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Another  active  field  that  combines  computation,
machine  learning,  neurophysiology,  fMRI
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Modern  terminology

• Stimuli

• Rewards

• Expectations  of  reward:  behavior  is  learned  
based  on  expectations  of  reward

• Can  learn  based  on  consequences  of  actions  
(instrumental  conditioning);;  can  learn  whole  
sequence  of  actions  (example:  maze)



Rescorla-Wagner  rule  (1972)

• Can  describe  classical  conditioning  and  
range  of  related  effects

• Based  on  simple  linear  prediction  of  reward  
associated  with  a  stimulus  (error  based  
learning)

• Includes  weight  updating  as  in  the  perceptron  
rule  we  did  in  lab,  but  we  learn  from  error  in  
predicting  reward



Rescorla-Wagner  rule  (1972)

• Minimize  difference  between  received  reward  
and  predicted  reward

• Binary  variable  u  (1  if  stimulus  is  present;;  0  if  
absent)

• Predicted  reward  v

• Linear  weight  w

• If  stimulus  u  is  present:
v = wu

v = w
based  on  Dayan  and  Abbott  book



Rescorla-Wagner  rule  (1972)
• Minimize  squared  error  between  received  
reward  r  and  predicted  reward  v:

(r − v)2

based  on  Dayan  and  Abbott  book



Rescorla-Wagner  rule  (1972)
• Minimize  squared  error  between  received  
reward  r  and  predicted  reward  v:

(r − v)2potentially use this knowledge to maximize the likeli-
hood of rewards and to minimize the occurrence of
punishments.

The most intuitive way to learn to predict future reward
and punishments is via error correction. The principle here
is simple: make the best prediction you can, observe actual
events and if your prediction was wrong, update your
knowledge-base so that future predictions are more accu-
rate. This is the basis of the extremely influential Rescorla-
Wagner [10] model of classical conditioning. For example,
imagine trying to predict how good a bottle of wine will be.
Opening a bottle of Bordeaux that has been aging in your
cellar, you are delighted with its sophisticated flavor.
Though you might have hoped for this, you were, presum-
ably, less than 100% certain that the wine had not passed
its prime. As a result, there is a difference between your
prediction – say, 70% chance of a good bottle of wine – and
reality. This error can be used to make your prediction
more accurate in the future. Of course not all Bordeaux are
alike, so rather than update your prediction to match
exactly the current situation – 100% – you might update
your prediction to some other probability, say 85%, reflec-
tive of the higher likelihood of a good 10-year-old Bordeaux.
Through this trial-and-error process of adjustment, over
many bottles of wine, you will eventually learn the correct
expected reward derived from different types and ages of
wine.

The key computational quantity that drives learning in
this example is the discrepancy between predictions and
outcomes, that is, the prediction error. Rescorla and
Wagner used this quantity in formulating their learning
rule [Equation 1]:

Vnew ¼ Vold þ hðoutcome$ predictionÞ

¼ Vold þ hðR$ VoldÞ

Here, R is a scalar quantity denoting the goodness of the
outcome (a pellet of food or a bottle of wine) and V is the
prediction associated with the observed stimulus (a tone
that precedes food or the label on the wine bottle), again in
units of predicted goodness, derived from past experience
with that stimulus. Rescorla and Wagner stipulated that
the overall prediction in a certain situation is the sum of all
the predictions from all available stimuli

P
stimuli V

stim
old .

In the idealized world of Rescorla and Wagner, the
update rule above is applied at the end of each condition-
ing trial, to all stimuli present in that trial. The learning
rate parameter 0< h &1 determines just how much each
specific experience affects the prediction for the future.
High learning rates mean that new experience is weighed
heavily in the future prediction (thus, learning from new
experience is faster, but forgetting the more distant past
also is faster), and low learning rates mean that much
experience needs to accumulate to profoundly affect pre-
dictions.

This simple but powerful learning rule is, perhaps, the
most influential model of conditioning to date, successfully
explaining phenomena such as blocking [11], overshadow-
ing [12] and conditioned inhibition [13,14] and predicting
others not known at the time, such as overexpectation
[15,16].

Q2: Reinforcement learning models of the dopamine
system have been associated with a slightly different
concept – a temporal difference prediction error. How is
this different from the Rescorla-Wagner prediction
error?
Ideas about temporal difference (TD) learning and TD
prediction errors stem from a line of research on reinforce-
ment learning within the fields of control theory and
computer science that was largely motivated by data from
classical conditioning (e.g. [17]; see [18] for a comprehen-
sive treatment and [19] for a detailed review). TD learning
takes into account that life is not naturally divisible into
discrete trials but, rather, consists of a continuous flow of
experience. Within this flow, predictive stimuli and
rewarding outcomes occur at different points in time,
and the goal, at each point in time, is to predict all future
outcomes given current and previous stimuli.

To see how this ambitious goal can be achieved, let’s
start by defining the prediction based on the stimulus at
time t (also called the ‘value’ of this stimulus) as the
expected sum of future outcomes:

predictionðtÞ ¼
¼E½outcomeðtþ 1Þþoutcomeðtþ2Þ þ outcomeðtþ 3Þ þ . . .(
¼E½outcomeðtþ1Þ(þE½outcomeðtþ2Þ(þE½outcomeðtþ3Þ(. . .

Of course we can say the same for the prediction based on
the stimulus at time t + 1:

predictionðtþ 1Þ ¼ E½outcomeðtþ 2Þ( þ E½outcomeðtþ 3Þ(

þ . . .

It then follows directly that:

predictionðtÞ ¼ E½outcomeðtþ 1Þ( þ predictionðtþ 1Þ;

meaning that if our predictions are correct, the prediction
based on the stimulus at time t should equal to the sum of
two quantities: (i) the expected immediate reward one
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Rescorla-Wagner  rule  (1972)

• Minimize  squared  error  between  received  
reward  r  and  predicted  reward  v:

(average  over  presentations  of  stimulus  and  
reward)

• Update  weight:

learning  rate

(r − v)2

w→w+ε(r − v)u
ε

Also  known  as  delta  learning  rule: δ = r − v



• Update  weight:

• Simpler  notation:  if  a  stimulus  is  presented  at  
trial  n  (we’ll  just  take  u  as  1  and  set  v  to  w):

w→w+ε(r − v)u

based  on  Dayan  and  Abbott  book

!"#$ = !" + '()" − !")



• So  if  a  stimulus  is  presented  at  trial  n:

• What  happens  when  learning  rate  =  1?

• What  happens  when  it  is  smaller  than  1?

!"#$ = !" + '()" − !")



From  Dayan  and  Abbott  book

Acquisition  and  extinction

• Solid:  First  100  trials:  reward  (r=1)  paired  with  
stimulus;;  next  100  trials  no  reward  (r=0)  
paired  with  stimulus  (learning  rate  .05)

• Dashed:  Reward  paired  with  stimulus  
randomly  50  percent  of  time



From  Dayan  and  Abbott  book

Acquisition  and  extinction

• Curves  show  w  over  time
• What  is  the  predicted  reward  v  and  the  error  
(r-v)?



Dopamine  areas

Dorsal  Striatum  (Caudate,  Putamen)  

Amygdala

(Ventral  Striatum)

Prefrontal  Cortex

VentralTegmental
Area

Substantia Nigra

From  Dayan  slides



Dopamine  roles?



Associated  with…

• reward  (we’ll  see  prediction  error)
• self-stimulation
• motor  control  (initiation)
• addiction

Dopamine  roles?



Schultz,  Dayan,  Montague,  1997

VTA  Activity  of  dopaminergic  neurons

Information Encoded in
Dopaminergic Activity

Dopamine neurons of the ventral tegmental
area (VTA) and substantia nigra have long
been identified with the processing of re-
warding stimuli. These neurons send their
axons to brain structures involved in moti-
vation and goal-directed behavior, for ex-
ample, the striatum, nucleus accumbens,
and frontal cortex. Multiple lines of evi-
dence support the idea that these neurons
construct and distribute information about
rewarding events.

First, drugs like amphetamine and co-
caine exert their addictive actions in part by
prolonging the influence of dopamine on
target neurons (14). Second, neural path-
ways associated with dopamine neurons are
among the best targets for electrical self-
stimulation. In these experiments, rats press
bars to excite neurons at the site of an im-
planted electrode (15). The rats often
choose these apparently rewarding stimuli
over food and sex. Third, animals treated
with dopamine receptor blockers learn less
rapidly to press a bar for a reward pellet (16).
All the above results generally implicate
midbrain dopaminergic activity in reward-
dependent learning. More precise informa-
tion about the role played by midbrain do-
paminergic activity derives from experiments
in which activity of single dopamine neurons
is recorded in alert monkeys while they per-
form behavioral acts and receive rewards.

In these latter experiments (17), dopa-
mine neurons respond with short, phasic
activations when monkeys are presented
with various appetitive stimuli. For exam-
ple, dopamine neurons are activated when
animals touch a small morsel of apple or
receive a small quantity of fruit juice to the
mouth as liquid reward (Fig. 1). These pha-
sic activations do not, however, discrimi-
nate between these different types of re-
warding stimuli. Aversive stimuli like air
puffs to the hand or drops of saline to the
mouth do not cause these same transient
activations. Dopamine neurons are also ac-
tivated by novel stimuli that elicit orienting
reactions; however, for most stimuli, this
activation lasts for only a few presentations.
The responses of these neurons are relative-
ly homogeneous—different neurons re-
spond in the same manner and different
appetitive stimuli elicit similar neuronal re-
sponses. All responses occur in the majority
of dopamine neurons (55 to 80%).

Surprisingly, after repeated pairings of
visual and auditory cues followed by reward,
dopamine neurons change the time of their
phasic activation from just after the time of
reward delivery to the time of cue onset. In
one task, a naı̈ve monkey is required to
touch a lever after the appearance of a small
light. Before training and in the initial
phases of training, most dopamine neurons
show a short burst of impulses after reward
delivery (Fig. 1, top). After several days of
training, the animal learns to reach for the

lever as soon as the light is illuminated, and
this behavioral change correlates with two
remarkable changes in the dopamine neu-
ron output: (i) the primary reward no longer
elicits a phasic response; and (ii) the onset
of the (predictive) light now causes a phasic
activation in dopamine cell output (Fig. 1,
middle). The changes in dopaminergic ac-
tivity strongly resemble the transfer of an
animal’s appetitive behavioral reaction
from the US to the CS.

In trials where the reward is not deliv-
ered at the appropriate time after the onset
of the light, dopamine neurons are de-
pressed markedly below their basal firing
rate exactly at the time that the reward
should have occurred (Fig. 1, bottom). This
well-timed decrease in spike output shows
that the expected time of reward delivery
based on the occurrence of the light is also
encoded in the fluctuations in dopaminer-
gic activity (18). In contrast, very few do-
pamine neurons respond to stimuli that pre-
dict aversive outcomes.

