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http://ccneuro.org/ccn-blog/
How can we find out how the brain works? (2017)

Yoshua Bengio, U Montreal 
Department of Computer Science and Operations Research
“   If there is a compact description of the computational principles which 

explain how the brain manages to provide us with our intelligence, this is 
something I would consider the core explanation for how the brain works 
– a little bit like the laws of physics for our physical world. Note that this 
is very different from the structured observation of our world in all its 
encyclopedic detail, which provides a useful map of our world, but not a 
principled explanation. Just replace ‘world’ by ‘brain’. My thesis is that 
those principles would also allow us to build intelligent machines and that 
at the heart of our intelligence is our ability to learn and make sense of 
the world, by observing it and interacting with it. That is why I believe in 
the importance of a continuous discussion between the brain researchers 
and AI researchers, especially those in machine learning – particularly 
deep learning and neural networks. This is likely to benefit AI research as 
well, as it has in the past.”

Computational neuroscience

http://ccneuro.org/ccn-blog/
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http://ccneuro.org/ccn-blog/
How can we find out how the brain works? (2017)

Tom Griffiths, UC Berkeley
Department of Psychology and Cognitive Science
“   As a cognitive scientist I normally think about this question from the 

perspective of Marr’s levels of analysis. Understanding how the brain 
works is a question at what Marr called the “implementation” level, but I 
think a lot of insight can be gained by asking why the brain does what it 
does — a question at Marr’s “computational” level. Between those levels 
of analysis is the “algorithmic” level, which looks at the particular 
cognitive processes that are involved in solving a problem. Over the last 
few years a lot of progress has been made at both the implementation 
level and the computational level, but I think the algorithmic level gets 
neglected when we think about the brain. Understanding the algorithms 
that brains execute — and how brains learn to execute those algorithms 
— is going to be a critical part of finding out how the brain works.”

Computational neuroscience

http://ccneuro.org/ccn-blog/
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http://ccneuro.org/ccn-blog/
How can we find out how the brain works? (2017)

Alona Fyshe, University of Victoria, BC, Canada
Department of Computer Science
“   We will need to continue to study the brain at multiple scales, both at the 

neuronal level, at the macro level (via brain imaging), and at the 
behavioral level. And we need to continue to bring these worlds together. 
We also need to start pushing brain imaging experiments in humans out 
into the real world. We can learn something about human language 
understanding by watching people read single words or single sentences, 
but we will miss out on the higher level comprehension areas that are 
required for larger scale understanding and reasoning. Similarly, viewing 
pictures or watching videos tells us something about vision, but 
interacting with objects in the real world will likely tell us more. There is 
tremendous value in tightly controlled experimental paradigms, but we 
also need some people doing the hard work that gets at the more holistic 
aspects of brain information processing.”

Computational neuroscience

http://ccneuro.org/ccn-blog/
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http://ccneuro.org/ccn-blog/
How can we find out how the brain works? (2017)

Michael Shadlen, Columbia University
Department of Neuroscience
“   By testing neurobiological hypotheses that address the “how” question at 

a variety of levels. To me, “how the brain works” is a biological problem 
because I am less interested in mimicking the brain with a machine than 
I am in assessing what goes wrong when the brain doesn’t work, and 
how we might remedy the fault. To this end, functional equivalence (like 
airplanes to birds), which might interest the engineer, is not enough and 
possibly detrimental—a misguided diversion. To make progress on the 
“how” of cognitive function, my approach is to focus less on the 
representation of information and more on what the organism does with 
the information.”

Computational neuroscience

http://ccneuro.org/ccn-blog/
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http://ccneuro.org/ccn-blog/
How can we find out how the brain works? (2017)

Birte Forstmann, University of Amsterdam
Integrative model-based cognitive neuroscience research unit
“   I believe that formal models that make simultaneous predictions about 

different modalities such as behavior and the brain are powerful tools. 
Such tools could help to gain a better mechanistic understanding of brain 
function.”

