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between receptive field centres15. We found that fitted stimulus filters
have smaller surrounds than the spike-triggered average, indicating
that a portion of the classical surround can be explained by interac-
tions between cells21 (see Supplementary Information).

To assess accuracy in capturing the statistical dependencies in
population responses, we compared the pairwise cross-correlation
function (CCF) of RGCs and simulated model spike trains (Fig. 2).
For nearby ON–ON and OFF–OFF pairs, the CCF exhibits a sharp
peak at zero, indicating the prevalence of synchronous spikes; how-
ever, for ON–OFF pairs, a trough at zero indicates an absence of
synchrony. For all 351 possible pairings, the model accurately repro-
duces the CCF (Fig. 2a–c, e, f).

To examine whether inter-neuronal coupling was necessary to
capture the response correlation structure, we re-fitted the model
without coupling filters (that is, so that each cell’s response depends
only on the stimulus and its own spike-train history). This
‘uncoupled model’ assumes that cells encode the stimulus indepen-
dently, although correlations may still arise from the overlap of
stimulus filters. However, the uncoupled model fails to reproduce
the sharp CCF peaks observed in the data. These peaks are also absent
from CCFs computed on trial-shuffled data, indicating that fast-
timescale correlations are not stimulus-induced and therefore cannot
be captured by any independent encoding model.

Higher-order statistical dependencies were considered by inspect-
ing correlations in three-neuron groups: triplet CCFs show the spike
rate of one cell as a function of the relative time to spikes in two other
cells (Fig. 2e–g)15. For adjacent neurons of the same type, triplet CCFs
have substantial peaks at zero (‘triplet synchrony’), which are well
matched by the full model.

Although the full and uncoupled models differ substantially in
their statistical dependencies, the two models predict average light
responses in individual cells with nearly identical accuracy, capturing
80–95% of the variance in the peri-stimulus time histogram (PSTH)
in 26 out of 27 cells (Fig. 3a–c). Both models therefore accurately
describe average single-cell responses to new stimuli. However, the
full model achieves higher accuracy, predicting multi-neuronal spike
responses on a single trial (8 6 3% more bits per spike, Fig. 3d). This
discrepancy can be explained by the fact that noise is shared across

neurons. Shared variability means that population activity carries
information about a single cell’s response (owing to coupling
between cells) beyond that provided by the stimulus alone.
Individual neurons therefore appear less noisy when conditioned
on spiking activity in the rest of the population than they appear in
raster plots.

We measured the effect of correlations on single-trial, single-cell
spike-train prediction by using the model to draw samples of a single
cell’s response given both the stimulus and the spiking activity in the
rest of the population on a single trial (Fig. 3e, f). Averaging the
resulting raster plot gives a prediction of the cell’s single-trial spike
rate, or ‘population-conditioned’ PSTH for a single trial. We com-
pared these predictions with the cell’s true spike times (binned at
2 ms) across all trials and found that on nearly every trial, the model-
based prediction is more highly correlated with the observed spikes
than the neuron’s full PSTH (Fig. 3g). Note that the full PSTH
achieves the highest correlation possible for any trial-independent
prediction. Thus, by exploiting the correlation structure, the coupled
model predicts single-neuron spike times more accurately than any
independent encoding model.

Although the full model accurately captures dependencies in the
activity of RGCs, it is not obvious a priori whether these dependencies
affect the amount of sensory information conveyed by RGC res-
ponses. In principle, the correlation structure could be necessary to
predict the responses, but not to extract the stimulus information
that the responses carry13. To examine this issue directly, we used the
full and uncoupled models to perform Bayesian decoding of the
population response (Fig. 4a), which optimally reconstructs stimuli
given an accurate description of the encoding process. For compar-
ison, we also performed Bayesian decoding under a Poisson (that is,
LNP) model and optimal linear decoding6.

