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Adaptation to expression: pre-adapt (from Michael Webster)

Contextual  effects  in  time...
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pyramidal cell’s response dependent on both the input
strength within its CRF and the contextual stimuli,
thus mediating the computation of salience. For
instance, bars having the same input contrast in an
image can evoke different V1 responses depending on
their relative positions and orientations (see Box 2),
and thus can have different saliences. It is well known
that each V1 cell can be tuned to one or more feature

dimensions, such as orientation, scale, color, motion
and depth. Whereas the cells’ ‘identities’ (the labeled
lines to higher visual centers) code the features and
locations of the underlying stimuli, according to our
proposal, the cells’ firing rates report the stimuli’s
saliences regardless of the actual features
represented by the cells. Hence, according to our
proposal, no separate feature maps, or indeed any

Opinion

Our model focuses on the part of V1
responsib le for contextual influences:
layer 2–3 pyram idal cells, interneurons,
and horizontal intracortical connections
[a–d]. Pyram idal cells and interneurons
interact w ith each other locally and
reciprocally. A pyram idal cell can excite
other pyram idal cells monosynaptically,
or inh ib it them d isynaptically, by
pro jecting to the relevant inh ib itory
interneurons. General and local
normalization of activ ities are also
included in the model [e]. 

V1 transforms input to output such
that the activ ity of each ce ll depends on
both its d irect input (taken to be the
stimu li w ith in its classica l receptive fie ld ,
CRF), and the contextua l stimu li outside
the CRF. The centers of the CRFs are
un iform ly d istributed in space . The
preferred orientations of the ce lls at a

g iven location span 180°. Images are
filtered by edge- or bar-like loca l CRFs.
The resu lts of th is processing form the
d irect inputs to the mode l excitatory
pyram ida l ce lls. The graded responses of
the pyram ida l ce lls are in itia lly
determ ined by the d irect v isua l inputs
w ith in the ir CRFs, and are then qu ickly
modu lated by contextua l influences
com ing from intracortica l interactions
(F ig . I). The tempora l averages of the
responses of the pyram ida l ce lls are the
outputs of the mode l, and report the
resu lts of V1 processing . The horizonta l
connections are designed:

(1) to be consistent w ith the V1
anatomy, linking ce lls that prefer 
si m ilar orientations [a ,b] and pro jecting
a long the axes correspond ing to the
preferred orientations of the pre-synaptic
ce lls [c];

(2) such that the resu lting mode l
consistently reproduces the usua l
phenomena of contextua l influence that
are observed physio log ica lly:
iso-orientation and genera l surround
suppression , and contour enhancement
[h ,i]. (Refs [f,g ,j,k] conta in m ore deta ils
o f the mode l, includ ing a ll the mode l
parameters necessary to reproduce our
resu lts and d iscussion of the
computationa l ro le p layed by V1 in
pre-attenti ve v isua l tasks, such as
contour enhancement and texture
segmentation .)
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Box 2. A biologically based V1 model to simulate the saliency map
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Fig. I. The V1 model and its function. Shown are three input images (bottom) to the model, and their output
response maps (top). The thicknesses of the bars in each plot are made to be proportional to their input/output
strengths, for the purposes of v isualization. The input strength of each bar is determ ined by its contrast. Note
that every input bar in each of these three images has the same contrast. A principal (pyram idal) cell can only
receive direct visual input from an input bar in its receptive field. The output responses depend on the input
contrasts and on the contextual stimuli of each bar.



• Dynamical  model
• V1  salience  map
• Salience  as  breakdown  of  statistical  homogeneity
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Surround  (non  classical  receptive  
field)  effects  in  visual  physiology



Record
From  neuron

What  about  neurons?
• Cortical  neural  processing



• Computer  science  /  Engineering:
visual  receptive  field  or  filter    

What  about  neurons?



Focus: spatial surround context

Center
Surround



Surround  stimulus  is  defined  such  that  by  itself  
elicits  no  response

Center  
(classical  RF)

Surround  (non  
classical  RF) Center  &  surround

Visual cortex: non classical RF



But surround stimulus can modulate response to 
center. Cortical neurons are affected by spatial 
context.

