, p < 0.05; ∗∗, p < 0.01; ∗∗∗, p < 0.001; ∗∗∗∗, p < 0.0001. The similarity between each
model representation and IT (vertical axes) was measured using Kendall’s rank correlation coefficient τ a to compare representational
dissimilarity matrices (subject-group-average τ a plotted). Results reproduced from Khaligh-Razavi & Kriegeskorte (2014).

network representation explained the IT representation substantially and significantly better than
a similarly IT-fitted combination of the conventional computer vision features.

Cadieu et al. (2013, 2014) analyzed the internal representations of a population of IT cells
alongside models of early vision, the HMAX model (Riesenhuber & Poggio 1999, Serre et al.
2007), a hierarchically optimized multilayer model from Yamins et al. (2013, 2014), and the deep
neural networks from Krizhevsky et al. (2012) and Zeiler & Fergus (2014). The representations
performing best at object categorization (Figure 6a) were the deep neural network built by Zeiler
& Fergus (2014) and the biological IT representation (monkey neuronal recordings), followed
closely by the deep network proposed by Krizhevsky et al. (2012). The other representations
performed at much lower levels. The two deep networks explained the IT data equally well, as
did neuronal recordings from an independent set of IT neurons (Figure 6b).

Several additional studies have yielded similar results and are beginning to characterize the
extent to which representations at different depths can explain the representational stages of the
ventral stream (Agrawal et al. 2014, Güçlü & van Gerven 2015). Overall, these early empirical
comparisons between deep neural network models and the primate ventral stream suggest four
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a rectified linear threshold or a sigmoid, (iii) pooling, a nonlinear  
aggregation operation—typically the mean or maximum of local  
values13, and (iv) divisive normalization, correcting output values to 
a standard range17. Not all HCNN incarnations use these operations 
in this order, but most are reasonably similar. All the basic operations 
exist within a single HCNN layer, which is then typically mapped to 
a single cortical area.

Analogously to neural receptive fields, all HCNN operations are 
applied locally, over a fixed-size input zone that is typically smaller 
than the full spatial extent of the input (Fig. 1c). For example, on a 
256 × 256 pixel image, a layer’s receptive fields might be 7 × 7 pixels. 

Because they are spatially overlapping, the filter and pooling operations  
are typically ‘strided’, meaning that output is retained for only a  
fraction of positions along each spatial dimension: a stride of 2 in 
image convolution will skip every second row and column.

In HCNNs, filtering is implemented via convolutional weight shar-
ing, meaning that the same filter templates are applied at all spatial 
locations. Since identical operations are applied everywhere, spatial 
variation in the output arises entirely from spatial variation in the 
input stimulus. It is unlikely the brain literally implements weight 
sharing, since the physiology of the ventral stream and other sensory 
cortices appears to rule out the existence of a single master location in 
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Figure 1 HCNNs as models of sensory  
cortex. (a) The basic framework in which  
sensory cortex is studied is one of encoding—the process by which stimuli are transformed  
into patterns of neural activity—and decoding, the process by which neural activity generates  
behavior. HCNNs have been used to make models of the encoding step; that is, they describe  
the mapping of stimuli to neural responses as measured in brain. (b) The ventral visual pathway is the most comprehensively studied sensory cascade. 
It consists of a series of connected cortical brain areas (macaque brain shown). PIT, posterior inferior temporal cortex; CIT, central; AIT, anterior; 
RGC, retinal ganglion cell; LGN, lateral geniculate nucleus. DoG, difference of Gaussians model; T(•), transformation. (c) HCNNs are multilayer neural 
networks, each of whose layers are made up of a linear-nonlinear (LN) combination of simple operations such as filtering, thresholding, pooling and 
normalization. The filter bank in each layer consists of a set of weights analogous to synaptic strengths. Each filter in the filter bank corresponds to a 
distinct template, analogous to Gabor wavelets with different frequencies and orientations; the image shows a model with four filters in layer 1, eight in 
layer 2, and so on. The operations within a layer are applied locally to spatial patches within the input, corresponding to simple, limited-size receptive 
fields (red boxes). The composition of multiple layers leads to a complex nonlinear transform of the original input stimulus. At each layer, retinopy 
decreases and effective receptive field size increases. HCNNs are good candidates for models of the ventral visual pathway. By definition, they are image 
computable, meaning that they generate responses for arbitrary input images; they are also mappable, meaning that they can be naturally identified in a 
component-wise fashion with observable structures in the ventral pathway; and, when their parameters are chosen correctly, they are predictive, meaning 
that layers within the network describe the neural response patterns to large classes of stimuli outside the domain on which the models were built.

Box 1 Minimal criteria for a sensory encoding model 

We identify three criteria that any encoding model of a sensory cortical system should meet:
Stimulus-computability: The model should accept arbitrary stimuli within the general stimulus domain of interest;
Mappability: The components of the model should correspond to experimentally definable components of the neural system; and
Predictivity: The units of the model should provide detailed predictions of stimulus-by-stimulus responses, for arbitrarily chosen neurons in each 
mapped area.
These criteria may sometimes be in tension—insisting on mappability at the finest grain might hinder identifying models that actually work for complex 
real-world stimuli, since low-level circuit tools may operate best in reduced stimulus regimes. While seeking detailed models of neural circuit connec-
tivity in simplified contexts is important, if such models do not add up in the aggregate to accurate predictors of neural responses to real-world stimuli, 
the utility of their lower-level verisimilitude is limited.

P E R S P E C T I V E

• Only very loosely designed to mimic brain hierarchy
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Figure 5
Deep neural network explains early visual and inferior temporal representations of object images. Each representation in model and
brain was characterized by the dissimilarity matrix of the response patterns elicited by a set of real-world photos of objects.
(a) Representations become monotonically more similar to those of human inferior temporal (IT) cortex as we ascend the layers of the
Krizhevsky et al. (2012) neural network. When the final representational stages are linearly remixed to emphasize the same semantic
dimensions as IT using linear category discriminants (second bar from the right), and when each layer and each discriminant are assigned
a weight to model the prevalence of different computational features in IT (cross-validated to avoid overfitting to the image set;
rightmost bar), the noise ceiling ( gray shaded region) is reached, indicating that the model fully explains the data. When the same method
of linear combination with category discriminants and weighting was applied to traditional computer vision features (not shown here),
the representation did not explain the IT data. Similar results were obtained for monkey IT (not shown here). (b) Lower layers of the
deep neural network resemble the representations in the foveal confluence of early visual areas (V1–V3). Asterisks indicate accuracy
above chance as follows: ns, not significant; ∗, p < 0.05; ∗∗, p < 0.01; ∗∗∗, p < 0.001; ∗∗∗∗, p < 0.0001. The similarity between each
model representation and IT (vertical axes) was measured using Kendall’s rank correlation coefficient τ a to compare representational
dissimilarity matrices (subject-group-average τ a plotted). Results reproduced from Khaligh-Razavi & Kriegeskorte (2014).

network representation explained the IT representation substantially and significantly better than
a similarly IT-fitted combination of the conventional computer vision features.

