Leaky Integrate and Fire Model

- Describes some properties of voltage change over time and spiking activity
- Parameters correspond to known properties of neurons (and electrical circuits)

Leaky Integrate and Fire Model

- Describes some properties of voltage change over time and spiking activity
- Parameters correspond to known properties of neurons (and electrical circuits)
- Simple (doesn't model biophysical detail)

Leaky Integrate and Fire Model

- Describes some properties of voltage change over time and spiking activity
- Parameters correspond to known properties of neurons (and electrical circuits)
- Simple (doesn't model biophysical detail)
- Simple (DE can be solved, eg, using separable DE!)

Leaky Integrate and Fire Model

- Describes some properties of voltage change over time and spiking activity
- Parameters correspond to known properties of neurons (and electrical circuits)
- Simple (doesn't model biophysical detail)
- Simple (DE can be solved, eg, using separable DE!)
- Simple (Still widely used today in brain modeling, scales up to networks of neurons)

Integrate and Fire

https://encyclopedia.pub/147

Leaky Integrate and Fire Model

- Describes some properties of voltage change over time and spiking activity
- Parameters correspond to known properties of neurons (and electrical circuits)
- Simple (doesn't model biophysical detail)
- Simple (DE can be solved, eg, using separable DE!)
- Simple (Still widely used today in brain modeling, scales up to networks of neurons)
- Was used, for instance, in Eliasmith paper we went through

Membrane voltage and spiking

Membrane voltage and spiking

Input current increases the membrane potential

Leaky Integrate and Fire

Membrane voltage and spiking

Separable DE's

- Definition: $f(y) d y=g(x) d x \quad$ (example: $\frac{d y}{2 y^{2}}=x d x$
(a) Get equation in separable form (y's on the left; x 's on the right)
(b) Integrate both sides (don't forget constant of integration c)

$$
\int f(y) d y=\int g(x) d x+c
$$

(c) Plug in initial condition, (example: $y(0)=5$), and find constant of integration c .
(d) Solve for y, by plugging constant c into result of (b)

Leaky Integrate and Fire DE

- DE $\frac{d v}{d t}=\frac{-v}{\tau}+\frac{I}{C}$
- Change with time: $\mathrm{v}(\mathrm{t}), \mathrm{t}$
- Assume constants: I, R, C, $\tau=R C$
- Putting in separable form and solving

$$
v(t)=v(t=0) e^{-t / \tau}+R I\left(1-e^{-t / \tau}\right)
$$

- Solution to DE

$$
v(t)=v(t=0) e^{-t / \tau}+R I\left(1-e^{-t / \tau}\right)
$$

- After action potential, v reset to $\mathrm{v}(\mathrm{t}=0)$, and time reset to 0 .

NO CURRENT I

$$
v(t)=v(t=0) e^{-t / \tau}+R I\left(1-e^{-t / \tau}\right)
$$

WITH CURRENT I and $\mathrm{V}(\mathrm{t}=0)=0$

INCREASE CURRENT I

Current

Membrane voltage

Spikes

16

$$
v(t)=v(t=0) e^{-t / \tau}+R I\left(1-e^{-t / \tau}\right)
$$

Membrane potential

Note: For simplicity, we started membrane potential at 0, so Y axis starts from 0 . Note that we could change this, and that the usual resting membrane Potential is negative millivolts (e.g., -70)
https://faculty.washington.edu/chudler/ap.html

Integrate and Fire

Note: Read some more about Integrate and Fire:
https://neuronaldynamics.epfl.ch/online/Ch1.S5.html

Leaky Integrate and Fire Circuit

$$
C \frac{d v}{d t}=\frac{-v}{R}+I(t)
$$

RC Circuit

(1) $C V=Q \quad$ (C capacitance; V voltage; Q charge)
(2) $\mathrm{I} _1=\mathrm{dQ} / \mathrm{dt} \quad$ (I_1 current)
(3) $\mathrm{C} d v / \mathrm{dt}=\mathrm{I} _1$ (taking derivative in (1) and plugging in (2))

RC Circuit

(4) $\mathrm{V}=\mathrm{I}$ _2 R
(Ohms law)
(5) $I _2=V / R$
(I current)
(6) I_1 + I_2 = 0
(Kirchkoff's law)
(7) $-\mathrm{V} / \mathrm{R}=\mathrm{CdV} / \mathrm{dt}$
(plugging (3) and (6))
(8) Define $\tau=R C$
(time constant!)

Time constant

$$
\tau=R C
$$

(1) $\mathrm{Q}=\mathrm{CV}$
(2) $d Q / d t=I$
$\mathrm{Q}=\mathrm{It}+$ const
(3) $\mathrm{C}=\mathrm{Q} / \mathrm{V}=\mathrm{It} / \mathrm{V}$
(4) $\mathrm{R}=\mathrm{V} / \mathrm{I}$
(5) $\mathrm{RC}=(\mathrm{V} / \mathrm{I})(\mathrm{It} / \mathrm{V})=\mathrm{t} \quad$ (time units!)
[V volt; C Farad; R Ohm; I amper; Q Coulomb]

