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“Hundreds of thousands of people suffer from forms of motor impairment in
which intact movement-related areas of the brain cannot generate

movements because of damage to the spinal cord, nerves, or muscles”

“The participant described in this report, the first in the BrainGate trial, is a
25-yr-old male (MN) ... complete tetraplegia”



Center-out task




Pong




Email, Browser




Prosthetic hand




Fast forward to 2012...

https://www.youtube.com/watch?v=o0gBX18maUiM



Basis for the BMI: Primary motor cortex neurons
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Example neuron in primary motor cortex
(from Schwartz & Georgopoulos 1986)



The first participant in the BrainGate trial (MN).
The grey box (arrow) connected to the
percutaneous pedestal contains amplifier and
signal conditioning hardware; cabling brings the
amplified neural signals to computers sitting beside
the participant. He is looking at the monitor,
directing the neural cursor towards the orange
square in this 16-target ‘grid’ task. A technician
appears (A.H.C.) behind the participant.



sensor 100 electrode sensor

The BrainGate sensor (arrowhead), 100-electrode sensor, 96 of which

resting on a US penny, connected by a are available for neural recording.

13-cm ribbon cable to the percutaneous  Individual electrodes are 1-mm long

Ti pedestal (arrow) and spaced 400 mm apart, in a 10 by 10 grid.
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“Action potentials were readily observable on
multiple electrodes, indicating that Primary
Motor Cortex neural spiking persists 3 years
after Spinal Cord Injury...”



Neural signal persists 3 year after injury!
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Imagining motion

“Imagined limb motions modulated neural
firing rate on multiple electrodes... revealed
a rich variety of firing modulations largely
consistent with patterns observed in
monkey Primary Motor Cortex...”

“Importantly, this activity was evoked by
imagined actions in this participant with
cervical spinal cord injury.”



Imagining motion

V... certain neurons are selective for one
imagined action (hands together/apart),
whereas others recorded simultaneously are
engaged by different imagined actions
(elbow or wrist).”



Neuronal selectivity for imagined movements (all imagined
except shoulder).
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“Over an 80-s period, MN was asked to imagine performing a
series of left limb movements (which are described on the
abscissa). Movement instruction time is indicated by a vertical

arrow...”



Neuronal selectivity for imagined movements (all imagined
except shoulder).
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Neuronal selectivity for imagined movements (all imagined
except shoulder).
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“These results demonstrate a rich
heterogeneity of firing patterns within
a limited sample from a small MI
region. This diversity is useful in
creating a flexible control signal.”



Center-out task

“For each of six sessions, MN performed this
task by imagining hand motion ... as soon as
the target cue appeared.”



Task: Move cursor
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Task: Move cursor
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Task: Move cursor
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Task: Move cursor 10-1 102 1 3 6
to target location Target

direction
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Directional tuning during centre-out task, for 5 neurons (columns)-
“Spike rate modulation occurs soon after the ‘go’ cue ... modulation
varied by target location as would be predicted for Primary Motor Cortex
if actual arm motions were performed ... even years after spinal cord
injury ... can still be actively engaged and encode task-related information
during the intention to move the limb ...”



How does one establish a link between the
firing patterns of the neurons and the
Imagined/intended motor movements??



Establish transform between firing patterns and intended actions:

Imagine tracking cursor while tracking technician cursor.



Establish transform between firing patterns and intended actions:
Imagine tracking cursor while tracking technician cursor.
Input: ?

Output: ?



Establish transform between firing patterns and intended actions:
Imagine tracking cursor while tracking technician cursor.
Input: firing rate in neural units over time

Output: x, y coordinates of movement



Establish transform between firing patterns and intended actions:
Imagine tracking cursor while tracking technician cursor.

Input: firing rate in neural units over time

Output: x, y coordinates of movement

We would like a transform from input to output... what to do?



Linear filter reconstruction: Imagine tracking cursor while tracking
technician cursor.

Establish transform between firing patterns and intended actions:

R = neural response matrix (humber neurons by time bins)
k = X,y coordinates of movement



Linear filter reconstruction: Imagine tracking cursor while tracking
technician cursor.

Establish transform between firing patterns and intended actions:

R = neural response matrix (humber neurons by time bins)
k = X,y coordinates of movement
f = filter (weights the neural response)



Linear filter reconstruction: Imagine tracking cursor while tracking
technician cursor.

Establish transform between firing patterns and intended actions:
R = neural response matrix (humber neurons by time bins)

k = X,y coordinates of movement

f = filter (weights the neural response)

Rf =k

Need to estimate f, and then estimate Rf which reconstructs k



Linear filter reconstruction: Imagine tracking cursor while tracking
technician cursor.

Establish transform between firing patterns and intended actions:
R = neural response matrix (humber neurons by time bins)
k = X,y coordinates of movement
f = filter
Rf =k

Need to estimate f, and then estimate Rf which reconstructs k

How??