Computational neuroscience

http://ccneuro.org/ccn-blog/
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http://ccneuro.org/ccn-blog/
How can we find out how the brain works? (2017)

Nicole Rust, University of Pennsylvania
Department of Psychology
“   It all begins with thoughtful descriptions of the computations that the 

brain solves, which are often directly reflected in behavior. Ultimately, a 
description of “how” is formalized by a model that provides a non-trivial 
account of data. Crucially, while many of us have been taught that the 
ultimate test of understanding something is to build it, recent work in our 
field highlights that you can build something without deeply 
understanding how it works. Model interpretability is one of the biggest 
challenges that we currently face.”

Computational neuroscience

http://ccneuro.org/ccn-blog/
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http://ccneuro.org/ccn-blog/
How can we find out how the brain works? (2017)

Odelia Schwartz, University of Miami
Department of Computer Science
“   There is a continued need for computational frameworks that interplay 

with experimental design and analysis at multiple levels (e.g., neurons, 
circuits, cognition). I have been intrigued by how neural systems 
represent and learn about stimuli in the natural environment, resulting in 
complex inferences and behavior. My main focus has been building 
computational neural models that push towards a more principled 
understanding for natural stimuli such as visual scenes. With advances in 
machine learning and in understanding the statistics of natural stimuli, I 
believe there is potential for progress in designing and interpreting 
experiments with naturalistic environments and tasks.”

Computational neuroscience

http://ccneuro.org/ccn-blog/
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http://ccneuro.org/ccn-blog/
How can we find out how the brain works? (2017)

Wei Ji Ma, New York University
Center for Neural Science and Department of Psychology
“   …At a more sociological level, I am old-fashioned and strongly believe in 

small, hypothesis-driven science. While some problems in neuroscience 
might be best addressed using big data, big simulations, or big 
collaborations, my sense is that those currently involve more hype than 
substance. Neuroscience and cognitive science have come far with a 
“letting a hundred flowers bloom” approach, and there is no evidence 
that this approach is bankrupt. More specifically in computational 
neuroscience, small science often amounts to a search for evolutionarily 
meaningful organizing principles, perhaps initially in a toy model – this is 
my favorite approach.”

Computational neuroscience

http://ccneuro.org/ccn-blog/
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From the NIH web site:
Committee report: Brain 2025: A Scientific Vision
(from 2014)

#1. Discovering diversity: Identify and provide experimental 
access to the different brain cell types to determine their roles in 
health and disease. It is within reach to characterize all cell types in 
the nervous system, and to develop tools to record, mark, and 
manipulate these precisely defined neurons in the living brain. We 
envision an integrated, systematic census of neuronal and glial cell 
types, and new genetic and non-genetic tools to deliver genes, 
proteins, and chemicals to cells of interest in non-human animals 
and in humans.
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From the NIH web site:
Committee report: Brain 2025: A Scientific Vision
(from 2014)

#2. Maps at multiple scales: Generate circuit diagrams that vary 
in resolution from synapses to the whole brain. It is increasingly 
possible to map connected neurons in local circuits and distributed 
brain systems, enabling an understanding of the relationship 
between neuronal structure and function. We envision improved 
technologies—faster, less expensive, scalable— for anatomic 
reconstruction of neural circuits at all scales, from non-invasive 
whole human brain imaging to dense reconstruction of synaptic 
inputs and outputs at the subcellular level.



12

From the NIH web site:
Committee report: Brain 2025: A Scientific Vision
(from 2014)

#3. The brain in action: Produce a dynamic picture of the 
functioning brain by developing and applying improved methods for 
large-scale monitoring of neural activity. We should seize the 
challenge of recording dynamic neuronal activity from complete 
neural networks, over long periods, in all areas of the brain. There 
are promising opportunities both for improving existing 
technologies and for developing entirely new technologies for 
neuronal recording, including methods based on electrodes, optics, 
molecular genetics, and nanoscience, and encompassing different 
facets of brain activity.
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From the NIH web site:
Committee report: Brain 2025: A Scientific Vision
(from 2014)