Cadieu et al. (2013, 2014) analyzed the internal representations of a population of IT cells
alongside models of early vision, the HMAX model (Riesenhuber & Poggio 1999, Serre et al.
2007), a hierarchically optimized multilayer model from Yamins et al. (2013, 2014), and the deep
neural networks from Krizhevsky et al. (2012) and Zeiler & Fergus (2014). The representations
performing best at object categorization (Figure 6a) were the deep neural network built by Zeiler
& Fergus (2014) and the biological IT representation (monkey neuronal recordings), followed
closely by the deep network proposed by Krizhevsky et al. (2012). The other representations
performed at much lower levels. The two deep networks explained the IT data equally well, as
did neuronal recordings from an independent set of IT neurons (Figure 6b).

Several additional studies have yielded similar results and are beginning to characterize the
extent to which representations at different depths can explain the representational stages of the
ventral stream (Agrawal et al. 2014, Güçlü & van Gerven 2015). Overall, these early empirical
comparisons between deep neural network models and the primate ventral stream suggest four

432 Kriegeskorte

A
nn

u.
 R

ev
. V

is
. S

ci
. 2

01
5.

1:
41

7-
44

6.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 U

ni
ve

rs
ity

 o
f M

ia
m

i o
n 

02
/1

9/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



Frontiers in Systems Neuroscience www.frontiersin.org November 2008 | Volume 2 | Article 4 | 2

Kriegeskorte et al. Representational similarity analysis

whole brain. In imaging, however, a single channel refl ects the joint 
activity of tens of thousands (high-resolution fMRI), or even mil-
lions of neurons (scalp electrophysiology).

If the same activity patterns are measured with two different 
techniques, we expect an overlap in the information sampled. 
However, different techniques sample activity patterns in funda-
mentally different ways. Invasive electrophysiology measures the 
electrical activity of single cells, whereas fMRI measures the hemo-
dynamic aspect of brain activity. Although the hemodynamic fMRI 
signal has been shown to refl ect neuronal activity (Logothetis et al. 
2001; see also Bandettini and Ungerleider, 2001), fMRI patterns 
are spatiotemporally displaced, smoothed, and distorted. Scalp 

 electrophysiology combines high temporal resolution with a spatial 
sampling of neuronal activity that is even coarser than in fMRI.

Neuroscientifi c theory must abstract from the idiosyncrasies of 
particular empirical modalities. To this end, we need a modality-
independent way of characterizing a brain region’s representation. 
Such a characterization will also enable us to elucidate in how far 
different modalities provide consistent or inconsistent informa-
tion. One way of characterizing the information a brain region 
represents is in terms of the mental states (e.g., stimulus percepts) 
it distinguishes (Figure 1). Here we suggest to relate modalities of 
brain-activity measurement and information-processing models 
by comparing activity-pattern dissimilarity matrices. Our approach 

FIGURE 1 | Characterizing brain regions by representational similarity 
structure. For each region, a similarity-graph icon shows the similarities 
between the activity patterns elicited by four stimulus images. Images placed 
close together in the icon elicited similar response patterns. Images placed far 
apart elicited dissimilar response patterns. The color of each connection line 
indicates whether the response-pattern difference was signifi cant for the group 
(red: p < 0.01; light gray: p ≥ 0.05, not signifi cant). A connection line, like a 
rubberband, becomes thinner when stretched beyond the length that would 
exactly refl ect the dissimilarity it represents. Connections also become thicker 
when compressed. Line thickness, thus, indicates the inevitable distortion of 
the 2D representation of the higher-dimensional similarity structure. The 

thickness of the connection lines is chosen such that the area of each 
connection (length times thickness) precisely refl ects the dissimilarity measure. 
This novel visualization of fMRI response-pattern information combines (A) a 
multidimensional-scaling arrangement of activity-pattern similarity (as introduced 
to fMRI by Edelman et al., 1998), (B) a novel rubberband-graph depiction of 
inevitable distortions, and (C) the results of statistical tests of a pattern-
information analysis (for details on the test, see Kriegeskorte et al., 2007). The 
icons show fi xed-effects group analyses for regions of interest individually 
defi ned in 11 subjects. Early visual cortex was anatomically defi ned; all other 
regions were functionally defi ned using a data set independent of that used to 
compute the similarity-graph icons and statistical tests.

Images	
  placed	
  close	
  together	
  elicit	
  similar	
  response	
  patterns;
red	
  line	
  for	
  significance	
  (Kriegeskorte,	
  2008)



Associated	
  activity	
  patterns	
  for	
  a	
  given	
  image	
  compared	
  
by	
  spatial	
  correlation	
  (Kriegeskorte,	
  2008)
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obviates the need for defi ning explicit spatial correspondency map-
pings or transformations from one modality into another.

THE REPRESENTATIONAL DISSIMILARITY MATRIX
For a given brain region, we interpret (Dennett, 1987) the activ-
ity pattern associated with each experimental condition as a rep-
resentation (e.g., a stimulus representation)1. By comparing the 
activity patterns associated with each pair of conditions (Edelman 

et al., 1998; Haxby et al., 2001), we obtain a representational 
 dissimilarity matrix (RDM; Figure 2), which serves to character-
ize the representation2.

An RDM contains a cell for each pair of experimental conditions 
(Figure 2). Each cell contains a number refl ecting the dissimilar-
ity between the activity patterns associated with the two condi-
tions. As a consequence, an RDM is symmetric about a diagonal of 

FIGURE 2 | Computation of the representational dissimilarity matrix. For 
each pair of experimental conditions, the associated activity patterns (in a brain 
region or model) are compared by spatial correlation. The dissimilarity between 
them is measured as 1 minus the correlation (0 for perfect correlation, 1 for no 
correlation, 2 for perfect anticorrelation). These dissimilarities for all pairs of 

conditions are assembled in the RDM. Each cell of the RDM, thus, compares 
the response patterns elicited by two images. As a consequence, an RDM is 
symmetric about a diagonal of zeros. To visualize the representation for a small 
number of conditions, we suggest the similarity-graph icon (top right, cf. 
Figure 1).