R = neural response matrix (humber neurons by time bins)
K = X,y coordinates
f = filter

|
w

Rf

Least squares:
R'Rf = R"k

(RTR)"Y(RTR)f = (RTR)"1R"k
f=(RTR)"1RTk

estimated k (coordinates of movement) = Rf = R(RTR)"1RTk



Comparing technician motion and estimated movement from neural data
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Captures general direction of technician cursor movement but some difficulty overlaying
cursor precisely (in neural cursor from imagined movement)



Comparing technician motion and estimated movement from neural data
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Neural cursor position in obstacle avoidance task (need to go to green
targets and avoid red obstacles)



“Notably, each of these tasks was achieved rapidly and could
be performed while the participant was conversing. Thus,
the MI-based NMP may have the property of allowing
external device control with little more disruption than
encountered in able-bodied humans when they are using
their arms or hands and simultaneously carrying out

other motor or cognitive functions.”
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LETTERS

Cortical control of a prosthetic arm for self-feeding

Meel Velliste!, Sagi Perel*>?, M. Chance Spalding®’, Andrew S. Whitford>® & Andrew B. Schwartz'™®



Population coding example

Decoding hand movement direction from primary motor
cortex population (from Georgopoulos et al., 1988)
Population vector decoding
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“Although the ability to move a cursor can be useful in its own right,
this technology could be applied to restore arm and hand function for
amputees and paralysed persons.”



“... describe a system that permits embodied prosthetic control;
we show how monkeys use their motor cortical activity to control a
mechanized arm replica in a self-feeding task ... in addition to the

three dimensions of movement ... controlled a gripper at the end
of the arm”



Self-feeding timeline

Embodied control setup

(a) “Spiking activity was processed (boxes at top right) and used
to control the three-dimensional arm velocity and the gripper

aperture velocity in real time. “

(b) “Each trial started with presentation of a food piece, and a
successful trial ended with the monkey unloading (UL) the food
from the gripper into its mouth ... Owing to the continuous
nature of the task, there were no clear boundaries between

the task periods.”



Self-feeding with robotic arm

https://www.youtube.com/watch?v=Y6fugdpzU4Q



Self-feeding with robotic arm

“For example, the monkey moved the arm to lick the gripper fingers while
ignoring a presented food target, and sometimes used the gripper fingers to

give a second push to the food when unloading ... These behaviours were not
task requirements, but emerged as new capabilities were learned, demonstrating
how the monkey used the robot arm as a surrogate for its own.”



Calibration

“Population Vector Averaging (PVA) ... is dependent on accurate
estimates of the recorded units’ tuning properties”

“At the beginning of each day, the tuning properties were estimated in
a calibration procedure that did not require the monkey to move its arm.”

“During the first iteration of four trials ... the monkey watched the automated
performance of reach, grip and retrieval and then received the food. “

“During the next iteration, these initial estimates were used by the
extraction algorithm to generate a signal mixed with automated control”

“gradually decreasing the automated control until both arm movement
and the gripper were fully controlled by the monkey’s cortical activity”
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Back, Up Right
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“Figure 2f reveals a surprising point: after gripping the food and pulling it off the
presentation device, the monkey gradually opened the gripper on the way back to the
mouth (Move B) and the gripper was typically fully open before it reached the mouth...
One might expect the food to have dropped when the gripper was opened, but this was
not always the case because marshmallows, and even grape halves to some extent,
tended to stick to the gripper fingers.



116 units. 4 Dimensions: X;Y; Z;

Distribution of the four-dimensional preferred directions of the 116 units used.
arrow direction indicates x,y,z components

open/close Blue: closed; purple: half closed; red open



(2) Target position shifted while monkey

' was making movement (shifted to red dot;
160t ( ? green trajectory).

\/ (3) Target shift resulted in curved
movement by monkey to new location.
Brown is gripper new location.

(1) Monkey movement to initial

(purple dot) target. Light gray is gripper
0 50 100

Z (mm)

Target shift: “The monkey then moved the arm in a curved path
(arrow 3) to avoid knocking the food off the presentation
device, positioning the gripper (dark grey sketch) to grasp the
food.”



“With this study, we have expanded the
capabilities of prosthetic devices through the
use of observation-based training and closed-
loop cortical control, allowing the use of this
four-dimensional ... arm in everyday tasks.
These concepts can be incorporated into future
designs of prostheses for dexterous
movement.”



Fast forward to 2012...

https://www.youtube.com/watch?v=o0gBX18maUiM



Less invasive alternatives??



Less invasive alternatives??

e.g., EEG (how much precision can one get?)



2012

Electroencephalography (EEG)-Based Brain-
Computer Interface (BCI): A 2-D Virtual
Wheelchair Control Based on Event-Related
Desynchronization/Synchronization and State
Control. Dandan Huang ; Kai Qian ; Ding-Yu Fei
et al. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 2012.



2020

Classification of Upper Limb Movements Using
Convolutional Neural Network

with 3D Inception Block

Do-Yeun Leel, Ji-Hoon Jeong, Kyung-Hwan
Shim1, Dong-Joo Kim. arXiv (also related IEEE
Paper)
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Fig. 2. The transformation of the input data structure for considering three
different types of brain signal’s characteristics.

“We recorded the EEG signals with 64 electrodes covering
frontal, central and parietal areas. “
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“In this paper, we proved that the feasibility of decoding
six different reaching tasks (left, right, forward,
backward, up, and down) in the three-dimensional place
from EEG signals. To do that, we applied the CNN
architecture ... and confirmed the robust multi-
classification accuracies compared to its conventional
models. The grand- averaged performance is 0.45 in an
executed session that shows the higher performance
difference (approximately 30%) than chance level
(16.6%) and other models (8~13%)."