#4. Demonstrating causality: Link brain activity to behavior with 
precise interventional tools that change neural circuit dynamics. By 
directly activating and inhibiting populations of neurons, 
neuroscience is progressing from observation to causation, and 
much more is possible. To enable the immense potential of circuit 
manipulation, a new generation of tools for optogenetics, 
chemogenetics, and biochemical and electromagnetic modulation 
should be developed for use in animals and eventually in human 
patients.
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From the NIH web site:
Committee report: Brain 2025: A Scientific Vision
(from 2014)

#5. Identifying fundamental principles: Produce conceptual 
foundations for understanding the biological basis of mental 
processes through development of new theoretical and data 
analysis tools. Rigorous theory, modeling, and statistics are 
advancing our understanding of complex, nonlinear brain functions 
where human intuition fails. New kinds of data are accruing at 
increasing rates, mandating new methods of data analysis and 
interpretation. To enable progress in theory and data analysis, we 
must foster collaborations between experimentalists and scientists 
from statistics, physics, mathematics, engineering, and computer 
science.
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From the NIH web site:
Committee report: Brain 2025: A Scientific Vision
(from 2014)

#6. Advancing human neuroscience: Develop innovative 
technologies to understand the human brain and treat its disorders; 
create and support integrated human brain research networks. 
Consenting humans who are undergoing diagnostic brain 
monitoring, or receiving neurotechnology for clinical applications, 
provide an extraordinary opportunity for scientific research. This 
setting enables research on human brain function, the mechanisms 
of human brain disorders, the effect of therapy, and the value of 
diagnostics. Meeting this opportunity requires closely integrated 
research teams performing according to the highest ethical 
standards of clinical care and research. New mechanisms are 
needed to maximize the collection of this priceless information and 
ensure that it benefits people with brain disorders.
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From the NIH web site:
Committee report: Brain 2025: A Scientific Vision
(from 2014)

#7. From BRAIN Initiative to the brain: Integrate new 
technological and conceptual approaches produced in Goals #1-6 to 
discover how dynamic patterns of neural activity are transformed 
into cognition, emotion, perception, and action in health and 
disease. The most important outcome of the BRAIN Initiative will be 
a comprehensive, mechanistic understanding of mental function 
that emerges from synergistic application of the new technologies 
and conceptual structures developed under the BRAIN Initiative.

The overarching vision of the BRAIN Initiative is best 
captured by Goal #7—combining these approaches into a 
single, integrated science of cells, circuits, brain, and 
behavior. 
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From the NIH web site:
Committee report: Brain 2025: A Scientific Vision
(from 2014)

Cross boundaries in interdisciplinary collaborations. No single 
researcher or discovery will solve the brain’s mysteries. The most 
exciting approaches will bridge fields, linking experiment to theory, 
biology to engineering, tool development to experimental 
application, human neuroscience to non-human models, and more, 
in innovative ways.
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From the NIH web site:
Committee report: Brain 2025: A Scientific Vision
(from 2014)

Theory, Modeling, and Statistics Will Be Essential to 
Understanding the Brain

Ideally, theorists and statisticians should be involved in 
experimental design and data acquisition, not just recruited at the 
step of data interpretation. 
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Lots of recent interest from industry
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Google Brain

“We are a machine intelligence team focused on deep 
learning. We advance the state of the art in order to 
have a positive impact on the world. We achieve this 
goal by focusing on highly flexible models that learn 
their own features, end-to-end, and make efficient use 
of data and computation. This approach fits into the 
broader Deep Learning subfield of ML and ensures 
our work will ultimately make a difference for 
problems of practical importance.”
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Computational neuroscience

Deep Mind: solve intelligence.
Use it to make the world a better place

“We joined forces with Google in order to turbo-
charge our mission. The algorithms we build are 
capable of learning for themselves directly from raw 
experience or data, and are general in that they can 
perform well across a wide variety of tasks straight out 
of the box. Our world-class team consists of many 
renowned experts in their respective fields, including 
but not limited to deep neural networks, reinforcement 
learning and systems neuroscience-inspired models.”
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Computational neuroscience

