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Neuronal ensemble control of prosthetic
devices by a human with tetraplegia
Leigh R. Hochberg1,2,4, Mijail D. Serruya2,3, Gerhard M. Friehs5,6, Jon A. Mukand7,8, Maryam Saleh9†,
Abraham H. Caplan9, Almut Branner10, David Chen11, Richard D. Penn12 & John P. Donoghue2,9

Neuromotor prostheses (NMPs) aim to replace or restore lost motor functions in paralysed humans by routeing
movement-related signals from the brain, around damaged parts of the nervous system, to external effectors. To
translate preclinical results from intact animals to a clinically useful NMP, movement signals must persist in cortex after
spinal cord injury and be engaged by movement intent when sensory inputs and limb movement are long absent.
Furthermore, NMPs would require that intention-driven neuronal activity be converted into a control signal that enables
useful tasks. Here we show initial results for a tetraplegic human (MN) using a pilot NMP. Neuronal ensemble activity
recorded through a 96-microelectrode array implanted in primary motor cortex demonstrated that intended hand motion
modulates cortical spiking patterns three years after spinal cord injury. Decoders were created, providing a ‘neural
cursor’ with which MN opened simulated e-mail and operated devices such as a television, even while conversing.
Furthermore, MN used neural control to open and close a prosthetic hand, and perform rudimentary actions with a multi-
jointed robotic arm. These early results suggest that NMPs based upon intracortical neuronal ensemble spiking activity
could provide a valuable new neurotechnology to restore independence for humans with paralysis.

Hundreds of thousands of people suffer from forms of motor
impairment in which intact movement-related areas of the brain
cannot generate movements because of damage to the spinal cord,
nerves, or muscles1. Paralysing disorders profoundly limit indepen-
dence, mobility and communication. Current assistive technologies
rely on devices for which an extant function provides a signal that
substitutes for missing actions. For example, cameras can monitor
eye movements that can be used to point a computer cursor2.
Although these surrogate devices have been available for some
time, they are typically limited in utility, cumbersome to maintain,
and disruptive of natural actions. For instance, gaze towards objects
of interest disrupts eye-based control. By contrast, an NMP is a
type of brain–computer interface (BCI) that can guide movement
by harnessing the existing neural substrate for that action—that is,
neuronal activity patterns in motor areas. An ideal NMP would
provide a safe, unobtrusive and reliable signal from the discon-
nected motor area that could restore lost function. Neurons in the
primary motor cortex (MI) arm area of monkeys, for example,
provide information about intended arm reaching trajectories3–5,
but this command signal would work for an NMP only if neural
signals persist and could be engaged by intention in paralysed
humans.
In concept, NMPs require a sensor to detect the activity of multiple

neurons, a decoder to translate ensemble firing patterns into motor
commands, and, typically, a computer gateway to engage effectors.
BrainGate (Cyberkinetics, Inc.) is an NMP system under development

and in pilot trials in people with tetraparesis from spinal cord injury,
brainstem stroke, muscular dystrophy, or amyotrophic lateral sclero-
sis. Currently, this system consists of a chronically implanted sensor
and external signal processors developed from preclinical animal
studies (see Methods)6–8. The participant described in this report, the
first in the BrainGate trial, is a 25-yr-old male (MN) who sustained a
knife wound in 2001 that transected the spinal cord between cervical
vertebrae C3–C4, resulting in complete tetraplegia (C4 ASIA A)9. The
array was implanted in June 2004 into the MI arm area ‘knob’10, as
identified on pre-operative magnetic resonance imaging (MRI)
(Fig. 1c). Post-operative recovery was uneventful. The data presented
here are derived from 57 consecutive recording sessions from
14 July 2004 to 12 April 2005 (9months).

Signal quality and variety
Action potentials were readily observable on multiple electrodes,
indicating that MI neural spiking persists three years after SCI, as
suggested indirectly by functional MRI data11–14. Recorded signals
ranged from qualitatively well-isolated single neurons to mixtures of
a few different waveforms (Fig. 2a). Different waveform shapes were
identified visually, using standard time-amplitude windows, but
there was no further attempt to distinguish between well isolated
and intermixed waveforms, both of which we refer to in this report as
‘units’. An average of 26.9 ^ 14.2 units were observed each day
(range 3–57), with mean peak-to-peak spike amplitudes of
76.4 ^ 25.0 mV (mean ^ s.d., n ¼ 56 sessions) (see Supplementary
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“Hundreds of thousands of people suffer from forms of motor impairment in 
which intact movement-related areas of the brain cannot generate 
movements because of damage to the spinal cord, nerves, or muscles”

“The participant described in this report, the first in the BrainGate trial, is a 
25-yr-old male (MN) … complete tetraplegia”
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Information)8. Although details of local field potentials (LFPs) will
be described in a subsequent report, we note that LFPs, which could
be recorded simultaneously with spikes, resembled those observed in
intact monkeys (Fig. 2b)15. A notable decrease in the number of
recorded units was seen approximately 6.5months after implan-
tation and thereafter. Upon approval of a clinical protocol change at
10months, which permitted impedance measurements, we observed
a low impedance in 54 of the electrodes, consistent with a physical
short circuit to ground in the array, cable, or connector, but not
consistent with a biological event (for example, gliosis). The precise
reason for this physical change remains under investigation.
Since this report was written, we added a second trial participant

to the study, a 55-yr-old man who has had complete spinal cord
injury at C4 since 1999. Recordings were collected starting in the
seventh month after implant, after making an electrical contacts
repair in the pedestal connector. We recorded an average of
53.2 ^ 6.3 units per session during trial months 7–10, again demon-
strating the presence of neural activity lastingmanymonths. Another
technical issue causing abrupt signal loss at most electrodes, which
may be related to the original repair, occurred at month 11 in
participant 2; the reason for this change is being evaluated.

Figure 1 | Intracortical sensor and placement, participant 1. a, The
BrainGate sensor (arrowhead), resting on a US penny, connected by a 13-cm
ribbon cable to the percutaneous Ti pedestal (arrow), which is secured to the
skull. Neural signals are recorded while the pedestal is connected to the
remainder of the BrainGate system (seen in d). b, Scanning electron
micrograph of the 100-electrode sensor, 96 of which are available for neural
recording. Individual electrodes are 1-mm long and spaced 400mm apart, in
a 10 £ 10 grid. c, Pre-operative axial T1-weighted MRI of the brain of
participant 1. The arm/hand ‘knob’ of the right precentral gyrus (red arrow)
corresponds to the approximate location of the sensor implant site. A scaled
projection of the 4 £ 4-mmarray onto the precentral knob is outlined in red.
d, The first participant in the BrainGate trial (MN). He is sitting in a
wheelchair, mechanically ventilated through a tracheostomy. The grey box
(arrow) connected to the percutaneous pedestal contains amplifier and
signal conditioning hardware; cabling brings the amplified neural signals to
computers sitting beside the participant. He is looking at the monitor,
directing the neural cursor towards the orange square in this 16-target ‘grid’
task. A technician appears (A.H.C.) behind the participant.

Figure 2 | Electrical recordings from a sample of four electrodes.
a, Discriminated neural activity at electrodes 33, 34, 22, 95 (n ¼ 80
superimposed action potentials for each unit). On electrode 33, two
neuronal units could be reliably discriminated with peak to peak amplitudes
of 206 and 56 mv, respectively. For electrode 34, a single unit is displayed.
Electrode 22 illustrates a low-amplitude discriminated signal. Electrode 95
shows triggered noise. Data are from trial day 90 (90 days after array
placement). b, Local field potentials during neural cursor control. In the
bottom panel, three traces of electrical recording (bandpass: 10–100Hz)
from one electrode are shown 0.5 s before and 1.9 s after the go cue
instructingMN tomove the cursor from the centre position to a target at the
top of the screen. In the top panel, a Thomson multi-taper time frequency
analysis on each trial data segment was performed. This was done by sliding
a 0.3-s window every 0.05 s, using a spectral resolution of 10Hz. These
power spectrograms were averaged across 20 trials to create the resulting
pseudocolour power spectral density (PSD) plot. The diagram is aligned
such that each point in the PSD plot corresponds to a time window 150ms
before and after an LFP. In the 20–30-Hz band, a decrease in power is seen
approximately 300ms after the go cue, followed by an increase in power
from 550–1,200ms after the go cue, which can also be appreciated in the raw,
single trial data below.
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square in this 16-target ‘grid’ task. A technician 
appears (A.H.C.) behind the participant. 



© 2006 Nature Publishing Group 

 

Information)8. Although details of local field potentials (LFPs) will
be described in a subsequent report, we note that LFPs, which could
be recorded simultaneously with spikes, resembled those observed in
intact monkeys (Fig. 2b)15. A notable decrease in the number of
recorded units was seen approximately 6.5months after implan-
tation and thereafter. Upon approval of a clinical protocol change at
10months, which permitted impedance measurements, we observed
a low impedance in 54 of the electrodes, consistent with a physical
short circuit to ground in the array, cable, or connector, but not
consistent with a biological event (for example, gliosis). The precise
reason for this physical change remains under investigation.
Since this report was written, we added a second trial participant

to the study, a 55-yr-old man who has had complete spinal cord
injury at C4 since 1999. Recordings were collected starting in the
seventh month after implant, after making an electrical contacts
repair in the pedestal connector. We recorded an average of
53.2 ^ 6.3 units per session during trial months 7–10, again demon-
strating the presence of neural activity lastingmanymonths. Another
technical issue causing abrupt signal loss at most electrodes, which
may be related to the original repair, occurred at month 11 in
participant 2; the reason for this change is being evaluated.

Figure 1 | Intracortical sensor and placement, participant 1. a, The
BrainGate sensor (arrowhead), resting on a US penny, connected by a 13-cm
ribbon cable to the percutaneous Ti pedestal (arrow), which is secured to the
skull. Neural signals are recorded while the pedestal is connected to the
remainder of the BrainGate system (seen in d). b, Scanning electron
micrograph of the 100-electrode sensor, 96 of which are available for neural
recording. Individual electrodes are 1-mm long and spaced 400mm apart, in
a 10 £ 10 grid. c, Pre-operative axial T1-weighted MRI of the brain of
participant 1. The arm/hand ‘knob’ of the right precentral gyrus (red arrow)
corresponds to the approximate location of the sensor implant site. A scaled
projection of the 4 £ 4-mmarray onto the precentral knob is outlined in red.
d, The first participant in the BrainGate trial (MN). He is sitting in a
wheelchair, mechanically ventilated through a tracheostomy. The grey box
(arrow) connected to the percutaneous pedestal contains amplifier and
signal conditioning hardware; cabling brings the amplified neural signals to
computers sitting beside the participant. He is looking at the monitor,
directing the neural cursor towards the orange square in this 16-target ‘grid’
task. A technician appears (A.H.C.) behind the participant.

Figure 2 | Electrical recordings from a sample of four electrodes.
a, Discriminated neural activity at electrodes 33, 34, 22, 95 (n ¼ 80
superimposed action potentials for each unit). On electrode 33, two
neuronal units could be reliably discriminated with peak to peak amplitudes
of 206 and 56 mv, respectively. For electrode 34, a single unit is displayed.
Electrode 22 illustrates a low-amplitude discriminated signal. Electrode 95
shows triggered noise. Data are from trial day 90 (90 days after array
placement). b, Local field potentials during neural cursor control. In the
bottom panel, three traces of electrical recording (bandpass: 10–100Hz)
from one electrode are shown 0.5 s before and 1.9 s after the go cue
instructingMN tomove the cursor from the centre position to a target at the
top of the screen. In the top panel, a Thomson multi-taper time frequency
analysis on each trial data segment was performed. This was done by sliding
a 0.3-s window every 0.05 s, using a spectral resolution of 10Hz. These
power spectrograms were averaged across 20 trials to create the resulting
pseudocolour power spectral density (PSD) plot. The diagram is aligned
such that each point in the PSD plot corresponds to a time window 150ms
before and after an LFP. In the 20–30-Hz band, a decrease in power is seen
approximately 300ms after the go cue, followed by an increase in power
from 550–1,200ms after the go cue, which can also be appreciated in the raw,
single trial data below.