1More generally, we can think of the activity pattern as the physical manifestation of 
the mental state induced by the experimental condition. The mental state could be 
the percept of an external object or something more remotely related to the external 
world, such as a motor program, a plan, or an emotion.

2Note that similarity (a term we use here to refer to the general concept) can equal-
ly well be characterized by a similarity measure (in which greater values indicate 
greater similarity) or a dissimilarity measure (in which greater values indicate less 
similarity). We prefer the latter because of its intuitive relationship to distances in 
a multidimensional space.

Cell	
   in	
  Matrix	
  for	
  each	
  pair	
  of
experimental	
   conditions.
Do	
  this	
   in	
  model,	
   and	
  separately
for	
  data	
  – and	
  compare	
  matrices
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models of brain information processing form an integrated 
 component of data analysis and can be directly evaluated and com-
pared. We demonstrate how to apply multivariate analysis to a set of 
dissimilarity matrices from brain regions and models in order to fi nd 
out (1) which model best explains the representation in each brain 
region and (2) to what extent representations among regions and 
models resemble each other. We introduce a randomization test of 

 representational relatedness and a bootstrap technique for obtaining 
error bars on estimates of the goodness of fi t of different models.
(2) Relating regions, subjects, species, and modalities of brain-
activity measurement. We discuss how RSA can be used to quan-
titatively relate:
• representations in different regions of the same brain (“repre-

sentational connectivity”),

A

B

FIGURE 3 | The representational dissimilarity matrix as a hub that relates 
different representations. (A) Systems neuroscience has struggled to relate its 
three major branches of research: behavioral experimentation, brain-activity 
experimentation, and computational modeling. So far these branches have 
interacted largely on two levels: (1) They have interacted on the level of verbal 
theory, i.e., by comparing conclusions drawn from separate analyses. This level 
is essential, but it is not quantitative. (2) They have interacted at the level 
characteristic functions, e.g., by comparing psychometric and neurometric 
functions. This form of bringing the branches in touch is equally essential 
and can be quantitative. However, characteristic functions typically contain 
only a small number of data points, so the interface is not informationally 

rich. Note that the RDM shown is based on only four conditions, yielding 
only (42 − 4)/2 = 6 parameters. However, since the number of parameters 
grows as the square of the number of conditions, the RDM can provide 
an informationally rich interface for relating different representations. 
Consider for example the 96-image experiment we discuss, where the 
matrix has (962 − 96)/2 = 4,560 parameters. (B) This panel illustrates in 
greater detail what different representations can be related via the 
quantitative interface provided by the RDM. We arbitrarily chose the example of 
fMRI to illustrate the within-modality relationships that can be established. Note 
that all these relationships are diffi cult to establish otherwise (gray double 
arrows).

Kriegeskorte,	
  2008

Cell in matrix for each 
pair of images. Dissimilarity 
is 1 minus the correlation  
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Human and Monkey “object” area IT
Representational Similarity Analysis

Figure 1. Representational Dissimilarity Matrices for Monkey and Human IT
For each pair of stimuli, each RDM (monkey, human) color codes the dissimilarity of the
two response patterns elicited by the stimuli in IT. The dissimilarity measure is 1 – r
(Pearson correlation across space). The color code reflects percentiles (see color bar)
computed separately for each RDM (for 1 – r values and their histograms, see Figure 3A).
The two RDMs are the product of completely separate experiments and analysis pipelines
(data not selected to match). Human data are from 316 bilateral inferior temporal voxels
(1.95 × 1.95 × 2mm3) with the greatest visual-object response in an independent data set.
For control analyses using different definitions of the IT region of interest (size, laterality,
exclusion of category-sensitive regions), see Figures S9–S11. RDMs were averaged across
two sessions for each of four subjects. Monkey data are from 674 IT single cells isolated in
two monkeys (left IT in one monkey, right in the other; Kiani et al., 2007).
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twofold cross-validation using a maximum correlation classifier, re-
peated 50 times over permutations of classifier training and testing data
partitions.

Analysis. For each of the 276 binary object recognition tasks, an
unbiased measure of performance was estimated using a sensitivity
index d! (Macmillan, 1993): d! " Z(hit rate) # Z(false-alarm rate),
where Z(. . . ) is the inverse of the cumulative Gaussian distribution.
All d! estimates were constrained to a range of [0, 5]. Bias was esti-
mated using a criterion index c (Macmillan, 1993): c " 0.5 $ (Z(hit
rate) % Z(false-alarm rate)). We refer to the 276-dimensional vector
of d! values over all binary object recognition tasks as the “pattern of
behavioral performance” (b).

The reliability (also known as internal consistency) of behavioral
data was computed as the Spearman’s correlation between patterns of
behavioral performance patterns computed on separate halves of the
data (random split-halves of trials); this process was repeated across
100 draws. Because this estimate is measured using only half of the
data, the Spearman–Brown prediction formula (Brown, 1910; Spear-
man, 1910) was applied to allow for comparisons with correlations
measured using all trials.

Consistency between different behavioral patterns b1, b2 was then
computed as a noise-adjusted rank correlation between patterns of be-
havioral performances (d! or c vectors):

!̃b1,b2 "
!b1,b2

!!b1,b1 # !b2,b2

,

where !b1,b2 is the raw Spearman’s rank correlation, and !b1,b1, !b2,b2 are the
Spearman–Brown corrected internal consistency estimates of each behav-
ioral pattern. Our rationale for using a noise-adjusted correlation measure
for consistency was to account for variance in the behavioral patterns that
arises from “noise,” i.e., variability that is not replicable by stimulus object
identity. We obtained a distribution of consistency values using the 100
resampled estimates of internal consistencies of each behavioral pattern (i.e.,
from the 100 random draws of split-halves of trials of b1, b2).