IBM Research: Cognitive computing:

“The Cognitive Era: By any measure, 2015 has been a 
landmark year for the discussion around artificial 
intelligence and its potential impact on business and 
society. Be part of the conversation as we explore a 
fascinating and diverse set of issues related to the 
powerful cognitive technologies that are emerging to 
augment human capacity and understanding.”
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This approach differs critically from tradi-
tional averaging in that neurons contribute in 
varying degrees, or even negatively (Fig. 1),  
to the extracted signal. Simple classifiers are 
becoming a standard tool for interpreting neu-
ral data10,11. More complex classifiers, such 
as those with multiple processing layers, are 
rapidly being developed in both neuroscience 
and industry12. One example is the hierarchi-
cal convolutional neural network (HCNN), 
which is based on ideas developed in stud-
ies of the visual system. As discussed in this 
issue, HCNNs can be used to interpret activ-
ity at various stages along the primate visual 
pathway during object recognition4.

Second, new challenges for data analysis 
arise from advances in experimentalists’ ability 
to manipulate neural activity with temporal, 
pathway and cell-type precision. The results 
of such manipulations can be difficult to inter-
pret. For example, the neuronal heterogeneity 
described above implies that a population of 
neurons may encode a parameter through a 
mixture of firing rate increases and decreases. 
Thus, a pan-neuronal firing rate change from 
optogenetic stimulation or suppression could 
have mixed effects. This could occur even for 
manipulations of an identified class of cells 
because recent experimental findings indicate 
heterogeneity far beyond the currently identi-
fied categories13,14. Furthermore, as with more 
traditional methods of stimulation, propaga-
tion of activity to neighboring areas can create 
‘off target’ effects that may erroneously suggest 
that an area has a causal role when, in fact, it 
does not15. Circuit-level modeling is a basic 
theoretical tool for dealing with these issues, 
but it must be extended to the multi-area level 
to address them more fully16.

complex data into forms that summarize the 
results in a more compact and understandable 
way. Third, using modeling to link the results to 
underlying mechanisms and overlying princi-
ples. The perspectives and reviews in this issue 
primarily address the third, and some of the 
second, stage, surveying new developments and 
 modeling-based insights in topics ranging from 
understanding and interpreting network spik-
ing activity1–3, exploring visual processing4 and 
memory5, and studying the representation and 
computation of probability6, to investigations 
of higher level cognition and mental illness7. 
In addition, major advances in the other stages 
of analysis have driven the entire program to 
evolve considerably in recent years. Two such 
advances and their accompanying challenges 
are described below.

First, there are new challenges in data 
analysis driven by advances in our ability to 
simultaneously measure responses from many 
neurons. Specifically, it is not clear how to 
reduce large and complex data sets into forms 
that are understandable. Simply averaging 
responses of many neurons could obscure 
important signals: neural populations often 
have massive diversity in cell type8, projection 
target9 and response property10. One solution 
to this problem is to leverage methods that 
are naturally suited to multi-neuron measure-
ments. Correlations across neurons, for exam-
ple, can offer insight into the connectivity and 
state of a network1. Another solution to this 
problem is the use of machine- learning-based 
readouts and classifiers to interpret activity at 
the population level and relate it to behavior. 
Classifiers work by determining how best to 
combine neurons to extract differences in 
population activity across conditions (Fig. 1).  

Theoretical approaches have a long history 
of contributing to neuroscience research, but 
never before has the need for them been so 
high nor the prospects for advancement so 
great. The explosion in technologies available 
for measuring and manipulating neurons has 
created a call for analysis techniques that are 
scalable to extremely large data sets, that take 
into account the heterogeneity of neurons, 
and that can predict and interpret the effects 
of complex manipulations of activity. The 
growing importance of theory is also driven 
by developments in theoretical neuroscience 
itself, advances that expand the reach of theo-
retical approaches and extend their ability to 
offer insight into long-standing puzzles. In 
the coming years, we will obtain enormous 
quantities of behavioral, recording (both elec-
trical and optical), connectomic, gene expres-
sion and other forms of data. Obtaining deep 
understanding from this onslaught will require, 
in addition to the skillful and creative applica-
tion of experimental technologies, substantial 
advances in data analysis methods and intense 
application of theoretic concepts and models.