Each decoding method was used to estimate short (150-ms) seg-
ments of the stimulus given all relevant spike times from the full popu-
lation (Fig. 4b). Bayesian decoding under the coupled model recovers
20% more information than Bayesian decoding under the uncoupled
model, indicating that knowledge of the correlation structure is critical
for extracting all sensory information contained in the population
response. This improvement was invariant to enhancements of the
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Figure 1 | Multi-neuron encoding model and fitted parameters. a, Model
schematic for two coupled neurons: each neuron has a stimulus filter, a post-
spike filter and coupling filters that capture dependencies on spiking in other
neurons. Summed filter output passes through an exponential nonlinearity
to produce the instantaneous spike rate. b, Mosaics of 11 ON and 16 OFF
retinal ganglion cell receptive fields, tiling a small region of visual space.
Ellipses represent 1 s.d. of a Gaussian fit to each receptive field centre; the
square grid indicates stimulus pixels. c–e, Parameters for an example ON
cell. c, Temporal and spatial components of centre (red) and surround (blue)
filter components, the difference of which is the full stimulus filter.

d, Exponentiated post-spike filter, which may be interpreted as multiplying
the spike rate after a spike at time zero. It produces a brief refractory period
and gradual recovery (with a slight overshoot). e, Connectivity and coupling
filters from other cells in the population. The black filled ellipse is this cell’s
RF centre, and blue and red lines show connections from neighbouring OFF
and ON cells, respectively (line thickness indicates coupling strength).
Below, exponentiated coupling filters show the multiplicative effect on this
cell’s spike rate after a spike in a neighbouring cell. f–h, Analogous plots for
an example OFF cell.
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between receptive field centres15. We found that fitted stimulus filters
have smaller surrounds than the spike-triggered average, indicating
that a portion of the classical surround can be explained by interac-
tions between cells21 (see Supplementary Information).

To assess accuracy in capturing the statistical dependencies in
population responses, we compared the pairwise cross-correlation
function (CCF) of RGCs and simulated model spike trains (Fig. 2).
For nearby ON–ON and OFF–OFF pairs, the CCF exhibits a sharp
peak at zero, indicating the prevalence of synchronous spikes; how-
ever, for ON–OFF pairs, a trough at zero indicates an absence of
synchrony. For all 351 possible pairings, the model accurately repro-
duces the CCF (Fig. 2a–c, e, f).

To examine whether inter-neuronal coupling was necessary to
capture the response correlation structure, we re-fitted the model
without coupling filters (that is, so that each cell’s response depends
only on the stimulus and its own spike-train history). This
‘uncoupled model’ assumes that cells encode the stimulus indepen-
dently, although correlations may still arise from the overlap of
stimulus filters. However, the uncoupled model fails to reproduce
the sharp CCF peaks observed in the data. These peaks are also absent
from CCFs computed on trial-shuffled data, indicating that fast-
timescale correlations are not stimulus-induced and therefore cannot
be captured by any independent encoding model.

Higher-order statistical dependencies were considered by inspect-
ing correlations in three-neuron groups: triplet CCFs show the spike
rate of one cell as a function of the relative time to spikes in two other
cells (Fig. 2e–g)15. For adjacent neurons of the same type, triplet CCFs
have substantial peaks at zero (‘triplet synchrony’), which are well
matched by the full model.

Although the full and uncoupled models differ substantially in
their statistical dependencies, the two models predict average light
responses in individual cells with nearly identical accuracy, capturing
80–95% of the variance in the peri-stimulus time histogram (PSTH)
in 26 out of 27 cells (Fig. 3a–c). Both models therefore accurately
describe average single-cell responses to new stimuli. However, the
full model achieves higher accuracy, predicting multi-neuronal spike
responses on a single trial (8 6 3% more bits per spike, Fig. 3d). This
discrepancy can be explained by the fact that noise is shared across

neurons. Shared variability means that population activity carries
information about a single cell’s response (owing to coupling
between cells) beyond that provided by the stimulus alone.
Individual neurons therefore appear less noisy when conditioned
on spiking activity in the rest of the population than they appear in
raster plots.

We measured the effect of correlations on single-trial, single-cell
spike-train prediction by using the model to draw samples of a single
cell’s response given both the stimulus and the spiking activity in the
rest of the population on a single trial (Fig. 3e, f). Averaging the
resulting raster plot gives a prediction of the cell’s single-trial spike
rate, or ‘population-conditioned’ PSTH for a single trial. We com-
pared these predictions with the cell’s true spike times (binned at
2 ms) across all trials and found that on nearly every trial, the model-
based prediction is more highly correlated with the observed spikes
than the neuron’s full PSTH (Fig. 3g). Note that the full PSTH
achieves the highest correlation possible for any trial-independent
prediction. Thus, by exploiting the correlation structure, the coupled
model predicts single-neuron spike times more accurately than any
independent encoding model.