The language used in the foregoing de-
scription already incorporates the idea that
dopaminergic activity encodes expectations
about external stimuli or reward. This inter-
pretation of these data provides a link to an
established body of computational theory (6,
7). From this perspective, one sees that dopa-
mine neurons do not simply report the occur-
rence of appetitive events. Rather, their out-
puts appear to code for a deviation or error
between the actual reward received and pre-
dictions of the time and magnitude of reward.
These neurons are activated only if the time
of the reward is uncertain, that is, unpredicted
by any preceding cues. Dopamine neurons are
therefore excellent feature detectors of the
“goodness” of environmental events relative
to learned predictions about those events.
They emit a positive signal (increased spike
production) if an appetitive event is better
than predicted, no signal (no change in spike
production) if an appetitive event occurs as
predicted, and a negative signal (decreased
spike production) if an appetitive event is
worse than predicted (Fig. 1).

Computational Theory and Model

The TD algorithm (6, 7) is particularly well
suited to understanding the functional role
played by the dopamine signal in terms of
the information it constructs and broadcasts
(8, 10, 12). This work has used fluctuations
in dopamine activity in dual roles (i) as a
supervisory signal for synaptic weight
changes (8, 10, 12) and (ii) as a signal to
influence directly and indirectly the choice
of behavioral actions in humans and bees
(9–11). Temporal difference methods have
been used in a wide spectrum of engineering
applications that seek to solve prediction

Reward predicted
Reward occurs

No prediction
Reward occurs

Reward predicted
No reward occurs

(No CS)

(No R)CS
-1 0 1 2 s

CS

R

R

Do dopamine neurons report an error 
in the prediction of reward?

Fig. 1. Changes in dopamine neurons’
output code for an error in the prediction of
appetitive events. (Top) Before learning, a
drop of appetitive fruit juice occurs in the
absence of prediction—hence a positive
error in the prediction of reward. The do-
pamine neuron is activated by this unpre-
dicted occurrence of juice. (Middle) After
learning, the conditioned stimulus predicts
reward, and the reward occurs according
to the prediction—hence no error in the
prediction of reward. The dopamine neu-
ron is activated by the reward-predicting
stimulus but fails to be activated by the
predicted reward (right). (Bottom) After
learning, the conditioned stimulus predicts
a reward, but the reward fails to occur be-
cause of a mistake in the behavioral re-
sponse of the monkey. The activity of the
dopamine neuron is depressed exactly at
the time when the reward would have oc-
curred. The depression occurs more than
1 s after the conditioned stimulus without
any intervening stimuli, revealing an inter-
nal representation of the time of the pre-
dicted reward. Neuronal activity is aligned
on the electronic pulse that drives the solenoid valve delivering the reward liquid (top) or the onset of the
conditioned visual stimulus (middle and bottom). Each panel shows the peri-event time histogram and
raster of impulses from the same neuron. Horizontal distances of dots correspond to real-time intervals.
Each line of dots shows one trial. Original sequence of trials is plotted from top to bottom. CS,
conditioned, reward-predicting stimulus; R, primary reward.

SCIENCE z VOL. 275 z 14 MARCH 1997 z http://www.sciencemag.org1594

Before  learning,  reward  is  given  in  experiment,  but  animal
does  not  predict  (expect)  reward  (why  is  there  increased
activity  after  reward?)



Schultz,  Dayan,  Montague,  1997

VTA  Activity  of  dopaminergic  neurons

After  learning,  conditioned  stimulus  predicts  reward,  and
reward  is  given  in  experiment  (why  is  activity  fairly  uniform
after  reward?)

Information Encoded in
Dopaminergic Activity

Dopamine neurons of the ventral tegmental
area (VTA) and substantia nigra have long
been identified with the processing of re-
warding stimuli. These neurons send their
axons to brain structures involved in moti-
vation and goal-directed behavior, for ex-
ample, the striatum, nucleus accumbens,
and frontal cortex. Multiple lines of evi-
dence support the idea that these neurons
construct and distribute information about
rewarding events.

First, drugs like amphetamine and co-
caine exert their addictive actions in part by
prolonging the influence of dopamine on
target neurons (14). Second, neural path-
ways associated with dopamine neurons are
among the best targets for electrical self-
stimulation. In these experiments, rats press
bars to excite neurons at the site of an im-
planted electrode (15). The rats often
choose these apparently rewarding stimuli
over food and sex. Third, animals treated
with dopamine receptor blockers learn less
rapidly to press a bar for a reward pellet (16).
All the above results generally implicate
midbrain dopaminergic activity in reward-
dependent learning. More precise informa-
tion about the role played by midbrain do-
paminergic activity derives from experiments
in which activity of single dopamine neurons
is recorded in alert monkeys while they per-
form behavioral acts and receive rewards.

In these latter experiments (17), dopa-
mine neurons respond with short, phasic
activations when monkeys are presented
with various appetitive stimuli. For exam-
ple, dopamine neurons are activated when
animals touch a small morsel of apple or
receive a small quantity of fruit juice to the
mouth as liquid reward (Fig. 1). These pha-
sic activations do not, however, discrimi-
nate between these different types of re-
warding stimuli. Aversive stimuli like air
puffs to the hand or drops of saline to the
mouth do not cause these same transient
activations. Dopamine neurons are also ac-
tivated by novel stimuli that elicit orienting
reactions; however, for most stimuli, this
activation lasts for only a few presentations.
The responses of these neurons are relative-
ly homogeneous—different neurons re-
spond in the same manner and different
appetitive stimuli elicit similar neuronal re-
sponses. All responses occur in the majority
of dopamine neurons (55 to 80%).

Surprisingly, after repeated pairings of
visual and auditory cues followed by reward,
dopamine neurons change the time of their
phasic activation from just after the time of
reward delivery to the time of cue onset. In
one task, a naı̈ve monkey is required to
touch a lever after the appearance of a small
light. Before training and in the initial
phases of training, most dopamine neurons
show a short burst of impulses after reward
delivery (Fig. 1, top). After several days of
training, the animal learns to reach for the

lever as soon as the light is illuminated, and
this behavioral change correlates with two
remarkable changes in the dopamine neu-
ron output: (i) the primary reward no longer
elicits a phasic response; and (ii) the onset
of the (predictive) light now causes a phasic
activation in dopamine cell output (Fig. 1,
middle). The changes in dopaminergic ac-
tivity strongly resemble the transfer of an
animal’s appetitive behavioral reaction
from the US to the CS.

In trials where the reward is not deliv-
ered at the appropriate time after the onset
of the light, dopamine neurons are de-
pressed markedly below their basal firing
rate exactly at the time that the reward
should have occurred (Fig. 1, bottom). This
well-timed decrease in spike output shows
that the expected time of reward delivery
based on the occurrence of the light is also
encoded in the fluctuations in dopaminer-
gic activity (18). In contrast, very few do-
pamine neurons respond to stimuli that pre-
dict aversive outcomes.

The language used in the foregoing de-
scription already incorporates the idea that
dopaminergic activity encodes expectations
about external stimuli or reward. This inter-
pretation of these data provides a link to an
established body of computational theory (6,
7). From this perspective, one sees that dopa-
mine neurons do not simply report the occur-
rence of appetitive events. Rather, their out-
puts appear to code for a deviation or error
between the actual reward received and pre-
dictions of the time and magnitude of reward.
These neurons are activated only if the time
of the reward is uncertain, that is, unpredicted
by any preceding cues. Dopamine neurons are
therefore excellent feature detectors of the
“goodness” of environmental events relative
to learned predictions about those events.
They emit a positive signal (increased spike
production) if an appetitive event is better
than predicted, no signal (no change in spike
production) if an appetitive event occurs as
predicted, and a negative signal (decreased
spike production) if an appetitive event is
worse than predicted (Fig. 1).

Computational Theory and Model

The TD algorithm (6, 7) is particularly well
suited to understanding the functional role
played by the dopamine signal in terms of
the information it constructs and broadcasts
(8, 10, 12). This work has used fluctuations
in dopamine activity in dual roles (i) as a
supervisory signal for synaptic weight
changes (8, 10, 12) and (ii) as a signal to
influence directly and indirectly the choice
of behavioral actions in humans and bees
(9–11). Temporal difference methods have
been used in a wide spectrum of engineering
applications that seek to solve prediction

Reward predicted
Reward occurs

No prediction
Reward occurs

Reward predicted
No reward occurs

(No CS)

(No R)CS
-1 0 1 2 s
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R

R

Do dopamine neurons report an error 
in the prediction of reward?

Fig. 1. Changes in dopamine neurons’
output code for an error in the prediction of
appetitive events. (Top) Before learning, a
drop of appetitive fruit juice occurs in the
absence of prediction—hence a positive
error in the prediction of reward. The do-
pamine neuron is activated by this unpre-
dicted occurrence of juice. (Middle) After
learning, the conditioned stimulus predicts
reward, and the reward occurs according
to the prediction—hence no error in the
prediction of reward. The dopamine neu-
ron is activated by the reward-predicting
stimulus but fails to be activated by the
predicted reward (right). (Bottom) After
learning, the conditioned stimulus predicts
a reward, but the reward fails to occur be-
cause of a mistake in the behavioral re-
sponse of the monkey. The activity of the
dopamine neuron is depressed exactly at
the time when the reward would have oc-
curred. The depression occurs more than
1 s after the conditioned stimulus without
any intervening stimuli, revealing an inter-
nal representation of the time of the pre-
dicted reward. Neuronal activity is aligned
on the electronic pulse that drives the solenoid valve delivering the reward liquid (top) or the onset of the
conditioned visual stimulus (middle and bottom). Each panel shows the peri-event time histogram and
raster of impulses from the same neuron. Horizontal distances of dots correspond to real-time intervals.
Each line of dots shows one trial. Original sequence of trials is plotted from top to bottom. CS,
conditioned, reward-predicting stimulus; R, primary reward.

SCIENCE z VOL. 275 z 14 MARCH 1997 z http://www.sciencemag.org1594



Schultz,  Dayan,  Montague,  1997

VTA  Activity  of  dopaminergic  neurons

After  learning,  conditioned  stimulus  predicts  reward
so  there  is  an  expectation  of  reward, but  no  reward  is  
given  in  the  experiment

Information Encoded in
Dopaminergic Activity

Dopamine neurons of the ventral tegmental
area (VTA) and substantia nigra have long
been identified with the processing of re-
warding stimuli. These neurons send their
axons to brain structures involved in moti-
vation and goal-directed behavior, for ex-
ample, the striatum, nucleus accumbens,
and frontal cortex. Multiple lines of evi-
dence support the idea that these neurons
construct and distribute information about
rewarding events.

First, drugs like amphetamine and co-
caine exert their addictive actions in part by
prolonging the influence of dopamine on
target neurons (14). Second, neural path-
ways associated with dopamine neurons are
among the best targets for electrical self-
stimulation. In these experiments, rats press
bars to excite neurons at the site of an im-
planted electrode (15). The rats often
choose these apparently rewarding stimuli
over food and sex. Third, animals treated
with dopamine receptor blockers learn less
rapidly to press a bar for a reward pellet (16).
All the above results generally implicate
midbrain dopaminergic activity in reward-
dependent learning. More precise informa-
tion about the role played by midbrain do-
paminergic activity derives from experiments
in which activity of single dopamine neurons
is recorded in alert monkeys while they per-
form behavioral acts and receive rewards.