Stimulu
s

Spikes

Visual cortex: spatial surround

Center  &  surround
Center  
(classical  RF)

Surround  (non  
classical  RF)



Jones  and  Silito,  2001

Visual cortex: spatial surround



Visual cortex: spatial surround

Cavanaugh  et  al.  2002



Smith  et  al.  2007

Context  by  other  visual  cues?  



Simple  descriptive  model  of  
cortical  surround  nonlinearity

After  Heeger  1992

-­ Linear  filters  followed  by  nonlinearity



Eye  movements  and  salience



Example  1:  Eye  movements  and  salience  (Laurent  
Itti,  University  of  Southern  California)



Eye  movements  and  salience  (Itti and  Koch,  2000)

L. Itti, C. Koch / Vision Research 40 (2000) 1489–1506 1491

Finally, we discuss future computational work that
needs to address the physiological evidence for multiple
saliency maps, possibly operating in different coordi-
nate systems (e.g. retina versus head coordinates), and

the need to integrate information across saccades.
The work presented here is a considerable elabora-

tion upon the model presented in Itti et al. (1998) and
has not been reported previously.

Fig. 1. (a) Original model of saliency-based visual attention, adapted from Koch and Ullman (1985). Early visual features such as color, intensity
or orientation are computed, in a massively parallel manner, in a set of pre-attentive feature maps based on retinal input (not shown). Activity
from all feature maps is combined at each location, giving rise to activity in the topographic saliency map. The winner-take-all (WTA) network
detects the most salient location and directs attention towards it, such that only features from this location reach a more central representation
for further analysis. (b) Schematic diagram for the model used in this study. It directly builds on the architecture proposed in (a), but provides
a complete implementation of all processing stages. Visual features are computed using linear filtering at eight spatial scales, followed by
center-surround differences, which compute local spatial contrast in each feature dimension for a total of 42 maps. An iterative lateral inhibition
scheme instantiates competition for salience within each feature map. After competition, feature maps are combined into a single ‘conspicuity map’
for each feature type. The three conspicuity maps then are summed into the unique topographic saliency map. The saliency map is implemented
as a 2-D sheet of Integrate-and-Fire (I&F) neurons. The WTA, also implemented using I&F neurons, detects the most salient location and directs
attention towards it. An inhibition-of-return mechanism transiently suppresses this location in the saliency map, such that attention is
autonomously directed to the next most salient image location. We here do not consider the computations necessary to identify a particular object
at the attended location.



L. Itti, C. Koch / Vision Research 40 (2000) 1489–1506 1495

for salience, while different modalities contribute inde-
pendently to the saliency map. Although we are not
aware of any supporting experimental evidence for this
hypothesis, this additional step has the computational
advantage of further enforcing that only a spatially
sparse distribution of strong activity peaks is present
within each visual feature type, before combination of
all three types into the scalar saliency map.

2.3. The saliency map

After the within-feature competitive process has
taken place in each conspicuity map, these maps are
linearly summed into the unique saliency map, which
resides at scale 4 (reduction factor 1:16 compared to the
original image). At any given time, the maximum of the
saliency map corresponds to the most salient stimulus

Fig. 3. (a) Iterative spatial competition for salience in a single feature map with one strongly activated location surrounded by several weaker ones.
After a few iterations, the initial maximum has gained further strength while at the same time suppressing weaker activation regions. (b) Iterative
spatial competition for salience in a single feature map containing numerous strongly activated locations. All peaks inhibit each other more-or-less
equally, resulting in the entire map being suppressed.

Eye  movements  and  salience  (Itti and  Koch,  2000)
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Eye  movements  and  salience    (Itti and  Koch,  2000)

L. Itti, C. Koch / Vision Research 40 (2000) 1489–15061496

Fig. 4. Example of the working of our model with a 512×384 pixels color image. Feature maps are extracted from the input image at several
spatial scales, and are combined into three separate conspicuity maps (intensity, color and orientation; see Fig. 1b) at scale 4 (32×24 pixels). The
three conspicuity maps that encode for saliency within these three domains are combined and fed into the single saliency map (also 32×24 pixels).
A neural winner-take-all network then successively selects, in order of decreasing saliency, the attended locations. Once a location has been
attended to for some brief interval, it is transiently suppressed in the saliency map by the inhibition of return mechanism (dark round areas). Note
how the inhibited locations recover over time (e.g. the first attended location has regained some activity at 274 ms), due to the integrative
properties of the saliency map. The radius of the focus of attention was 64 pixels.

to which the focus of attention should be directed next,
in order to allow for more detailed inspection by neu-
rons along the occipito-temporal pathway. To find the
most salient location, we have to determine the maxi-
mum of the saliency map.