Although the full model accurately captures dependencies in the
activity of RGCs, it is not obvious a priori whether these dependencies
affect the amount of sensory information conveyed by RGC res-
ponses. In principle, the correlation structure could be necessary to
predict the responses, but not to extract the stimulus information
that the responses carry13. To examine this issue directly, we used the
full and uncoupled models to perform Bayesian decoding of the
population response (Fig. 4a), which optimally reconstructs stimuli
given an accurate description of the encoding process. For compar-
ison, we also performed Bayesian decoding under a Poisson (that is,
LNP) model and optimal linear decoding6.

Each decoding method was used to estimate short (150-ms) seg-
ments of the stimulus given all relevant spike times from the full popu-
lation (Fig. 4b). Bayesian decoding under the coupled model recovers
20% more information than Bayesian decoding under the uncoupled
model, indicating that knowledge of the correlation structure is critical
for extracting all sensory information contained in the population
response. This improvement was invariant to enhancements of the
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Figure 1 | Multi-neuron encoding model and fitted parameters. a, Model
schematic for two coupled neurons: each neuron has a stimulus filter, a post-
spike filter and coupling filters that capture dependencies on spiking in other
neurons. Summed filter output passes through an exponential nonlinearity
to produce the instantaneous spike rate. b, Mosaics of 11 ON and 16 OFF
retinal ganglion cell receptive fields, tiling a small region of visual space.
Ellipses represent 1 s.d. of a Gaussian fit to each receptive field centre; the
square grid indicates stimulus pixels. c–e, Parameters for an example ON
cell. c, Temporal and spatial components of centre (red) and surround (blue)
filter components, the difference of which is the full stimulus filter.

d, Exponentiated post-spike filter, which may be interpreted as multiplying
the spike rate after a spike at time zero. It produces a brief refractory period
and gradual recovery (with a slight overshoot). e, Connectivity and coupling
filters from other cells in the population. The black filled ellipse is this cell’s
RF centre, and blue and red lines show connections from neighbouring OFF
and ON cells, respectively (line thickness indicates coupling strength).
Below, exponentiated coupling filters show the multiplicative effect on this
cell’s spike rate after a spike in a neighbouring cell. f–h, Analogous plots for
an example OFF cell.
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between receptive field centres15. We found that fitted stimulus filters
have smaller surrounds than the spike-triggered average, indicating
that a portion of the classical surround can be explained by interac-
tions between cells21 (see Supplementary Information).

To assess accuracy in capturing the statistical dependencies in
population responses, we compared the pairwise cross-correlation
function (CCF) of RGCs and simulated model spike trains (Fig. 2).
For nearby ON–ON and OFF–OFF pairs, the CCF exhibits a sharp
peak at zero, indicating the prevalence of synchronous spikes; how-
ever, for ON–OFF pairs, a trough at zero indicates an absence of
synchrony. For all 351 possible pairings, the model accurately repro-
duces the CCF (Fig. 2a–c, e, f).

To examine whether inter-neuronal coupling was necessary to
capture the response correlation structure, we re-fitted the model
without coupling filters (that is, so that each cell’s response depends
only on the stimulus and its own spike-train history). This
‘uncoupled model’ assumes that cells encode the stimulus indepen-
dently, although correlations may still arise from the overlap of
stimulus filters. However, the uncoupled model fails to reproduce
the sharp CCF peaks observed in the data. These peaks are also absent
from CCFs computed on trial-shuffled data, indicating that fast-
timescale correlations are not stimulus-induced and therefore cannot
be captured by any independent encoding model.

Higher-order statistical dependencies were considered by inspect-
ing correlations in three-neuron groups: triplet CCFs show the spike
rate of one cell as a function of the relative time to spikes in two other
cells (Fig. 2e–g)15. For adjacent neurons of the same type, triplet CCFs
have substantial peaks at zero (‘triplet synchrony’), which are well
matched by the full model.

