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Summary

- We’ve considered bottom-up scene statistics, efficient
coding, and relation of linear transforms to visual filters 

- This class: going beyond learning V1 like linear
filters
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Beyond linear

• Filter responses as independent
as possible assuming a linear transform

• But are they independent?
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Bottom-up Joint Statistics
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Are    and    statistically independent?
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and    are not statistically independent
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Bottom-up Statistics
Filter pair and different image patches…
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Bottom-up Statistics
Image patch and different filter pairs…
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Modeling filter coordination
Modeling filter coordination in images 

• Learning how more complex representations
build up from the structure of dependencies in 
images 

• Reducing dependencies further via nonlinear: 
divisive normalization
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Modeling filter coordination in images 

What kind of complex representations?

Modeling filter coordination
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Modeling filter coordination in images 

What kind of complex representations?

1. In V1, eg complex cells
2. Higher visual areas

Modeling filter coordination
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Modeling filter coordination in images 

First what we know; then learning 
from dependencies in images

Modeling filter coordination
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More complex representations
In primary visual cortex (capturing an invariance)
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Beyond Primary Visual Cortex
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RF size increases at higher levels

Principle 1: Receptive field size increases at higher levels
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Beyond Primary Visual Cortex
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More complex representations
Example of V2 neurophysiology

Ito and Komatsu, 2005
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More complex representations
Example of V2 neurophysiology

Ito and Komatsu, 2005
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Beyond Primary Visual Cortex
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More complex representations
Example of V4 neurophysiologyV4 responses: Tuning for form of intermediate complexity
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Beyond Primary Visual Cortex
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More complex representations



25

More complex representations

Quiroga et al. (2005) Nature 435: 1102
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Building selective and tolerant representations

From Adam Kohn
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Reisenhuber and Poggio

Selectivity and tolerance increase 
at higher levels
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More complex representations

What about learning from
natural images beyond V1 
like filters ?
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Extensions to ICA

• from Hyvarinen and Hoyer; relax independence  
assumption; nearby units no longer independent; but 
different neighborhoods independent of one another…
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Extensions to ICA

• Hyvarinen and Hoyer
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• Hyvarinen book: shown smaller group of
dependent filters 

Extensions to ICA
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Complex cell

Relates to complex cells and invariances…
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Hierarchical ICA

Karklin & Lewicki, 2003; 2005: higher order units are
a linear combination of lower order units; learning 
patterns of dependencies
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Hierarchical ICA

• Everything we have seen thus far: Unsupervised 
Learning

• There is no supervision about what object is in
the image (eg, car versus tree)
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Deep networks in machine learning

Figure from Honglak Lee, NIPS 2010 workshop 
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Deep networks in machine learning

Figure from Honglak Lee, NIPS 2010 workshop 

• Desirable for representing/learning
multiple levels of visual processing
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applications such as visual recognition
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Deep networks in machine learning

Figure from Honglak Lee, NIPS 2010 workshop 

• Desirable for representing/learning
multiple levels of visual processing

• Desirable for machine learning
applications such as visual recognition

• More recently: interplay between
deep learning in machine learning,
and neuroscience
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Deep networks

Figures from Honglak Lee, NIPS 2010; Arnold et al. 2011
However: Training a deep network is difficult
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Deep networks

Figure from Arnold et al., 2011; concept in
Hinton et al. 2006

Solution: It helps to do unsupervised learning one
layer at a time, and then to fine tune with supervision
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Deep networks
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Deep networks

Figure from Arnold et al., 2011; concept in
Hinton et al. 2006

Solution: It helps to do unsupervised learning one
layer at a time, and then to fine tune with supervision
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Deep networks: example
unsupervised

Lee, Ekanadham, NG, 2007:
• 2-layer unsupervised network with Sparsity
constraint; First layer (what happens without 
sparsity?)
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Lee, Ekanadham, NG, 2007:
• 2-layer unsupervised network with 
Sparsity constraint; V2-like structure

Deep networks: example
unsupervised
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Deep networks: supervised more
layers

Zeiler, Fergus 2014

824 M.D. Zeiler and R. Fergus

Layer 2

Layer 1

Layer 3

Layer 4 Layer 5

Fig. 2. Visualization of features in a fully trained model. For layers 2-5 we show the top
9 activations in a random subset of feature maps across the validation data, projected
down to pixel space using our deconvolutional network approach. Our reconstructions
are not samples from the model: they are reconstructed patterns from the validation set
that cause high activations in a given feature map. For each feature map we also show
the corresponding image patches. Note: (i) the the strong grouping within each feature
map, (ii) greater invariance at higher layers and (iii) exaggeration of discriminative
parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in
electronic form. The compression artifacts are a consequence of the 30Mb submission
limit, not the reconstruction algorithm itself.
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49

Deep networks: nonlinearities

The importance of nonlinearities (From Lee NIPS
2010 workshop; Jarrett, LeCun et al. 2009)
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Deep networks: nonlinearities

The importance of nonlinearities (From Lee NIPS
2010 workshop; Jarrett, LeCun et al. 2009)
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Deep networks: nonlinearities

The importance of nonlinearities (Jarrett, 
LeCun et al. 2009)
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Generative Model (nonlinear)
Modeling filter coordination in images 

• Learning how more complex representations
build up from the structure of images 

• Next: Reducing dependencies further via 
divisive normalization


