Scene Statistics Part 2

Odelia Schwartz 2016

Summary

- We've considered bottom-up scene statistics, efficient coding, and relation of linear transforms to visual filters
- This class: going beyond learning V1 like linear filters

Beyond linear

- Filter responses as independent as possible assuming a linear transform
- But are they independent?

Are *X*₁ and *X*₂ statistically independent?

7

Schwartz and Simoncelli, 2001

8

Bottom-up Statistics

Filter pair and different image patches... $0 \longrightarrow X_1$

 $0 \longrightarrow X_2$

Bottom-up Statistics

Image patch and different filter pairs...

Modeling filter coordination in images

- Learning how more complex representations build up from the structure of dependencies in images
- Reducing dependencies further via nonlinear: divisive normalization

Modeling filter coordination in images

What kind of complex representations?

Modeling filter coordination in images

What kind of complex representations?

In V1, eg complex cells
Higher visual areas

Modeling filter coordination in images

First what we know; then learning from dependencies in images

More complex representations

In primary visual cortex (capturing an invariance)

Beyond Primary Visual Cortex

RF size increases at higher levels

Beyond Primary Visual Cortex

More complex representations

Example of V2 neurophysiology

Ito and Komatsu, 2005

More complex representations

Example of V2 neurophysiology

Ito and Komatsu, 2005

Beyond Primary Visual Cortex

More complex representations

Example of V4 neurophysiology

22

Beyond Primary Visual Cortex

More complex representations

More complex representations

Building selective and tolerant representations

Selectivity and tolerance increase at higher levels

Reisenhuber and Poggio

27

More complex representations

What about learning from natural images beyond V1 like filters ?

Extensions to ICA neighbourhood of S, depender

independent

- from Hyvarinen and Hoyer; relax independence assumption; nearby units no longer independent; but different peicebooks independent of one another
- ²⁹ different neighborhoods independent of one another...

Extensions to ICA

Hyvarinen and Hoyer

Extensions to ICA

31

 Hyvarinen book: shown smaller group of dependent filters

Complex cell

Adelson & Bergen (1985)

Relates to complex cells and invariances...

Hierarchical ICA

Karklin & Lewicki, 2003; 2005: higher order units are a linear combination of lower order units; learning patterns of dependencies

Hierarchical ICA

- Everything we have seen thus far: Unsupervised Learning
- There is no supervision about what object is in the image (eg, car versus tree)

Feature representation

³⁵ Figure from Honglak Lee, NIPS 2010 workshop

Feature representation

- 3rd layer "Objects"
- Desirable for representing/learning multiple levels of visual processing
 "Object parts"
- 1st layer "Edges"
- Pixels

³⁶ Figure from Honglak Lee, NIPS 2010 workshop

Feature representation

- 3rd layer "Objects"
- Desira 2nd layer multip
- "Object parts"
- Desirable for representing/learning multiple levels of visual processing
 - Desirable for machine learning applications such as visual recognition
- 1st layer "Edges"
- Pixels

³⁷ Figure from Honglak Lee, NIPS 2010 workshop

Feature representation

38

3rd layer "Objects"

2nd layer

- Desirable for representing/learning multiple levels of visual processing
- "Object parts"
 - Desirable for machine learning applications such as visual recognition

```
1st layer
```

"Edges"

Pixels

 More recently: interplay between deep learning in machine learning, and neuroscience

Figure from Honglak Lee, NIPS 2010 workshop

Feature representation

However: Training a deep network is difficult Figures from Honglak Lee, NIPS 2010; Arnold et al. 2011

Solution: It helps to do unsupervised learning one layer at a time, and then to fine tune with supervision

Figure from Arnold et al., 2011; concept in Hinton et al. 2006

Solution: It helps to do unsupervised learning one layer at a time, and then to fine tune with supervision

Figure from Arnold et al., 2011; concept in Hinton et al. 2006

Solution: It helps to do unsupervised learning one layer at a time, and then to fine tune with supervision

Figure from Arnold et al., 2011; concept in Hinton et al. 2006

Deep networks: example unsupervised

Lee, Ekanadham, NG, 2007:

 2-layer unsupervised network with Sparsity constraint; First layer (what happens without sparsity?)

43

Deep networks: example unsupervised

Lee, Ekanadham, NG, 2007:

44

- 2-layer unsupervised network with
- Sparsity constraint; V2-like structure

Deep networks: supervised more

layers

⁴⁵ Zeiler, Fergus 2014

Deep networks: supervised more layers

⁴⁶ Zeiler, Fergus 2014

Deep networks: supervised more layers

Deep networks: supervised more

layers

⁴⁸ Zeiler, Fergus 2014

Deep networks: nonlinearities

The importance of nonlinearities (From Lee NIPS 2010 workshop; Jarrett, LeCun et al. 2009)

49

Deep networks: nonlinearities

The importance of nonlinearities (From Lee NIPS 2010 workshop; Jarrett, LeCun et al. 2009)

Deep networks: nonlinearities

The importance of nonlinearities (Jarrett, LeCun et al. 2009)

5 I

Generative Model (nonlinear)

Modeling filter coordination in images

- Learning how more complex representations build up from the structure of images
- Next: Reducing dependencies further via divisive normalization