In these latter experiments (17), dopa-
mine neurons respond with short, phasic
activations when monkeys are presented
with various appetitive stimuli. For exam-
ple, dopamine neurons are activated when
animals touch a small morsel of apple or
receive a small quantity of fruit juice to the
mouth as liquid reward (Fig. 1). These pha-
sic activations do not, however, discrimi-
nate between these different types of re-
warding stimuli. Aversive stimuli like air
puffs to the hand or drops of saline to the
mouth do not cause these same transient
activations. Dopamine neurons are also ac-
tivated by novel stimuli that elicit orienting
reactions; however, for most stimuli, this
activation lasts for only a few presentations.
The responses of these neurons are relative-
ly homogeneous—different neurons re-
spond in the same manner and different
appetitive stimuli elicit similar neuronal re-
sponses. All responses occur in the majority
of dopamine neurons (55 to 80%).

Surprisingly, after repeated pairings of
visual and auditory cues followed by reward,
dopamine neurons change the time of their
phasic activation from just after the time of
reward delivery to the time of cue onset. In
one task, a naı̈ve monkey is required to
touch a lever after the appearance of a small
light. Before training and in the initial
phases of training, most dopamine neurons
show a short burst of impulses after reward
delivery (Fig. 1, top). After several days of
training, the animal learns to reach for the

lever as soon as the light is illuminated, and
this behavioral change correlates with two
remarkable changes in the dopamine neu-
ron output: (i) the primary reward no longer
elicits a phasic response; and (ii) the onset
of the (predictive) light now causes a phasic
activation in dopamine cell output (Fig. 1,
middle). The changes in dopaminergic ac-
tivity strongly resemble the transfer of an
animal’s appetitive behavioral reaction
from the US to the CS.

In trials where the reward is not deliv-
ered at the appropriate time after the onset
of the light, dopamine neurons are de-
pressed markedly below their basal firing
rate exactly at the time that the reward
should have occurred (Fig. 1, bottom). This
well-timed decrease in spike output shows
that the expected time of reward delivery
based on the occurrence of the light is also
encoded in the fluctuations in dopaminer-
gic activity (18). In contrast, very few do-
pamine neurons respond to stimuli that pre-
dict aversive outcomes.

The language used in the foregoing de-
scription already incorporates the idea that
dopaminergic activity encodes expectations
about external stimuli or reward. This inter-
pretation of these data provides a link to an
established body of computational theory (6,
7). From this perspective, one sees that dopa-
mine neurons do not simply report the occur-
rence of appetitive events. Rather, their out-
puts appear to code for a deviation or error
between the actual reward received and pre-
dictions of the time and magnitude of reward.
These neurons are activated only if the time
of the reward is uncertain, that is, unpredicted
by any preceding cues. Dopamine neurons are
therefore excellent feature detectors of the
“goodness” of environmental events relative
to learned predictions about those events.
They emit a positive signal (increased spike
production) if an appetitive event is better
than predicted, no signal (no change in spike
production) if an appetitive event occurs as
predicted, and a negative signal (decreased
spike production) if an appetitive event is
worse than predicted (Fig. 1).

Computational Theory and Model

The TD algorithm (6, 7) is particularly well
suited to understanding the functional role
played by the dopamine signal in terms of
the information it constructs and broadcasts
(8, 10, 12). This work has used fluctuations
in dopamine activity in dual roles (i) as a
supervisory signal for synaptic weight
changes (8, 10, 12) and (ii) as a signal to
influence directly and indirectly the choice
of behavioral actions in humans and bees
(9–11). Temporal difference methods have
been used in a wide spectrum of engineering
applications that seek to solve prediction
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Do dopamine neurons report an error 
in the prediction of reward?

Fig. 1. Changes in dopamine neurons’
output code for an error in the prediction of
appetitive events. (Top) Before learning, a
drop of appetitive fruit juice occurs in the
absence of prediction—hence a positive
error in the prediction of reward. The do-
pamine neuron is activated by this unpre-
dicted occurrence of juice. (Middle) After
learning, the conditioned stimulus predicts
reward, and the reward occurs according
to the prediction—hence no error in the
prediction of reward. The dopamine neu-
ron is activated by the reward-predicting
stimulus but fails to be activated by the
predicted reward (right). (Bottom) After
learning, the conditioned stimulus predicts
a reward, but the reward fails to occur be-
cause of a mistake in the behavioral re-
sponse of the monkey. The activity of the
dopamine neuron is depressed exactly at
the time when the reward would have oc-
curred. The depression occurs more than
1 s after the conditioned stimulus without
any intervening stimuli, revealing an inter-
nal representation of the time of the pre-
dicted reward. Neuronal activity is aligned
on the electronic pulse that drives the solenoid valve delivering the reward liquid (top) or the onset of the
conditioned visual stimulus (middle and bottom). Each panel shows the peri-event time histogram and
raster of impulses from the same neuron. Horizontal distances of dots correspond to real-time intervals.
Each line of dots shows one trial. Original sequence of trials is plotted from top to bottom. CS,
conditioned, reward-predicting stimulus; R, primary reward.
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Information Encoded in
Dopaminergic Activity

Dopamine neurons of the ventral tegmental
area (VTA) and substantia nigra have long
been identified with the processing of re-
warding stimuli. These neurons send their
axons to brain structures involved in moti-
vation and goal-directed behavior, for ex-
ample, the striatum, nucleus accumbens,
and frontal cortex. Multiple lines of evi-
dence support the idea that these neurons
construct and distribute information about
rewarding events.

First, drugs like amphetamine and co-
caine exert their addictive actions in part by
prolonging the influence of dopamine on
target neurons (14). Second, neural path-
ways associated with dopamine neurons are
among the best targets for electrical self-
stimulation. In these experiments, rats press
bars to excite neurons at the site of an im-
planted electrode (15). The rats often
choose these apparently rewarding stimuli
over food and sex. Third, animals treated
with dopamine receptor blockers learn less
rapidly to press a bar for a reward pellet (16).
All the above results generally implicate
midbrain dopaminergic activity in reward-
dependent learning. More precise informa-
tion about the role played by midbrain do-
paminergic activity derives from experiments
in which activity of single dopamine neurons
is recorded in alert monkeys while they per-
form behavioral acts and receive rewards.

In these latter experiments (17), dopa-
mine neurons respond with short, phasic
activations when monkeys are presented
with various appetitive stimuli. For exam-
ple, dopamine neurons are activated when
animals touch a small morsel of apple or
receive a small quantity of fruit juice to the
mouth as liquid reward (Fig. 1). These pha-
sic activations do not, however, discrimi-
nate between these different types of re-
warding stimuli. Aversive stimuli like air
puffs to the hand or drops of saline to the
mouth do not cause these same transient
activations. Dopamine neurons are also ac-
tivated by novel stimuli that elicit orienting
reactions; however, for most stimuli, this
activation lasts for only a few presentations.
The responses of these neurons are relative-
ly homogeneous—different neurons re-
spond in the same manner and different
appetitive stimuli elicit similar neuronal re-
sponses. All responses occur in the majority
of dopamine neurons (55 to 80%).

Surprisingly, after repeated pairings of
visual and auditory cues followed by reward,
dopamine neurons change the time of their
phasic activation from just after the time of
reward delivery to the time of cue onset. In
one task, a naı̈ve monkey is required to
touch a lever after the appearance of a small
light. Before training and in the initial
phases of training, most dopamine neurons
show a short burst of impulses after reward
delivery (Fig. 1, top). After several days of
training, the animal learns to reach for the

lever as soon as the light is illuminated, and
this behavioral change correlates with two
remarkable changes in the dopamine neu-
ron output: (i) the primary reward no longer
elicits a phasic response; and (ii) the onset
of the (predictive) light now causes a phasic
activation in dopamine cell output (Fig. 1,
middle). The changes in dopaminergic ac-
tivity strongly resemble the transfer of an
animal’s appetitive behavioral reaction
from the US to the CS.

In trials where the reward is not deliv-
ered at the appropriate time after the onset
of the light, dopamine neurons are de-
pressed markedly below their basal firing
rate exactly at the time that the reward
should have occurred (Fig. 1, bottom). This
well-timed decrease in spike output shows
that the expected time of reward delivery
based on the occurrence of the light is also
encoded in the fluctuations in dopaminer-
gic activity (18). In contrast, very few do-
pamine neurons respond to stimuli that pre-
dict aversive outcomes.

The language used in the foregoing de-
scription already incorporates the idea that
dopaminergic activity encodes expectations
about external stimuli or reward. This inter-
pretation of these data provides a link to an
established body of computational theory (6,
7). From this perspective, one sees that dopa-
mine neurons do not simply report the occur-
rence of appetitive events. Rather, their out-
puts appear to code for a deviation or error
between the actual reward received and pre-
dictions of the time and magnitude of reward.
These neurons are activated only if the time
of the reward is uncertain, that is, unpredicted
by any preceding cues. Dopamine neurons are
therefore excellent feature detectors of the
“goodness” of environmental events relative
to learned predictions about those events.
They emit a positive signal (increased spike
production) if an appetitive event is better
than predicted, no signal (no change in spike
production) if an appetitive event occurs as
predicted, and a negative signal (decreased
spike production) if an appetitive event is
worse than predicted (Fig. 1).

Computational Theory and Model

The TD algorithm (6, 7) is particularly well
suited to understanding the functional role
played by the dopamine signal in terms of
the information it constructs and broadcasts
(8, 10, 12). This work has used fluctuations
in dopamine activity in dual roles (i) as a
supervisory signal for synaptic weight
changes (8, 10, 12) and (ii) as a signal to
influence directly and indirectly the choice
of behavioral actions in humans and bees
(9–11). Temporal difference methods have
been used in a wide spectrum of engineering
applications that seek to solve prediction

Reward predicted
Reward occurs

No prediction
Reward occurs

Reward predicted
No reward occurs

(No CS)

(No R)CS
-1 0 1 2 s
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R
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Do dopamine neurons report an error 
in the prediction of reward?

Fig. 1. Changes in dopamine neurons’
output code for an error in the prediction of
appetitive events. (Top) Before learning, a
drop of appetitive fruit juice occurs in the
absence of prediction—hence a positive
error in the prediction of reward. The do-
pamine neuron is activated by this unpre-
dicted occurrence of juice. (Middle) After
learning, the conditioned stimulus predicts
reward, and the reward occurs according
to the prediction—hence no error in the
prediction of reward. The dopamine neu-
ron is activated by the reward-predicting
stimulus but fails to be activated by the
predicted reward (right). (Bottom) After
learning, the conditioned stimulus predicts
a reward, but the reward fails to occur be-
cause of a mistake in the behavioral re-
sponse of the monkey. The activity of the
dopamine neuron is depressed exactly at
the time when the reward would have oc-
curred. The depression occurs more than
1 s after the conditioned stimulus without
any intervening stimuli, revealing an inter-
nal representation of the time of the pre-
dicted reward. Neuronal activity is aligned
on the electronic pulse that drives the solenoid valve delivering the reward liquid (top) or the onset of the
conditioned visual stimulus (middle and bottom). Each panel shows the peri-event time histogram and
raster of impulses from the same neuron. Horizontal distances of dots correspond to real-time intervals.
Each line of dots shows one trial. Original sequence of trials is plotted from top to bottom. CS,
conditioned, reward-predicting stimulus; R, primary reward.
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What  are  these  neurons  doing?  Prediction  error  between
actual  and  predicted  reward  (like  r-v)

Information Encoded in
Dopaminergic Activity

Dopamine neurons of the ventral tegmental
area (VTA) and substantia nigra have long
been identified with the processing of re-
warding stimuli. These neurons send their
axons to brain structures involved in moti-
vation and goal-directed behavior, for ex-
ample, the striatum, nucleus accumbens,
and frontal cortex. Multiple lines of evi-
dence support the idea that these neurons
construct and distribute information about
rewarding events.