Although the full and uncoupled models differ substantially in
their statistical dependencies, the two models predict average light
responses in individual cells with nearly identical accuracy, capturing
80–95% of the variance in the peri-stimulus time histogram (PSTH)
in 26 out of 27 cells (Fig. 3a–c). Both models therefore accurately
describe average single-cell responses to new stimuli. However, the
full model achieves higher accuracy, predicting multi-neuronal spike
responses on a single trial (8 6 3% more bits per spike, Fig. 3d). This
discrepancy can be explained by the fact that noise is shared across

neurons. Shared variability means that population activity carries
information about a single cell’s response (owing to coupling
between cells) beyond that provided by the stimulus alone.
Individual neurons therefore appear less noisy when conditioned
on spiking activity in the rest of the population than they appear in
raster plots.

We measured the effect of correlations on single-trial, single-cell
spike-train prediction by using the model to draw samples of a single
cell’s response given both the stimulus and the spiking activity in the
rest of the population on a single trial (Fig. 3e, f). Averaging the
resulting raster plot gives a prediction of the cell’s single-trial spike
rate, or ‘population-conditioned’ PSTH for a single trial. We com-
pared these predictions with the cell’s true spike times (binned at
2 ms) across all trials and found that on nearly every trial, the model-
based prediction is more highly correlated with the observed spikes
than the neuron’s full PSTH (Fig. 3g). Note that the full PSTH
achieves the highest correlation possible for any trial-independent
prediction. Thus, by exploiting the correlation structure, the coupled
model predicts single-neuron spike times more accurately than any
independent encoding model.

Although the full model accurately captures dependencies in the
activity of RGCs, it is not obvious a priori whether these dependencies
affect the amount of sensory information conveyed by RGC res-
ponses. In principle, the correlation structure could be necessary to
predict the responses, but not to extract the stimulus information
that the responses carry13. To examine this issue directly, we used the
full and uncoupled models to perform Bayesian decoding of the
population response (Fig. 4a), which optimally reconstructs stimuli
given an accurate description of the encoding process. For compar-
ison, we also performed Bayesian decoding under a Poisson (that is,
LNP) model and optimal linear decoding6.

Each decoding method was used to estimate short (150-ms) seg-
ments of the stimulus given all relevant spike times from the full popu-
lation (Fig. 4b). Bayesian decoding under the coupled model recovers
20% more information than Bayesian decoding under the uncoupled
model, indicating that knowledge of the correlation structure is critical
for extracting all sensory information contained in the population
response. This improvement was invariant to enhancements of the
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to produce the instantaneous spike rate. b, Mosaics of 11 ON and 16 OFF
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Ellipses represent 1 s.d. of a Gaussian fit to each receptive field centre; the
square grid indicates stimulus pixels. c–e, Parameters for an example ON
cell. c, Temporal and spatial components of centre (red) and surround (blue)
filter components, the difference of which is the full stimulus filter.

d, Exponentiated post-spike filter, which may be interpreted as multiplying
the spike rate after a spike at time zero. It produces a brief refractory period
and gradual recovery (with a slight overshoot). e, Connectivity and coupling
filters from other cells in the population. The black filled ellipse is this cell’s
RF centre, and blue and red lines show connections from neighbouring OFF
and ON cells, respectively (line thickness indicates coupling strength).
Below, exponentiated coupling filters show the multiplicative effect on this
cell’s spike rate after a spike in a neighbouring cell. f–h, Analogous plots for
an example OFF cell.
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Physiological interpretations of the model and mechanisms for
neural read-out of sensory information in higher brain areas are thus
important directions for future research.

Nevertheless, the generalized linear model offers a concise, com-
putationally tractable description of the population encoding pro-
cess, and provides the first generative description of the space–time
dependencies in stimulus-induced population activity. It allows us to
quantify the relative contributions of stimulus, spike history and

network interactions to the encoding and decoding of visual stimuli,
and clarifies the relationship between single-cell and population vari-
ability. More generally, the model can be used to assess which features
of the visual environment are encoded with highest and lowest fidel-
ity, and to determine how the structure of the neural code constrains
perceptual capabilities. We expect this framework to extend to other
brain areas, and to have an important role in revealing the informa-
tion processing capabilities of spiking neural populations4,19,24,25.
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Figure 4 | Decoding performance comparison. a, Shown is a Bayesian
decoding schematic: to estimate an unknown stimulus segment from a set of
observed spike times (highlighted in boxes), the stimulus prior distribution
p(s) is multiplied by the model-defined likelihood p(r | s) to obtain the
posterior p(s | r). The posterior mean is the Bayes’ least-squares stimulus
estimate. b, Log of the SNR for linear decoding, as well as for Bayesian
decoding under the Poisson, uncoupled and full models6. The full model