Results
As stated in Introduction, our primary goal was to measure the
difficulty of hundreds of basic-level invariant object discrimina-

A

B C D

Figure 3. A, Pattern of behavioral performances for the pooled human and pooled monkey. Each 24 $ 24 matrix summarizes confusions of all two-way tasks: the color of bin (i,j) indicates the
unbiased performance (d!) of the binary recognition task with objects i and j. Objects have been reordered based on a hierarchical clustering of human confusion patterns to highlight structure in
the matrix. We observe qualitative similarities in the confusion patterns. For example, (camel, dog) and (tank, truck) are two often confused object pairs in both monkeys and humans. B, Comparison
of d! estimates of all 276 tasks (mean & SE as estimated by bootstrap, 100 resamples) of the pooled human with that of the pooled monkey (top) and a low-level pixel representation (bottom). C,
Quantification of consistency as noise-adjusted correlation of d! vectors. The pooled monkey shows patterns of confusions that are highly correlated with pooled human subject confusion patterns
(consistency of pooled monkey, 0.78). Importantly, low-level visual representations do not share these confusion patterns (pixels, 0.37; V1%, 0.52). Furthermore, a state-of-the-art deep
convolutional neural network representation was highly predictive of human confusion patterns (CNN2013, 0.86), in contrast to an alternative model of the ventral stream (HMAX, 0.55). The dashed
lines indicate thresholds at p " 0.1, 0.05 confidence for consistency to the gold-standard pooled human, estimated from pairs of individual human subjects. D, Comparison of d! estimates of all 276
tasks (mean & SE as estimated by bootstrap, 100 resamples) between the two monkeys.

12132 • J. Neurosci., September 2, 2015 • 35(35):12127–12136 Rajalingham et al. • Comparing Object Recognition in Humans and Monkeys

Comparison of Object Recognition Behavior in Human
and Monkey (IT): Rajalingham, Schmidt, and DiCarlo
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Figure 6
Deep neural networks beat simpler computational models at recognition and better explain the IT
representation. (a) Object recognition performance of deep neural networks beats that of shallower models
and rivals that of a population of IT neurons recorded in a monkey. Recognition performance (vertical axis) is
plotted as a function of readout-model complexity (horizontal axis); high performance at low complexity
indicates that the categories occupy easily separable regions in the representational space. (b) Deep neural
network representations more closely resemble IT than do three simpler models (V1-like, V2-like, and
HMAX). The similarity between each model and IT (vertical axis) was measured using the Spearman’s rank
correlation coefficient (ρ) to compare representational dissimilarity matrices. Results reproduced from
Cadieu et al. (2014). Abbreviations: HMAX, hierarchical model and X (Riesenhuber & Poggio 1999, Serre
et al. 2007, Tarr 1999); HMO, hierarchical modular optimization model (Yamins et al. 2014); IT, inferior
temporal cortex.
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DNNs Rival the Representation of IT Cortex for Core Object Recognition

PLOS Computational Biology | www.ploscompbiol.org 9 December 2014 | Volume 10 | Issue 12 | e1003963
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• Comparison of single IT site (1-3 neurons) response to
top layer of a deep convolutional neural network

• Allows linear combination of model units to capture neural
data 

• Explains around 50 percent of variance (goodness of fit
divided by trial by trial variability)

Comparing Deep Networks and Neural Data
high-level “object” area IT
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P E R S P E C T I V E

Though the top hidden layers of these goal-driven models end up 
being predictive of IT cortex data, they were not explicitly tuned to 
do so; indeed, they were not exposed to neural data at all during the 
training procedure. Models thus succeeded in generalizing in two 
ways. First, the models were trained for category recognition using 
real-world photographs of objects in one set of semantic catego-
ries, but were tested against neurons on a completely distinct set of  
synthetically created images containing objects whose semantic cat-
egories were entirely non-overlapping with that used in training. 
Second, the objective function being used to train the network was 

not to fit neural data, but instead the downstream behavioral goal 
(for example, categorization). Model parameters were independently 
selected to optimize categorization performance, and were compared 
with neural data only after all intermediate parameters—for example, 
nonlinear model layers—had already been fixed.

Stated another way, within the class of HCNNs, there appear to be 
comparatively few qualitatively distinct, efficiently learnable solutions 
to high-variation object categorization tasks, and perhaps the brain is 
forced over evolutionary and developmental timescales to pick such a 
solution. To test this hypothesis it would be useful to identify non-HCNN  
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Figure 2 Goal-driven optimization yields neurally predictive models of ventral visual cortex. (a) HCNN models that are better optimized to solve 
object categorization produce hidden layer representations that are better able to predict IT neural response variance. The x axis shows performance 
(balanced accuracy; chance is 50%) of the model output features on a high-variation object categorization task. The y axis shows the median single-
site IT response predictivity of the last hidden layer of the HCNN model, over n = 168 IT sites. Site responses are defined as the mean firing rate 
70–170 ms after image onset. Response predictivity is defined as in Box 2. Each dot corresponds to a distinct HCNN model from a large family of such 
models. Models shown as blue circles were selected by random draws from object categorization performance-optimization; black circles show controls 
and earlier published HCNN models; red squares show the development over time of HCNN models produced during an optimization procedure that 
produces a specific HCNN model33. PLOS09, ref. 15; SIFT, shape-invariant feature transform; HMO, optimized HCNN. (b) Actual neural response 
(black trace) versus model predictions of the last hidden layer of an HCNN model (red trace) for a single IT neural site. The x axis shows 1,600 test 
images, none of which were used to fit the model. Images are sorted first by category identity and then by variation amount, with more drastic image 
transformations toward the right within each category block. The y axis represents the response of the neural site and model prediction for each  
test image. This site demonstrated face selectivity in its responses (see inset images), but predictivity results were similar for other IT sites33.  
(c) Comparison of IT and V4 single-site neural response predictivity for various models. Bar height shows median predictivity, taken over 128 predicted 
units in V4 (left panel) or 168 units in IT (right panel). The last hidden layer of the HCNN model best predicts IT responses, while the second-to-last 
hidden layer best predicts V4 responses. (d) Representational dissimilarity matrices (RDMs) for human IT and HCNN model. Blue color indicates 
low values, where representation treats image pairs as similar; red color indicates high values, where representation treats image pairs as distinct. 
Values range from 0 to 1. (e) RDM similarity, measured with Kendall’s A, between HCNN model layer features and human V1–V3 (left) or human IT 
(right). Gray horizontal bar represents range of performance of the true model given noise and intersubject variation. Error bars are s.e.m. estimated by 
bootstrap resampling of the stimuli used to compute the RDMs. *P < 0.05, **P < 0.001, ****P < 0.0001 for difference from 0. Panels a–c adapted 
from ref. 33, US National Academy of Sciences; d and e adapted from ref. 35, S.M. Khaligh-Razavi and N. Kriegeskorte.
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Comparing Deep Networks and Neural Data
Mid and lower cortical area

• Deep networks set goal (e.g., object recognition) at 
the top of the network. How similar are middle and 
lower layers to middle and lower cortical areas in the 
brain?