NATURE|Vol 442|13 July 2006 ARTICLES

165

100 electrode sensorsensor

The BrainGate sensor (arrowhead), 
resting on a US penny, connected by a 
13-cm ribbon cable to the percutaneous 
Ti pedestal (arrow) 

100-electrode sensor, 96 of which 
are available for neural recording. 
Individual electrodes are 1-mm long 
and spaced 400 mm apart, in a 10 by 10 grid. 
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“Action potentials were readily observable on 
multiple electrodes, indicating that Primary 
Motor Cortex neural spiking persists 3 years 
after Spinal Cord Injury…”



Neural activity 
in electrodes

Local Field Potentials:
Frequency versus time

Three trials from one electrode
(bandpass 10-100 Hz)

Neural signal persists 3 year after injury!



“Imagined limb motions modulated neural 
firing rate on multiple electrodes… revealed
a rich variety of firing modulations largely
consistent with patterns observed in
monkey Primary Motor Cortex…”

“Importantly, this activity was evoked by 
imagined actions in this participant with 
cervical spinal cord injury.”

Imagining motion



“… certain neurons are selective for one 
imagined action (hands together/apart), 
whereas others recorded simultaneously are 
engaged by different imagined actions 
(elbow or wrist).”

Imagining motion
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Modulation by intent
Imagined limbmotions modulated neural firing on multiple electro-
des, upon request, beginning at the first experimental session.
Modulation was evaluated during four consecutive sessions when
MN was asked to imagine a series of movements. This series revealed
a rich variety of firing modulations largely consistent with patterns
observed in monkey MI16. Importantly, this activity was evoked by
imagined actions in this participant with cervical spinal cord injury.
Figure 3a illustrates how certain neurons are selective for one
imagined action (hands together/apart), whereas others recorded
simultaneously are engaged by different imagined actions (elbow or
wrist). This diversity includes neurons that fired with imagined hand
or distal arm actions (for example, hand open/close, Fig. 3c) and
those that fired during shoulder movements that were actually
performed (see also Supplementary Fig. 1). Non-selective neurons,
active with the onset of any imagined upper extremity action
(Fig. 3b), were also observed. As shown in Fig. 3c and Supplementary

Fig. 1, neurons fired in a relatively time-locked manner upon the
request to imagine action. These results demonstrate a rich hetero-
geneity of firing patterns within a limited sample from a small
MI region. This diversity is useful in creating a flexible control
signal.

Linear filter construction
Use of MI neuronal ensemble activity as a control signal by persons
with paralysis requires a novel approach to establishing a transform
(filter function) between firing patterns and intended action. For
each session, units were used to create a filter (see Methods) to
provide a two-dimensional output signal displayed as cursor
position on a monitor. A simple linear filter algorithm, identical
to that used in intact monkeys, was used to create filters17. Unlike
most studies performed using intact monkeys, where hand
motions are known and kinematics are measured directly, we
predicted MN’s intended hand movements on the basis of

Figure 3 | Neuronal selectivity for imagined and performed movements.
a, Over an 80-s period, MN was asked to imagine performing a series of left
limb movements (which are described on the abscissa). Movement
instruction time is indicated by a vertical arrow; the go cue for each
alternating movement, presented as text on the video monitor, is indicated
by a small vertical hash mark. Spiking activity of two simultaneously
recorded units is displayed. Rasters indicate the time of each spike (thinned
for visual clarity; every third spike is shown). Normalized, integrated
firing rates (R) appear beneath each raster, as derived by the equation
R¼ ½ðR21 þ nÞð12 e2b=tÞ&; where R21 is the previous bin’s integrated firing
rate value, n ¼ the number of spikes in the current bin, b ¼ bin width, and
t ¼ time constant; bin width ¼ 50-ms window, time constant ¼ 10ms
(adapted from ref. 28); normalization is achieved by dividing by the
maximum integrated firing rate from each unit’s spike train over the time
period displayed. The top unit (channel 38) increases its firing rate (curved
arrow) with the instruction tomove both hands apart/together. The bottom,
simultaneously recorded unit (channel 16) is activated most clearly after the

instruction to flex/extend the wrist and to flex/extend the elbow or move the
shoulder anteriorly and posteriorly. All movements are imagined except for
shoulder movement, which MN actually performed. b, Go-cue-related
activity modulation for a neuron recorded simultaneously with those in a.
Each raster line is centred about the go cue, which requests that the patient
imagine a movement; the seven raster lines represent the epochs
surrounding each of the seven different movements in sequence a. The
histogram displays the total number of spikes seen in each 500-ms bin. This
neuron increased its firing rate during most imagined movement epochs,
but demonstrated poor instruction selectivity compared to the neurons
presented in a. Data are from day 161. c, Hand-instruction-related
modulation for three simultaneously recorded neurons. MN was cued to
open and close his hand by text instruction, presented on the screen. Go cues
are indicated. Each vertical tick represents one action potential (spike). An
increase in these neurons’ firing rates is directly indicative of the intention to
close the hand. Data are from day 90.

ARTICLES NATURE|Vol 442|13 July 2006

166

Neuronal selectivity for imagined movements (all imagined
except shoulder).

“Over an 80-s period, MN was asked to imagine performing a 
series of left limb movements (which are described on the 
abscissa). Movement instruction time is indicated by a vertical 
arrow…” 
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for visual clarity; every third spike is shown). Normalized, integrated
firing rates (R) appear beneath each raster, as derived by the equation
R¼ ½ðR21 þ nÞð12 e2b=tÞ&; where R21 is the previous bin’s integrated firing
rate value, n ¼ the number of spikes in the current bin, b ¼ bin width, and
t ¼ time constant; bin width ¼ 50-ms window, time constant ¼ 10ms
(adapted from ref. 28); normalization is achieved by dividing by the
maximum integrated firing rate from each unit’s spike train over the time
period displayed. The top unit (channel 38) increases its firing rate (curved
arrow) with the instruction tomove both hands apart/together. The bottom,
simultaneously recorded unit (channel 16) is activated most clearly after the

instruction to flex/extend the wrist and to flex/extend the elbow or move the
shoulder anteriorly and posteriorly. All movements are imagined except for
shoulder movement, which MN actually performed. b, Go-cue-related
activity modulation for a neuron recorded simultaneously with those in a.
Each raster line is centred about the go cue, which requests that the patient
imagine a movement; the seven raster lines represent the epochs
surrounding each of the seven different movements in sequence a. The
histogram displays the total number of spikes seen in each 500-ms bin. This
neuron increased its firing rate during most imagined movement epochs,
but demonstrated poor instruction selectivity compared to the neurons
presented in a. Data are from day 161. c, Hand-instruction-related
modulation for three simultaneously recorded neurons. MN was cued to
open and close his hand by text instruction, presented on the screen. Go cues
are indicated. Each vertical tick represents one action potential (spike). An
increase in these neurons’ firing rates is directly indicative of the intention to
close the hand. Data are from day 90.
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Neuron that increases its firing rate when asked to close the hand
(and not for open)



“These results demonstrate a rich 
heterogeneity of firing patterns within 
a limited sample from a small MI 
region. This diversity is useful in 
creating a flexible control signal.”



Center-out task

“For each of six sessions, MN performed this 
task by imagining hand motion … as soon as 
the target cue appeared.”
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instructed actions (instruction-based algorithms have also been
reported in one study of intact monkeys18). Thus, for filter
building, MN was asked to imagine manually tracking a ‘tech-
nician’s cursor’ that was actually being moved by a technician-
operated mouse through a succession of randomly placed visual
targets (see Methods). The filter function was used to decode activity
and drive a ‘neural cursor’.

MI activity during neural cursor control
Features of neurons during neural cursor control resembled those
expected from MI. Neurons in MI of intact monkeys characteristi-
cally begin to modulate their firing before movement onset and
activity is tuned to hand movement direction19–21. To compare this
neural activity with MI of a human with spinal cord injury, MN
performed a step-tracking, ‘centre-out’ task using the neural cursor.
The task requires that the neural cursor bemoved from a centre target
to one of four radially displaced targets (screen location: up, down,
left, right; see Supplementary Video 1). For each of six sessions, MN
performed this task by imagining hand motion (see Methods) as
soon as the target cue appeared. The task was performed immediately
after filter building without intervening practice. Timing and direc-
tional tuning features of MI neurons during imagined actions were
consistent with those observed in MI of intact non-human primates.
Figure 4 shows that spike-rate modulation occurs soon after the ‘go’
cue and that modulation varied by target location, as would
be predicted for MI if actual arm motions were performed17.
Furthermore, 66 out of 73 discriminated units (90.4%) significantly
changed their firing rate in relation to the appearance of the go cue
(Kolmogorov–Smirnov test, a ¼ 0.05, rate calculated over a sliding
1-s window, overlapping every 0.05 s; 60-s data set for each con-
dition, n ¼ 3 sessions). These results indicate that, even years after
spinal cord injury and in the absence of kinaesthetic feedback and
limbmovement, MI neurons can still be actively engaged and encode

task-related information during the intention to move the limb
ordinarily controlled by that MI region.

Quality of neural cursor control
Neural cursor position was significantly correlated with technician
cursor position during the last block of the pursuit filter building task
(x coordinate r2 ¼ 0.56 ^ 0.18 and y coordinate r2 ¼ 0.45 ^ 0.15,
n ¼ 6 sessions, Fig. 5). These correlations are similar or better than
those seen in intact monkeys when linear filters were used to predict
real-time hand position from MI neuronal ensembles5,22. The neural
cursor could be directed towards targets with a form qualitatively
similar to that seen for intact monkeys using closed-loop neural
control17,18,23. As in intact monkeys, neural cursor motion had
underlying instabilities and variable oscillatory components com-
pared to hand motions of able-bodied individuals. Continuous
neural cursor motion with the linear filter made cursor fixation at
a single location difficult to achieve.
Data from the centre-out task were used to evaluate the speed and

accuracy of cursor control, which are essential design parameters for
any future practical NMP. As shown in Fig. 6, the participant
correctly acquired 73–95% of targets (control 6.5%; n ¼ 80, paired
t-test, P , 0.0001, see Methods) when measured in a series of six
sessions (see also Supplementary Fig. 2). Performance errors
reflected both instabilities in cursor direction control and the ability
to hold at the target location. Mean time to target was 2.51 ^ 0.16 s
(^s.e.m.) for successfully acquired targets. Although the best 13% of
MN’s trials were within the range consistently achieved by able-
bodied controls using a computer mouse (n ¼ 3, mean 1.06 ^ 0.08 s
(^s.e.m.)), the distribution of times for MN using neural control is
skewed to longer acquisition times (Fig. 6b). Effective use of the
neural cursor inmore complex spatial control tasks was evident when
MN directed the cursor to randomly placed targets while attempting
to avoid obstacles in the cursor’s path (see Supplementary Video 5).

Figure 4 | Directional tuning during centre-out task. Peristimulus time
histograms show spike rates for five neurons recorded simultaneously
during the performance of a four-direction centre-out task (day 90) in which
MNused the neural cursor to acquire a target presented at the right, top, left,
or bottom of the screen. Twenty trials are displayed for each target location.
Increases in activity after the go cue demonstrate movement-intention-

related modulation. Each column shows the firing of one unit in the four
directions, aligned on the cue to move. Note, for example, the time-locked
increase in firing of unit 6 whenMNwas cued to move the cursor downward
(lower right corner) and the lack of change in firing rate for upward
instruction. Changes in firing across the five neurons reveal directional
tuning.
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instructed actions (instruction-based algorithms have also been
reported in one study of intact monkeys18). Thus, for filter
building, MN was asked to imagine manually tracking a ‘tech-
nician’s cursor’ that was actually being moved by a technician-
operated mouse through a succession of randomly placed visual
targets (see Methods). The filter function was used to decode activity
and drive a ‘neural cursor’.