preserves 20% more information than the uncoupled model, which indicates
that there is additional sensory information available from the population
response when correlations are taken into account. Error bars show 95%
confidence intervals based on 2,000 bootstrap resamplings of 3,000 decoded
stimulus segments. c, Log SNR decomposed as a function of temporal
frequency for various decoding methods (Poisson omitted for clarity).
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Figure 3 | Spike-train prediction comparison. a, Raster of responses of an
ON RGC to 25 repeats of a novel 1-s stimulus (top), and responses of
uncoupled (middle) and full (bottom) models to the same stimulus. b, PSTH
of the RGC (black), uncoupled (blue) and coupled (red) model; both models
account for ,84% of the variance of the true PSTH. c, PSTH prediction by
full and uncoupled models, showing that coupling confers no advantage in
predicting average responses. d, Log-likelihood of novel RGC spike
responses under full and uncoupled models; the full model provides 8%
more information about novel spike trains. e, Magnified 150-ms portion of
RGC raster and PSTH (grey box in a). Red dots highlight RGC spike times on
selected individual trials, which are replotted in f. f, Single-trial spike-train
prediction using the coupled model. The top half of each plot shows the

population activity on a single trial: true spike times of the cell (red dots),
coupled ON cells (light grey dots) and coupled OFF cells (dark grey dots;
each line in the raster shows the spike times of a different cell). The bottom
half of each plot shows a raster of 50 predicted responses of the cell in
question, using both the stimulus and coupled responses (shown above) to
predict spike trains. The red trace shows the single-trial rate prediction
(population-conditioned PSTH), compared with true PSTH of the cell
(black trace, identical in all plots). g, Correlation coefficient of true spike
trains with the PSTH (ordinate) and with population-conditioned
predictions (abscissa); the full model predicts single-trial responses with
higher accuracy than the true PSTH.
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ON RGC to 25 repeats of a novel 1-s stimulus (top), and responses of
uncoupled (middle) and full (bottom) models to the same stimulus. b, PSTH
of the RGC (black), uncoupled (blue) and coupled (red) model; both models
account for ,84% of the variance of the true PSTH. c, PSTH prediction by
full and uncoupled models, showing that coupling confers no advantage in
predicting average responses. d, Log-likelihood of novel RGC spike
responses under full and uncoupled models; the full model provides 8%
more information about novel spike trains. e, Magnified 150-ms portion of
RGC raster and PSTH (grey box in a). Red dots highlight RGC spike times on
selected individual trials, which are replotted in f. f, Single-trial spike-train
prediction using the coupled model. The top half of each plot shows the

population activity on a single trial: true spike times of the cell (red dots),
coupled ON cells (light grey dots) and coupled OFF cells (dark grey dots;
each line in the raster shows the spike times of a different cell). The bottom
half of each plot shows a raster of 50 predicted responses of the cell in
question, using both the stimulus and coupled responses (shown above) to
predict spike trains. The red trace shows the single-trial rate prediction
(population-conditioned PSTH), compared with true PSTH of the cell
(black trace, identical in all plots). g, Correlation coefficient of true spike
trains with the PSTH (ordinate) and with population-conditioned
predictions (abscissa); the full model predicts single-trial responses with
higher accuracy than the true PSTH.
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between receptive field centres15. We found that fitted stimulus filters
have smaller surrounds than the spike-triggered average, indicating
that a portion of the classical surround can be explained by interac-
tions between cells21 (see Supplementary Information).

To assess accuracy in capturing the statistical dependencies in
population responses, we compared the pairwise cross-correlation
function (CCF) of RGCs and simulated model spike trains (Fig. 2).
For nearby ON–ON and OFF–OFF pairs, the CCF exhibits a sharp
peak at zero, indicating the prevalence of synchronous spikes; how-
ever, for ON–OFF pairs, a trough at zero indicates an absence of
synchrony. For all 351 possible pairings, the model accurately repro-
duces the CCF (Fig. 2a–c, e, f).