The path from data to understanding requires 
three stages of analysis (Fig. 1). First, extracting 
relevant signals from the raw data: for example, 
image stabilization and isolation of regions-of-
interest for imaging. Second,  reducing large and 

Conceptual and technical advances define 
a key moment for theoretical neuroscience
Anne K Churchland & L F Abbott

Theoretical approaches have long shaped neuroscience, but current needs for theory are elevated and prospects for advancement 
are bright. Advances in measuring and manipulating neurons demand new models and analyses to guide interpretation. Advances 
in theoretical neuroscience offer new insights into how signals evolve across areas and new approaches for connecting population 
activity with behavior. These advances point to a global understanding of brain function based on a hybrid of diverse approaches.

Anne K. Churchland is at the Cold Spring Harbor 
Laboratory, Cold Spring Harbor, New York, USA.  
L.F. Abbott is at the Department of Neuroscience, 
and Department of Physiology and Cellular 
Biophysics, Columbia University College of 
Physicians and Surgeons, New York, New York, USA. 
e-mail: churchland@cshl.edu

Churchland, A.K. and Abbott, L.F. (2016) 
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“In the coming years, we will obtain enormous quantities of 
behavioral, recording (both electrical and optical), 
connectomic, gene expression and other forms of data. 
Obtaining deep understanding from this onslaught will 
require, in addition to the skillful and creative application of 
experimental technologies, substantial advances in data 
analysis methods and intense application of theoretic 
concepts and models.”
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• Huys et al., Nature Neuroscience 2016: Computational psychiatry as a 
bridge from neuroscience to clinical applications (see also Montague, 
Dolan, Friston, Dayan, Trends in Cognitive Sciences 2012)

• Theoretically meaningful approaches can add value beyond purely data 
driven machine learning

• This approach is used in computational neuroscience for understanding 
normal brain functioning, and is of potential interest for understanding 
brain disorders
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ML techniques can lead to improvements in treatment-response pre-
diction. In addition to these combinations of features in modalities, it 
seems likely that a combination of features across multiple modalities 
would lead to even further performance improvements.

Treatment selection. The most relevant question for practitioners is 
not necessarily whether a given treatment will work, but rather which 
of several possible treatments (or treatment combinations in the age 
of polypharmacy) will work best for a given patient. Theoretically, 
multiclass classifications can be cast in terms of multiple binary clas-
sifications66. Practically, however, it presents additional challenges: 
it may not be feasible to perform different tests (for example, neu-
roimaging, genetics, etc.) for each treatment option, so, ideally, the 
same set of tests should be used to distinguish responses to multi-
ple treatments. Furthermore, if different tests, or even different ML 
algorithms for the same tests, are used for different treatments, these 
predictions may not be directly comparable and hence not facilitate 
choice between treatments.

Nevertheless, studies have started to address this question using 
data from trials in which subjects were randomized to multiple 
treatment arms, by looking for interactions between treatments and 
relevant variables in multiple regression. This has shown that being 
married and employed and having had more life events and more 
failed antidepressant trials predicted relatively better response to 
cognitive-behavioral therapy (CBT) over antidepressants, whereas 
comorbid personality disorders favored response to antidepressants 
over CBT67. The improvement that could be expected through allo-
cating each patient to the ideal treatment was a further reduction of 
3.6 points on the Hamilton Rating Scale for Depression beyond the 
reduction obtainable using standard treatment selection, a clinically 
significant effect68. Similar approaches to the ISPOT-D data yielded 
predictions for remission with escitalopram in individuals with poor 
cognitive function with a NNT of 3.8, meaning that assigning patients 
in this group to escitalopram on the basis of their cognitive perform-
ance pattern led to remission in one additional patient for every 
four evaluated64. One study63 was able to make individual response  
predictions that were strong enough to guide treatment choice in the 
majority of patients, resulting in NNTs of 2–5.

