
Least Squares Optimization

The following is a brief review of least squares optimization and constrained optimization
techniques. Broadly, these techniques can be used in data analysis and visualization to exam-
ine the relationships between variables.

Least squares (LS) problems are optimization problems in which the objective (error) function
may be expressed as a sum of squares. Such problems have a natural relationship to distances
in Euclidean geometry, and the solutions may be computed analytically using the tools of
linear algebra. They also have a statistical interpretation, which is not covered here.

We assume the reader is familiar with basic linear algebra, including the Singular Value de-
composition (as reviewed in the handout Geometric Review of Linear Algebra,
http://www.cns.nyu.edu/∼eero/NOTES/geomLinAlg.pdf ).

1 Regression

Least Squares regression is a form of optimization problem. Suppose you have a set of mea-
surements, yn (the “dependent” variable) gathered for different parameter values, xn (the “in-
dependent” or “explanatory” variable). Suppose we believe the measurements are propor-
tional to the parameter values, subject to some (random) measurement errors, εn:

yn = pxn + εn

for some unknown slope p. The LS regression problem is to find the value of p minimizing
the sum of squared errors:

min
p

N∑

n=1

(yn − pxn)
2

Stated graphically, If we plot the measurements as a function of the explanatory variable val-
ues, we are seeking the slope of the line through the origin that best fits the measurements.
We can rewrite the error expression in vector form by collecting the y′ns and x′ns in to column
vectors (�y and �x, respectively):

min
p

||�y − p�x||2

or, expressing the squared vector length as an inner product:

min
p

(�y − p�x)T (�y − p�x)

We’ll consider three different ways of obtaining the solution. The traditional approach is to
use calculus. If we set the derivative of the error expression with respect to p equal to zero and
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solve for p, we obtain an optimal value of

popt =
�yT�x

�xT�x
.

We can verify that this is a minimum (and not a maximum or saddle point) by noting that the
error is a quadratic function of p, and that the coefficient of the squared term must be positive
since it is equal to a sum of squared values [verify].

A second method of obtaining the solution
comes from considering the geometry of the
problem in the N -dimensional space of the
data vector. We seek a scale factor, p, such
that the scaled vector p�x is as close as possi-
ble to �y. From basic linear algebra, we know
that the closest scaled vector should be the
projection of �y onto the line in the direction
of �x (as seen in the figure). Defining the unit
vector x̂ = �x/||�x||, we can express this as:

popt�x = (�yT x̂)x̂ =
�yT�x

||�x||2 �x

which yields the same solution that we ob-
tained using calculus [verify].

y

x
p x

A third method of obtaining the solu-
tion comes from the so-called orthogonality
principle.. In general, the error vector can
be decomposed into a portion perpendicular
to �x and a portion parallel to �x, and the total
squared error is the sum of the vector lengths
(norms) of these two portions. The value of p
does not affect the former, but can always be
adjusted to eliminate the latter, thereby min-
imizing the squared error. Thus, the optimal
value of p should ensure that the error vec-
tor is perpendicular to �x, which can be ex-
pressed directly using linear algebra:

�xT (�y − popt�x) = 0.

Solving for popt gives the same result as
above.

y

x

px-y
error
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Generalization: Multiple explanatory variables

Often we want to fit data with more than one explanatory variable. For example, suppose we
believe our data are proportional to a set of known x′ns plus a constant (i.e., we want to fit the
data with a line that does not go through the origin). Or we believe the data are best fit by a
third-order polynomial (i.e., a sum of powers of the xn’s, with exponents from 0 to 3). These
situations may also be handled using LS regression as long as (a) the thing we are fitting to the
data is a weighted sum of known explanatory variables, and (b) the error is expressed as a sum
of squared errors.

Suppose, as in the previous section, we have an N -dimensional data vector, �y. Suppose there
are M explanatory variables, and the mth variable is defined by a vector, �xm, whose elements
are the values meant to explain each corresponding element of the data vector. We are looking
for weights, pm, so that the weighted sum of the explanatory variables approximates the data.
That is,

∑
m pm�xm should be close to �y. We can express the squared error as:

min
{pm}

||�y −
∑

m

pm�xm||2

If we form a matrix X whose M columns contain the explanatory vectors, we can write this
error more compactly as

min
�p

||�y −X�p||2

For example, if we wanted to include an additive constant (an intercept) in the simple least
squares problem shown in the previous section, X would contain a column with the original
exaplanatory variables (xn) and another column containing all ones.