To examine whether inter-neuronal coupling was necessary to
capture the response correlation structure, we re-fitted the model
without coupling filters (that is, so that each cell’s response depends
only on the stimulus and its own spike-train history). This
‘uncoupled model’ assumes that cells encode the stimulus indepen-
dently, although correlations may still arise from the overlap of
stimulus filters. However, the uncoupled model fails to reproduce
the sharp CCF peaks observed in the data. These peaks are also absent
from CCFs computed on trial-shuffled data, indicating that fast-
timescale correlations are not stimulus-induced and therefore cannot
be captured by any independent encoding model.

Higher-order statistical dependencies were considered by inspect-
ing correlations in three-neuron groups: triplet CCFs show the spike
rate of one cell as a function of the relative time to spikes in two other
cells (Fig. 2e–g)15. For adjacent neurons of the same type, triplet CCFs
have substantial peaks at zero (‘triplet synchrony’), which are well
matched by the full model.

Although the full and uncoupled models differ substantially in
their statistical dependencies, the two models predict average light
responses in individual cells with nearly identical accuracy, capturing
80–95% of the variance in the peri-stimulus time histogram (PSTH)
in 26 out of 27 cells (Fig. 3a–c). Both models therefore accurately
describe average single-cell responses to new stimuli. However, the
full model achieves higher accuracy, predicting multi-neuronal spike
responses on a single trial (8 6 3% more bits per spike, Fig. 3d). This
discrepancy can be explained by the fact that noise is shared across

neurons. Shared variability means that population activity carries
information about a single cell’s response (owing to coupling
between cells) beyond that provided by the stimulus alone.
Individual neurons therefore appear less noisy when conditioned
on spiking activity in the rest of the population than they appear in
raster plots.

We measured the effect of correlations on single-trial, single-cell
spike-train prediction by using the model to draw samples of a single
cell’s response given both the stimulus and the spiking activity in the
rest of the population on a single trial (Fig. 3e, f). Averaging the
resulting raster plot gives a prediction of the cell’s single-trial spike
rate, or ‘population-conditioned’ PSTH for a single trial. We com-
pared these predictions with the cell’s true spike times (binned at
2 ms) across all trials and found that on nearly every trial, the model-
based prediction is more highly correlated with the observed spikes
than the neuron’s full PSTH (Fig. 3g). Note that the full PSTH
achieves the highest correlation possible for any trial-independent
prediction. Thus, by exploiting the correlation structure, the coupled
model predicts single-neuron spike times more accurately than any
independent encoding model.

Although the full model accurately captures dependencies in the
activity of RGCs, it is not obvious a priori whether these dependencies
affect the amount of sensory information conveyed by RGC res-
ponses. In principle, the correlation structure could be necessary to
predict the responses, but not to extract the stimulus information
that the responses carry13. To examine this issue directly, we used the
full and uncoupled models to perform Bayesian decoding of the
population response (Fig. 4a), which optimally reconstructs stimuli
given an accurate description of the encoding process. For compar-
ison, we also performed Bayesian decoding under a Poisson (that is,
LNP) model and optimal linear decoding6.

Each decoding method was used to estimate short (150-ms) seg-
ments of the stimulus given all relevant spike times from the full popu-
lation (Fig. 4b). Bayesian decoding under the coupled model recovers
20% more information than Bayesian decoding under the uncoupled
model, indicating that knowledge of the correlation structure is critical
for extracting all sensory information contained in the population
response. This improvement was invariant to enhancements of the
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Physiological interpretations of the model and mechanisms for
neural read-out of sensory information in higher brain areas are thus
important directions for future research.