MI activity during neural cursor control
Features of neurons during neural cursor control resembled those
expected from MI. Neurons in MI of intact monkeys characteristi-
cally begin to modulate their firing before movement onset and
activity is tuned to hand movement direction19–21. To compare this
neural activity with MI of a human with spinal cord injury, MN
performed a step-tracking, ‘centre-out’ task using the neural cursor.
The task requires that the neural cursor bemoved from a centre target
to one of four radially displaced targets (screen location: up, down,
left, right; see Supplementary Video 1). For each of six sessions, MN
performed this task by imagining hand motion (see Methods) as
soon as the target cue appeared. The task was performed immediately
after filter building without intervening practice. Timing and direc-
tional tuning features of MI neurons during imagined actions were
consistent with those observed in MI of intact non-human primates.
Figure 4 shows that spike-rate modulation occurs soon after the ‘go’
cue and that modulation varied by target location, as would
be predicted for MI if actual arm motions were performed17.
Furthermore, 66 out of 73 discriminated units (90.4%) significantly
changed their firing rate in relation to the appearance of the go cue
(Kolmogorov–Smirnov test, a ¼ 0.05, rate calculated over a sliding
1-s window, overlapping every 0.05 s; 60-s data set for each con-
dition, n ¼ 3 sessions). These results indicate that, even years after
spinal cord injury and in the absence of kinaesthetic feedback and
limbmovement, MI neurons can still be actively engaged and encode

task-related information during the intention to move the limb
ordinarily controlled by that MI region.

Quality of neural cursor control
Neural cursor position was significantly correlated with technician
cursor position during the last block of the pursuit filter building task
(x coordinate r2 ¼ 0.56 ^ 0.18 and y coordinate r2 ¼ 0.45 ^ 0.15,
n ¼ 6 sessions, Fig. 5). These correlations are similar or better than
those seen in intact monkeys when linear filters were used to predict
real-time hand position from MI neuronal ensembles5,22. The neural
cursor could be directed towards targets with a form qualitatively
similar to that seen for intact monkeys using closed-loop neural
control17,18,23. As in intact monkeys, neural cursor motion had
underlying instabilities and variable oscillatory components com-
pared to hand motions of able-bodied individuals. Continuous
neural cursor motion with the linear filter made cursor fixation at
a single location difficult to achieve.
Data from the centre-out task were used to evaluate the speed and

accuracy of cursor control, which are essential design parameters for
any future practical NMP. As shown in Fig. 6, the participant
correctly acquired 73–95% of targets (control 6.5%; n ¼ 80, paired
t-test, P , 0.0001, see Methods) when measured in a series of six
sessions (see also Supplementary Fig. 2). Performance errors
reflected both instabilities in cursor direction control and the ability
to hold at the target location. Mean time to target was 2.51 ^ 0.16 s
(^s.e.m.) for successfully acquired targets. Although the best 13% of
MN’s trials were within the range consistently achieved by able-
bodied controls using a computer mouse (n ¼ 3, mean 1.06 ^ 0.08 s
(^s.e.m.)), the distribution of times for MN using neural control is
skewed to longer acquisition times (Fig. 6b). Effective use of the
neural cursor inmore complex spatial control tasks was evident when
MN directed the cursor to randomly placed targets while attempting
to avoid obstacles in the cursor’s path (see Supplementary Video 5).

Figure 4 | Directional tuning during centre-out task. Peristimulus time
histograms show spike rates for five neurons recorded simultaneously
during the performance of a four-direction centre-out task (day 90) in which
MNused the neural cursor to acquire a target presented at the right, top, left,
or bottom of the screen. Twenty trials are displayed for each target location.
Increases in activity after the go cue demonstrate movement-intention-

related modulation. Each column shows the firing of one unit in the four
directions, aligned on the cue to move. Note, for example, the time-locked
increase in firing of unit 6 whenMNwas cued to move the cursor downward
(lower right corner) and the lack of change in firing rate for upward
instruction. Changes in firing across the five neurons reveal directional
tuning.
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instructed actions (instruction-based algorithms have also been
reported in one study of intact monkeys18). Thus, for filter
building, MN was asked to imagine manually tracking a ‘tech-
nician’s cursor’ that was actually being moved by a technician-
operated mouse through a succession of randomly placed visual
targets (see Methods). The filter function was used to decode activity
and drive a ‘neural cursor’.

MI activity during neural cursor control
Features of neurons during neural cursor control resembled those
expected from MI. Neurons in MI of intact monkeys characteristi-
cally begin to modulate their firing before movement onset and
activity is tuned to hand movement direction19–21. To compare this
neural activity with MI of a human with spinal cord injury, MN
performed a step-tracking, ‘centre-out’ task using the neural cursor.
The task requires that the neural cursor bemoved from a centre target
to one of four radially displaced targets (screen location: up, down,
left, right; see Supplementary Video 1). For each of six sessions, MN
performed this task by imagining hand motion (see Methods) as
soon as the target cue appeared. The task was performed immediately
after filter building without intervening practice. Timing and direc-
tional tuning features of MI neurons during imagined actions were
consistent with those observed in MI of intact non-human primates.
Figure 4 shows that spike-rate modulation occurs soon after the ‘go’
cue and that modulation varied by target location, as would
be predicted for MI if actual arm motions were performed17.
Furthermore, 66 out of 73 discriminated units (90.4%) significantly
changed their firing rate in relation to the appearance of the go cue
(Kolmogorov–Smirnov test, a ¼ 0.05, rate calculated over a sliding
1-s window, overlapping every 0.05 s; 60-s data set for each con-
dition, n ¼ 3 sessions). These results indicate that, even years after
spinal cord injury and in the absence of kinaesthetic feedback and
limbmovement, MI neurons can still be actively engaged and encode

task-related information during the intention to move the limb
ordinarily controlled by that MI region.

Quality of neural cursor control
Neural cursor position was significantly correlated with technician
cursor position during the last block of the pursuit filter building task
(x coordinate r2 ¼ 0.56 ^ 0.18 and y coordinate r2 ¼ 0.45 ^ 0.15,
n ¼ 6 sessions, Fig. 5). These correlations are similar or better than
those seen in intact monkeys when linear filters were used to predict
real-time hand position from MI neuronal ensembles5,22. The neural
cursor could be directed towards targets with a form qualitatively
similar to that seen for intact monkeys using closed-loop neural
control17,18,23. As in intact monkeys, neural cursor motion had
underlying instabilities and variable oscillatory components com-
pared to hand motions of able-bodied individuals. Continuous
neural cursor motion with the linear filter made cursor fixation at
a single location difficult to achieve.
Data from the centre-out task were used to evaluate the speed and

accuracy of cursor control, which are essential design parameters for
any future practical NMP. As shown in Fig. 6, the participant
correctly acquired 73–95% of targets (control 6.5%; n ¼ 80, paired
t-test, P , 0.0001, see Methods) when measured in a series of six
sessions (see also Supplementary Fig. 2). Performance errors
reflected both instabilities in cursor direction control and the ability
to hold at the target location. Mean time to target was 2.51 ^ 0.16 s
(^s.e.m.) for successfully acquired targets. Although the best 13% of
MN’s trials were within the range consistently achieved by able-
bodied controls using a computer mouse (n ¼ 3, mean 1.06 ^ 0.08 s
(^s.e.m.)), the distribution of times for MN using neural control is
skewed to longer acquisition times (Fig. 6b). Effective use of the
neural cursor inmore complex spatial control tasks was evident when
MN directed the cursor to randomly placed targets while attempting
to avoid obstacles in the cursor’s path (see Supplementary Video 5).

Figure 4 | Directional tuning during centre-out task. Peristimulus time
histograms show spike rates for five neurons recorded simultaneously
during the performance of a four-direction centre-out task (day 90) in which
MNused the neural cursor to acquire a target presented at the right, top, left,
or bottom of the screen. Twenty trials are displayed for each target location.
Increases in activity after the go cue demonstrate movement-intention-

related modulation. Each column shows the firing of one unit in the four
directions, aligned on the cue to move. Note, for example, the time-locked
increase in firing of unit 6 whenMNwas cued to move the cursor downward
(lower right corner) and the lack of change in firing rate for upward
instruction. Changes in firing across the five neurons reveal directional
tuning.

NATURE|Vol 442|13 July 2006 ARTICLES

167

Task: Move cursor 
to target location

20 trials

Channel 6: Increased neural
activity for downward movement



© 2006 Nature Publishing Group 

 

instructed actions (instruction-based algorithms have also been
reported in one study of intact monkeys18). Thus, for filter
building, MN was asked to imagine manually tracking a ‘tech-
nician’s cursor’ that was actually being moved by a technician-
operated mouse through a succession of randomly placed visual
targets (see Methods). The filter function was used to decode activity
and drive a ‘neural cursor’.

MI activity during neural cursor control
Features of neurons during neural cursor control resembled those
expected from MI. Neurons in MI of intact monkeys characteristi-
cally begin to modulate their firing before movement onset and
activity is tuned to hand movement direction19–21. To compare this
neural activity with MI of a human with spinal cord injury, MN
performed a step-tracking, ‘centre-out’ task using the neural cursor.
The task requires that the neural cursor bemoved from a centre target
to one of four radially displaced targets (screen location: up, down,
left, right; see Supplementary Video 1). For each of six sessions, MN
performed this task by imagining hand motion (see Methods) as
soon as the target cue appeared. The task was performed immediately
after filter building without intervening practice. Timing and direc-
tional tuning features of MI neurons during imagined actions were
consistent with those observed in MI of intact non-human primates.
Figure 4 shows that spike-rate modulation occurs soon after the ‘go’
cue and that modulation varied by target location, as would
be predicted for MI if actual arm motions were performed17.
Furthermore, 66 out of 73 discriminated units (90.4%) significantly
changed their firing rate in relation to the appearance of the go cue
(Kolmogorov–Smirnov test, a ¼ 0.05, rate calculated over a sliding
1-s window, overlapping every 0.05 s; 60-s data set for each con-
dition, n ¼ 3 sessions). These results indicate that, even years after
spinal cord injury and in the absence of kinaesthetic feedback and
limbmovement, MI neurons can still be actively engaged and encode

task-related information during the intention to move the limb
ordinarily controlled by that MI region.

Quality of neural cursor control
Neural cursor position was significantly correlated with technician
cursor position during the last block of the pursuit filter building task
(x coordinate r2 ¼ 0.56 ^ 0.18 and y coordinate r2 ¼ 0.45 ^ 0.15,
n ¼ 6 sessions, Fig. 5). These correlations are similar or better than
those seen in intact monkeys when linear filters were used to predict
real-time hand position from MI neuronal ensembles5,22. The neural
cursor could be directed towards targets with a form qualitatively
similar to that seen for intact monkeys using closed-loop neural
control17,18,23. As in intact monkeys, neural cursor motion had
underlying instabilities and variable oscillatory components com-
pared to hand motions of able-bodied individuals. Continuous
neural cursor motion with the linear filter made cursor fixation at
a single location difficult to achieve.
Data from the centre-out task were used to evaluate the speed and

accuracy of cursor control, which are essential design parameters for
any future practical NMP. As shown in Fig. 6, the participant
correctly acquired 73–95% of targets (control 6.5%; n ¼ 80, paired
t-test, P , 0.0001, see Methods) when measured in a series of six
sessions (see also Supplementary Fig. 2). Performance errors
reflected both instabilities in cursor direction control and the ability
to hold at the target location. Mean time to target was 2.51 ^ 0.16 s
(^s.e.m.) for successfully acquired targets. Although the best 13% of
MN’s trials were within the range consistently achieved by able-
bodied controls using a computer mouse (n ¼ 3, mean 1.06 ^ 0.08 s
(^s.e.m.)), the distribution of times for MN using neural control is
skewed to longer acquisition times (Fig. 6b). Effective use of the
neural cursor inmore complex spatial control tasks was evident when
MN directed the cursor to randomly placed targets while attempting
to avoid obstacles in the cursor’s path (see Supplementary Video 5).