This maximum is selected by application of a winner-
take-all algorithm. Different mechanisms have been
suggested for the implementation of neural winner-
take-all networks (Koch & Ullman, 1985; Yuille &
Grzywacz, 1989; in particular see Tsotsos, Culhane,
Wai, Lai, Davis & Nuflo, 1995 for a multi-scale version
of the winner-take-all network). In our model, we used
a two dimensional layer of integrate-and-fire neurons
with strong global inhibition in which the inhibitory
population is reliably activated by any neuron in the
layer (a more realistic implementation would consist of
populations of neurons; for simplicity, we model such
populations by a single neuron with very strong
synapses). When the first of these integrate-and-fire
cells fires (winner), it will generate a sequence of action
potentials, causing the focus of attention (FOA) to shift
to the winning location. These action potentials will
also activate the inhibitory population, which in turn
inhibits all cells in the layer, hence resetting the network
to its initial state.

In the absence of any further control mechanism, the
system described so far would direct its focus of atten-
tion, in the case of a static scene, constantly to one
location, since the same winner would always be se-

lected. To avoid this undesirable behavior, we follow
Koch and Ullman (1985) and introduce inhibitory feed-
back from the winner-take-all (WTA) array to the
saliency map. When a spike occurs in the WTA net-
work, the integrators in the saliency map transiently
receive additional input with the spatial structure of a
difference of Gaussians. The inhibitory center (with a
standard deviation of half the radius of the FOA) is at
the location of the winner; it and its neighbors become
inhibited in the saliency map. As a consequence, atten-
tion switches to the next-most conspicuous location
(Fig. 4). Such an ‘inhibition of return’ has been well
demonstrated for covert attentional shifts in humans
(Posner, Cohen & Rafal, 1982; Kwak & Egeth, 1992).
There is much less evidence for inhibition-of-return for
eye movements in either humans or trained monkeys
(Motter & Belky, 1998).

The function of the excitatory lobes (half width of
four times the radius of the FOA) is to favor locality in
the displacements of the focus of attention: If two
locations are of nearly equal conspicuity, the one clos-
est to the previous focus of attention will be attended
next. This implementation detail directly follows the
idea of ‘proximity preference’ proposed by Koch and
Ullman (1985).

The time constants, conductances, and firing
thresholds of the simulated neurons are chosen so that
the FOA jumps from one salient location to the next in
approximately 30–70 ms (simulated time; Saarinen &



Eye  movements:  not  only  salience  (Yarbus 1967)
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Free  examination



Eye  movements:  not  only  salience  (Yarbus 1967)



Eye  movements:  not  only  salience  (Yarbus 1967)

Remember  the  clothes  worn  by  people
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Eye  movements:  not  only  salience  (Yarbus 1967)

Give  the  ages  of  the  people



Eye  movements:  not  only  salience
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Surround  scene  statistics  and  
Divisive  normalization



• Spatial  context  plays  critical  role  in  object  grouping
and  recognition,  and  in  segmentation.  It  is key to  
everyday behavior; deficits have been implicated in  
neurological and developmental disorders and aging

• Poor  understanding  for  how  we  (and  our  cortical    
neurons)  process  complex,  natural  images

Motivation



Contextual  influences

??