Nevertheless, the generalized linear model offers a concise, com-
putationally tractable description of the population encoding pro-
cess, and provides the first generative description of the space–time
dependencies in stimulus-induced population activity. It allows us to
quantify the relative contributions of stimulus, spike history and

network interactions to the encoding and decoding of visual stimuli,
and clarifies the relationship between single-cell and population vari-
ability. More generally, the model can be used to assess which features
of the visual environment are encoded with highest and lowest fidel-
ity, and to determine how the structure of the neural code constrains
perceptual capabilities. We expect this framework to extend to other
brain areas, and to have an important role in revealing the informa-
tion processing capabilities of spiking neural populations4,19,24,25.
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Figure 4 | Decoding performance comparison. a, Shown is a Bayesian
decoding schematic: to estimate an unknown stimulus segment from a set of
observed spike times (highlighted in boxes), the stimulus prior distribution
p(s) is multiplied by the model-defined likelihood p(r | s) to obtain the
posterior p(s | r). The posterior mean is the Bayes’ least-squares stimulus
estimate. b, Log of the SNR for linear decoding, as well as for Bayesian
decoding under the Poisson, uncoupled and full models6. The full model

preserves 20% more information than the uncoupled model, which indicates
that there is additional sensory information available from the population
response when correlations are taken into account. Error bars show 95%
confidence intervals based on 2,000 bootstrap resamplings of 3,000 decoded
stimulus segments. c, Log SNR decomposed as a function of temporal
frequency for various decoding methods (Poisson omitted for clarity).
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Figure 3 | Spike-train prediction comparison. a, Raster of responses of an
ON RGC to 25 repeats of a novel 1-s stimulus (top), and responses of
uncoupled (middle) and full (bottom) models to the same stimulus. b, PSTH
of the RGC (black), uncoupled (blue) and coupled (red) model; both models
account for ,84% of the variance of the true PSTH. c, PSTH prediction by
full and uncoupled models, showing that coupling confers no advantage in
predicting average responses. d, Log-likelihood of novel RGC spike
responses under full and uncoupled models; the full model provides 8%
more information about novel spike trains. e, Magnified 150-ms portion of
RGC raster and PSTH (grey box in a). Red dots highlight RGC spike times on
selected individual trials, which are replotted in f. f, Single-trial spike-train
prediction using the coupled model. The top half of each plot shows the

population activity on a single trial: true spike times of the cell (red dots),
coupled ON cells (light grey dots) and coupled OFF cells (dark grey dots;
each line in the raster shows the spike times of a different cell). The bottom
half of each plot shows a raster of 50 predicted responses of the cell in
question, using both the stimulus and coupled responses (shown above) to
predict spike trains. The red trace shows the single-trial rate prediction
(population-conditioned PSTH), compared with true PSTH of the cell
(black trace, identical in all plots). g, Correlation coefficient of true spike
trains with the PSTH (ordinate) and with population-conditioned
predictions (abscissa); the full model predicts single-trial responses with
higher accuracy than the true PSTH.
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Physiological interpretations of the model and mechanisms for
neural read-out of sensory information in higher brain areas are thus
important directions for future research.

Nevertheless, the generalized linear model offers a concise, com-
putationally tractable description of the population encoding pro-
cess, and provides the first generative description of the space–time
dependencies in stimulus-induced population activity. It allows us to
quantify the relative contributions of stimulus, spike history and

network interactions to the encoding and decoding of visual stimuli,
and clarifies the relationship between single-cell and population vari-
ability. More generally, the model can be used to assess which features
of the visual environment are encoded with highest and lowest fidel-
ity, and to determine how the structure of the neural code constrains
perceptual capabilities. We expect this framework to extend to other
brain areas, and to have an important role in revealing the informa-
tion processing capabilities of spiking neural populations4,19,24,25.
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Figure 4 | Decoding performance comparison. a, Shown is a Bayesian
decoding schematic: to estimate an unknown stimulus segment from a set of
observed spike times (highlighted in boxes), the stimulus prior distribution
p(s) is multiplied by the model-defined likelihood p(r | s) to obtain the
posterior p(s | r). The posterior mean is the Bayes’ least-squares stimulus
estimate. b, Log of the SNR for linear decoding, as well as for Bayesian
decoding under the Poisson, uncoupled and full models6. The full model