Figure 4 | Directional tuning during centre-out task. Peristimulus time
histograms show spike rates for five neurons recorded simultaneously
during the performance of a four-direction centre-out task (day 90) in which
MNused the neural cursor to acquire a target presented at the right, top, left,
or bottom of the screen. Twenty trials are displayed for each target location.
Increases in activity after the go cue demonstrate movement-intention-

related modulation. Each column shows the firing of one unit in the four
directions, aligned on the cue to move. Note, for example, the time-locked
increase in firing of unit 6 whenMNwas cued to move the cursor downward
(lower right corner) and the lack of change in firing rate for upward
instruction. Changes in firing across the five neurons reveal directional
tuning.
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“Spike rate modulation occurs soon after the ‘go’ cue … modulation
varied by target location as would be predicted for Primary Motor Cortex
if actual arm motions were performed … even years after spinal cord
injury … can still be actively engaged and encode task-related information
during the intention to move the limb …”
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Imagined/intended motor movements??
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Establish transform between firing patterns and intended actions:

Imagine tracking cursor while tracking technician cursor. 

Input: firing rate in neural units over time

Output: x, y coordinates of movement

We would like a transform from input to output… what to do?
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Linear filter reconstruction: Imagine tracking cursor while tracking
technician cursor. 

Establish transform between firing patterns and intended actions:

R = neural response matrix (number neurons by time bins)
k = x,y coordinates of movement
f = filter (weights the neural response)

𝑹𝒇 = 𝒌

Need to estimate f, and then estimate Rf which reconstructs k



Linear filter reconstruction: Imagine tracking cursor while tracking
technician cursor. 

Establish transform between firing patterns and intended actions:

R = neural response matrix (number neurons by time bins)
k = x,y coordinates of movement
f = filter

𝑹𝒇 = 𝒌

Need to estimate f, and then estimate Rf which reconstructs k

How??



R = neural response matrix (number neurons by time bins)
K = x,y coordinates
f = filter

𝑹𝒇 = 𝒌

Least squares:
𝑹𝑻𝑹𝒇 = 𝑹𝑻k

(𝑹𝑻𝑹)"𝟏(𝑹𝑻𝑹)𝒇 = (𝑹𝑻𝑹)"𝟏𝑹𝑻k

𝒇 = (𝑹𝑻𝑹)"𝟏𝑹𝑻k

𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 𝒌 (𝒄𝒐𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔 𝒐𝒇𝒎𝒐𝒗𝒆𝒎𝒆𝒏𝒕) = 𝑹𝒇 = 𝑹(𝑹𝑻𝑹)"𝟏𝑹𝑻k
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Further information concerning spatial and temporal accuracy was
obtained from a ‘grid task’ (see Supplementary Information). As
shown in Supplementary Video 8, participant 2 also performed the
centre-out task, highlighting the ability for this second participant
with spinal cord injury to modulate his motor cortical activity
voluntarily for external device control. This participant’s neural
control, however, was generally less accurate and consistent than
MN’s; we are investigating the extent to which technical or other
factors may underlie this performance. This and other participants’
data will be reported in subsequent manuscripts.
Although he is tetraplegic, MN retains shoulder, neck and head

mobility, and some recordedMI cells fired during shoulder movement

(see Supplementary Fig. 1). NMPs will nearly always operate in the
context of some existing movement capabilities (given the consider-
able variability of remaining sensory and motor functions in people
with CNS injury); thus, during filter building and use MN was not
asked to remain completely still, and he sometimes moved his head
or neck. It is thus possible that retainedmovements influenced cursor
action, much as such movements are known to influence activity
correlated with ordinary hand actions24. These still-intact move-
ments, however, did not appear to be essential for MN’s cursor
control, as can be appreciated particularly when he played ‘Neural
Pong’ (Supplementary Video 4). In this video, movement of the head
or the shoulders sometimes accompanied cursor control, but at other
times MN moved the cursor purposefully while his head remained
stationary, and during other epochs his head moved but the cursor
motion appeared to be unrelated to head movement. We compared
neural cursor position in Supplementary Video 4 to head position
(both assessed by coordinates on a video playback monitor) and
found no consistent relationship (r2 ¼ 0.063). This finding is incon-
sistent with a unique causal relation between head and cursor
control. In addition, it was our repeated observation that, at least
some of the time, MN performed neural control (and open-loop)
tasks without moving his shoulder. Thus, based upon our instruc-
tions and MN’s self-reporting that he was actively imagining arm
action, we conclude that cursor motion is under the guidance of
imagined/intended actions.

Direct control of prosthetic devices
Continuous computer cursor control could be used to provide many
valuable new outputs for a person with paralysis to carry out

Figure 5 | Reconstruction of neural cursor position during pursuit
tracking. a, Technician (red line) and neural cursor (blue line) paths during
a 5-s epoch during which MN was asked to track the technician cursor with
his neural cursor in real time. MN was able to track the general direction of
the technician cursor with the neural cursor, changing directions quickly,
while having some difficulty in overlaying the cursors precisely. Trial day 90.
b, x, y position control over time during one tracking trial (last 1-min epoch
of filter building). The top panel displays the x coordinate position of the
technician cursor (red) and the neural cursor (blue); y positions for the same
movement are shown in the bottompanel. c, Neural cursor position during a
target acquisition/obstacle avoidance task. The four panels represent the
four epochs shown in Supplementary Video 5. Green circles indicate targets;
red squares indicate obstacles. The thick blue line indicates the path taken by
the neural cursor and illustrates the ability to avoid most obstacles and
acquire most targets within a randomly arranged field. Data are from trial
day 90.

Figure 6 | Centre-out task performance. a, Target acquisition accuracy
during the centre-out task. For each of six sessions, MN acquired between
73–95% of the radially placed targets. Control targets were not present on
the monitor during task performance, but were marked as acquired if,
during post-hoc analysis of the cursor movement, the cursor had traversed
the location of one of the other three pseudo-randomly selected targets
before the correct target (see Supplementary Video 1). Data from days 72,
77, 83, 84, 86, 90 are shown. b, Time-to-target performance during centre-
out task for MN (blue) and three able-bodied controls (red). Only successful
target acquisitions in ,7 s are shown for MN. Arrows on the abscissa
represent median times to target for each distribution. Controls’
performances (n ¼ 3 controls, 80 trials each) are collapsed into 0.2-s bins.
MN’s performance (398 trials) is collapsed into 0.5-s bins for visual clarity.
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Further information concerning spatial and temporal accuracy was
obtained from a ‘grid task’ (see Supplementary Information). As
shown in Supplementary Video 8, participant 2 also performed the
centre-out task, highlighting the ability for this second participant
with spinal cord injury to modulate his motor cortical activity
voluntarily for external device control. This participant’s neural
control, however, was generally less accurate and consistent than
MN’s; we are investigating the extent to which technical or other
factors may underlie this performance. This and other participants’
data will be reported in subsequent manuscripts.
Although he is tetraplegic, MN retains shoulder, neck and head

mobility, and some recordedMI cells fired during shoulder movement

(see Supplementary Fig. 1). NMPs will nearly always operate in the
context of some existing movement capabilities (given the consider-
able variability of remaining sensory and motor functions in people
with CNS injury); thus, during filter building and use MN was not
asked to remain completely still, and he sometimes moved his head
or neck. It is thus possible that retainedmovements influenced cursor
action, much as such movements are known to influence activity
correlated with ordinary hand actions24. These still-intact move-
ments, however, did not appear to be essential for MN’s cursor
control, as can be appreciated particularly when he played ‘Neural
Pong’ (Supplementary Video 4). In this video, movement of the head
or the shoulders sometimes accompanied cursor control, but at other
times MN moved the cursor purposefully while his head remained
stationary, and during other epochs his head moved but the cursor
motion appeared to be unrelated to head movement. We compared
neural cursor position in Supplementary Video 4 to head position
(both assessed by coordinates on a video playback monitor) and
found no consistent relationship (r2 ¼ 0.063). This finding is incon-
sistent with a unique causal relation between head and cursor
control. In addition, it was our repeated observation that, at least
some of the time, MN performed neural control (and open-loop)
tasks without moving his shoulder. Thus, based upon our instruc-
tions and MN’s self-reporting that he was actively imagining arm
action, we conclude that cursor motion is under the guidance of
imagined/intended actions.

Direct control of prosthetic devices
Continuous computer cursor control could be used to provide many
valuable new outputs for a person with paralysis to carry out

Figure 5 | Reconstruction of neural cursor position during pursuit
tracking. a, Technician (red line) and neural cursor (blue line) paths during
a 5-s epoch during which MN was asked to track the technician cursor with
his neural cursor in real time. MN was able to track the general direction of
the technician cursor with the neural cursor, changing directions quickly,
while having some difficulty in overlaying the cursors precisely. Trial day 90.
b, x, y position control over time during one tracking trial (last 1-min epoch
of filter building). The top panel displays the x coordinate position of the
technician cursor (red) and the neural cursor (blue); y positions for the same
movement are shown in the bottompanel. c, Neural cursor position during a
target acquisition/obstacle avoidance task. The four panels represent the
four epochs shown in Supplementary Video 5. Green circles indicate targets;
red squares indicate obstacles. The thick blue line indicates the path taken by
the neural cursor and illustrates the ability to avoid most obstacles and
acquire most targets within a randomly arranged field. Data are from trial
day 90.

Figure 6 | Centre-out task performance. a, Target acquisition accuracy
during the centre-out task. For each of six sessions, MN acquired between
73–95% of the radially placed targets. Control targets were not present on
the monitor during task performance, but were marked as acquired if,
during post-hoc analysis of the cursor movement, the cursor had traversed
the location of one of the other three pseudo-randomly selected targets
before the correct target (see Supplementary Video 1). Data from days 72,
77, 83, 84, 86, 90 are shown. b, Time-to-target performance during centre-
out task for MN (blue) and three able-bodied controls (red). Only successful
target acquisitions in ,7 s are shown for MN. Arrows on the abscissa
represent median times to target for each distribution. Controls’
performances (n ¼ 3 controls, 80 trials each) are collapsed into 0.2-s bins.
MN’s performance (398 trials) is collapsed into 0.5-s bins for visual clarity.
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Further information concerning spatial and temporal accuracy was
obtained from a ‘grid task’ (see Supplementary Information). As
shown in Supplementary Video 8, participant 2 also performed the
centre-out task, highlighting the ability for this second participant
with spinal cord injury to modulate his motor cortical activity
voluntarily for external device control. This participant’s neural
control, however, was generally less accurate and consistent than
MN’s; we are investigating the extent to which technical or other
factors may underlie this performance. This and other participants’
data will be reported in subsequent manuscripts.
Although he is tetraplegic, MN retains shoulder, neck and head

mobility, and some recordedMI cells fired during shoulder movement

(see Supplementary Fig. 1). NMPs will nearly always operate in the
context of some existing movement capabilities (given the consider-
able variability of remaining sensory and motor functions in people
with CNS injury); thus, during filter building and use MN was not
asked to remain completely still, and he sometimes moved his head
or neck. It is thus possible that retainedmovements influenced cursor
action, much as such movements are known to influence activity
correlated with ordinary hand actions24. These still-intact move-
ments, however, did not appear to be essential for MN’s cursor
control, as can be appreciated particularly when he played ‘Neural
Pong’ (Supplementary Video 4). In this video, movement of the head
or the shoulders sometimes accompanied cursor control, but at other
times MN moved the cursor purposefully while his head remained
stationary, and during other epochs his head moved but the cursor
motion appeared to be unrelated to head movement. We compared
neural cursor position in Supplementary Video 4 to head position
(both assessed by coordinates on a video playback monitor) and
found no consistent relationship (r2 ¼ 0.063). This finding is incon-
sistent with a unique causal relation between head and cursor
control. In addition, it was our repeated observation that, at least
some of the time, MN performed neural control (and open-loop)
tasks without moving his shoulder. Thus, based upon our instruc-
tions and MN’s self-reporting that he was actively imagining arm
action, we conclude that cursor motion is under the guidance of
imagined/intended actions.