First, drugs like amphetamine and co-
caine exert their addictive actions in part by
prolonging the influence of dopamine on
target neurons (14). Second, neural path-
ways associated with dopamine neurons are
among the best targets for electrical self-
stimulation. In these experiments, rats press
bars to excite neurons at the site of an im-
planted electrode (15). The rats often
choose these apparently rewarding stimuli
over food and sex. Third, animals treated
with dopamine receptor blockers learn less
rapidly to press a bar for a reward pellet (16).
All the above results generally implicate
midbrain dopaminergic activity in reward-
dependent learning. More precise informa-
tion about the role played by midbrain do-
paminergic activity derives from experiments
in which activity of single dopamine neurons
is recorded in alert monkeys while they per-
form behavioral acts and receive rewards.

In these latter experiments (17), dopa-
mine neurons respond with short, phasic
activations when monkeys are presented
with various appetitive stimuli. For exam-
ple, dopamine neurons are activated when
animals touch a small morsel of apple or
receive a small quantity of fruit juice to the
mouth as liquid reward (Fig. 1). These pha-
sic activations do not, however, discrimi-
nate between these different types of re-
warding stimuli. Aversive stimuli like air
puffs to the hand or drops of saline to the
mouth do not cause these same transient
activations. Dopamine neurons are also ac-
tivated by novel stimuli that elicit orienting
reactions; however, for most stimuli, this
activation lasts for only a few presentations.
The responses of these neurons are relative-
ly homogeneous—different neurons re-
spond in the same manner and different
appetitive stimuli elicit similar neuronal re-
sponses. All responses occur in the majority
of dopamine neurons (55 to 80%).

Surprisingly, after repeated pairings of
visual and auditory cues followed by reward,
dopamine neurons change the time of their
phasic activation from just after the time of
reward delivery to the time of cue onset. In
one task, a naı̈ve monkey is required to
touch a lever after the appearance of a small
light. Before training and in the initial
phases of training, most dopamine neurons
show a short burst of impulses after reward
delivery (Fig. 1, top). After several days of
training, the animal learns to reach for the

lever as soon as the light is illuminated, and
this behavioral change correlates with two
remarkable changes in the dopamine neu-
ron output: (i) the primary reward no longer
elicits a phasic response; and (ii) the onset
of the (predictive) light now causes a phasic
activation in dopamine cell output (Fig. 1,
middle). The changes in dopaminergic ac-
tivity strongly resemble the transfer of an
animal’s appetitive behavioral reaction
from the US to the CS.

In trials where the reward is not deliv-
ered at the appropriate time after the onset
of the light, dopamine neurons are de-
pressed markedly below their basal firing
rate exactly at the time that the reward
should have occurred (Fig. 1, bottom). This
well-timed decrease in spike output shows
that the expected time of reward delivery
based on the occurrence of the light is also
encoded in the fluctuations in dopaminer-
gic activity (18). In contrast, very few do-
pamine neurons respond to stimuli that pre-
dict aversive outcomes.

The language used in the foregoing de-
scription already incorporates the idea that
dopaminergic activity encodes expectations
about external stimuli or reward. This inter-
pretation of these data provides a link to an
established body of computational theory (6,
7). From this perspective, one sees that dopa-
mine neurons do not simply report the occur-
rence of appetitive events. Rather, their out-
puts appear to code for a deviation or error
between the actual reward received and pre-
dictions of the time and magnitude of reward.
These neurons are activated only if the time
of the reward is uncertain, that is, unpredicted
by any preceding cues. Dopamine neurons are
therefore excellent feature detectors of the
“goodness” of environmental events relative
to learned predictions about those events.
They emit a positive signal (increased spike
production) if an appetitive event is better
than predicted, no signal (no change in spike
production) if an appetitive event occurs as
predicted, and a negative signal (decreased
spike production) if an appetitive event is
worse than predicted (Fig. 1).

Computational Theory and Model

The TD algorithm (6, 7) is particularly well
suited to understanding the functional role
played by the dopamine signal in terms of
the information it constructs and broadcasts
(8, 10, 12). This work has used fluctuations
in dopamine activity in dual roles (i) as a
supervisory signal for synaptic weight
changes (8, 10, 12) and (ii) as a signal to
influence directly and indirectly the choice
of behavioral actions in humans and bees
(9–11). Temporal difference methods have
been used in a wide spectrum of engineering
applications that seek to solve prediction
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Do dopamine neurons report an error 
in the prediction of reward?

Fig. 1. Changes in dopamine neurons’
output code for an error in the prediction of
appetitive events. (Top) Before learning, a
drop of appetitive fruit juice occurs in the
absence of prediction—hence a positive
error in the prediction of reward. The do-
pamine neuron is activated by this unpre-
dicted occurrence of juice. (Middle) After
learning, the conditioned stimulus predicts
reward, and the reward occurs according
to the prediction—hence no error in the
prediction of reward. The dopamine neu-
ron is activated by the reward-predicting
stimulus but fails to be activated by the
predicted reward (right). (Bottom) After
learning, the conditioned stimulus predicts
a reward, but the reward fails to occur be-
cause of a mistake in the behavioral re-
sponse of the monkey. The activity of the
dopamine neuron is depressed exactly at
the time when the reward would have oc-
curred. The depression occurs more than
1 s after the conditioned stimulus without
any intervening stimuli, revealing an inter-
nal representation of the time of the pre-
dicted reward. Neuronal activity is aligned
on the electronic pulse that drives the solenoid valve delivering the reward liquid (top) or the onset of the
conditioned visual stimulus (middle and bottom). Each panel shows the peri-event time histogram and
raster of impulses from the same neuron. Horizontal distances of dots correspond to real-time intervals.
Each line of dots shows one trial. Original sequence of trials is plotted from top to bottom. CS,
conditioned, reward-predicting stimulus; R, primary reward.
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fMRI

min, and the order of the two runs (predictable or unpredictable) was
randomized across subjects. Because the time to adapt to either predict-
ability or unpredictability was unknown and because frequent switching
of conditions might cause an interaction with each other, i.e., the “pre-
dictability of predictability,” we chose to separate the conditions across
scan runs rather than use smaller condition blocks within scan runs.
Because all aspects of the experiment hinged on manipulating predict-
ability, we chose to not repeat conditions within subjects and instead
focused on studying a larger number of subjects.

Subjects received 0.8 ml oral boluses of both fruit juice and water via
two plastic tubes. A mouthpiece held the ends of the tubing in place over
the tongue, with the fruit juice infused from the left side of the mouth-
piece and the water from the right. The tubes were !10 m long and were
connected to a computer-controlled dual-syringe pump (Harvard Appa-
ratus, Holliston, MA) outside the scanner room. Subjects did not per-
form any other task during scanning and were instructed to simply
swallow the fluid each time it was administered. After the scan session,
subjects were debriefed for their fluid preference.

Acquisition of MRI data. Scanning was performed on a 1.5 Tesla Philips
NT scanner. After acquisition of a high-resolution T1-weighted anatom-

ical scan, subjects underwent two whole-brain functional runs of 150
scans each (echo-planar imaging, gradient recalled echo; repetition time,
2000 msec; echo time, 40 msec; flip angle, 90°; 64 " 64 matrix, 24 5 mm
axial slices acquired parallel to anteroposterior commissural line) for
measurement of the blood oxygenation level-dependent (BOLD) effect
(Kwong et al., 1992; Ogawa et al., 1992). Head movement was minimized
by padding and restraints.

Analysis. The data were analyzed using Statistical Parametric Mapping
(SPM99; Wellcome Department of Cognitive Neurology, London, UK)
(Friston et al., 1995b). Motion correction to the first functional scan was
performed within subjects using a six-parameter rigid-body transforma-
tion. Because swallowing unavoidably causes significant head movement,
the motion-correction parameters were also used to determine whether
head motion differed significantly between the conditions. The mean of
the motion-corrected images was then coregistered to the individual’s
24-slice structural MRI using a 12-parameter affine transformation. The
images were then spatially normalized to the Montreal Neurological
Institute (MNI) template (Talairach and Tournoux, 1988) by applying a
12-parameter affine transformation, followed by a nonlinear warping
using basis functions (Ashburner and Friston, 1999). Images were sub-
sequently smoothed with an 8 mm isotropic Gaussian kernel and band-
pass filtered in the temporal domain. A random-effects, event-related,
statistical analysis was performed with SPM99 (Friston et al., 1995a,
1999). The experiment was analyzed as a 2 " 2 factorial design. First, a
separate general linear model (GLM) was specified for each subject, with
four conditions representing the four possible event types: predictable–
preferred fluid, predictable–nonpreferred fluid, unpredictable–preferred
fluid, and unpredictable–nonpreferred fluid. Four vectors of delta func-
tions with times corresponding to each event were created for each of the
four conditions. These were convolved with a generic hemodynamic
response function and entered into a four-column design matrix. The
mean of each scan run was removed on a voxelwise basis. We calculated
three two-sided contrast images that corresponded to the main effects
of preference [contrast vector (1-11-1)], predictability [contrast vector
(11-1-1)], and the interaction term [contrast vector (1-1-11)]. The inter-
action describes how predictability modulates the effect of preference.
These individual contrast images were entered into a second-level anal-
ysis, using a separate one-sample t test (df # 24) for each side of each
term in the GLM (a total of six contrasts). We thresholded these
summary statistical maps at p $ 0.001 (uncorrected for multiple com-

Figure 2. Neural network model of the experiment and the brain regions associated with information processing. A, Diagram indicates our hypothesis
for how the sequence of stimuli could influence dopaminergic output. In this hypothesis, we have indicated that changes in dopaminergic output could
influence target neural structures in a manner detectable in a fMRI BOLD measurement. The juice and water are shown to have both sensory (projection
from finite time window box) and reward (the r pathways) representations in their influence on dopaminergic activity. To generate an expected
hemodynamic response from this hypothesis, we made a finite time window (small boxes for juice and water), which determined the value of the
immediate reward r( t) (1 if juice occurred, 0.5 if water occurred, and 0 if no stimulus occurred). This maneuver arbitrarily set juice to twice the value
of water. This is not important for the main expectation generated by the model. B, Predicted dopamine effect for predictable and unpredictable
sequences of juice and water delivery. Horizontal axis is scan number. Vertical axis is the expected hemodynamic response predicted by a temporal
difference model. The scale on the vertical axis is arbitrary. The important point to note is that the predictable run progresses to 0, whereas the
unpredictable run remains high-amplitude throughout. The traces were generated by convolving a hemodynamic response kernel with the output of a
temporal difference model. This suggested that the average BOLD response would be greater when the stimuli were unpredictable.