• V1: Cadena, Bethge et al., PloS Comp Biology, 2019
• V4 and shape representation: Pospisil, Pasupathy, Bair 

2015
• V2 and texture representation: Laskar, Sanchez-

Giraldo, Schwartz, arXiv 2018



Deep learning: nonlinearities

• Unlike efficient coding approaches, architecture is 
set rather than derived from computational principles

• The importance of nonlinearities 
(Figure from Lee NIPS   2010 workshop; Jarrett, LeCun et al. 2009)
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Deep learning: nonlinearities
More recently: Other types of normalization for
various purposes: 

• local normalization in Alexnet, 2012: normalizing groups of 5 
neighboring (spatially overlapping) units.

• batch normalization in Ioffe and Szegedy, 2015: normalize by 
mean and standard deviation in a single neural unit for a 
batch (over time) 

• layer normalization in Ba et al., 2016: normalize by mean and 
standard deviation of all units in a given layer

• Normalization in Ren, Zemel, ICLR 2017 to improve object 
recognition

• Sanchez Giraldo and Schwartz, 2019; modeled after primary 
visual cortex surround normalization
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More recently: Other types of normalization for
various purposes: 

• local normalization in Alexnet, 2012 
• batch normalization in Ioffe and Szegedy, 2015 
• layer normalization in Ba et al., 2016
• Normalization in Ren, Zemel, ICLR 2017

• Typically more restricted than some of the normalizations
used in cortical modeling

• But face some similar questions: How to choose
what unit activations to normalize by
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Methods
Data for MIRC Discovery. A set of 10 images was used to discover MIRCs in the
psychophysics experiment. These images of objects and object parts (one
image from each of 10 classes) were used to generate the stimuli for the
human tests (Fig. S3). Each image was of size 50 × 50 image samples (cutoff
frequency of 25 cycles per image).

Data for Training and Testing on Full-Object Images. A set of 600 images was
used for training models on full-object images. For each of the 10 images in
the psychophysical experiment, 60 training class images were obtained (from
Google images, Flickr) by selecting similar images as measured by their HOG
(12) representations; examples are given in Fig. S5. The images were of full
objects (e.g., the side view of a car rather than the door only). These images
provided positive class examples on which the classifiers were trained, using
30–50 images for training; the rest of the images were used for testing.
(Different training/testing splits yielded similar results.) We also tested the
effect of increasing the number of positive examples to 472 (split into 342
training and 130 testing) on three classes (horse, bicycle, and airplane) for
which large datasets are available in PASCAL (16) and ImageNet (25). For the
convolutional neural network (CNN) multiclass model used (15), the number
of training images was 1.2 million from 1,000 categories, including 7 of the
10 classes used in our experiment.

To introduce some size variations, two sizes differing by 20%were used for
each image. The size of the full-object images was scaled so that the part used
in the human experiment (e.g., the car door) was 50 × 50 image samples (with
20% variation). For use in the different classifiers, the images were in-
terpolated to match the format used by the specific implementations [e.g.,
227 × 227 for regions with CNN (RCNN)] (15). The negative images were
taken from PASCAL VOC 2011 (host.robots.ox.ac.uk/pascal/VOC/voc2011/
index.html), an average of 727,440 nonclass image regions per class extracted
from 2,260 images used in training and 246,000 image regions extracted
from a different set of 2,260 images used for testing. The number of non-
class images is larger than the class images used in training and testing,
because this difference is also common under natural viewing conditions
of class and nonclass images.

Data for Training and Testing on Image Patches. The image patches used for
training and testing were taken from the same 600 images used in full-object
image training, but local regions at the true location and size of MIRCs and
sub-MIRCs (called the “siblings dataset”) (Fig. S8) were used. Patches were
scaled to a common size for each of the classifiers. An average of 46 image
patches from each class (23 MIRCs and 23 sub-MIRC siblings) were used as
positive class examples, together with a pool of 1,734,000 random nonclass
patches of similar sizes taken from 2,260 nonclass images. Negative nonclass
images during testing were 225,000 random patches from another set of
2,260 images.

Model Versions and Parameters. The versions and parameters of the four
classification models used were as follows. The HOG (12) model used the
implementation of VLFeat version 0.9.17 (www.vlfeat.org/), an open and
portable library of computer vision algorithms, using cell size 8. For BOW we
used the selective search method (26) using the implementation of VLFeat
with an encoding of VLAD (vector of locally aggregated descriptors) (14, 27),
a dictionary of size 20, a 3 × 3 grid division, and dense SIFT (28) descriptor.
DPM (11) used latest version (release 5, www.cs.berkeley.edu/∼rbg/latent/)
with a single mode. For RCNN we used a pretrained network (15), which uses
the last feature layer of the deep network trained on ImageNet (17) as a
descriptor. Additional deep-network models tested were a model developed
for recognizing small (32 × 32) images (29), and Very Deep Convolutional
Network (18), which was adapted for recognizing small images. HMAX (10)
used the implementation of Cortical Network Simulator (CNS) (30) with six
scales, a buffer size of 640 × 640, and a base size of 384 × 384.

MIRCs Discovery Experiment. This psychophysics experiment identified MIRCs
within the original 10 images at different sizes and resolutions (by steps of
20%). At each trial, a single image patch from each of the 10 images, starting
with the full-object image, was presented to observers. If a patch was rec-
ognizable, five descendants were presented to additional observers; four of
the descendants were obtained by cropping (by 20%) at one corner, and one
was a reduced resolution of the full patch. For instance, the 50 × 50 original
image produced four cropped images of size 40 × 40 samples, together with
a 40 × 40 reduced-resolution copy of the original (Fig. 2). For presentation,
all patches were rescaled to 100 × 100 pixels by image interpolation so that
the size of the presented image was increased without the addition or loss
of information. A search algorithm was used to accelerate the search, based
on the following monotonicity assumption: If a patch P is recognizable, then
larger patches or P at a higher resolution will also be recognized; similarly, if
P is not recognized, then a cropped or reduced resolution version also will
be unrecognized.