Geometrically, we are looking for a vector
that lies in the subspace spanned by the
columns of X, that is as close as possible to
the data vector �y. This is illustrated to the
right for the case of two explanatory vari-
ables (2 columns of X).

As before there are three ways to obtain the solution: using (vector) calculus, using the ge-
ometry of projection, or using the orthogonality principle. The orthogonality method is the
simplest to understand: The error vector should be perpendicular to all of the explanatory
vectors. This may be expressed directly in terms of the matrix X:

XT · (�y −X�p) = 0

Solving for �p gives:
�popt = (XTX)−1XT �y

Here, we’re assuming the square matrix XTX is invertible.
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This solution is a bit hard to understand in general, but some intuition comes from considering
the case where the columns of the explanatory matrix X are orthogonal to each other. In this
case, the matrix XTX will be diagonal, and the mth diagonal element will be the squared
norm of the corresponding explanatory vector, ||�xm||2. The inverse of this matrix will also
be diagonal, with diagonal elements 1/||�xm||2. The product of this inverse matrix with XT is
thus a matrix whose rows contain the original explanatory variables, each divided by its own
squared norm. And finally, each element of the solution, �popt, is the inner product of the data
vector with the corresponding explanatory variable, divided by its squared norm. Note that
this is exactly the same as the solution we obtained for the single-variable problem described
above: each �xm is rescaled to explain the part of �y that lies along its own direction, and the
solution for each explanatory variable is not affected by the others.

In the more general situation that the columns of X are not orthogonal, the solution is best un-
derstood by rewriting the explanatory matrix using the singular value decomposition (SVD),
X = USV T , (where U and V are orthogonal, and S is diagonal). The optimization problem is
now written as

min
�p

||�y − USV T �p||2

We can express the error vector in a more useful coordinate system by multipying it by the
matrix UT (note that this matrix is orthogonal and won’t change the vector length, and thus
will not change the value of the error function):

||�y − USV T �p||2 = ||UT (�y − USV T �p)||2 = ||UT�y − SV T �p||2

where we’ve used the fact that UT is the inverse of U (since U is orthogonal).

Now we can define a modified version of the data vector, �y ∗ = UT�y, and a modified version
of the parameter vector �p ∗ = V T �p. Since this new parameter vector is related to the original
by an orthogonal transformation, we can rewrite our error function and solve the modified
problem:

min
�p ∗ ||�y ∗ − S�p ∗||2

Why is this easier? The matrix S is diagonal, and has M columns. So the mth element of the
vector S�p ∗ is of the form Smmp∗m, for the first M elements. The remaining N − M elements
are zero. The total error is the sum of squared differences between the elements of �y and the
elements of S�p ∗, which we can write out as

E(�p ∗) = ||�y ∗ − S�p ∗||2

=
M∑

m=1

(y∗m − Smmp∗m)2 +
N∑

m=M+1

(y∗m)2

Each term of the first sum can be set to zero (its minimum value) by choosing p∗m = ym/Smm.
But the terms in the second sum are unaffected by the choice of �p ∗, and thus cannot be elimi-
nated. That is, the sum of the squared values of the last N −M elements of �y ∗ is equal to the
minimal value of the error.

We can write the solution in matrix form as

�p ∗
opt = S#�y ∗
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where S# is a diagonal matrix whose mth diagonal element is 1/Smm. Note that S# has to
have the same shape as ST for the equation to make sense. Finally, we must transform our
solution back to the original parameter space:

�popt = V �p ∗
opt = V S#�y ∗ = V S#UT�y

You should be able to verify that this is equivalent to the solution we obtained using the or-
thogonality principle – (XTX)−1XT �y – by substuting the SVD into the expression.

Generalization: Weighting

Sometimes, the data come with additional information about which points are more reliable.
For example, different data points may correspond to averages of different numbers of experi-
mental trials. The regression formulation is easily augmented to include weighting of the data
points. Form an N ×N diagonal matrix W with the appropriate error weights in the diagonal
entries. Then the problem becomes:

min
�p

||W (�y −X�p)||2

and, using the same methods as described above, the solution is

�popt = (XTW TWX)−1XTW TW �y
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Generalization: Robustness

A common problem with LS regression is
non-robustness to outliers. In particular, if
you have one extremely bad data point, it
will have a strong influence on the solution.
A simple remedy is to iteratively discard the
worst-fitting data point, and re-compute the
LS fit to the remaining data. This can be done
iteratively, until the error stabilizes.

outlier

Alternatively one can consider the use of a
so-called “robust error metric” d(·) in place
of the squared error:

min
�p

∑

n

d(yn −Xn�p).