Figure 1. Design of the fMRI experiment. A 2 " 2 factorial design was
used, with factors of preference ( juice or water) and predictability (pre-
dictable or unpredictable). Subjects received 0.8 ml boluses of juice and
water in either a predictable or unpredictable sequence. Using event-
related fMRI, brain activation was analyzed in terms of preference and
predictability, as well as the interaction between them.
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in a large expanse of medial orbitofrontal cortex that included the
nucleus accumbens (Table 1). Additional areas of activation in-
cluded a large area of parietal cortex bilaterally and paracentrally
and small focal activations in both the left mediodorsal nucleus of
the thalamus and right cerebellum. Because none of these regions
overlapped with the main effect of preference, they were maxi-
mally activated by unpredictable stimuli, regardless of preference.
For the predictable run relative to the unpredictable run, an area
of the right superior temporal gyrus was activated, as well as focal
activations in the left precentral gyrus and right lateral orbito-
frontal cortex.

The interaction between preference and predictability identi-
fied areas in which one effect modulated the other independently
of both main effects. The right insula, left posterior cingulate, and
right cerebellum displayed a significant interaction for the con-
trast (preferred–nonpreferred) ! (predictable–unpredictable).
The opposite contrast, (preferred–nonpreferred) ! (unpredict-
able–predictable), did not reveal any activations significant at the
p " 0.001 level; however, a small region in the left superior
temporal gyrus (MNI coordinates, #48, #4, #16) was significant
at the p " 0.01 level (t $ 3.15).

The computer simulation suggested that unpredictable rewards
should evoke more dopamine release than predictable ones (Fig.
2B). When the rewards are predictable, each stimulus perfectly
predicts the subsequent one, and the error signal, which is pre-
sumed to be mediated by dopamine, gradually decreases. When
the rewards are unpredictable, there is no opportunity for the
system to learn, and the response to each stimulus is greater.

DISCUSSION
Our results demonstrated an interesting separation in the brain
response to predictability and to subjective reports of preference.
The brain response to preference was exclusively cortical, but the
response to predictability showed specific activation of reward

systems also known to be the target of midbrain dopaminergic
neurons. If we presume that activation of these reward areas is
pleasurable to humans, then this finding suggests that the subjec-
tive report of preference may be dissociated from neural circuits
known to be powerful determinants of conditioned behaviors.

Both the water and the fruit juice caused significant activations
throughout the brain, and although some of this response was
attributable to the motoric aspects of the task, specific subsets of
these regions were decomposed into dimensions of preference
and predictability. The effect of preference was restricted to
cortical regions associated with sensory processing, and the pre-
ferred stimulus resulted in greater activation in these regions.
These regions lie near sensorimotor cortex known to be activated
during tongue movements (Corfield et al., 1999) and swallowing
(Hamdy et al., 1999). In previous work on the brain response to
tongue movement, there was substantial activation of the cere-
bellum, a finding notably absent in the main effect of preference.
The differential brain response, i.e., preferred–nonpreferred, re-
moves common regions of activation; therefore, the absence of
cerebellar activation suggests that differential tongue movements
were unlikely to be the cause of the pattern of cortical activation
for subjective preference. The fact that a somatosensory region
was correlated with stated preference was suggestive that some
differential neural processing occurred for the two stimuli. It was
surprising that this was manifest in a primary sensory processing
area and not in classical reward areas. Although subjects were
forced to designate one substance over the other as their prefer-
ence, both fluids were chosen purposely to be pleasurable, in
contradistinction to one being aversive. Because both fluids were
generally pleasurable, the effect of preference might not have
been strong enough to result in a significant activity difference in
reward regions. This would be consistent with findings that mid-
brain dopamine neurons are preferentially activated by appetitive

Figure 3. The main effect of predictability
showed that reward-related regions had a
greater BOLD response to the unpredict-
able stimuli. A, Planes centered at (0, 4, #4)
show that bilateral nucleus accumbens/ven-
tral striatum (NAC) and bilateral superior
parietal cortex were more active in the pre-
dictable condition. B, A small region in the
right superior temporal gyrus was relatively
more activated by the predictable stimuli.
Significance was thresholded at p " 0.001
and an extent %10 contiguous voxels.
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• Predict  value  of  future rewards  

• Predictions  are  useful  for  behavior

• Generalization  of  Rescorla-Wagner  to  real  time

• Explains  data  that  Rescorla-Wagner  does  not

Based  on  Dayan  slides

Temporal  Difference  Learning



Rescorla-Wagner

Want                                                    (here  n  represents  a  trial)

Error

vn = rn
δn = rn − vn

wn+1 = wn +εδn;
vn+1 = vn +εδn
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interpret                as  the  prediction  of  total  future  
reward  expected  from  time  t  onward  until  the  
end  of  the  trial)

vt = rt + rt+1 + rt+2 + rt+3....
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(here  t  represents  time  within  a  trial;;  reward  can  
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neurons base the computation of a prediction error on
information coming from various sources. For example,
information about expected values V(t) has been proposed
to be conveyed to dopamine neurons by striatal afferents,
whereas information regarding primary rewards might
arise from the pedunculopontine nucleus [52] as well as
the lateral habenula [20,53,54].

Q9: We have been talking about using TD errors to learn
to predict the future, but these predictions would be
rather useless if they could not influence behavior that
preempts these future consequences. What is the
relationship between prediction errors and action
selection?
Although Pavlovian prediction learning is important (for
instance, it supports innate approach behaviour to appe-
titive stimuli and withdrawal from aversive stimuli, which
are no doubt helpful for survival), instrumental action
selection is, in some ways, the hallmark of intelligence.
This is because instrumental action is aimed at bringing
about those rewarding outcomes that are available in the
environment. Fortunately, TD prediction errors can assist
in that as well. By supplying positive or negative evalua-
tive signals even long before an actual outcome is realized,
TD errors can solve the ‘credit-assignment problem’ of how
to correctly apportion credit for reward to the different past
actions. That is, the error signal can be used in lieu of the
actual reward signal to ‘reinforce’ actions that lead to
better states of the environment (in terms of future pre-
dicted rewards) and ‘punish’ those that lead to worse states
[55,56].

Several suggestions exist for how action selection and
prediction errors can be combined. According to one
popular model, a critic learns to evaluate situations by
using TD learning, whereas an actor maintains an action
plan or policy in which the tendency to perform different
actions is increased or decreased based on the prediction
error signal that follows each action [57,58]. Other
models suggest that predictive values are learned not
for stimuli but, rather, for actions taken in the presence of
different stimuli. The distinctions between these models
are subtle, but they do have different properties. For
instance, they suggest slightly different forms for the
TD prediction error. Researchers have only recently
started to examine which one of these models, if any,

is implemented in the brain, and results so far are
equivocal [23,59].

Q10: So, what does all this mean regarding the role of
TD learning and dopamine in the brain? Is all learning
and action selection dependent on these?
Definitely not! Although dopamine has an important role
in conditioning, the kind of reinforcement learning that it
is thought to support is most strongly associated with
habitual learning and action selection. Goal-directed beha-
vior, which probably uses representations of contingencies
and rewards for forward-looking planning, might not be
dependent on learning via dopamine and TD prediction
errors [32,60,61]. Furthermore, wholly different categories
of learning, such as perceptual, stimulus–stimulus and
episodic learning, do not use TD prediction errors. So,
the bottom line is that dopamine clearly holds an import-
ant role in learning and behavior. By using precise com-
putational models, we can appreciate fully what this role
is, as well as what it isn’t (Box 1).

Box 1. What are some of the outstanding questions

regarding prediction error encoding in the brain?

Do dopamine neurons really signal temporal difference prediction
errors?
The evidence for this idea is strong; however, this is only a
simplified model of dopamine function, and it is almost certainly
ultimately incomplete. First, dopamine signals might serve more
than one function and might have different roles in different target
areas. Furthermore, there are alternatives to the view presented
here, based in part on apparent exceptions in which dopamine
neurons respond to novel cues or seem to generalize their
responses to cues that do not predict reward. Finally, basic
experimental predictions still remain untested. For example,
transfer of a cue-evoked response from a primary-conditioned
stimulus to a second-order cue in the absence of primary rewards
remains to be shown. This would validate the idea that cue-evoked
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But  we  don’t  want  to  wait  forever  for  all  future  
rewards…
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Recursion
“trick”:

vt = rt + rt+1 + rt+2 + rt+3....

vt = rt + vt+1
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want:

Error:

Update:

vt = rt + vt+1

δt = rt + vt+1 − vt



RV  versus  TD

• Rescorla-Wagner  error:  (n  represents  trial)

• Temporal  Difference  Error:  (t  is  time  within  a  
trial)

δt = rt + vt+1 − vt

δn = rn − vn

Name  comes  from!



• Temporal  Difference  Error:  (t  is  time  within  a  
trial)

δt = rt + vt+1 − vt
Name  comes  from!

vt+1 > vt Got  better

vt+1 < vt Got  worse

vt+1 = vt Predictions  steady

Temporal  Difference  Learning
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rt
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Before  learning

Information Encoded in
Dopaminergic Activity

Dopamine neurons of the ventral tegmental
area (VTA) and substantia nigra have long
been identified with the processing of re-
warding stimuli. These neurons send their
axons to brain structures involved in moti-
vation and goal-directed behavior, for ex-
ample, the striatum, nucleus accumbens,
and frontal cortex. Multiple lines of evi-
dence support the idea that these neurons
construct and distribute information about
rewarding events.

First, drugs like amphetamine and co-
caine exert their addictive actions in part by
prolonging the influence of dopamine on
target neurons (14). Second, neural path-
ways associated with dopamine neurons are
among the best targets for electrical self-
stimulation. In these experiments, rats press
bars to excite neurons at the site of an im-
planted electrode (15). The rats often
choose these apparently rewarding stimuli
over food and sex. Third, animals treated
with dopamine receptor blockers learn less
rapidly to press a bar for a reward pellet (16).
All the above results generally implicate
midbrain dopaminergic activity in reward-
dependent learning. More precise informa-
tion about the role played by midbrain do-
paminergic activity derives from experiments
in which activity of single dopamine neurons
is recorded in alert monkeys while they per-
form behavioral acts and receive rewards.