Steps toward using ML applied to neuroimaging data for treat-
ment selection are being made. One group69 used a univariate marker, 
amygdala responses to subliminal facial emotion stimuli, to predict 
overall responses to SSRIs and serotonin-noradrenaline reuptake 
inhibitors (SNRI) and differential responses to SNRIs versus SSRIs. 
Another group showed that increased insula activity related to better 

response to CBT, but worse response to escitalopram. The effect size 
was large, although predictive power was not examined70. As in the 
case of treatment-response prediction, it seems likely that treatment- 
selection approaches will also benefit from including multiple  
variables from various modalities.

To the best of our knowledge, only one study has thus far attempted 
to validate the clinical utility of an automatic treatment-selection 
algorithm in a randomized clinical trial71, with tantalizingly promis-
ing results. This study used a proprietary algorithm constructed from 
a reference database of EEGs from over 1,800 subjects with within-
subject information about response to multiple treatment attempts 
(about 17,000 treatment attempts in total). The algorithm extracts 74 
features from the EEG of each patient to predict the most likely suc-
cessful medication for depression. Notably, the automatic algorithm 
significantly outperformed clinical selection (Fig. 3). One caveat is 
that the medications prescribed in the two arms differed substantially, 
and the improvement in the automatic-selection arm might not have 
arisen purely through better targeting of the medications, but rather 
through using more monoamine oxidase inhibitors and stimulants 
(although stimulants have generally fared poorly in the treatment  
of depression72).

Understanding relations between symptoms. Limitations of current 
diagnostic schemes have been mentioned above and are discussed 
elsewhere1,32,73. An alternative framework that provides insight into 
patterns of co-occurrence and sequential expression of symptoms 
comes from descriptions of symptoms as networks, where, rather 
than being considered as expressions of an underlying latent variable  
(a given disorder), symptoms are viewed as entities in their own right 
with direct relationships to other symptoms. Sleep disturbances, for 
example, typically cause fatigue; their co-occurrence might therefore 
be a result of their direct causal interaction rather than, say, underly-
ing depression74. Indeed, computational modeling of the symptoms  
that appear earliest before, and remain longest after, depressive  
episodes—hopelessness and poor self-esteem75—suggests that they 
might drive features such as anhedonia and lack of motivation76.

Network analyses of the descriptions in the DSM itself have shown 
that the symptom overlap across DSM diagnoses by itself recapitu-
lates many key features of empirically observed comorbidity pat-
terns and reveal one dominant cluster with a small-world topology28  
(Fig. 4): a few symptoms strongly mediate between other symptoms 
(having high betweenness and centrality) with short ‘paths’ from one 
symptom to another. Strong coherence between many symptoms has 
been argued to reflect a general psychopathology factor p, capturing 

Data

Very high-dimensional dataset

Dimensionality reduction

Prediction and classification

Unsupervised 
dimensionality reduction

ML techniques 
without further

dimensionality reduction

Estimating theoretically
meaningful parameters

ML techniques 
incorporating automatic
dimensionality reduction

Purely data-driven Combining theory- and 
data-driven approaches

Figure 2 Exploiting and coping with high 
dimensionality in psychiatric data sets.  
Purely data-driven approaches (left and middle 
branches) and combinations of theory- and  
data-driven approaches (right branch) can 
be used to analyze large data sets to arrive at 
clinically useful applications. Dimensionality 
reduction is a key step to avoid overfitting.  
It can be performed as a preprocessing step 
using unsupervised methods before application 
of other ML techniques with or without further 
dimensionality reduction (left branch; Box 1); 
using ML techniques that automatically limit 
the number of variables for prediction; using 
regularization or Bayesian model selection 
(middle branch; Box 1); or using theory-driven 
models that in essence project the original high-dimensional data into a low-dimensional space of theoretically meaningful parameters, which can then  
be fed into ML algorithms that may or not further reduce dimensionality (right branch).