For example, a common choice is the
“Lorentzian” function:

d(en) = log(1 + (en/σ)
2),

plotted at the right along with the squared
error function. Note that this function gives
smaller penalty to large errors.

x2

log(1+x2)

Use of such a function will, in general, mean that we can no longer get an analytic solution to
the problem. In most cases, we’ll have to use a numerical algorithm (e.g., gradient descent) to
search the parameter space for a minimum. We may not find a minimum, or we may get stuck
in a local minimum.

2 Total Least Squares (Orthogonal) Regression

In classical least-squares regression, as described in section 1, errors are defined as the squared
distance between the data (dependent variable) values and a weighted combination of the
independent variables. Sometimes, each measurement is a vector of values, and the goal is
to fit a line (or other surface) to a “cloud” of such data points. In this case, there is no clear
distinction between “dependent” and “independent” variables, and it makes more sense to
measure errors as the squared perpendicular distance to the line.

Suppose one wants to fit N -dimensional data with a subspace (line/plane/hyperplane) of di-
mensionality N − 1. The space is conveniently defined as containing all vectors perpendicular
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to a unit vector û, and the optimization problem may thus be expressed as:

min
�u

||M�u||2, s.t. ||�u||2 = 1,

where M is a matrix containing the data vectors in its rows.

Performing a Singular Value Decomposition (SVD) on the matrix M allows us to find the
solution more easily. In particular, let M = USV T , with U and V orthogonal, and S diagonal
with positive decreasing elements. Then

||M�u||2 = �uTMTM�u

= �uTV STUTUSV T�u

= �uTV STSV T�u

Since V is an orthogonal matrix, we can modify the minimization problem by substituting the
vector �v = V T�u, which has the same length as �u:

min
�v

�vTSTS�v, s.t. ||�v|| = 1.

The matrix STS is square and diagonal, with diagonal entries s2n. Because of this, the expres-
sion being minimized is a weighted sum of the components of �v which must be greater than
the square of the smallest (last) singular value, sN :

�vTSTS�v =
∑

n

s2nv
2
n

≥
∑

n

s2Nv2n

= s2N
∑

n

v2n

= s2N ||�v||2
= s2N .

where we have used the constraint that �v is a unit vector in the last step. Furthermore, the
expression becomes an equality when �vopt = êN = [0 0 · · · 0 1]T , the unit vector associated
with the N th axis [verify].

We can transform this solution back to the original coordinate system to get a solution for �u:

�uopt = V �vopt

= V êN

= �vN ,

which is the N th column of the matrix V . In summary, the minimum value of the expression
occurs when we set �v equal to the column of V associated with the minimal singular value.

Suppose we wanted to fit the data with a line/plane/hyperplane of dimension N − 2? We
could first find the direction along which the data vary least, project the data into the remain-
ing (N − 1)-dimensional space, and then repeat the process. But because V is an orthogonal
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matrix, the secondary solution will be the second column of V (i.e., the column associated
with the second-largest singular value). In general, the columns of V provide a basis for the
data space, in which the axes are ordered according to the sum of squares along each of their
directions. We can solve for a vector subspace of any desired dimensionality that best fits the
data (see next section).

The total least squares problem may also be formulated as a pure (unconstrained) optimization
problem using a form known as the Rayleigh Quotient:

min
�u

||M�u||2
||�u||2 .

The length of the vector �u doesn’t change the value of the fraction, but by convention, one
typically solves for a unit vector. As above, this fraction takes on values in the range [s2N , s21],
and is equal to the minimum value when �u is set equal to the last column of the matrix V .

Relationship to Eigenvector Analysis

The Total Least Squares and Principal Components problems are often stated in terms of eigen-
vectors. The eigenvectors of a square matrix, A, are a set of vectors that the matrix re-scales:

A�v = λ�v.