Direct control of prosthetic devices
Continuous computer cursor control could be used to provide many
valuable new outputs for a person with paralysis to carry out

Figure 5 | Reconstruction of neural cursor position during pursuit
tracking. a, Technician (red line) and neural cursor (blue line) paths during
a 5-s epoch during which MN was asked to track the technician cursor with
his neural cursor in real time. MN was able to track the general direction of
the technician cursor with the neural cursor, changing directions quickly,
while having some difficulty in overlaying the cursors precisely. Trial day 90.
b, x, y position control over time during one tracking trial (last 1-min epoch
of filter building). The top panel displays the x coordinate position of the
technician cursor (red) and the neural cursor (blue); y positions for the same
movement are shown in the bottompanel. c, Neural cursor position during a
target acquisition/obstacle avoidance task. The four panels represent the
four epochs shown in Supplementary Video 5. Green circles indicate targets;
red squares indicate obstacles. The thick blue line indicates the path taken by
the neural cursor and illustrates the ability to avoid most obstacles and
acquire most targets within a randomly arranged field. Data are from trial
day 90.

Figure 6 | Centre-out task performance. a, Target acquisition accuracy
during the centre-out task. For each of six sessions, MN acquired between
73–95% of the radially placed targets. Control targets were not present on
the monitor during task performance, but were marked as acquired if,
during post-hoc analysis of the cursor movement, the cursor had traversed
the location of one of the other three pseudo-randomly selected targets
before the correct target (see Supplementary Video 1). Data from days 72,
77, 83, 84, 86, 90 are shown. b, Time-to-target performance during centre-
out task for MN (blue) and three able-bodied controls (red). Only successful
target acquisitions in ,7 s are shown for MN. Arrows on the abscissa
represent median times to target for each distribution. Controls’
performances (n ¼ 3 controls, 80 trials each) are collapsed into 0.2-s bins.
MN’s performance (398 trials) is collapsed into 0.5-s bins for visual clarity.
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Neural cursor position in obstacle avoidance task (need to go to green
targets and avoid red obstacles)



“Notably, each of these tasks was achieved rapidly and could 
be performed while the participant was conversing. Thus, 
the MI-based NMP may have the property of allowing 
external device control with little more disruption than 
encountered in able-bodied humans when they are using 
their arms or hands and simultaneously carrying out 
other motor or cognitive functions.”
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Cortical control of a prosthetic arm for self-feeding
Meel Velliste1, Sagi Perel2,3, M. Chance Spalding2,3, Andrew S. Whitford2,3 & Andrew B. Schwartz1–6

Arm movement is well represented in populations of neurons
recorded from the motor cortex1–7. Cortical activity patterns have
been used in the new field of brain–machine interfaces8–11 to show
how cursors on computer displays can be moved in two- and three-
dimensional space12–22. Although the ability to move a cursor can
be useful in its own right, this technology could be applied to
restore arm and hand function for amputees and paralysed per-
sons. However, the use of cortical signals to control a multi-jointed
prosthetic device for direct real-time interaction with the physical
environment (‘embodiment’) has not been demonstrated. Here we
describe a system that permits embodied prosthetic control; we
show how monkeys (Macaca mulatta) use their motor cortical
activity to control a mechanized arm replica in a self-feeding task.
In addition to the three dimensions of movement, the subjects’
cortical signals also proportionally controlled a gripper on the end
of the arm. Owing to the physical interaction between the monkey,
the robotic arm and objects in the workspace, this new task
presented a higher level of difficulty than previous virtual
(cursor-control) experiments. Apart from an example of simple
one-dimensional control23, previous experiments have lacked
physical interaction even in cases where a robotic arm16,19,24 or
hand20 was included in the control loop, because the subjects did
not use it to interact with physical objects—an interaction that
cannot be fully simulated. This demonstration of multi-degree-of-
freedom embodied prosthetic control paves the way towards the
development of dexterous prosthetic devices that could ultimately
achieve arm and hand function at a near-natural level.

Two monkeys were implanted with intracortical microelectrode
arrays in their primary motor cortices. Each monkey used the signals
to control a robotic arm to feed itself. The robotic arms used in these
experiments had five degrees of freedom: three at the shoulder, one at
the elbow and one at the hand. Like a human arm, they permitted
shoulder flexion/extension, shoulder abduction/adduction, internal/
external rotation of the shoulder and flexion/extension of the elbow.
The hand consisted of a motorized gripper with the movement of its
two ‘fingers’ linked, providing proportional control of the distance
between them. Monkeys were first trained to operate the arm using a
joystick (Supplementary Methods). Their own arms were then
restrained and the prosthetic arm was controlled with populations of
single- and multi-unit spiking activity from the motor cortex. The
neural activity was differentially modulated when food was presented
at different target locations in front of the monkey. Based on previous
work24, we used this modulation to represent velocity of the prosthetic
arm’s endpoint (a point between the fingertips of the hand/gripper) as
an expression of the intention to move2,3. The recorded signal was also
used by the subject to open and close the gripper as it grasped and
moved the food to the mouth. The endpoint velocity and gripper
command were extracted from the instantaneous firing rates of simul-
taneously recorded units using a real-time extraction algorithm.

Many algorithms of varying complexity have been developed in
open-loop7,25–27 or closed-loop experiments12–24, but here we show
that a simple algorithm functioned well in this application. The
population vector algorithm28 (PVA) used here was similar to algo-
rithms used in some cursor-control experiments15,21. It relies on the
directional tuning of each unit, characterized by a single preferred
direction in which the unit fires maximally. The real-time population
vector is essentially a vector sum of the preferred directions of the
units in the recorded population, weighted by the instantaneous
firing rates of the units, and was taken here to represent four dimen-
sions—velocity of the endpoint in an arbitrary extrinsic three-
dimensional cartesian coordinate frame, and aperture velocity
between gripper fingers (fourth dimension). The endpoint velocity
was integrated to obtain endpoint position, and converted to a joint-
angular command position, for each of the robot’s four degrees of
freedom, using inverse kinematics. Degree-of-freedom redundancy
was solved by constraining elbow elevation in a way that resulted in
natural-looking movements (Supplementary Methods). As the mon-
key’s cortical command signal was decoded in small time-increments
(30 ms), the control was effectively continuous and the animal was
able to continuously change the speed and direction of arm move-
ment and gripper aperture. Details of the control algorithm are in
Supplementary Methods.

To demonstrate fully embodied control (Fig. 1), monkeys learned a
continuous self-feeding task involving real-time physical interaction
between the arm, a food target, a presentation device (designed to
record the target’s three-dimensional location) and their mouth.
Unlike short control windows used in previous studies, each monkey
controlled the arm and gripper continuously during an entire session
(not only during reaching and retrieval movements but also during
loading/unloading and between trials). The task was challenging
owing to the positional accuracy required (about 5–10 mm from the
target centre position at the time of gripper closing). The required
accuracy for retrieval was much lower because the monkey could
move its head to meet the gripper. Supplementary Video 1 shows
monkey A performing seven consecutive successful trials of continu-
ous self-feeding. It can be seen from the video that the monkey was still
chewing on the previous piece of food while reaching for the next one.
It can also be seen that the monkey was able to move its head and eyes
naturally without affecting control of the prosthetic arm. Example
signals from the last four trials of the video show the correspondence
between the spike signals of the 116 units used for control during that
session and the resulting arm and gripper movement (Fig. 2).

Monkey A performed 2 days of the continuous self-feeding task
with a combined success rate of 61% (67 successes out of 101
attempted trials on the first day, and 115 out of 197 on the second
day). To put this success rate in perspective, a task of comparable
difficulty to a previous virtual cursor control study from our group15

would be to simply move the prosthetic arm’s endpoint near the target
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Decoding hand movement direction from primary motor 
cortex population (from Georgopoulos et al., 1988)

Population coding example

Population vector decoding



Population coding

Population vector: each neuron “votes” for its preferred
stimulus 

3𝑆 =5
$%&

'

𝑟$𝑆$
Has been useful for:
Cercal system
Motor cortex

𝑟&, 𝑟), . . , 𝑟'

𝑆&, 𝑆), . . 𝑆'



“Although the ability to move a cursor can be useful in its own right, 
this technology could be applied to restore arm and hand function for 
amputees and paralysed persons.”



“… describe a system that permits embodied prosthetic control;
we show how monkeys use their motor cortical activity to control a
mechanized arm replica in a self-feeding task … in addition to the 
three dimensions of movement … controlled a gripper at the end
of the arm”



(that is, complete the Move A period only, without being required to
home in, load, retrieve and unload). (The Move A period is defined in
Methods, and shown within the timeline in Fig. 1b.) Monkeys in that
previous study had a success rate of 80%, whereas our monkey A
successfully completed the Move A period in 98% of attempted trials
(Supplementary Table 3). Distance of the targets in this task

(184 6 31 mm, mean 6 s.d.) was also greater than that in the previous
study. Monkey P performed a version of the continuous self-feeding
task (Supplementary Video 2) with an average success rate of 78%
(1,064 trials over 13 days), typically using just 15–25 cortical units for
control. Monkey P’s success rate was higher than monkey A’s because
the task was easier (see Supplementary Methods).

The fact that the gripper opens and closes fully each time (Fig. 2e)
indicates good performance, because full opening is advantageous on
approach to target and full closing is required for loading. The fact
that the task requirements allow the monkey to drive the gripper
aperture to both limits makes this fourth dimension easier to control
than the x, y and z dimensions. However, the monkey is capable of
partially opening or closing the gripper, as shown by data from an
earlier training session (Supplementary Fig. 12).

Figure 2f reveals a surprising point: after gripping the food and
pulling it off the presentation device, the monkey gradually opened
the gripper on the way back to the mouth (Move B) and the gripper
was typically fully open before it reached the mouth. One might
expect the food to have dropped when the gripper was opened, but
this was not always the case because marshmallows, and even grape
halves to some extent, tended to stick to the gripper fingers. In an
earlier training session, the monkey kept the gripper closed all the
way back to the mouth (Supplementary Fig. 13). Over the course of
training, the monkey must have learned that keeping the gripper
closed was unnecessary, illustrating the importance of working
within a physical environment.

We assume that an arm that moves naturally with a bell-shaped
speed profile29,30 will be easier to control than one that moves in an
unfamiliar way. Monkey A’s individual-trial profiles (Fig. 3a) show a
large bell-shaped peak for retrieval movements. Reaching move-
ments consist of multiple smaller bell-shaped peaks indicative of
corrective movements. The speed profiles shared qualitative charac-
teristics with natural movements, but the duration of prosthetic
movements (3–5 s for monkey A, including reaching, loading
and retrieval) is not yet down to the same level as natural movements
(1–2 s). The corrective movements and long movement duration are
consistent with extensive use of visual feedback in this task.

The animal controlled the exact path of the arm to achieve the
correct approach direction to position the gripper in the precise
location needed to grasp the food. This was demonstrated by the
curved path taken to avoid knocking the food piece off the presenta-
tion device (Fig. 3b and Supplementary Video 3). It is also important
that there be no apparent control delay—that is, lag between the
desire to move and the movement of the prosthetic. The delay
between spike signals and movement of the robotic arm was approxi-
mately 150 ms (Supplementary Methods). This is not very different
from the control delay of a natural arm6. An example of lag-free
control can be seen in Supplementary Video 2, where the food
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Figure 1 | Behavioural paradigm. a, Embodied control setup. Each monkey
had its arms restrained (inserted up to the elbow in horizontal tubes, shown
at bottom of image), and a prosthetic arm positioned next to its shoulder.
Spiking activity was processed (boxes at top right) and used to control the
three-dimensional arm velocity and the gripper aperture velocity in real
time. Food targets were presented (top left) at arbitrary positions.

b, Timeline of trial periods during the continuous self-feeding task. Each
trial started with presentation of a food piece, and a successful trial ended
with the monkey unloading (UL) the food from the gripper into its mouth
(see Methods). Owing to the continuous nature of the task, there were no
clear boundaries between the task periods.
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Figure 2 | Unfiltered kinematic and spike data. a, Spike rasters of 116 units
used for control. Rows represent spike occurrences for each unit, grouped by
major tuning component (red, x; green, y; blue, z; purple, gripper). Groups
are further sorted by negative major tuning component (thin bar) versus
positive (thick bar). b–d, The x, y, and z components, respectively, of robot
endpoint position. Grey background indicates inter-trial intervals. Arrows
indicate gripper closing at target. e, Gripper command aperture (0, closed; 1,
open). f, Spatial trajectories for the same four trials. Colour indicates gripper
aperture (blue, closed; purple, half-closed; red, open). Arrows indicate
movement direction. g, Distribution of the four-dimensional preferred
directions of the 116 units used. Arrow direction indicates x, y, z
components, colour indicates gripper component (blue, negative; purple,
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(b) “Each trial started with presentation of a food piece, and a 
successful trial ended with the monkey unloading (UL) the food 
from the gripper into its mouth ... Owing to the continuous 
nature of the task, there were no clear boundaries between 
the task periods.”