Computational modeling of brain disorders
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Computational modeling of brain disorders

• Computational perspective as complementary or on top
of pure machine learning

Huys et al., Nature Neuroscience 2016: Computational psychiatry as a 
bridge from neuroscience to clinical applications; Montague, Dolan, 
Friston, Dayan, Trends in Cognitive Sciences 2012; Bennett, Silverstein, 
Niv: The Two Cultures of Computational Psychiatry 2019;
Hauser et al. 2019)
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Computational modeling of brain disorders

• Computational perspective as complementary or on top
of pure machine learning

• Goal: to gain insights about mechanism

Huys et al., Nature Neuroscience 2016: Computational psychiatry as a 
bridge from neuroscience to clinical applications; Montague, Dolan, 
Friston, Dayan, Trends in Cognitive Sciences 2012; Bennett, Silverstein, 
Niv: The Two Cultures of Computational Psychiatry 2019;
Hauser et al. 2019)
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Computational modeling of brain disorders

• Computational perspective as complementary or on top
of pure machine learning

• Goal: to gain insights about mechanism
• Consider cognitive task and related data

Huys et al., Nature Neuroscience 2016: Computational psychiatry as a 
bridge from neuroscience to clinical applications; Montague, Dolan, 
Friston, Dayan, Trends in Cognitive Sciences 2012; Bennett, Silverstein, 
Niv: The Two Cultures of Computational Psychiatry 2019;
Hauser et al. 2019)
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Computational modeling of brain disorders

• Computational perspective as complementary or on top
of pure machine learning

• Goal: to gain insights about mechanism
• Consider cognitive task and related data
• Computational modeling, with much of the current

work in decision making or reinforcement learning
(e.g., in the face of rewards)

Huys et al., Nature Neuroscience 2016: Computational psychiatry as a 
bridge from neuroscience to clinical applications; Montague, Dolan, 
Friston, Dayan, Trends in Cognitive Sciences 2012; Bennett, Silverstein, 
Niv: The Two Cultures of Computational Psychiatry 2019;
Hauser et al. 2019)
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Computational modeling of brain disorders

• Computational perspective as complementary or on top
of pure machine learning

• Goal: to gain insights about mechanism
• Consider cognitive task and related data
• Computational modeling, with much of the current

work in decision making or reinforcement learning
(e.g., in the face of rewards)

• Fit model parameters to clinical patient data

Huys et al., Nature Neuroscience 2016: Computational psychiatry as a 
bridge from neuroscience to clinical applications; Montague, Dolan, 
Friston, Dayan, Trends in Cognitive Sciences 2012; Bennett, Silverstein, 
Niv: The Two Cultures of Computational Psychiatry 2019;
Hauser et al. 2019)
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Computational modeling of brain disorders

• Computational perspective as complementary or on top
of pure machine learning

• Goal: to gain insights about mechanism
• Consider cognitive task and related data
• Computational modeling, with much of the current

work in decision making or reinforcement learning
(e.g., in the face of rewards)

• Fit model parameters to clinical patient data
• Consider model components in relation to mechanistic

explanations, e.g., regarding neuromodulators

Huys et al., Nature Neuroscience 2016: Computational psychiatry as a 
bridge from neuroscience to clinical applications; Montague, Dolan, 
Friston, Dayan, Trends in Cognitive Sciences 2012; Bennett, Silverstein, 
Niv: The Two Cultures of Computational Psychiatry 2019;
Hauser et al. 2019)
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Fields evolving include …

• Computational Cognitive Neuroscience (new
conference combining AI, Cognitive Science, 
Neuroscience)

• Decision making and reinforcement learning.
“Perceptual Decision-Making: A Field in the Midst of a 
Transformation” (Najafi, Churchland 2018)

• Computational Psychiatry 
• Vision and learning … 
• New approaches and analyses for making sense of large scale data
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Related research areas At UM

• Computational Neuroscience
• Neural Engineering and Brain machine Interfaces 
• Machine learning
• Data science
• Large-scale fMRI
• Technology such as optogenetics
• Neuroscience / Biology
• Robotics
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