In these latter experiments (17), dopa-
mine neurons respond with short, phasic
activations when monkeys are presented
with various appetitive stimuli. For exam-
ple, dopamine neurons are activated when
animals touch a small morsel of apple or
receive a small quantity of fruit juice to the
mouth as liquid reward (Fig. 1). These pha-
sic activations do not, however, discrimi-
nate between these different types of re-
warding stimuli. Aversive stimuli like air
puffs to the hand or drops of saline to the
mouth do not cause these same transient
activations. Dopamine neurons are also ac-
tivated by novel stimuli that elicit orienting
reactions; however, for most stimuli, this
activation lasts for only a few presentations.
The responses of these neurons are relative-
ly homogeneous—different neurons re-
spond in the same manner and different
appetitive stimuli elicit similar neuronal re-
sponses. All responses occur in the majority
of dopamine neurons (55 to 80%).

Surprisingly, after repeated pairings of
visual and auditory cues followed by reward,
dopamine neurons change the time of their
phasic activation from just after the time of
reward delivery to the time of cue onset. In
one task, a naı̈ve monkey is required to
touch a lever after the appearance of a small
light. Before training and in the initial
phases of training, most dopamine neurons
show a short burst of impulses after reward
delivery (Fig. 1, top). After several days of
training, the animal learns to reach for the

lever as soon as the light is illuminated, and
this behavioral change correlates with two
remarkable changes in the dopamine neu-
ron output: (i) the primary reward no longer
elicits a phasic response; and (ii) the onset
of the (predictive) light now causes a phasic
activation in dopamine cell output (Fig. 1,
middle). The changes in dopaminergic ac-
tivity strongly resemble the transfer of an
animal’s appetitive behavioral reaction
from the US to the CS.

In trials where the reward is not deliv-
ered at the appropriate time after the onset
of the light, dopamine neurons are de-
pressed markedly below their basal firing
rate exactly at the time that the reward
should have occurred (Fig. 1, bottom). This
well-timed decrease in spike output shows
that the expected time of reward delivery
based on the occurrence of the light is also
encoded in the fluctuations in dopaminer-
gic activity (18). In contrast, very few do-
pamine neurons respond to stimuli that pre-
dict aversive outcomes.

The language used in the foregoing de-
scription already incorporates the idea that
dopaminergic activity encodes expectations
about external stimuli or reward. This inter-
pretation of these data provides a link to an
established body of computational theory (6,
7). From this perspective, one sees that dopa-
mine neurons do not simply report the occur-
rence of appetitive events. Rather, their out-
puts appear to code for a deviation or error
between the actual reward received and pre-
dictions of the time and magnitude of reward.
These neurons are activated only if the time
of the reward is uncertain, that is, unpredicted
by any preceding cues. Dopamine neurons are
therefore excellent feature detectors of the
“goodness” of environmental events relative
to learned predictions about those events.
They emit a positive signal (increased spike
production) if an appetitive event is better
than predicted, no signal (no change in spike
production) if an appetitive event occurs as
predicted, and a negative signal (decreased
spike production) if an appetitive event is
worse than predicted (Fig. 1).

Computational Theory and Model

The TD algorithm (6, 7) is particularly well
suited to understanding the functional role
played by the dopamine signal in terms of
the information it constructs and broadcasts
(8, 10, 12). This work has used fluctuations
in dopamine activity in dual roles (i) as a
supervisory signal for synaptic weight
changes (8, 10, 12) and (ii) as a signal to
influence directly and indirectly the choice
of behavioral actions in humans and bees
(9–11). Temporal difference methods have
been used in a wide spectrum of engineering
applications that seek to solve prediction

Reward predicted
Reward occurs

No prediction
Reward occurs

Reward predicted
No reward occurs

(No CS)

(No R)CS
-1 0 1 2 s

CS

R

R

Do dopamine neurons report an error 
in the prediction of reward?

Fig. 1. Changes in dopamine neurons’
output code for an error in the prediction of
appetitive events. (Top) Before learning, a
drop of appetitive fruit juice occurs in the
absence of prediction—hence a positive
error in the prediction of reward. The do-
pamine neuron is activated by this unpre-
dicted occurrence of juice. (Middle) After
learning, the conditioned stimulus predicts
reward, and the reward occurs according
to the prediction—hence no error in the
prediction of reward. The dopamine neu-
ron is activated by the reward-predicting
stimulus but fails to be activated by the
predicted reward (right). (Bottom) After
learning, the conditioned stimulus predicts
a reward, but the reward fails to occur be-
cause of a mistake in the behavioral re-
sponse of the monkey. The activity of the
dopamine neuron is depressed exactly at
the time when the reward would have oc-
curred. The depression occurs more than
1 s after the conditioned stimulus without
any intervening stimuli, revealing an inter-
nal representation of the time of the pre-
dicted reward. Neuronal activity is aligned
on the electronic pulse that drives the solenoid valve delivering the reward liquid (top) or the onset of the
conditioned visual stimulus (middle and bottom). Each panel shows the peri-event time histogram and
raster of impulses from the same neuron. Horizontal distances of dots correspond to real-time intervals.
Each line of dots shows one trial. Original sequence of trials is plotted from top to bottom. CS,
conditioned, reward-predicting stimulus; R, primary reward.
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Information Encoded in
Dopaminergic Activity

Dopamine neurons of the ventral tegmental
area (VTA) and substantia nigra have long
been identified with the processing of re-
warding stimuli. These neurons send their
axons to brain structures involved in moti-
vation and goal-directed behavior, for ex-
ample, the striatum, nucleus accumbens,
and frontal cortex. Multiple lines of evi-
dence support the idea that these neurons
construct and distribute information about
rewarding events.

First, drugs like amphetamine and co-
caine exert their addictive actions in part by
prolonging the influence of dopamine on
target neurons (14). Second, neural path-
ways associated with dopamine neurons are
among the best targets for electrical self-
stimulation. In these experiments, rats press
bars to excite neurons at the site of an im-
planted electrode (15). The rats often
choose these apparently rewarding stimuli
over food and sex. Third, animals treated
with dopamine receptor blockers learn less
rapidly to press a bar for a reward pellet (16).
All the above results generally implicate
midbrain dopaminergic activity in reward-
dependent learning. More precise informa-
tion about the role played by midbrain do-
paminergic activity derives from experiments
in which activity of single dopamine neurons
is recorded in alert monkeys while they per-
form behavioral acts and receive rewards.

In these latter experiments (17), dopa-
mine neurons respond with short, phasic
activations when monkeys are presented
with various appetitive stimuli. For exam-
ple, dopamine neurons are activated when
animals touch a small morsel of apple or
receive a small quantity of fruit juice to the
mouth as liquid reward (Fig. 1). These pha-
sic activations do not, however, discrimi-
nate between these different types of re-
warding stimuli. Aversive stimuli like air
puffs to the hand or drops of saline to the
mouth do not cause these same transient
activations. Dopamine neurons are also ac-
tivated by novel stimuli that elicit orienting
reactions; however, for most stimuli, this
activation lasts for only a few presentations.
The responses of these neurons are relative-
ly homogeneous—different neurons re-
spond in the same manner and different
appetitive stimuli elicit similar neuronal re-
sponses. All responses occur in the majority
of dopamine neurons (55 to 80%).

Surprisingly, after repeated pairings of
visual and auditory cues followed by reward,
dopamine neurons change the time of their
phasic activation from just after the time of
reward delivery to the time of cue onset. In
one task, a naı̈ve monkey is required to
touch a lever after the appearance of a small
light. Before training and in the initial
phases of training, most dopamine neurons
show a short burst of impulses after reward
delivery (Fig. 1, top). After several days of
training, the animal learns to reach for the

lever as soon as the light is illuminated, and
this behavioral change correlates with two
remarkable changes in the dopamine neu-
ron output: (i) the primary reward no longer
elicits a phasic response; and (ii) the onset
of the (predictive) light now causes a phasic
activation in dopamine cell output (Fig. 1,
middle). The changes in dopaminergic ac-
tivity strongly resemble the transfer of an
animal’s appetitive behavioral reaction
from the US to the CS.

In trials where the reward is not deliv-
ered at the appropriate time after the onset
of the light, dopamine neurons are de-
pressed markedly below their basal firing
rate exactly at the time that the reward
should have occurred (Fig. 1, bottom). This
well-timed decrease in spike output shows
that the expected time of reward delivery
based on the occurrence of the light is also
encoded in the fluctuations in dopaminer-
gic activity (18). In contrast, very few do-
pamine neurons respond to stimuli that pre-
dict aversive outcomes.

The language used in the foregoing de-
scription already incorporates the idea that
dopaminergic activity encodes expectations
about external stimuli or reward. This inter-
pretation of these data provides a link to an
established body of computational theory (6,
7). From this perspective, one sees that dopa-
mine neurons do not simply report the occur-
rence of appetitive events. Rather, their out-
puts appear to code for a deviation or error
between the actual reward received and pre-
dictions of the time and magnitude of reward.
These neurons are activated only if the time
of the reward is uncertain, that is, unpredicted
by any preceding cues. Dopamine neurons are
therefore excellent feature detectors of the
“goodness” of environmental events relative
to learned predictions about those events.
They emit a positive signal (increased spike
production) if an appetitive event is better
than predicted, no signal (no change in spike
production) if an appetitive event occurs as
predicted, and a negative signal (decreased
spike production) if an appetitive event is
worse than predicted (Fig. 1).

Computational Theory and Model

The TD algorithm (6, 7) is particularly well
suited to understanding the functional role
played by the dopamine signal in terms of
the information it constructs and broadcasts
(8, 10, 12). This work has used fluctuations
in dopamine activity in dual roles (i) as a
supervisory signal for synaptic weight
changes (8, 10, 12) and (ii) as a signal to
influence directly and indirectly the choice
of behavioral actions in humans and bees
(9–11). Temporal difference methods have
been used in a wide spectrum of engineering
applications that seek to solve prediction
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Fig. 1. Changes in dopamine neurons’
output code for an error in the prediction of
appetitive events. (Top) Before learning, a
drop of appetitive fruit juice occurs in the
absence of prediction—hence a positive
error in the prediction of reward. The do-
pamine neuron is activated by this unpre-
dicted occurrence of juice. (Middle) After
learning, the conditioned stimulus predicts
reward, and the reward occurs according
to the prediction—hence no error in the
prediction of reward. The dopamine neu-
ron is activated by the reward-predicting
stimulus but fails to be activated by the
predicted reward (right). (Bottom) After
learning, the conditioned stimulus predicts
a reward, but the reward fails to occur be-
cause of a mistake in the behavioral re-
sponse of the monkey. The activity of the
dopamine neuron is depressed exactly at
the time when the reward would have oc-
curred. The depression occurs more than
1 s after the conditioned stimulus without
any intervening stimuli, revealing an inter-
nal representation of the time of the pre-
dicted reward. Neuronal activity is aligned
on the electronic pulse that drives the solenoid valve delivering the reward liquid (top) or the onset of the
conditioned visual stimulus (middle and bottom). Each panel shows the peri-event time histogram and
raster of impulses from the same neuron. Horizontal distances of dots correspond to real-time intervals.
Each line of dots shows one trial. Original sequence of trials is plotted from top to bottom. CS,
conditioned, reward-predicting stimulus; R, primary reward.
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Dopamine neurons of the ventral tegmental
area (VTA) and substantia nigra have long
been identified with the processing of re-
warding stimuli. These neurons send their
axons to brain structures involved in moti-
vation and goal-directed behavior, for ex-
ample, the striatum, nucleus accumbens,
and frontal cortex. Multiple lines of evi-
dence support the idea that these neurons
construct and distribute information about
rewarding events.