A recognizable patch was identified as a MIRC (Fig. 2 and Fig. S4) if none
of its five descendants reached a recognition criterion of 50%. (The accep-
tance threshold has only a small effect on the final MIRCs because of the
sharp gradient in recognition rate at the MIRC level.) Each subject viewed a
single patch from each image and was not tested again. The full procedure
required a large number of subjects (a total of 14,008 different subjects;
average age 31.5 y; 52% males). Testing was conducted online using the
Amazon MTurk platform (3, 4). Each subject viewed a single patch from each
of the 10 original images (i.e., class images) and one “catch” image (a highly
recognizable image for control purposes, as explained below). Subjects were
given the following instructions: “Below are 11 images of objects and object
parts. For each image type the name of the object or part in the image.
If you do not recognize anything type ‘none’.” Presentation time was not
limited, and the subject responded by typing the labels. All experiments and

Fig. 4. Recognition gradient. A small change in images at the MIRC level can cause a large drop in the human recognition rate. Shown are examples of MIRCs
(A and B) and corresponding sub-MIRCs (A* and B*). The numbers under each image indicate the human recognition rate. The average drop in recognition for
these pairs is 0.67.
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Methods
Data for MIRC Discovery. A set of 10 images was used to discover MIRCs in the
psychophysics experiment. These images of objects and object parts (one
image from each of 10 classes) were used to generate the stimuli for the
human tests (Fig. S3). Each image was of size 50 × 50 image samples (cutoff
frequency of 25 cycles per image).

Data for Training and Testing on Full-Object Images. A set of 600 images was
used for training models on full-object images. For each of the 10 images in
the psychophysical experiment, 60 training class images were obtained (from
Google images, Flickr) by selecting similar images as measured by their HOG
(12) representations; examples are given in Fig. S5. The images were of full
objects (e.g., the side view of a car rather than the door only). These images
provided positive class examples on which the classifiers were trained, using
30–50 images for training; the rest of the images were used for testing.
(Different training/testing splits yielded similar results.) We also tested the
effect of increasing the number of positive examples to 472 (split into 342
training and 130 testing) on three classes (horse, bicycle, and airplane) for
which large datasets are available in PASCAL (16) and ImageNet (25). For the
convolutional neural network (CNN) multiclass model used (15), the number
of training images was 1.2 million from 1,000 categories, including 7 of the
10 classes used in our experiment.

To introduce some size variations, two sizes differing by 20%were used for
each image. The size of the full-object images was scaled so that the part used
in the human experiment (e.g., the car door) was 50 × 50 image samples (with
20% variation). For use in the different classifiers, the images were in-
terpolated to match the format used by the specific implementations [e.g.,
227 × 227 for regions with CNN (RCNN)] (15). The negative images were
taken from PASCAL VOC 2011 (host.robots.ox.ac.uk/pascal/VOC/voc2011/
index.html), an average of 727,440 nonclass image regions per class extracted
from 2,260 images used in training and 246,000 image regions extracted
from a different set of 2,260 images used for testing. The number of non-
class images is larger than the class images used in training and testing,
because this difference is also common under natural viewing conditions
of class and nonclass images.

Data for Training and Testing on Image Patches. The image patches used for
training and testing were taken from the same 600 images used in full-object
image training, but local regions at the true location and size of MIRCs and
sub-MIRCs (called the “siblings dataset”) (Fig. S8) were used. Patches were
scaled to a common size for each of the classifiers. An average of 46 image
patches from each class (23 MIRCs and 23 sub-MIRC siblings) were used as
positive class examples, together with a pool of 1,734,000 random nonclass
patches of similar sizes taken from 2,260 nonclass images. Negative nonclass
images during testing were 225,000 random patches from another set of
2,260 images.

Model Versions and Parameters. The versions and parameters of the four
classification models used were as follows. The HOG (12) model used the
implementation of VLFeat version 0.9.17 (www.vlfeat.org/), an open and
portable library of computer vision algorithms, using cell size 8. For BOW we
used the selective search method (26) using the implementation of VLFeat
with an encoding of VLAD (vector of locally aggregated descriptors) (14, 27),
a dictionary of size 20, a 3 × 3 grid division, and dense SIFT (28) descriptor.
DPM (11) used latest version (release 5, www.cs.berkeley.edu/∼rbg/latent/)
with a single mode. For RCNN we used a pretrained network (15), which uses
the last feature layer of the deep network trained on ImageNet (17) as a
descriptor. Additional deep-network models tested were a model developed
for recognizing small (32 × 32) images (29), and Very Deep Convolutional
Network (18), which was adapted for recognizing small images. HMAX (10)
used the implementation of Cortical Network Simulator (CNS) (30) with six
scales, a buffer size of 640 × 640, and a base size of 384 × 384.

MIRCs Discovery Experiment. This psychophysics experiment identified MIRCs
within the original 10 images at different sizes and resolutions (by steps of
20%). At each trial, a single image patch from each of the 10 images, starting
with the full-object image, was presented to observers. If a patch was rec-
ognizable, five descendants were presented to additional observers; four of
the descendants were obtained by cropping (by 20%) at one corner, and one
was a reduced resolution of the full patch. For instance, the 50 × 50 original
image produced four cropped images of size 40 × 40 samples, together with
a 40 × 40 reduced-resolution copy of the original (Fig. 2). For presentation,
all patches were rescaled to 100 × 100 pixels by image interpolation so that
the size of the presented image was increased without the addition or loss
of information. A search algorithm was used to accelerate the search, based
on the following monotonicity assumption: If a patch P is recognizable, then
larger patches or P at a higher resolution will also be recognized; similarly, if
P is not recognized, then a cropped or reduced resolution version also will
be unrecognized.

A recognizable patch was identified as a MIRC (Fig. 2 and Fig. S4) if none
of its five descendants reached a recognition criterion of 50%. (The accep-
tance threshold has only a small effect on the final MIRCs because of the
sharp gradient in recognition rate at the MIRC level.) Each subject viewed a
single patch from each image and was not tested again. The full procedure
required a large number of subjects (a total of 14,008 different subjects;
average age 31.5 y; 52% males). Testing was conducted online using the
Amazon MTurk platform (3, 4). Each subject viewed a single patch from each
of the 10 original images (i.e., class images) and one “catch” image (a highly
recognizable image for control purposes, as explained below). Subjects were
given the following instructions: “Below are 11 images of objects and object
parts. For each image type the name of the object or part in the image.
If you do not recognize anything type ‘none’.” Presentation time was not
limited, and the subject responded by typing the labels. All experiments and