The scalar λ is known as the eigenvalue associated with �v. A beautiful result known as the
“Spectral Factorization Theorem” says that any symmetric real matrix can be factorized as:

A = V ΛV T ,

where V is a matrix whose columns are a set of orthonormal eigenvectors of A, and Λ is a
diagonal matrix containing the associated eigenvalues. This looks similar in form to the SVD,
but it is not as general: A must be square and symmetric, and the first and last orthogonal
matrices are transposes of each other.

The problems we’ve been considering can be restated in terms of eigenvectors by noting a
simple relationship between the SVD of M and the eigenvector decomposition of MTM . The
total least squares problems all involve minimizing expressions

||M�v||2 = �vTMTM�v

Substituting the SVD (M = USV T ) gives:

�vTV STUTUSV T�v = �v(V STSV T�v)

Consider the parenthesized expression. When �v = �vn, the nth column of V , this becomes

MTM �vn = (V STSV T ) �vn = V s2n�en = s2n�vn,

where �en is the nth standard basis vector. That is, the �vn are eigenvectors of (MTM), with
associated eigenvalues λn = s2n. Thus, we can either solve total least squares problems by
seeking the eigenvectors and eigenvalues of the symmetric matrix MTM , or through the SVD
of of the data matrix M .
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3 Fisher’s Linear Discriminant

Suppose we have two sets of data gathered under different conditions, and we want to identify
the characteristics that differentiate these two sets. More generally, we want to find a classifier
function, that takes a point in the data space and computes a binary value indicating the set
to which that point most likely belongs. The most basic form of classifier is a linear classifier,
that operates by projecting the data onto a line and then making the binary classification deci-
sion by comparing the projected value to a threshold. This problem may be expressed as a LS
optimization problem (the formulation is due to Fisher (1936)).

We seek a vector �u such that the projection
of the data sets maximizes the discriminabil-
ity of the two sets. Intuitively, we’d like to
maximize the distance between the two data
sets. But a moment’s thought should con-
vince you that the distance should be con-
sidered relative to the variability within the
two data sets. Thus, an appropriate expres-
sion to maximize is the ratio of the squared
distance between the means of the classes
and the sum of the within-class squared dis-
tances:

max
�u

[�uT (ā− b̄)]2

1
M

∑
m[�uT�a′m]2 + 1

N

∑
n[�u

T�b′n]2

where {�am, 1 ≤ m ≤ M} and {�bn, 1 ≤ n ≤
N} are the two data sets, ā, b̄ represent the
averages (centroids) of each data set, and
�a′m = �am − ā and�b′n = �bn − b̄.

data1

data2

histogram of projected values

data1 data2

discriminant

Rewriting in matrix form gives:

max
�u

�uT [(ā− b̄)(ā− b̄)T ]�u

�uT [A
TA
M + BTB

N ]�u

where A and B are matrices containing the �a′m and �b′n as their rows. This is now a quotient
of quadratic forms, and we transform to a standard Rayleigh Quotient by finding the eigen-
vector matrix associated with the denominator1. In particular, since the denominator matrix
is symmetric, it may be factorized as follows

[
ATA

M
+

BTB

N
] = V D2V T

where V is orthogonal and contains the eigenvectors of the matrix on the left hand side, and
D is diagonal and contains the square roots of the associated eigenvalues. Assuming the

1It can also be solved directly as a generalized eigenvector problem.
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eigenvalues are nonzero, we define a new vector relate to �u by an invertible transformation:
�v = DV T�u. Then the optimization problem becomes:

max
�v

�vT [D−1V T (ā− b̄)(ā− b̄)TV D−1]�v

�vT�v

The optimal solution for �v is simply the eigenvector of the numerator matrix with the largest
associated eigenvalue.2 This may then be transformed back to obtain a solution for the optimal
�u.

To emphasize the power of this approach,
consider the example shown to the right. On
the left are the two data sets, along with the
first Principal Component of the full data set.
Below this are the histograms for the two
data sets, as projected onto this first compo-
nent. On the right are the same two data
sets, plotted with Fisher’s Linear Discrimi-
nant. The bottom right plot makes it clear
this provides a much better separation of the
two data sets (i.e., the two distributions in
the bottom right plot have far less overlap
than in the bottom left plot).

PCA Fisher

2In fact, the rank of the numerator matrix is 1 and a solution can be seen by inspection to be �v = D−1V T (ā− b̄).
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