(a) “Spiking activity was processed (boxes at top right) and used 
to control the three-dimensional arm velocity and the gripper 
aperture velocity in real time. “

Self-feeding timelineEmbodied control setup



https://www.youtube.com/watch?v=Y6fug4pzU4Q

Self-feeding with robotic arm



Self-feeding with robotic arm

“For example, the monkey moved the arm to lick the gripper fingers while 
ignoring a presented food target, and sometimes used the gripper fingers to 
give a second push to the food when unloading … These behaviours were not 
task requirements, but emerged as new capabilities were learned, demonstrating 
how the monkey used the robot arm as a surrogate for its own.” 



“Population Vector Averaging (PVA) … is dependent on accurate 
estimates of the recorded units’ tuning properties”

“At the beginning of each day, the tuning properties were estimated in 
a calibration procedure that did not require the monkey to move its arm.”

“During the first iteration of four trials … the monkey watched the automated 
performance of reach, grip and retrieval and then received the food. “

“During the next iteration, these initial estimates were used by the
extraction algorithm to generate a signal mixed with automated control”

“gradually decreasing the automated control until both arm movement 
and the gripper were fully controlled by the monkey’s cortical activity”

Calibration



figure 4….

dropped out of the gripper unexpectedly during a retrieval move-
ment and the animal immediately stopped moving the arm.

Some displays of embodiment would never be seen in a virtual
environment. For example, the monkey moved the arm to lick the
gripper fingers while ignoring a presented food target (Supple-
mentary Video 4), and sometimes used the gripper fingers to give a
second push to the food when unloading (Supplementary Video 5).
These behaviours were not task requirements, but emerged as new

capabilities were learned, demonstrating how the monkey used the
robot arm as a surrogate for its own.

The monkeys’ arms were restrained in these experiments to pre-
vent them from grabbing the food directly with their own hands.
The restraints did not prevent them from making small wrist and
hand movements. In particular, monkey A can be seen making char-
acteristic movements with its right hand (Supplementary Video 1):
extending the wrist and fingers while closing the prosthetic gripper,
then rotating its wrist and flexing the fingers while retrieving the food
with the prosthetic arm. It could be argued that these movements
might facilitate prosthetic control. However, there are several reasons
we find this unlikely. First, the electrode array was implanted in the
right hemisphere (the same side as the monkey’s own moving hand),
while predominant motor cortical output projects to the opposite
side of the body. Second, the monkey’s hand movement was only
loosely coupled to prosthetic control. For example, the temporal
correspondence between wrist extension and gripper closing varied
between zero and almost a full second (Supplementary Table 4).
Third, movement is not required for brain-controlled tasks, as
monkeys in other studies made no movement with their arms14,15,17,22

and paralysed humans have well modulated motor cortical activity
capable of driving prosthetic devices12,13,20. The arm and hand move-
ments seen here may be vestigial, remnants of the joystick task carried
out during initial training.

As an intermediate training step towards continuous self-feeding,
after the monkeys learned to operate the device with a joystick, they
performed an assisted brain-controlled task where the monkey’s con-
trol was mixed with automated control. The types and amounts of
assistance were configurable in each task period. For example, during
the Home A and Loading periods (defined in Methods), the training
program partially guided the endpoint towards the target by adding a
vector pointing towards the target to the endpoint velocity. Gripper
opening was partially aided during Move A and Home A by adding a
positive value to aperture velocity, and closing was aided during
Loading by adding a negative value. Monkey P also used another
type of assistance, where the amount of deviation from a straight line
towards the target was limited by a gain factor. The relative propor-
tion of all types of automated assistance in the overall control signal
was reduced over several weeks until both the arm endpoint move-
ment and gripper were controlled purely by the monkey’s cortical
command. Full details of assisted control are in Supplementary
Methods. Targets during the training period were presented at four
discrete locations. This allowed a measure of trajectory consistency to
be computed over repeated trials (Fig. 3c and d). Like natural arm
movements, the reaching and retrieval movements of the prosthetic
arm show some variability, but are generally consistent between
trials.
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Figure 3 | Movement quality. a, Speed profiles from four trials. Time zero
marks the beginning of forward arm movement. Reaching (red) begins when
the target is in position and ends when the gripper touches the target or
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first). Retrieval (from food off the presentation device to mouth contact) is
blue, and the graph ends with food in the monkey’s mouth (obtained from
video record). b, Target tracking. Endpoint trajectory (blue, arrow 1) from
an initial position (black dot) towards an initial target (purple dot). When
the gripper was about to arrive (light grey sketch) at the initial target, the
target was shifted (green trajectory, arrow 2) to a new position (red dot). The
monkey then moved the arm in a curved path (arrow 3) to avoid knocking
the food off the presentation device, positioning the gripper (dark grey
sketch) to grasp the food. This trial is also shown in Supplementary Video 3.
c, d, Endpoint trajectory variability (monkey A) for reaching (c, Move A
period) and retrieval (d, Move B). Semi-transparent coloured regions
represent trajectory standard deviation (over all sessions) around average
trajectories (grey lines) to each target. Grey spheres (radius 46 mm,
averaged over all sessions) represent regions where training assistance was
applied.
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Neuron tuned to direction of movement (of 8 directions).
Blue/red: during and after calibration. 



figure 4….

dropped out of the gripper unexpectedly during a retrieval move-
ment and the animal immediately stopped moving the arm.

Some displays of embodiment would never be seen in a virtual
environment. For example, the monkey moved the arm to lick the
gripper fingers while ignoring a presented food target (Supple-
mentary Video 4), and sometimes used the gripper fingers to give a
second push to the food when unloading (Supplementary Video 5).
These behaviours were not task requirements, but emerged as new

capabilities were learned, demonstrating how the monkey used the
robot arm as a surrogate for its own.

The monkeys’ arms were restrained in these experiments to pre-
vent them from grabbing the food directly with their own hands.
The restraints did not prevent them from making small wrist and
hand movements. In particular, monkey A can be seen making char-
acteristic movements with its right hand (Supplementary Video 1):
extending the wrist and fingers while closing the prosthetic gripper,
then rotating its wrist and flexing the fingers while retrieving the food
with the prosthetic arm. It could be argued that these movements
might facilitate prosthetic control. However, there are several reasons
we find this unlikely. First, the electrode array was implanted in the
right hemisphere (the same side as the monkey’s own moving hand),
while predominant motor cortical output projects to the opposite
side of the body. Second, the monkey’s hand movement was only
loosely coupled to prosthetic control. For example, the temporal
correspondence between wrist extension and gripper closing varied
between zero and almost a full second (Supplementary Table 4).
Third, movement is not required for brain-controlled tasks, as
monkeys in other studies made no movement with their arms14,15,17,22

and paralysed humans have well modulated motor cortical activity
capable of driving prosthetic devices12,13,20. The arm and hand move-
ments seen here may be vestigial, remnants of the joystick task carried
out during initial training.

As an intermediate training step towards continuous self-feeding,
after the monkeys learned to operate the device with a joystick, they
performed an assisted brain-controlled task where the monkey’s con-
trol was mixed with automated control. The types and amounts of
assistance were configurable in each task period. For example, during
the Home A and Loading periods (defined in Methods), the training
program partially guided the endpoint towards the target by adding a
vector pointing towards the target to the endpoint velocity. Gripper
opening was partially aided during Move A and Home A by adding a
positive value to aperture velocity, and closing was aided during
Loading by adding a negative value. Monkey P also used another
type of assistance, where the amount of deviation from a straight line
towards the target was limited by a gain factor. The relative propor-
tion of all types of automated assistance in the overall control signal
was reduced over several weeks until both the arm endpoint move-
ment and gripper were controlled purely by the monkey’s cortical
command. Full details of assisted control are in Supplementary
Methods. Targets during the training period were presented at four
discrete locations. This allowed a measure of trajectory consistency to
be computed over repeated trials (Fig. 3c and d). Like natural arm
movements, the reaching and retrieval movements of the prosthetic
arm show some variability, but are generally consistent between
trials.
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Figure 3 | Movement quality. a, Speed profiles from four trials. Time zero
marks the beginning of forward arm movement. Reaching (red) begins when
the target is in position and ends when the gripper touches the target or
minimal distance between target and endpoint is achieved (whichever comes
first). Retrieval (from food off the presentation device to mouth contact) is
blue, and the graph ends with food in the monkey’s mouth (obtained from
video record). b, Target tracking. Endpoint trajectory (blue, arrow 1) from
an initial position (black dot) towards an initial target (purple dot). When
the gripper was about to arrive (light grey sketch) at the initial target, the
target was shifted (green trajectory, arrow 2) to a new position (red dot). The
monkey then moved the arm in a curved path (arrow 3) to avoid knocking
the food off the presentation device, positioning the gripper (dark grey
sketch) to grasp the food. This trial is also shown in Supplementary Video 3.
c, d, Endpoint trajectory variability (monkey A) for reaching (c, Move A
period) and retrieval (d, Move B). Semi-transparent coloured regions
represent trajectory standard deviation (over all sessions) around average
trajectories (grey lines) to each target. Grey spheres (radius 46 mm,
averaged over all sessions) represent regions where training assistance was
applied.

a b

Relative time (s)
1 2

F,
D

,L

F,
D

,R

F,
U

,L

F,
U

,R

B
,U

,L

B
,U

,R

B
,D

,L

B
,D

,R

x

y

z

Time (s)
0 3

Opening

Closing

–1
0
1
2
3

–3
–2
–1
0
1

G
rip

pe
r v

el
oc

ity
 (s

–1
)

4

–4

–1 –0.5 0 0.5 1

–1 –0.5 0 0.5 1

Figure 4 | Unit modulation. a, Spike rasters of a
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Blue/red: during and after calibration. 

Back, Up, Right



(that is, complete the Move A period only, without being required to
home in, load, retrieve and unload). (The Move A period is defined in
Methods, and shown within the timeline in Fig. 1b.) Monkeys in that
previous study had a success rate of 80%, whereas our monkey A
successfully completed the Move A period in 98% of attempted trials
(Supplementary Table 3). Distance of the targets in this task

(184 6 31 mm, mean 6 s.d.) was also greater than that in the previous
study. Monkey P performed a version of the continuous self-feeding
task (Supplementary Video 2) with an average success rate of 78%
(1,064 trials over 13 days), typically using just 15–25 cortical units for
control. Monkey P’s success rate was higher than monkey A’s because
the task was easier (see Supplementary Methods).

The fact that the gripper opens and closes fully each time (Fig. 2e)
indicates good performance, because full opening is advantageous on
approach to target and full closing is required for loading. The fact
that the task requirements allow the monkey to drive the gripper
aperture to both limits makes this fourth dimension easier to control
than the x, y and z dimensions. However, the monkey is capable of
partially opening or closing the gripper, as shown by data from an
earlier training session (Supplementary Fig. 12).