Fig. 4. Recognition gradient. A small change in images at the MIRC level can cause a large drop in the human recognition rate. Shown are examples of MIRCs
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its five descendants. The average gradient was 0.57 ± 0.11, in-
dicating that much of the drop from full to no recognition occurs
for a small change at the MIRC level (the MIRC itself or one
level above, where the gradient also was found to be high). The
examples in Fig. 4 illustrate how small changes at the MIRC level
can have a dramatic effect on recognition rates. These changes
disrupt visual features to which the recognition system is sensi-
tive (6–9); these features are present in the MIRCs but not in the
sub-MIRCs. Crucially, the role of these features is revealed
uniquely at the MIRC level, because information is more re-
dundant in the full-object image, and a similar loss of features
will have a small effect. By comparing recognition rates of
models at the MIRC and sub-MIRC levels, we were able to
test computationally whether current models of human and
computer vision extract and use similar visual features and to test
the ability of recognition models to recognize minimal images at
a human level. The models in our testing included HMAX (10),
a high-performing biological model of the primate ventral
stream, along with four state-of-the-art computer vision models:
(i) the Deformable Part Model (DPM) (11); (ii) support vector
machines (SVM) applied to histograms of gradients (HOG)
representations (12); (iii) extended Bag-of-Words (BOW) (13,
14); and (iv) deep convolutional networks (Methods) (15). All are
among the top-performing schemes in standard evaluations (16).

Training Models on Full-Object Images. We first tested the models
after training with full-object images. Each of the classification
schemes was trained by a set of class and nonclass images to
produce a classifier that then could be applied to novel test
images. For each of the 10 objects in the original images we used
60 class images and an average of 727,000 nonclass images
(Methods). Results did not change by increasing the number of
training class images to 472 (Methods and SI Methods). The class
examples showed full-object images similar in shape and viewing
direction to the stimuli in the psychophysical test (Fig. S5).
After training, all classifiers showed good classification results

when applied to novel full-object images, as is consistent with the
reported results for these classifiers [average precision (AP) =
0.84 ± 0.19 across classes]. The trained classifiers then were
tested on MIRC and sub-MIRC images from the human testing,
with the image patch shown in its original location and size and
surrounded by an average gray image. The first objective was to
test whether the sharp transition shown in human recognition
between images at the MIRC level and their descendant sub-
MIRCs is reproduced by any of the models (the accuracy of
MIRC detection is discussed separately below). An average of

10 MIRC level patches per class and 16 of their similar sub-
MIRCs were selected for testing, together with 246,000 non-
class patches. These MIRCs represent about 62% of the total
number of MIRCs and were selected to have human recog-
nition rates above 65% for MIRCs and below 20% for sub-
MIRCs (Methods). To test the recognition gap, we set the
acceptance threshold of the classifier to match the average hu-
man recognition rate for the class (e.g., 81% for the MIRC-level
patches from the original image of an eye) (Methods and Fig. S6)
and then compared the percentage of MIRCs vs. sub-MIRCs
that exceeded the classifier’s acceptance threshold (results were
insensitive to threshold setting over the range of recognition
rates 0.5–0.9).
We computed the gap between MIRC and sub-MIRC recog-

nition rates for the 10 classes and the different models and
compared the gaps in the models’ and human recognition rates.
None of the models came close to replicating the large drop
shown in human recognition (average gap 0.14 ± 0.24 for models
vs. 0.71 ± 0.05 for humans) (Fig. S7A). The difference between
the models’ and human gaps was highly significant for all com-
puter-version models (P < 1.64 × 10−4 for all classifiers, n =
10 classes, df = 9, average 16 pairs per class, one-tailed paired
t test). HMAX (10) showed similar results (gap 0.21 ± 0.23). The
gap is small because, for the models, the representations of
MIRCs and sub-MIRCs are closely similar, and consequently
the recognition scores of MIRCs and sub-MIRCs are not well
separated.
It should be noted that recognition rates by themselves do not

directly reflect the accuracy of the learned classifier: A classifier
can recognize a large fraction of MIRC and sub-MIRC examples
by setting a low acceptance threshold, but doing so will result in
the erroneous acceptance of nonclass images. In all models, the
accuracy of MIRC recognition (AP 0.07 ± 0.10) (Fig. S7B) was
low compared with the recognition of full objects (AP 0.84 ±
0.19) and was still lower for sub-MIRCs (0.02 ± 0.05). At these
low MIRC recognition rates the system will be hampered by a
large number of false detections.

Fig. 1. Reduced configurations. (A) Configurations that are reduced in size
(Left) or resolution (Right) can often be recognized on their own. (B) The full
images (Upper Row) are highly variable. Recognition of the common action
can be obtained from local configurations (Lower Row), in which variability is
reduced.

Fig. 2. MIRCs discovery. If an image patch was recognized by human sub-
jects, five descendants were presented to additional observers: Four were
obtained by cropping 20% of the image (Bottom Row) and one by 20% re-
duced resolution (Middle Row, Right). The process was repeated on all
descendants until none of the descendants reached recognition criterion
(50%). Detailed examples are shown in Fig. S4. The numbers next to each
image indicate the fraction of subjects that correctly recognized the image.
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ABSTRACT

Convolutional Neural Networks (CNNs) are commonly thought to recognise ob-
jects by learning increasingly complex representations of object shapes. Some
recent studies hint to a more important role of image textures. We here put these
conflicting hypotheses to a quantitative test by evaluating CNNs and human ob-
servers on images with a texture-shape cue conflict. We show that ImageNet-
trained CNNs are strongly biased towards recognising textures rather than shapes,
which is in stark contrast to human behavioural evidence and reveals fundamen-
tally different classification strategies. We then demonstrate that the same standard
architecture (ResNet-50) that learns a texture-based representation on ImageNet
is able to learn a shape-based representation instead when trained on ‘Stylized-
ImageNet’, a stylized version of ImageNet. This provides a much better fit for
human behavioural performance in our well-controlled psychophysical lab setting
(nine experiments totalling 48,560 psychophysical trials across 97 observers) and
comes with a number of unexpected emergent benefits such as improved object
detection performance and previously unseen robustness towards a wide range of
image distortions, highlighting advantages of a shape-based representation.

