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Table 1 Historical progress toward understanding how the brain works

Elements required for Classical Future cognitive
understanding how the Cognitive Cognitive Cognitive computational computational
brain works Behaviorism| psychology science neuroscience | neuroscience neuroscience
Data Behavioral v v v v v v
Neurophysiological v v v
Theory | Cognitive v v v v
Fully computationally v v v
explicit
Neurally plausible v v v
Explanation of real-world tasks v v v
requiring rich knowledge and
complex computations
Explanation of how high-level v

neuronal populations
represent and compute




“Neural networks are an old idea, so what
is new nhow?”
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Artificial neural networks for classification has been around
for years

Artificial — only very loosely mimic (inspired by) biology!
Error: Cost function (eg, mean square error) between
desired output and current output of network

From Kriegeskorte, 2015



“"Deep neural networks are an old idea, so
what is new now?”
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Based on Kriegeskorte, 2015

Deep artificial neural networks for classification were prominent
in the late 1980s and early 1990s, with learning by back
propagating the error, but fell out of favor..



“"Deep neural networks are an old idea, so
what is new now?”

 Neural networks from the 1950s...

« Deep learning methods based on neural networks
were around in the late 1980s and early 1990s (eg, LeCun)

« Modern versions: Huge data sets with labels, crowdsourcing,
and strong machines (GPU)

« Modern versions: Clever “tricks” for the learning
(LeCun, Hinton, etc.)

« Notable that some of the same people who worked on these

approaches in the 1990s pushed ahead recent progress
(e.g., Hinton, LeCun)
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« Di Carlo and Cox, 2007

Deep Neural Networks untangling
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Imagenet database

ILSVRC top-5 error on ImageNet

2010 2011 2012 2013 2014 Human  ArXiv 2015

jelly fungus
beach wagon gill fungus hire bullterrier indri
fire engine | dead-man's-fingers currant howler monkey

» Krizhevsky, Sutskever, Hinton, 2012 (large scale
learning; 1.2 million images)



Deep learning: Convolutional Neural Networks
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« Popularized for object recognition in computer vision

« Series of linear and nonlinear computations

« The architecture and the computations differ across artificial
neural networks; common building blocks include:
convolution; rectification; pooling; normalization

Figure from https://medium.com/@RaghavPrabhu/understanding-of-
convolutional-neural-network-cnn-deep-learning-99760835f148



Convolutional Neural Networks:
convolution




Convolutional Neural Networks:
convolution

Neural unit convolved / replicated across all spatial locations
Amounts to sharing of weights across different locations in
the image - reduces number of parameters to learn

Each neural unit captures feature in the image (here
orientation)



Convolutional Neural Networks:

convolution
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From http://cs231n.qgithub.io/convolutional-networks/
Fei Fei, Karpathy, Johnson
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» Krizhevsky, Sutskever, Hinton, 2012 (large scale
learning; 1.2 million images; 5 convolutional layers)
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Layer 1

Learn weights and bias

OneRF:11x11x3
(3 color axes)

(11 x 11 x 3 weights and 1 bias term)



224

Layer 1

Learn weights and bias

One neural unit / filter: 11x 11 x3
(3 color axes)

Total of 96 neural unitss (each convolved/replicated
along all locations)
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Layer 1

Learn weights and bias

One neural unit / filter: 11x 11 x3
(3 color axes)

(11 x 11 x 3 weights and 1 bias term)

Total of 96 RFs (each convolved/replicated
along all locations)

Number parameters = (11*11*3)*96=35k



Layer 1

Stride of 4 between each location
(reduces from 227 x 227 to 55 x 55)
Note typo in original paper/figure;
Sizeis 227 and not 224

(227-11)/4 + 1 =55

RF size=11
Stride =4

(minus 11 due to edge conditions
and no zero padding)



Layer 1

Stride of 4 between each location
(reduces from 227 x 227 to 55 x 55)
Note typo in original paper/figure
(227-11)/4+ 1 =55

RF size=11
Stride = 4

Conv 1 layer output: 55 x 55 x 96
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Convolutional Neural Networks:
example of max pooling
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From http://cs231n.github.io/convolutional-networks/
Fei Fei, Karpathy, Johnson
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Visualizing Convolutional Neural Networks

From Zeiler and Fergus, 2014



Visualizing Convolutional Neural Networks
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From Zeiler and Fergus, 2014



Visualizing Convolutional Neural Networks

From Zeiler and Fergus, 2014



Visualizing Convolutional Neural Networks

From Zeiler and Fergus, 2014



Deep neural networks and the brain

« Supervised Convolutional Neural Networks (CNNs;
figure from Yamins and DiCarlo 2016)
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* Only very loosely designed to mimic brain hierarchy




Deep neural networks and the brain

« Supervised Convolutional Neural Networks (CNNs;
figure from Yamins and DiCarlo 2016)
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* Only very loosely designed to mimic brain hierarchy
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Deep neural networks and the brain