First, drugs like amphetamine and co-
caine exert their addictive actions in part by
prolonging the influence of dopamine on
target neurons (14). Second, neural path-
ways associated with dopamine neurons are
among the best targets for electrical self-
stimulation. In these experiments, rats press
bars to excite neurons at the site of an im-
planted electrode (15). The rats often
choose these apparently rewarding stimuli
over food and sex. Third, animals treated
with dopamine receptor blockers learn less
rapidly to press a bar for a reward pellet (16).
All the above results generally implicate
midbrain dopaminergic activity in reward-
dependent learning. More precise informa-
tion about the role played by midbrain do-
paminergic activity derives from experiments
in which activity of single dopamine neurons
is recorded in alert monkeys while they per-
form behavioral acts and receive rewards.

In these latter experiments (17), dopa-
mine neurons respond with short, phasic
activations when monkeys are presented
with various appetitive stimuli. For exam-
ple, dopamine neurons are activated when
animals touch a small morsel of apple or
receive a small quantity of fruit juice to the
mouth as liquid reward (Fig. 1). These pha-
sic activations do not, however, discrimi-
nate between these different types of re-
warding stimuli. Aversive stimuli like air
puffs to the hand or drops of saline to the
mouth do not cause these same transient
activations. Dopamine neurons are also ac-
tivated by novel stimuli that elicit orienting
reactions; however, for most stimuli, this
activation lasts for only a few presentations.
The responses of these neurons are relative-
ly homogeneous—different neurons re-
spond in the same manner and different
appetitive stimuli elicit similar neuronal re-
sponses. All responses occur in the majority
of dopamine neurons (55 to 80%).

Surprisingly, after repeated pairings of
visual and auditory cues followed by reward,
dopamine neurons change the time of their
phasic activation from just after the time of
reward delivery to the time of cue onset. In
one task, a naı̈ve monkey is required to
touch a lever after the appearance of a small
light. Before training and in the initial
phases of training, most dopamine neurons
show a short burst of impulses after reward
delivery (Fig. 1, top). After several days of
training, the animal learns to reach for the

lever as soon as the light is illuminated, and
this behavioral change correlates with two
remarkable changes in the dopamine neu-
ron output: (i) the primary reward no longer
elicits a phasic response; and (ii) the onset
of the (predictive) light now causes a phasic
activation in dopamine cell output (Fig. 1,
middle). The changes in dopaminergic ac-
tivity strongly resemble the transfer of an
animal’s appetitive behavioral reaction
from the US to the CS.

In trials where the reward is not deliv-
ered at the appropriate time after the onset
of the light, dopamine neurons are de-
pressed markedly below their basal firing
rate exactly at the time that the reward
should have occurred (Fig. 1, bottom). This
well-timed decrease in spike output shows
that the expected time of reward delivery
based on the occurrence of the light is also
encoded in the fluctuations in dopaminer-
gic activity (18). In contrast, very few do-
pamine neurons respond to stimuli that pre-
dict aversive outcomes.

The language used in the foregoing de-
scription already incorporates the idea that
dopaminergic activity encodes expectations
about external stimuli or reward. This inter-
pretation of these data provides a link to an
established body of computational theory (6,
7). From this perspective, one sees that dopa-
mine neurons do not simply report the occur-
rence of appetitive events. Rather, their out-
puts appear to code for a deviation or error
between the actual reward received and pre-
dictions of the time and magnitude of reward.
These neurons are activated only if the time
of the reward is uncertain, that is, unpredicted
by any preceding cues. Dopamine neurons are
therefore excellent feature detectors of the
“goodness” of environmental events relative
to learned predictions about those events.
They emit a positive signal (increased spike
production) if an appetitive event is better
than predicted, no signal (no change in spike
production) if an appetitive event occurs as
predicted, and a negative signal (decreased
spike production) if an appetitive event is
worse than predicted (Fig. 1).

Computational Theory and Model

The TD algorithm (6, 7) is particularly well
suited to understanding the functional role
played by the dopamine signal in terms of
the information it constructs and broadcasts
(8, 10, 12). This work has used fluctuations
in dopamine activity in dual roles (i) as a
supervisory signal for synaptic weight
changes (8, 10, 12) and (ii) as a signal to
influence directly and indirectly the choice
of behavioral actions in humans and bees
(9–11). Temporal difference methods have
been used in a wide spectrum of engineering
applications that seek to solve prediction
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Fig. 1. Changes in dopamine neurons’
output code for an error in the prediction of
appetitive events. (Top) Before learning, a
drop of appetitive fruit juice occurs in the
absence of prediction—hence a positive
error in the prediction of reward. The do-
pamine neuron is activated by this unpre-
dicted occurrence of juice. (Middle) After
learning, the conditioned stimulus predicts
reward, and the reward occurs according
to the prediction—hence no error in the
prediction of reward. The dopamine neu-
ron is activated by the reward-predicting
stimulus but fails to be activated by the
predicted reward (right). (Bottom) After
learning, the conditioned stimulus predicts
a reward, but the reward fails to occur be-
cause of a mistake in the behavioral re-
sponse of the monkey. The activity of the
dopamine neuron is depressed exactly at
the time when the reward would have oc-
curred. The depression occurs more than
1 s after the conditioned stimulus without
any intervening stimuli, revealing an inter-
nal representation of the time of the pre-
dicted reward. Neuronal activity is aligned
on the electronic pulse that drives the solenoid valve delivering the reward liquid (top) or the onset of the
conditioned visual stimulus (middle and bottom). Each panel shows the peri-event time histogram and
raster of impulses from the same neuron. Horizontal distances of dots correspond to real-time intervals.
Each line of dots shows one trial. Original sequence of trials is plotted from top to bottom. CS,
conditioned, reward-predicting stimulus; R, primary reward.
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Dopamine neurons of the ventral tegmental
area (VTA) and substantia nigra have long
been identified with the processing of re-
warding stimuli. These neurons send their
axons to brain structures involved in moti-
vation and goal-directed behavior, for ex-
ample, the striatum, nucleus accumbens,
and frontal cortex. Multiple lines of evi-
dence support the idea that these neurons
construct and distribute information about
rewarding events.

First, drugs like amphetamine and co-
caine exert their addictive actions in part by
prolonging the influence of dopamine on
target neurons (14). Second, neural path-
ways associated with dopamine neurons are
among the best targets for electrical self-
stimulation. In these experiments, rats press
bars to excite neurons at the site of an im-
planted electrode (15). The rats often
choose these apparently rewarding stimuli
over food and sex. Third, animals treated
with dopamine receptor blockers learn less
rapidly to press a bar for a reward pellet (16).
All the above results generally implicate
midbrain dopaminergic activity in reward-
dependent learning. More precise informa-
tion about the role played by midbrain do-
paminergic activity derives from experiments
in which activity of single dopamine neurons
is recorded in alert monkeys while they per-
form behavioral acts and receive rewards.

In these latter experiments (17), dopa-
mine neurons respond with short, phasic
activations when monkeys are presented
with various appetitive stimuli. For exam-
ple, dopamine neurons are activated when
animals touch a small morsel of apple or
receive a small quantity of fruit juice to the
mouth as liquid reward (Fig. 1). These pha-
sic activations do not, however, discrimi-
nate between these different types of re-
warding stimuli. Aversive stimuli like air
puffs to the hand or drops of saline to the
mouth do not cause these same transient
activations. Dopamine neurons are also ac-
tivated by novel stimuli that elicit orienting
reactions; however, for most stimuli, this
activation lasts for only a few presentations.
The responses of these neurons are relative-
ly homogeneous—different neurons re-
spond in the same manner and different
appetitive stimuli elicit similar neuronal re-
sponses. All responses occur in the majority
of dopamine neurons (55 to 80%).

Surprisingly, after repeated pairings of
visual and auditory cues followed by reward,
dopamine neurons change the time of their
phasic activation from just after the time of
reward delivery to the time of cue onset. In
one task, a naı̈ve monkey is required to
touch a lever after the appearance of a small
light. Before training and in the initial
phases of training, most dopamine neurons
show a short burst of impulses after reward
delivery (Fig. 1, top). After several days of
training, the animal learns to reach for the

lever as soon as the light is illuminated, and
this behavioral change correlates with two
remarkable changes in the dopamine neu-
ron output: (i) the primary reward no longer
elicits a phasic response; and (ii) the onset
of the (predictive) light now causes a phasic
activation in dopamine cell output (Fig. 1,
middle). The changes in dopaminergic ac-
tivity strongly resemble the transfer of an
animal’s appetitive behavioral reaction
from the US to the CS.

In trials where the reward is not deliv-
ered at the appropriate time after the onset
of the light, dopamine neurons are de-
pressed markedly below their basal firing
rate exactly at the time that the reward
should have occurred (Fig. 1, bottom). This
well-timed decrease in spike output shows
that the expected time of reward delivery
based on the occurrence of the light is also
encoded in the fluctuations in dopaminer-
gic activity (18). In contrast, very few do-
pamine neurons respond to stimuli that pre-
dict aversive outcomes.

The language used in the foregoing de-
scription already incorporates the idea that
dopaminergic activity encodes expectations
about external stimuli or reward. This inter-
pretation of these data provides a link to an
established body of computational theory (6,
7). From this perspective, one sees that dopa-
mine neurons do not simply report the occur-
rence of appetitive events. Rather, their out-
puts appear to code for a deviation or error
between the actual reward received and pre-
dictions of the time and magnitude of reward.
These neurons are activated only if the time
of the reward is uncertain, that is, unpredicted
by any preceding cues. Dopamine neurons are
therefore excellent feature detectors of the
“goodness” of environmental events relative
to learned predictions about those events.
They emit a positive signal (increased spike
production) if an appetitive event is better
than predicted, no signal (no change in spike
production) if an appetitive event occurs as
predicted, and a negative signal (decreased
spike production) if an appetitive event is
worse than predicted (Fig. 1).

Computational Theory and Model

The TD algorithm (6, 7) is particularly well
suited to understanding the functional role
played by the dopamine signal in terms of
the information it constructs and broadcasts
(8, 10, 12). This work has used fluctuations
in dopamine activity in dual roles (i) as a
supervisory signal for synaptic weight
changes (8, 10, 12) and (ii) as a signal to
influence directly and indirectly the choice
of behavioral actions in humans and bees
(9–11). Temporal difference methods have
been used in a wide spectrum of engineering
applications that seek to solve prediction

Reward predicted
Reward occurs

No prediction
Reward occurs

Reward predicted
No reward occurs

(No CS)

(No R)CS
-1 0 1 2 s

CS

R

R

Do dopamine neurons report an error 
in the prediction of reward?