Figure 2f reveals a surprising point: after gripping the food and
pulling it off the presentation device, the monkey gradually opened
the gripper on the way back to the mouth (Move B) and the gripper
was typically fully open before it reached the mouth. One might
expect the food to have dropped when the gripper was opened, but
this was not always the case because marshmallows, and even grape
halves to some extent, tended to stick to the gripper fingers. In an
earlier training session, the monkey kept the gripper closed all the
way back to the mouth (Supplementary Fig. 13). Over the course of
training, the monkey must have learned that keeping the gripper
closed was unnecessary, illustrating the importance of working
within a physical environment.

We assume that an arm that moves naturally with a bell-shaped
speed profile29,30 will be easier to control than one that moves in an
unfamiliar way. Monkey A’s individual-trial profiles (Fig. 3a) show a
large bell-shaped peak for retrieval movements. Reaching move-
ments consist of multiple smaller bell-shaped peaks indicative of
corrective movements. The speed profiles shared qualitative charac-
teristics with natural movements, but the duration of prosthetic
movements (3–5 s for monkey A, including reaching, loading
and retrieval) is not yet down to the same level as natural movements
(1–2 s). The corrective movements and long movement duration are
consistent with extensive use of visual feedback in this task.

The animal controlled the exact path of the arm to achieve the
correct approach direction to position the gripper in the precise
location needed to grasp the food. This was demonstrated by the
curved path taken to avoid knocking the food piece off the presenta-
tion device (Fig. 3b and Supplementary Video 3). It is also important
that there be no apparent control delay—that is, lag between the
desire to move and the movement of the prosthetic. The delay
between spike signals and movement of the robotic arm was approxi-
mately 150 ms (Supplementary Methods). This is not very different
from the control delay of a natural arm6. An example of lag-free
control can be seen in Supplementary Video 2, where the food
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Figure 1 | Behavioural paradigm. a, Embodied control setup. Each monkey
had its arms restrained (inserted up to the elbow in horizontal tubes, shown
at bottom of image), and a prosthetic arm positioned next to its shoulder.
Spiking activity was processed (boxes at top right) and used to control the
three-dimensional arm velocity and the gripper aperture velocity in real
time. Food targets were presented (top left) at arbitrary positions.

b, Timeline of trial periods during the continuous self-feeding task. Each
trial started with presentation of a food piece, and a successful trial ended
with the monkey unloading (UL) the food from the gripper into its mouth
(see Methods). Owing to the continuous nature of the task, there were no
clear boundaries between the task periods.
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Figure 2 | Unfiltered kinematic and spike data. a, Spike rasters of 116 units
used for control. Rows represent spike occurrences for each unit, grouped by
major tuning component (red, x; green, y; blue, z; purple, gripper). Groups
are further sorted by negative major tuning component (thin bar) versus
positive (thick bar). b–d, The x, y, and z components, respectively, of robot
endpoint position. Grey background indicates inter-trial intervals. Arrows
indicate gripper closing at target. e, Gripper command aperture (0, closed; 1,
open). f, Spatial trajectories for the same four trials. Colour indicates gripper
aperture (blue, closed; purple, half-closed; red, open). Arrows indicate
movement direction. g, Distribution of the four-dimensional preferred
directions of the 116 units used. Arrow direction indicates x, y, z
components, colour indicates gripper component (blue, negative; purple,
zero; red, positive).
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4 Dimensions: X; Y; Z; 
open/close 
blue: closed; purple: 
half closed; red open.

“Figure 2f reveals a surprising point: after gripping the food and pulling it off the 
presentation device, the monkey gradually opened the gripper on the way back to the 
mouth (Move B) and the gripper was typically fully open before it reached the mouth… 
One might expect the food to have dropped when the gripper was opened, but this was 
not always the case because marshmallows, and even grape halves to some extent, 
tended to stick to the gripper fingers. 



(that is, complete the Move A period only, without being required to
home in, load, retrieve and unload). (The Move A period is defined in
Methods, and shown within the timeline in Fig. 1b.) Monkeys in that
previous study had a success rate of 80%, whereas our monkey A
successfully completed the Move A period in 98% of attempted trials
(Supplementary Table 3). Distance of the targets in this task

(184 6 31 mm, mean 6 s.d.) was also greater than that in the previous
study. Monkey P performed a version of the continuous self-feeding
task (Supplementary Video 2) with an average success rate of 78%
(1,064 trials over 13 days), typically using just 15–25 cortical units for
control. Monkey P’s success rate was higher than monkey A’s because
the task was easier (see Supplementary Methods).

The fact that the gripper opens and closes fully each time (Fig. 2e)
indicates good performance, because full opening is advantageous on
approach to target and full closing is required for loading. The fact
that the task requirements allow the monkey to drive the gripper
aperture to both limits makes this fourth dimension easier to control
than the x, y and z dimensions. However, the monkey is capable of
partially opening or closing the gripper, as shown by data from an
earlier training session (Supplementary Fig. 12).

Figure 2f reveals a surprising point: after gripping the food and
pulling it off the presentation device, the monkey gradually opened
the gripper on the way back to the mouth (Move B) and the gripper
was typically fully open before it reached the mouth. One might
expect the food to have dropped when the gripper was opened, but
this was not always the case because marshmallows, and even grape
halves to some extent, tended to stick to the gripper fingers. In an
earlier training session, the monkey kept the gripper closed all the
way back to the mouth (Supplementary Fig. 13). Over the course of
training, the monkey must have learned that keeping the gripper
closed was unnecessary, illustrating the importance of working
within a physical environment.

We assume that an arm that moves naturally with a bell-shaped
speed profile29,30 will be easier to control than one that moves in an
unfamiliar way. Monkey A’s individual-trial profiles (Fig. 3a) show a
large bell-shaped peak for retrieval movements. Reaching move-
ments consist of multiple smaller bell-shaped peaks indicative of
corrective movements. The speed profiles shared qualitative charac-
teristics with natural movements, but the duration of prosthetic
movements (3–5 s for monkey A, including reaching, loading
and retrieval) is not yet down to the same level as natural movements
(1–2 s). The corrective movements and long movement duration are
consistent with extensive use of visual feedback in this task.

The animal controlled the exact path of the arm to achieve the
correct approach direction to position the gripper in the precise
location needed to grasp the food. This was demonstrated by the
curved path taken to avoid knocking the food piece off the presenta-
tion device (Fig. 3b and Supplementary Video 3). It is also important
that there be no apparent control delay—that is, lag between the
desire to move and the movement of the prosthetic. The delay
between spike signals and movement of the robotic arm was approxi-
mately 150 ms (Supplementary Methods). This is not very different
from the control delay of a natural arm6. An example of lag-free
control can be seen in Supplementary Video 2, where the food
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Figure 1 | Behavioural paradigm. a, Embodied control setup. Each monkey
had its arms restrained (inserted up to the elbow in horizontal tubes, shown
at bottom of image), and a prosthetic arm positioned next to its shoulder.
Spiking activity was processed (boxes at top right) and used to control the
three-dimensional arm velocity and the gripper aperture velocity in real
time. Food targets were presented (top left) at arbitrary positions.

b, Timeline of trial periods during the continuous self-feeding task. Each
trial started with presentation of a food piece, and a successful trial ended
with the monkey unloading (UL) the food from the gripper into its mouth
(see Methods). Owing to the continuous nature of the task, there were no
clear boundaries between the task periods.
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Figure 2 | Unfiltered kinematic and spike data. a, Spike rasters of 116 units
used for control. Rows represent spike occurrences for each unit, grouped by
major tuning component (red, x; green, y; blue, z; purple, gripper). Groups
are further sorted by negative major tuning component (thin bar) versus
positive (thick bar). b–d, The x, y, and z components, respectively, of robot
endpoint position. Grey background indicates inter-trial intervals. Arrows
indicate gripper closing at target. e, Gripper command aperture (0, closed; 1,
open). f, Spatial trajectories for the same four trials. Colour indicates gripper
aperture (blue, closed; purple, half-closed; red, open). Arrows indicate
movement direction. g, Distribution of the four-dimensional preferred
directions of the 116 units used. Arrow direction indicates x, y, z
components, colour indicates gripper component (blue, negative; purple,
zero; red, positive).
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(3) Target shift resulted in curved 
movement by monkey to new location.
Brown is gripper new location.

dropped out of the gripper unexpectedly during a retrieval move-
ment and the animal immediately stopped moving the arm.

Some displays of embodiment would never be seen in a virtual
environment. For example, the monkey moved the arm to lick the
gripper fingers while ignoring a presented food target (Supple-
mentary Video 4), and sometimes used the gripper fingers to give a
second push to the food when unloading (Supplementary Video 5).
These behaviours were not task requirements, but emerged as new

capabilities were learned, demonstrating how the monkey used the
robot arm as a surrogate for its own.

The monkeys’ arms were restrained in these experiments to pre-
vent them from grabbing the food directly with their own hands.
The restraints did not prevent them from making small wrist and
hand movements. In particular, monkey A can be seen making char-
acteristic movements with its right hand (Supplementary Video 1):
extending the wrist and fingers while closing the prosthetic gripper,
then rotating its wrist and flexing the fingers while retrieving the food
with the prosthetic arm. It could be argued that these movements
might facilitate prosthetic control. However, there are several reasons
we find this unlikely. First, the electrode array was implanted in the
right hemisphere (the same side as the monkey’s own moving hand),
while predominant motor cortical output projects to the opposite
side of the body. Second, the monkey’s hand movement was only
loosely coupled to prosthetic control. For example, the temporal
correspondence between wrist extension and gripper closing varied
between zero and almost a full second (Supplementary Table 4).
Third, movement is not required for brain-controlled tasks, as
monkeys in other studies made no movement with their arms14,15,17,22

and paralysed humans have well modulated motor cortical activity
capable of driving prosthetic devices12,13,20. The arm and hand move-
ments seen here may be vestigial, remnants of the joystick task carried
out during initial training.

As an intermediate training step towards continuous self-feeding,
after the monkeys learned to operate the device with a joystick, they
performed an assisted brain-controlled task where the monkey’s con-
trol was mixed with automated control. The types and amounts of
assistance were configurable in each task period. For example, during
the Home A and Loading periods (defined in Methods), the training
program partially guided the endpoint towards the target by adding a
vector pointing towards the target to the endpoint velocity. Gripper
opening was partially aided during Move A and Home A by adding a
positive value to aperture velocity, and closing was aided during
Loading by adding a negative value. Monkey P also used another
type of assistance, where the amount of deviation from a straight line
towards the target was limited by a gain factor. The relative propor-
tion of all types of automated assistance in the overall control signal
was reduced over several weeks until both the arm endpoint move-
ment and gripper were controlled purely by the monkey’s cortical
command. Full details of assisted control are in Supplementary
Methods. Targets during the training period were presented at four
discrete locations. This allowed a measure of trajectory consistency to
be computed over repeated trials (Fig. 3c and d). Like natural arm
movements, the reaching and retrieval movements of the prosthetic
arm show some variability, but are generally consistent between
trials.
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Figure 3 | Movement quality. a, Speed profiles from four trials. Time zero
marks the beginning of forward arm movement. Reaching (red) begins when
the target is in position and ends when the gripper touches the target or
minimal distance between target and endpoint is achieved (whichever comes
first). Retrieval (from food off the presentation device to mouth contact) is
blue, and the graph ends with food in the monkey’s mouth (obtained from
video record). b, Target tracking. Endpoint trajectory (blue, arrow 1) from
an initial position (black dot) towards an initial target (purple dot). When
the gripper was about to arrive (light grey sketch) at the initial target, the
target was shifted (green trajectory, arrow 2) to a new position (red dot). The
monkey then moved the arm in a curved path (arrow 3) to avoid knocking
the food off the presentation device, positioning the gripper (dark grey
sketch) to grasp the food. This trial is also shown in Supplementary Video 3.
c, d, Endpoint trajectory variability (monkey A) for reaching (c, Move A
period) and retrieval (d, Move B). Semi-transparent coloured regions
represent trajectory standard deviation (over all sessions) around average
trajectories (grey lines) to each target. Grey spheres (radius 46 mm,
averaged over all sessions) represent regions where training assistance was
applied.
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Figure 4 | Unit modulation. a, Spike rasters of a
single unit during six movements in each of eight
directions. This unit (with {x,y,z} components of
its preferred direction, PD 5 {20.52,0.21,0.47})
fired maximally in the backward-up-right
direction (B,U,R) while retrieving from the lower
left target, and fired least in the forward-down-
left direction (F,D,L) while reaching to the same
target. The modulation was consistent during
(blue side bars) and after calibration (red side
bars). b, Gripper modulation. Aperture
command velocity (dotted line) and off-line
predicted aperture velocity from neural data
(solid line, 62 standard errors) during automatic
gripper control, showing that the monkey’s
cortical population is modulated for observed
gripper movement.
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(2) Target position shifted while monkey
was making movement (shifted to red dot; 
green trajectory).