• Cortical  visual  neurons   (V1)



Cortical Neurons
• Spatial context and natural scenes
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Cortical Neurons
• Spatial context and natural scenes
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Cortical Neurons

Can we capture data with
canonical divisive normalization?
(descriptive model)

• Spatial context and natural scenes



Divisive  normalization

• Descriptive  model  
• Canonical  computation  (Carandini,  Heeger,  Nature  Reviews  Neuro,  2012)
• Has  been  applied  to  visual  cortex,  as  well  as  other  systems  and
modalities,  multimodal  processing,  value  encoding,  etc
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Figure 2. Standard and flexible normalization models of surround suppression. (a) Schematic of the
standard normalization model. Visual input is first passed through linear filters representing the RF (top left)
and its surround (bottom left). Gray symbols denote the location of the center of each filter. The output of the
RF filters is divided by the filters representing the RF and surround. (b) Black symbols, MR for each pair of 
responses shown in Fig. 1a; orange and green symbols, MR derived from the standard and flexible models,
respectively, fit to the firing rates. In the flexible model, facilitation results when the surround stimulus provides
additional drive to the RF, but surround suppression is inferred off. (c) The flexible normalization model is
identical to the standard normalization except that the surround can be turned on and off, on an image-by-image
basis, depending on an inference about image homogeneity. (d) Proportion of images that were inferred
homogeneous (blue) vs. heterogeneous (red, stacked bars), for each neuron. (e) Mean cross-validated
prediction quality for the standard (orange) and flexible (green) models across neurons. Neurons are grouped
in tertile bins, based on the proportion of homogeneous images. Error bars indicate 68% c.i. 
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Cortical Neurons

V1 Data: Kohn lab
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• Can  we  explain  as  strategy  to  encode  natural  images  
optimally  based  on  expected  contextual  regularities?  

Data:  Adam  Kohn  lab
Coen-­Cagli,  Kohn,  Schwartz,  2015



• Experimental   data  on  cortical  responses   to  natural     
images  (standard  descriptive  model  can’t  explain)

• Computational   neural  model  that  captures  contextual
regularities   in  natural   images

• A  Interplay  of  modeling  with  biological  neural  and
psychology   data  (focus  on  natural   images  data)

Outline



Contextual  dependencies  across  space



Contextual  dependencies  across  space



Contextual  dependencies  across  space

Schwartz,  Simoncelli,   Nature  Neuroscience  2001



Generative  model  framework
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• Hypothesize  that  cortical  neurons  aim  to  reduce  statistical        
dependencies  (so  as  to  highlight  what  is  salient)  
Schwartz,  Simoncelli   2001  (for  salience:  Zhaoping   Li,  2002)

• Formally,  we  build  a  generative  model  of  the  dependencies  and
invert  the  model  (Bayesian  inference)  – richer  representation!
Andrews,  Mallows,  1974;;  Wainwright,   Simoncelli,   2000;;  Schwartz,  Sejnowski,  Dayan  2006

• Generating  the  dependencies  is  a  multiplicative  process  and
to  undo  the  dependencies  we  divide



Divisive normalization: richer model

Divisive normalization descriptive models have been
applied in many neural systems. Here we provide a
principled explanation. We will next show that it also
leads to a richer model based on image statistics
and makes predictions   



homogenous  image  patches

Center  and  surround
dependent

Non-­homogeneity  of  images

Schwartz,  Sejnowski,  Dayan,  2009;;  Coen-­Cagli,   Dayan,  Schwartz,  PLoS  Comp  Biology  2012



non-­homogenous  image  patches

Center  and  surround
independent

Non-­homogeneity  of  images

Schwartz,  Sejnowski,  Dayan,  2009;;  Coen-­Cagli,   Dayan,  Schwartz,  PLoS  Comp  Biology  2012



homogenous heterogeneous

Non-­homogeneity  of  images

Schwartz,  Sejnowski,  Dayan,  2009;;  Coen-­Cagli,   Dayan,  Schwartz,  PLoS  Comp  Biology  2012



divisive  
normalization  
ON

divisive  
normalization
OFF

Non-­homogeneity  of  images

Schwartz,  Sejnowski,  Dayan,  2009;;  Coen-­Cagli,   Dayan,  Schwartz,  PLoS  Comp  Biology  2012