« Supervised Convolutional Neural Networks (CNNs;
figure from Yamins and DiCarlo 2016)
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* Only very loosely designed to mimic brain hierarchy
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Anterior inferotemporal face-exemplar f‘"’ﬁ 5
region @

Parahippocampal
place area

Fusiform face
area

Early visual cortex

Images placed close together elicit similar response patterns;
red line for significance (Kriegeskorte, 2008)



similarity-graph icon

dissimilarity matrix

dissimilarity

compute dissimilarity
(1-correlation across space)
Cell in Matrix for each pair of

% a activity patterns experimental conditions.
Do this in model, and separately

f 1 for data — and compare matrices

brain or model

Associated activity patternsfor a given image compared
by spatial correlation (Kriegeskorte, 2008)

I experimental conditions




computational models
+ symbolic models

» connectionist models
* biological neural models

R4

lrepresentational‘

dissimilarity matrix

o N

Kriegeskorte, 2008

brain-activity data
« cell recordings

« fMRI

+EEG, MEG

behavioral data

* reaction time

* errors

« explicit judgements

Cell in matrix for each
pair of images. Dissimilarity
is 1 minus the correlation



Human and Monkey "object” area IT
Representational Similarity Analysis
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A Pooled Human Pooled Monkey
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Figure 7. Object-level representational similarity analysis comparing model and neural representations to the
IT multi-unit representation.

Cadieu CF, Hong H, Yamins DLK, Pinto N, Ardila D, et al. (2014) Deep Neural Networks Rival the
Representation of Primate IT Cortex for Core Visual Object Recognition. PLoS Comput Biol
10(12): e1003963.d0i:10.1371/journal.pcbi.1003963
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Figure 7. Object-level representational similarity analysis comparing model and neural representations to the
IT multi-unit representation.

Cadieu CF, Hong H, Yamins DLK, Pinto N, Ardila D, et al. (2014) Deep Neural Networks Rival the
Representation of Primate IT Cortex for Core Visual Object Recognition. PLoS Comput Biol
10(12): e1003963.d0i:10.1371/journal.pcbi.1003963



Similarity to IT dissimilarity matrix e

(Spearman correlation)
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Deep neural network models

Figure from Cadieu et al. 2014 paper




Comparing Deep Networks and Neural Data
high-level "object” area IT

HCNN top
hidden layer
response
prediction

/ IT site 56

Test images (sorted by category)

IT neural
response

From Yamins, DiCarlo 2016; 2014

« Comparison of single IT site (1-3 neurons) response to
top layer of a deep convolutional neural network
» Allows linear combination of model units to capture neural

data
« Explains around 50 percent of variance (goodness of fit

divided by trial by trial variability)



Comparing Deep Networks and Neural Data
Mid and lower cortical area

« Deep networks set goal (e.g., object recognition) at
the top of the network. How similar are middle and
lower layers to middle and lower cortical areas in the
brain?

« V1: Cadena, Bethge et al., PloS Comp Biology, 2019

* V4 and shape representation: Pospisil, Pasupathy, Bair
2015

« V2 and texture representation: Laskar, Sanchez-
Giraldo, Schwartz, arXiv 2018



Deep learning: nonlinearities

_/
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maxit, o)

Convolution Rectification Local contrast Max-pooling
or filtering normalization

« Unlike efficient coding approaches, architecture is
set rather than derived from computational principles

« The importance of nonlinearities
(Figure from Lee NIPS 2010 workshop; Jarrett, LeCun et al. 2009)



Deep learning: nonlinearities
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« Unlike efficient coding approaches, architecture is
set rather than derived from computational principles

« The importance of nonlinearities
(Figure from Lee NIPS 2010 workshop; Jarrett, LeCun et al. 2009)




Deep learning: nonlinearities

More recently: Other types of normalization for
various purposes:

« local normalizationin Alexnet, 2012: normalizing groups of 5
neighboring (spatially overlapping) units.

« batch normalization in Ioffe and Szegedy, 2015: normalize by
mean and standard deviation in a single neural unit for a
batch (over time)

« layer normalizationin Ba et al., 2016: normalize by mean and
standard deviation of all units in a given layer

 Normalizationin Ren, Zemel, ICLR 2017 to improve object
recognition

« Sanchez Giraldo and Schwartz, 2019; modeled after primary
visual cortex surround normalization



Deep learning: nonlinearities

More recently: Other types of normalization for
various purposes:

« Typically more restricted than some of the normalizations
used in cortical modeling

« But face some similar questions: How to choose
what unit activations to normalize by



Deep learning: perceptual
“failures”

H ‘ L,

Ullman et al., 2016; reduced configurations



Deep learning: perceptual
“failures”