(a) Texture image
81.4% Indian elephant
10.3% indri

8.2% black swan

(b) Content image
71.1% tabby cat
17.3% grey fox

3.3% Siamese cat

(c) Texture-shape cue conflict
63.9% Indian elephant
26.4% indri

9.6% black swan

Figure 1: Classification of a standard ResNet-50 of (a) a texture image (elephant skin: only texture
cues); (b) a normal image of a cat (with both shape and texture cues), and (c) an image with a
texture-shape cue conflict, generated by style transfer between the first two images.
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matthias.bethge@bethgelab.org

Felix A. Wichmann⇤

University of Tübingen
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Figure 2: Example stimulus image of class bird across all distortion types. From left to right, image
manipulations are: colour (undistorted), greyscale, low contrast, high-pass, low-pass (blurring), phase
noise, power equalisation. Bottom row: opponent colour, rotation, Eidolon I, II and III, additive
uniform noise, salt-and-pepper noise. Example stimulus images across all used distortion levels are
available in the supplementary material.

a certain entry-level category was computed. The entry-level category with the highest sum was
then taken as the network’s decision. A second challenge is the fact that standard DNNs only use
feedforward computations at inference time, while recurrent connections are ubiquitous in the human
brain [52, 53].4 In order to prevent this discrepancy from playing a major confounding role in our
experimental comparison, presentation time for human observers was limited to 200 ms. An image
was immediately followed by a 200 ms presentation of a noise mask with 1/f spectrum, known to
minimise, as much as psychophysically possible, feedback influence in the brain.

2.2 Observers & pre-trained deep neural networks

Data from human observers were compared against classification performance of three pre-trained
DNNs: VGG-19 [39], GoogLeNet [38] and ResNet-152 [40]. For each of the twelve experiments that
were conducted, either five or six observers participated (with the exception of the colour experiment,
for which only three observers participated since similar experiments had already been performed by
a number of studies [48, 55, 56]). Observers reported normal or corrected-to-normal vision.

2.3 Image manipulations

A total of twelve experiments were performed in a well-controlled psychophysical lab setting. In
every experiment, a (possibly parametric) distortion was applied to a large number of images, such
that the signal strength ranged from ‘no distortion / full signal’ to ‘distorted / weak(er) signal’.
We then measured how classification accuracy changed as a function of signal strength. Three of
the employed image manipulations were dichotomous (colour vs. greyscale, true vs. opponent
colour, original vs. equalised power spectrum); one manipulation had four different levels (0, 90,
180 and 270 degrees of rotation); one had seven levels (0, 30, ..., 180 degrees of phase noise)
and the other distortions had eight different levels. Those manipulations were: uniform noise,
controlled by the ‘width’ parameter indicating the bounds of pixel-wise additive uniform noise;
low-pass filtering and high-pass filtering (with different standard deviations of a Gaussian filter);
contrast reduction (contrast levels from 100% to 1%) as well as three different manipulations from
the eidolon toolbox [57]). The three eidolon experiments correspond to different versions of a
parametric image manipulation, with the ‘reach’ parameter controlling the strength of the distortion.
Additionally, for experiments with training on distortions, we also evaluated performance on stimuli
with salt-and-pepper noise (controlled by parameter p indicating probability of setting a pixel to
either black or white; p 2 [0, 10, 20, 35, 50, 65, 80, 95]%). More information about the different
image manipulations is provided in the supplementary material (Section Image preprocessing and
distortions), where we also show example images across all manipulations and distortion levels
(Figures 10, 11, 12, 13, 14). For a brief overview, Figure 2 depicts one exemplary manipulation
per distortion. Overall, the manipulations we used were chosen to reflect a large variety of possible
distortions.

4But see e.g. [54] for a critical assessment of this argument.
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SUMMARY POINTS

1. Neural networks are brain-inspired computational models that now dominate computer
vision and other AI applications.

2. Neural networks consist of interconnected units that compute nonlinear functions of
their input. Units typically compute weighted combinations of their inputs followed by
a static nonlinearity.

3. Feedforward neural networks are universal function approximators.

4. Recurrent neural networks are universal approximators of dynamical systems.

5. Deep neural networks stack multiple layers of nonlinear transformations and can con-
cisely represent complex functions such as those needed for vision.

6. Convolutional neural networks constrain the input connections of units in early layers
to local receptive fields with weight templates that are replicated across spatial positions.
The restriction and sharing of weights greatly reduce the number of parameters that
need to be learned.

7. Deep convolutional feedforward networks for object recognition are not biologically
detailed and rely on nonlinearities and learning algorithms that may differ from those of
biological brains. Nevertheless they learn internal representations that are highly similar
to representations in human and nonhuman primate IT cortex.

8. Neural networks now scale to real-world AI tasks, providing an exciting technologi-
cal framework for building more biologically faithful models of complex feats of brain
information processing.

FUTURE ISSUES

1. We will build neural net models that engage complex real-world tasks and simultaneously
explain biological brain-activity patterns and behavioral performance.

2. The models will have greater biological fidelity in terms of architectural parameters,
nonlinear representational transformations, and learning algorithms.

3. Network layers should match the areas of the visual hierarchy in their response charac-
teristics and representational geometries.

4. Models should predict a rich array of behavioral measurements, such as reaction times
for particular stimuli in different tasks, similarity judgments, task errors, and detailed
motor trajectories in continuous interactive tasks.

5. New supervised learning techniques will drive neural networks into alignment with mea-
sured functional and anatomical brain data and with behavioral data.

6. Recurrent neural network models will explain the representational dynamics of biological
brains.

7. Recurrent neural network models will explain how feedforward, lateral, and feedback
information flow interact to implement probabilistic inference on generative models of
image formation.
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• Deep learning only very loosely designed to mimic brain hierarchy

• Supervised, discriminative approaches can intriguingly explain 
some aspects of cortical neural areas

• Intriguing, but interpretability issues; perceptual failures

• Supervised uses fixed architecture; task set at the very top

• Recent work on lower and mid level areas

• What about nonlinearities? Surround context? Adaptation?
Recurrent connections? 

• What computations are important?

• Perceptual “failures”

• Advantages of unsupervised (e.g., efficient coding) versus 
supervised (task-based) approaches

Summary





Deep learning software

• Berkeley Caffe (visual models) ; now also Caffe2

• Google TensorFlow

• Theano

• Keras on top of TensorFlow, Theano

• Web browser demo: 
http://cs.stanford.edu/people/karpathy/convnetjs/index.html

All	
  have	
  Python	
  interface,	
   Caffe has	
  Python/Matlab interface

Flexibility	
  versus	
  modifying	
  existing	
  frameworks

See	
  some	
   comparisons	
  here:

http://deeplearning4j.org/compare-­‐dl4j-­‐torch7-­‐pylearn.html