Flexible  Divisive  Normalization

Divide Don’t divide
Model and experimental tests: Cagli, Kohn, Schwartz 2015

0

0



-­ 3x3  spatial  positions,  6px  separation
-­ 4  orientations  in  the  center
-­ 4  orientations  in  the  surround
-­ 2  phases  (quadrature)
-­ model  parameters  (prior  probability  for  dependent,  independent                      
and  also  linear  covariance  matrices)  optimized  to  
maximize  the  likelihood  of  a  database  of  natural  images
using  Expectation  Maximization

Model:  Optimizing  Image  Ensemble
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Coen-­Cagli,   Dayan,  Schwartz,  PLoS  Comp  Biology  2012;;
Schwartz,  Sejnowski,  Dayan,  2006



Model predictions for natural images

Coen-­Cagli,   Kohn,  Schwartz,  2015

• Homogeneous and  heterogeneous determined  by  model!  
• Expect  more  suppression  in  neurons  for  homogeneous
• Related  to  salience  (eg,  Zhaoping Li)



Model summary

Standard normalization

Flexible normalization
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Figure 2. Standard and flexible normalization models of surround suppression. (a) Schematic of the
standard normalization model. Visual input is first passed through linear filters representing the RF (top left)
and its surround (bottom left). Gray symbols denote the location of the center of each filter. The output of the
RF filters is divided by the filters representing the RF and surround. (b) Black symbols, MR for each pair of 
responses shown in Fig. 1a; orange and green symbols, MR derived from the standard and flexible models,
respectively, fit to the firing rates. In the flexible model, facilitation results when the surround stimulus provides
additional drive to the RF, but surround suppression is inferred off. (c) The flexible normalization model is
identical to the standard normalization except that the surround can be turned on and off, on an image-by-image
basis, depending on an inference about image homogeneity. (d) Proportion of images that were inferred
homogeneous (blue) vs. heterogeneous (red, stacked bars), for each neuron. (e) Mean cross-validated
prediction quality for the standard (orange) and flexible (green) models across neurons. Neurons are grouped
in tertile bins, based on the proportion of homogeneous images. Error bars indicate 68% c.i. 
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Cortical V1 data:
Model predictions for natural images

Coen-Cagli, Kohn, Schwartz, Nature Neuroscience, 2015
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Figure 5. Surround suppression strength depends on image homogeneity. (a) MR for heterogeneous
vs. homogeneous images. Each symbol represents the average MR of a neuron, for each image class. (b)
The ratio between MRs for the two image categories. Values larger than 1 correspond to neurons
suppressed more by homogeneous than heterogeneous images. Black bars, neurons with a ratio significantly
different from 1.



Natural scenes data
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Coen-Cagli, Kohn, Schwartz, Nature Neuroscience, 2015



Divisive  normalization:

• Feedback  inhibition
• Distal  dendrite  inhibition
• Depressing  synapses
• Internal  biochemical  adjustments
• Non-­Poisson  spike  generation

Model Mechanisms



Pyr SOM VIP

Surround  
suppression Gating

Input

Output

Normalization
Pool

Flexible  Normalization  Mechanism?

• Adjusting  gain  by  circuit  mechanisms?

• Distinct  classes  of  inhibitory  interneurons?  (eg,  Adesnik,
Scanziani et  al.  2012;;  Pfeffer,  Scanziani et  al.  2013;;  Pi,  Kepecs et  al.  2013;;
Lee,  Rudy  et  al.  2013)  



• New  approach  to  understanding  cortical  processing  of  natural  
images.  Rather  than  fitting  more  complicated  models,  use
insights  from  scene  statistics  

• Connects  to  neural  computations  that  are  ubiquitous,  but    
enriches  the  “standard”  model

• Our  results  suggest  flexibility  of  contextual  influences  in  natural
vision,  depending  on  whether  center  and  surround  are  deemed  
statistically  homogeneous

Key  take-­home  points  



Deep  learning:  normalization

Normalization has been shown to sometimes
improve object recognition in deep neural networks

• Local normalization in Alexnet, 2012 

• Other recent normalizations include: batch 
normalization in Ioffe and Szegedy, 2015;
layer normalization in Ba et al., 2016

• More restricted than some of the normalizations
used in cortical modeling

• But face some similar questions: How to choose
what unit activations to normalize by