0.88 0.79 0.71

022 0.00 0.03

Ullman et al., 2016; reduced configurations



Deep learning: perceptual
“failures”

Reduce resolution

Crop

0.30 0.18 0.19 0.21

Ullman et al., 2016; reduced configurations



Deep learning: perceptual
“failures”

Geirhos, Bethge et al. 2018



Deep learning: perceptual
“failures”

(a) Texture image (b) Content image (c) Texture-shape cue conflict
81.4% Indian elephant 71.1%  tabby cat 63.9% Indian elephant
10.3% indri 17.3% grey fox 26.4% indri
8.2% black swan 3.3% Siamese cat 9.6% black swan

Geirhos, Bethge et al. 2018



Deep learning: perceptual
“failures”

100100100100 99 g7 99 100100 gg 100100100100 56

original greyscale silhouette edges

Geirhos, Bethge et al. 2018



Deep learning: perceptual
“failures”

Figure 2: Example stimulus image of class bird across all distortion types. From left to right, image
manipulations are: colour (undistorted), greyscale, low contrast, high-pass, low-pass (blurring), phase
noise, power equalisation. Bottom row: opponent colour, rotation, Eidolon I, IT and III, additive
uniform noise, salt-and-pepper noise. Example stimulus images across all used distortion levels are
available in the supplementary material.

Geirhos, Bethge NIPS 2018



The recent excitement about neural networks

Francis Crick

The remarkable properties of some recent computer algorithms for neural networks seemed to promise
a fresh approach to understanding the computational properties of the brain. Unfortunately most of
these neural nets are unrealistic in important respects.

Crick; 1989 about back-propagation; see also recent:
Bengio, Lee, Bornschein, and Lin (2016), Hinton (2016), and
Marblestone, Wayne, and Kording (2016)



Deep learning in your phone app
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See Gatys et al. 2015: ,
Separating content and style in a deep network ] ‘ 'Dr'earﬁs"”




Deep learning in your phone app

See Gatys et al. 2015:
Separating content and style in a deep network




. Neural networks are brain-inspired computational models that now dominate computer
vision and other Al applications.

. Neural networks consist of interconnected units that compute nonlinear functions of
their input. Units typically compute weighted combinations of their inputs followed by
a static nonlinearity.

3. Feedforward neural networks are universal function approximators.

. Recurrent neural networks are universal approximators of dynamical systems.

5. Deep neural networks stack multiple layers of nonlinear transformations and can con-

cisely represent complex functions such as those needed for vision.

. Convolutional neural networks constrain the input connections of units in early layers
to local receptive fields with weight templates that are replicated across spatial positions.
The restriction and sharing of weights greatly reduce the number of parameters that
need to be learned.

. Deep convolutional feedforward networks for object recognition are not biologically
detailed and rely on nonlinearities and learning algorithms that may differ from those of
biological brains. Nevertheless they learn internal representations that are highly similar
to representations in human and nonhuman primate I'T cortex.

. Neural networks now scale to real-world Al tasks, providing an exciting technologi-
cal framework for building more biologically faithful models of complex feats of brain
information processing.



. We will build neural net models that engage complex real-world tasks and simultaneously
explain biological brain-activity patterns and behavioral performance.

. The models will have greater biological fidelity in terms of architectural parameters,
nonlinear representational transformations, and learning algorithms.

. Network layers should match the areas of the visual hierarchy in their response charac-
teristics and representational geometries.

. Models should predict a rich array of behavioral measurements, such as reaction times
for particular stimuli in different tasks, similarity judgments, task errors, and detailed
motor trajectories in continuous interactive tasks.

. New supervised learning techniques will drive neural networks into alignment with mea-
sured functional and anatomical brain data and with behavioral data.

. Recurrent neural network models will explain the representational dynamics of biological
brains.

. Recurrent neural network models will explain how feedforward, lateral, and feedback
information flow interact to implement probabilistic inference on generative models of
image formation.



Summary

Deep learning only very loosely designed to mimic brain hierarchy

Supervised, discriminative approaches can intriguingly explain
some aspects of cortical neural areas

Intriguing, but interpretability issues; perceptual failures
Supervised uses fixed architecture; task set at the very top
Recent work on lower and mid level areas

What about nonlinearities? Surround context? Adaptation?
Recurrent connections?

What computations are important?
Perceptual “failures”

Advantages of unsupervised (e.qg., efficient coding) versus
supervised (task-based) approaches






Deep learning software

+ Berkeley Caffe (visual models) ; now also Caffe2
+ Google TensorFlow

+ Theano

» Keras on top of TensorFlow, Theano

+ Web browser demo:
http://cs.stanford.edu/people/karpathy/convnetjs/index.html

All have Python interface, Caffe has Python/Matlab interface
Flexibility versus modifying existing frameworks
See some comparisons here:

http://deeplearning4j.org/compare-dl4j-torch7-pylearn.html