(1) Monkey movement to initial
(purple dot) target. Light gray is gripper

Target shift: “The monkey then moved the arm in a curved path 
(arrow 3) to avoid knocking the food off the presentation 
device, positioning the gripper (dark grey sketch) to grasp the 
food.” 



“With this study, we have expanded the 
capabilities of prosthetic devices through the 
use of observation-based training and closed-
loop cortical control, allowing the use of this 
four-dimensional … arm in everyday tasks. 
These concepts can be incorporated into future 
designs of prostheses for dexterous 
movement.”



https://www.youtube.com/watch?v=ogBX18maUiM

Fast forward to 2012…



Less invasive alternatives??



Less invasive alternatives??

e.g., EEG (how much precision can one get?)



Electroencephalography (EEG)-Based Brain–
Computer Interface (BCI): A 2-D Virtual 
Wheelchair Control Based on Event-Related 
Desynchronization/Synchronization and State 
Control. Dandan Huang ; Kai Qian ; Ding-Yu Fei 
et al. IEEE Transactions on Neural Systems and 
Rehabilitation Engineering, 2012.

2012



Classification of Upper Limb Movements Using 
Convolutional Neural Network
with 3D Inception Block
Do-Yeun Lee1, Ji-Hoon Jeong, Kyung-Hwan 
Shim1, Dong-Joo Kim. arXiv (also related IEEE
Paper)

2020
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Fig. 1. Experimental environments and paradigm. The participants perform
six different reaching tasks through executed session according to the robotic
arm movement.

six different reaching tasks for robotic arm control. Also, we
constructed an experimental environment that can acquire the
brain signals according to the executed session with the robotic
arm.

II. MATERIALS AND METHODS

A. Participants

Five healthy and right-handed participants (all males and
23-32 years) were recruited for the experiment. None of them
had prior experience with the BMI experiment. Before starting
experiment, all participants were provided with an overview of
the procedure. The protocols and environments were reviewed
and approved by the Institutional Review Board at Korea
University [1040548-KU-IRB-17-172-A-2].

B. Experimental paradigm

Participants sat comfortably near robotic arm. A visual
display was placed in front so they could see the instructions.
The experiment comprised of an executed session, actual
movement. During the session, participants performed upper
limb movements based on movement of robotic arm (Fig. 1).
Participants were asked to perform the repetitive arm reaching
tasks for six different directions: left, right, forward, backward,
up and down. In this session, visual instructions for cue and
a cross for rest were shown on the visual display, respectively
(Fig. 1). We recorded 40 trials per each direction, totally 240
trials per subject.

C. Recording

We recorded the EEG signals with 64 electrodes covering
frontal, central and parietal areas. Reference and ground
were placed on the FPz channel and FCz channel according
to the international 10/20 system, respectively. Additionally,
we recorded the kinematic information using motion sensor
placed on the right wrist. EEG signals were recorded with

Fig 2. Input description

Spatial informationTime (s)

C
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nn
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Fig. 2. The transformation of the input data structure for considering three
different types of brain signal’s characteristics.

ActiCap system, BrainAmp amplifiers (Brain Product GmbH,
Germany) and a Matlab 2018a software. We applied an eighth-
order Butterworth band-pass filter with cutoff frequencies at
0.01 and 100 Hz, a Notch filter at 60 Hz and then sampled
the signals with 1000 Hz.

D. Pre-processing
The EEG signals were down-sampled from 1000 Hz to

100 Hz and were applied band-pass filtering with 4-40 Hz
using zero-phase, third-order, Butterworth filter. We segmented
filtered signals into training (80% of entire data) and test
data (20% of entire data). We analyzed the 3-second data of
the executed phase and selected the 20 channels (FC5, FC3,
FC1, FC2, FC4, FC6, C5, C3, C1, C2, C4, C6, CP5, CP3,
CP1, CPz, CP2, CP4, and CP6). Although the EEG data were
obtained from 64 electrodes, data from prefrontal area were
not used to avoid artifacts caused by eye movement. Also, the
EEG data from the temporal and occipital areas did not use
due to commonly known as a sound and visual inspection,
respectively.

E. Data Analysis
The CNN has become popular recently due to their good

generalization capacity and available GPU Hardware needed
for parameter optimization [31]. Generally, the CNN was
applied for better classification performances to various types
of images. Recently, the CNN architecture was applied into
the BMI fields to consider dynamics of the signal during the
movement and to extract static energy feature robustly [32].

In this paper, we proposed a CNN architecture with three-
dimensional inception block. The architecture can contribute
to consider the main characteristics of brain signals such as
temporal, spectral and spatial features. The shape of input data
from two-dimensions (time⇥channels) to three-dimensions
(Fig. 2) [33]. The architecture comprises three main building
layers such as convolution, inception block and max-pooling
(Fig. 3). We applied the inception blocks at twice. Also,
inception 1 block and inception 2 block which comprises
two and three successive blocks use between the conv1 layer
and max-pooling layer. Besides that, to eliminate the need
of choosing the specific layer type at each level of the
network, the inception blocks use four different bands of
layers simultaneously. Also, the conv3D (1⇥1⇥1) filters are
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Fig. 1. Experimental environments and paradigm. The participants perform
six different reaching tasks through executed session according to the robotic
arm movement.

six different reaching tasks for robotic arm control. Also, we
constructed an experimental environment that can acquire the
brain signals according to the executed session with the robotic
arm.

II. MATERIALS AND METHODS

A. Participants

Five healthy and right-handed participants (all males and
23-32 years) were recruited for the experiment. None of them
had prior experience with the BMI experiment. Before starting
experiment, all participants were provided with an overview of
the procedure. The protocols and environments were reviewed
and approved by the Institutional Review Board at Korea
University [1040548-KU-IRB-17-172-A-2].

B. Experimental paradigm

Participants sat comfortably near robotic arm. A visual
display was placed in front so they could see the instructions.
The experiment comprised of an executed session, actual
movement. During the session, participants performed upper
limb movements based on movement of robotic arm (Fig. 1).
Participants were asked to perform the repetitive arm reaching
tasks for six different directions: left, right, forward, backward,
up and down. In this session, visual instructions for cue and
a cross for rest were shown on the visual display, respectively
(Fig. 1). We recorded 40 trials per each direction, totally 240
trials per subject.

C. Recording

We recorded the EEG signals with 64 electrodes covering
frontal, central and parietal areas. Reference and ground
were placed on the FPz channel and FCz channel according
to the international 10/20 system, respectively. Additionally,
we recorded the kinematic information using motion sensor
placed on the right wrist. EEG signals were recorded with
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Fig. 2. The transformation of the input data structure for considering three
different types of brain signal’s characteristics.

ActiCap system, BrainAmp amplifiers (Brain Product GmbH,
Germany) and a Matlab 2018a software. We applied an eighth-
order Butterworth band-pass filter with cutoff frequencies at
0.01 and 100 Hz, a Notch filter at 60 Hz and then sampled
the signals with 1000 Hz.

D. Pre-processing
The EEG signals were down-sampled from 1000 Hz to

100 Hz and were applied band-pass filtering with 4-40 Hz
using zero-phase, third-order, Butterworth filter. We segmented
filtered signals into training (80% of entire data) and test
data (20% of entire data). We analyzed the 3-second data of
the executed phase and selected the 20 channels (FC5, FC3,
FC1, FC2, FC4, FC6, C5, C3, C1, C2, C4, C6, CP5, CP3,
CP1, CPz, CP2, CP4, and CP6). Although the EEG data were
obtained from 64 electrodes, data from prefrontal area were
not used to avoid artifacts caused by eye movement. Also, the
EEG data from the temporal and occipital areas did not use
due to commonly known as a sound and visual inspection,
respectively.

E. Data Analysis
The CNN has become popular recently due to their good

generalization capacity and available GPU Hardware needed
for parameter optimization [31]. Generally, the CNN was
applied for better classification performances to various types
of images. Recently, the CNN architecture was applied into
the BMI fields to consider dynamics of the signal during the
movement and to extract static energy feature robustly [32].

In this paper, we proposed a CNN architecture with three-
dimensional inception block. The architecture can contribute
to consider the main characteristics of brain signals such as
temporal, spectral and spatial features. The shape of input data
from two-dimensions (time⇥channels) to three-dimensions
(Fig. 2) [33]. The architecture comprises three main building
layers such as convolution, inception block and max-pooling
(Fig. 3). We applied the inception blocks at twice. Also,
inception 1 block and inception 2 block which comprises
two and three successive blocks use between the conv1 layer
and max-pooling layer. Besides that, to eliminate the need
of choosing the specific layer type at each level of the
network, the inception blocks use four different bands of
layers simultaneously. Also, the conv3D (1⇥1⇥1) filters are

“We recorded the EEG signals with 64 electrodes covering 
frontal, central and parietal areas. “



Fig. 4. The ROC curves for 3D inception CNN on the six different reaching
classes data.
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Fig. 5. The confusion matrix of the six different reaching tasks for the
participant S1.

(participant S4) and 0.05 (participant S5). Through these
results, it proves that the 3D inception CNN architecture shows
a significant effect on improving decoding performance of
multiclass-classification. A receiver operating characteristic
(ROC) curve is presented by plotting the true positive rate
(TPR) against the false positive rate (FPR) for each of the
learning rate. The area under the ROC curve (AUC) means
region under the curve for classifier comparison. Fig. 4 showed
the ROC curves for six different reaching tasks learning rates.
The learning rate of class 0 (‘Backward’ class) performed 0.92
and class 2 (‘Down’ class) had 0.85.

Fig. 5 showed a confusion matrix of a representative
participant S1 according to the executed session. The
matrix indicated that misclassification is mainly observed
at ‘Forward’ and ‘Down’ classes of the 3D plane. It was a
similar tendency for all participants. Participant S1 showed
the highest true positive value for the ‘Backward’ class
(0.88). Also, ‘Forward’ and ‘Down’ classes were 0.25, the
lowest values. The results showed that although a slight
difference for performance between each class, there was not

a large variation for classification accuracy. Thus, we have
demonstrated it is possible to decode elaborate upper-limb
executed movement from the robotic arm control.

IV. CONCLUSION

In this paper, we proved that the feasibility of decoding six
different reaching tasks (left, right, forward, backward, up,
and down) in the three-dimensional place from EEG signals.
To do that, we applied the CNN architecture based on 3D
inception blocks and confirmed the robust multi-classification
accuracies compared to its conventional models. The grand-
averaged performance is 0.45 in an executed session that
shows the higher performance difference (approximately
30%) than chance level (16.6%) and other models (8⇠13%).
Thus, we demonstrated that the 3D inception CNN model
is relatively effective for decoding movement intention from
EEG signals. Although BMI-based high DoF control is a
difficult challenge, it is a critical issue for offering the high
interaction between users and robotic arm. Our future work
will be developed an asynchronous brain-controlled robotic
arm system based on continuous decoding of high-level tasks.
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“In this paper, we proved that the feasibility of decoding 
six different reaching tasks (left, right, forward, 
backward, up, and down) in the three-dimensional place 
from EEG signals. To do that, we applied the CNN 
architecture … and confirmed the robust multi-
classification accuracies compared to its conventional 
models. The grand- averaged performance is 0.45 in an 
executed session that shows the higher performance 
difference (approximately 30%) than chance level 
(16.6%) and other models (8∼13%).“