Fig. 1. Changes in dopamine neurons’
output code for an error in the prediction of
appetitive events. (Top) Before learning, a
drop of appetitive fruit juice occurs in the
absence of prediction—hence a positive
error in the prediction of reward. The do-
pamine neuron is activated by this unpre-
dicted occurrence of juice. (Middle) After
learning, the conditioned stimulus predicts
reward, and the reward occurs according
to the prediction—hence no error in the
prediction of reward. The dopamine neu-
ron is activated by the reward-predicting
stimulus but fails to be activated by the
predicted reward (right). (Bottom) After
learning, the conditioned stimulus predicts
a reward, but the reward fails to occur be-
cause of a mistake in the behavioral re-
sponse of the monkey. The activity of the
dopamine neuron is depressed exactly at
the time when the reward would have oc-
curred. The depression occurs more than
1 s after the conditioned stimulus without
any intervening stimuli, revealing an inter-
nal representation of the time of the pre-
dicted reward. Neuronal activity is aligned
on the electronic pulse that drives the solenoid valve delivering the reward liquid (top) or the onset of the
conditioned visual stimulus (middle and bottom). Each panel shows the peri-event time histogram and
raster of impulses from the same neuron. Horizontal distances of dots correspond to real-time intervals.
Each line of dots shows one trial. Original sequence of trials is plotted from top to bottom. CS,
conditioned, reward-predicting stimulus; R, primary reward.
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Temporal  Difference  Learning

δt = rt + vt+1 − vt
vt+1 − vt

vt
rt

ut
After  learning

What  about  anticipation  of  future  rewards?



Temporal  Difference  Learning

What  about  anticipation  of  future  rewards?

start food

(Daw)

From  Dayan  slides

Striatal  neurons  (activity  that  precedes  rewards  and  
changes  with  learning)



Summary

Marr’s  3  levels:

• Problem:  Predict  future  reward

• Algorithm:  Temporal  Difference  Learning  
(generalization  of  Rescorla-Wagner)

• Implementation:  Dopamine  neurons  signaling
error  in  reward  prediction

Based  on  Dayan  slides



What  else

• Applied  in  more  sophisticated  sequential  
decision  making  tasks  with  future  rewards

• Foundation  of  a  lot  of  active  research  in
machine  learning,  computational  neuroscience,
Biology,  Psychology



More  sophisticated  tasks

Dayan  and  Abbott  book



Recent  example  in  machine  learning
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Human-level control through deep reinforcement
learning
Volodymyr Mnih1*, Koray Kavukcuoglu1*, David Silver1*, Andrei A. Rusu1, Joel Veness1, Marc G. Bellemare1, Alex Graves1,
Martin Riedmiller1, Andreas K. Fidjeland1, Georg Ostrovski1, Stig Petersen1, Charles Beattie1, Amir Sadik1, Ioannis Antonoglou1,
Helen King1, Dharshan Kumaran1, Daan Wierstra1, Shane Legg1 & Demis Hassabis1

The theory of reinforcement learning provides a normative account1,
deeply rooted in psychological2 and neuroscientific3 perspectives on
animal behaviour, of how agents may optimize their control of an
environment. To use reinforcement learning successfully in situations
approaching real-world complexity, however, agents are confronted
with a difficult task: they must derive efficient representations of the
environment from high-dimensional sensory inputs, and use these
to generalize past experience to new situations. Remarkably, humans
and other animals seem to solve this problem through a harmonious
combination of reinforcement learning and hierarchical sensory pro-
cessing systems4,5, the former evidenced by a wealth of neural data
revealing notable parallels between the phasic signals emitted by dopa-
minergic neurons and temporal difference reinforcement learning
algorithms3. While reinforcement learning agents have achieved some
successes in a variety of domains6–8, their applicability has previously
been limited to domains in which useful features can be handcrafted,
or to domains with fully observed, low-dimensional state spaces.
Here we use recent advances in training deep neural networks9–11 to
develop a novel artificial agent, termed a deep Q-network, that can
learn successful policies directly from high-dimensional sensory inputs
using end-to-end reinforcement learning. We tested this agent on
the challenging domain of classic Atari 2600 games12. We demon-
strate that the deep Q-network agent, receiving only the pixels and
the game score as inputs, was able to surpass the performance of all
previous algorithms and achieve a level comparable to that of a pro-
fessional human games tester across a set of 49 games, using the same
algorithm, network architecture and hyperparameters. This work
bridges the divide between high-dimensional sensory inputs and
actions, resulting in the first artificial agent that is capable of learn-
ing to excel at a diverse array of challenging tasks.

We set out to create a single algorithm that would be able to develop
a wide range of competencies on a varied range of challenging tasks—a
central goal of general artificial intelligence13 that has eluded previous
efforts8,14,15. To achieve this, we developed a novel agent, a deep Q-network
(DQN), which is able to combine reinforcement learning with a class
of artificial neural network16 known as deep neural networks. Notably,
recent advances in deep neural networks9–11, in which several layers of
nodes are used to build up progressively more abstract representations
of the data, have made it possible for artificial neural networks to learn
concepts such as object categories directly from raw sensory data. We
use one particularly successful architecture, the deep convolutional
network17, which uses hierarchical layers of tiled convolutional filters
to mimic the effects of receptive fields—inspired by Hubel and Wiesel’s
seminal work on feedforward processing in early visual cortex18—thereby
exploiting the local spatial correlations present in images, and building
in robustness to natural transformations such as changes of viewpoint
or scale.

We consider tasks in which the agent interacts with an environment
through a sequence of observations, actions and rewards. The goal of the

agent is to select actions in a fashion that maximizes cumulative future
reward. More formally, we use a deep convolutional neural network to
approximate the optimal action-value function

Q! s,að Þ~ max
p

rtzcrtz1zc2rtz2z . . . jst~s, at~a, p
! "

,

which is the maximum sum of rewards rt discounted by c at each time-
step t, achievable by a behaviour policy p 5 P(ajs), after making an
observation (s) and taking an action (a) (see Methods)19.

Reinforcement learning is known to be unstable or even to diverge
when a nonlinear function approximator such as a neural network is
used to represent the action-value (also known as Q) function20. This
instability has several causes: the correlations present in the sequence
of observations, the fact that small updates to Q may significantly change
the policy and therefore change the data distribution, and the correlations
between the action-values (Q) and the target values rzc max

a0
Q s0, a0ð Þ.

We address these instabilities with a novel variant of Q-learning, which
uses two key ideas. First, we used a biologically inspired mechanism
termed experience replay21–23 that randomizes over the data, thereby
removing correlations in the observation sequence and smoothing over
changes in the data distribution (see below for details). Second, we used
an iterative update that adjusts the action-values (Q) towards target
values that are only periodically updated, thereby reducing correlations
with the target.

While other stable methods exist for training neural networks in the
reinforcement learning setting, such as neural fitted Q-iteration24, these
methods involve the repeated training of networks de novo on hundreds
of iterations. Consequently, these methods, unlike our algorithm, are
too inefficient to be used successfully with large neural networks. We
parameterize an approximate value function Q(s,a;hi) using the deep
convolutional neural network shown in Fig. 1, in which hi are the param-
eters (that is, weights) of the Q-network at iteration i. To perform
experience replay we store the agent’s experiences et 5 (st,at,rt,st 1 1)
at each time-step t in a data set Dt 5 {e1,…,et}. During learning, we
apply Q-learning updates, on samples (or minibatches) of experience
(s,a,r,s9) , U(D), drawn uniformly at random from the pool of stored
samples. The Q-learning update at iteration i uses the following loss
function:

Li hið Þ~ s,a,r,s0ð Þ*U Dð Þ rzc max
a0

Q(s0,a0; h{
i ){Q s,a; hið Þ

# $2
" #

in which c is the discount factor determining the agent’s horizon, hi are
the parameters of the Q-network at iteration i and h{

i are the network
parameters used to compute the target at iteration i. The target net-
work parameters h{

i are only updated with the Q-network parameters
(hi) every C steps and are held fixed between individual updates (see
Methods).

To evaluate our DQN agent, we took advantage of the Atari 2600
platform, which offers a diverse array of tasks (n 5 49) designed to be

*These authors contributed equally to this work.
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difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).
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Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.
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see Fig. 3, Supplementary Discussion and Extended Data Table 2). In
additional simulations (see Supplementary Discussion and Extended
Data Tables 3 and 4), we demonstrate the importance of the individual
core components of the DQN agent—the replay memory, separate target
Q-network and deep convolutional network architecture—by disabling
them and demonstrating the detrimental effects on performance.

We next examined the representations learned by DQN that under-
pinned the successful performance of the agent in the context of the game
Space Invaders (see Supplementary Video 1 for a demonstration of the
performance of DQN), by using a technique developed for the visual-
ization of high-dimensional data called ‘t-SNE’25 (Fig. 4). As expected,
the t-SNE algorithm tends to map the DQN representation of percep-
tually similar states to nearby points. Interestingly, we also found instances
in which the t-SNE algorithm generated similar embeddings for DQN
representations of states that are close in terms of expected reward but

perceptually dissimilar (Fig. 4, bottom right, top left and middle), con-
sistent with the notion that the network is able to learn representations
that support adaptive behaviour from high-dimensional sensory inputs.
Furthermore, we also show that the representations learned by DQN
are able to generalize to data generated from policies other than its
own—in simulations where we presented as input to the network game
states experienced during human and agent play, recorded the repre-
sentations of the last hidden layer, and visualized the embeddings gen-
erated by the t-SNE algorithm (Extended Data Fig. 1 and Supplementary
Discussion). Extended Data Fig. 2 provides an additional illustration of
how the representations learned by DQN allow it to accurately predict
state and action values.

It is worth noting that the games in which DQN excels are extremely
varied in their nature, from side-scrolling shooters (River Raid) to box-
ing games (Boxing) and three-dimensional car-racing games (Enduro).

Montezuma's Revenge
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Frostbite
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Ms. Pac-Man
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Double Dunk
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Alien

Amidar
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Centipede
Chopper Command

Wizard of Wor
Battle Zone

Asterix
H.E.R.O.

Q*bert
Ice Hockey

Up and Down
Fishing Derby

Enduro
Time Pilot

Freeway
Kung-Fu Master

Tutankham
Beam Rider

Space Invaders
Pong

James Bond
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Kangaroo
Road Runner
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Name This Game
Demon Attack
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Crazy Climber

Atlantis
Robotank

Star Gunner
Breakout
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Video Pinball

At human-level or above

Below human-level

0 100 200 300 400 4,500%500 1,000600

Best linear learner

DQN

Figure 3 | Comparison of the DQN agent with the best reinforcement
learning methods15 in the literature. The performance of DQN is normalized
with respect to a professional human games tester (that is, 100% level) and
random play (that is, 0% level). Note that the normalized performance of DQN,
expressed as a percentage, is calculated as: 100 3 (DQN score 2 random play
score)/(human score 2 random play score). It can be seen that DQN

outperforms competing methods (also see Extended Data Table 2) in almost all
the games, and performs at a level that is broadly comparable with or superior
to a professional human games tester (that is, operationalized as a level of
75% or above) in the majority of games. Audio output was disabled for both
human players and agents. Error bars indicate s.d. across the 30 evaluation
episodes, starting with different initial conditions.
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