preserves 20% more information than the uncoupled model, which indicates
that there is additional sensory information available from the population
response when correlations are taken into account. Error bars show 95%
confidence intervals based on 2,000 bootstrap resamplings of 3,000 decoded
stimulus segments. c, Log SNR decomposed as a function of temporal
frequency for various decoding methods (Poisson omitted for clarity).
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Figure 3 | Spike-train prediction comparison. a, Raster of responses of an
ON RGC to 25 repeats of a novel 1-s stimulus (top), and responses of
uncoupled (middle) and full (bottom) models to the same stimulus. b, PSTH
of the RGC (black), uncoupled (blue) and coupled (red) model; both models
account for ,84% of the variance of the true PSTH. c, PSTH prediction by
full and uncoupled models, showing that coupling confers no advantage in
predicting average responses. d, Log-likelihood of novel RGC spike
responses under full and uncoupled models; the full model provides 8%
more information about novel spike trains. e, Magnified 150-ms portion of
RGC raster and PSTH (grey box in a). Red dots highlight RGC spike times on
selected individual trials, which are replotted in f. f, Single-trial spike-train
prediction using the coupled model. The top half of each plot shows the

population activity on a single trial: true spike times of the cell (red dots),
coupled ON cells (light grey dots) and coupled OFF cells (dark grey dots;
each line in the raster shows the spike times of a different cell). The bottom
half of each plot shows a raster of 50 predicted responses of the cell in
question, using both the stimulus and coupled responses (shown above) to
predict spike trains. The red trace shows the single-trial rate prediction
(population-conditioned PSTH), compared with true PSTH of the cell
(black trace, identical in all plots). g, Correlation coefficient of true spike
trains with the PSTH (ordinate) and with population-conditioned
predictions (abscissa); the full model predicts single-trial responses with
higher accuracy than the true PSTH.
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Physiological interpretations of the model and mechanisms for
neural read-out of sensory information in higher brain areas are thus
important directions for future research.

Nevertheless, the generalized linear model offers a concise, com-
putationally tractable description of the population encoding pro-
cess, and provides the first generative description of the space–time
dependencies in stimulus-induced population activity. It allows us to
quantify the relative contributions of stimulus, spike history and

network interactions to the encoding and decoding of visual stimuli,
and clarifies the relationship between single-cell and population vari-
ability. More generally, the model can be used to assess which features
of the visual environment are encoded with highest and lowest fidel-
ity, and to determine how the structure of the neural code constrains
perceptual capabilities. We expect this framework to extend to other
brain areas, and to have an important role in revealing the informa-
tion processing capabilities of spiking neural populations4,19,24,25.
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Figure 4 | Decoding performance comparison. a, Shown is a Bayesian
decoding schematic: to estimate an unknown stimulus segment from a set of
observed spike times (highlighted in boxes), the stimulus prior distribution
p(s) is multiplied by the model-defined likelihood p(r | s) to obtain the
posterior p(s | r). The posterior mean is the Bayes’ least-squares stimulus
estimate. b, Log of the SNR for linear decoding, as well as for Bayesian
decoding under the Poisson, uncoupled and full models6. The full model

preserves 20% more information than the uncoupled model, which indicates
that there is additional sensory information available from the population
response when correlations are taken into account. Error bars show 95%
confidence intervals based on 2,000 bootstrap resamplings of 3,000 decoded
stimulus segments. c, Log SNR decomposed as a function of temporal
frequency for various decoding methods (Poisson omitted for clarity).
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ON RGC to 25 repeats of a novel 1-s stimulus (top), and responses of
uncoupled (middle) and full (bottom) models to the same stimulus. b, PSTH
of the RGC (black), uncoupled (blue) and coupled (red) model; both models
account for ,84% of the variance of the true PSTH. c, PSTH prediction by
full and uncoupled models, showing that coupling confers no advantage in
predicting average responses. d, Log-likelihood of novel RGC spike
responses under full and uncoupled models; the full model provides 8%
more information about novel spike trains. e, Magnified 150-ms portion of
RGC raster and PSTH (grey box in a). Red dots highlight RGC spike times on
selected individual trials, which are replotted in f. f, Single-trial spike-train
prediction using the coupled model. The top half of each plot shows the

population activity on a single trial: true spike times of the cell (red dots),
coupled ON cells (light grey dots) and coupled OFF cells (dark grey dots;
each line in the raster shows the spike times of a different cell). The bottom
half of each plot shows a raster of 50 predicted responses of the cell in
question, using both the stimulus and coupled responses (shown above) to
predict spike trains. The red trace shows the single-trial rate prediction
(population-conditioned PSTH), compared with true PSTH of the cell
(black trace, identical in all plots). g, Correlation coefficient of true spike
trains with the PSTH (ordinate) and with population-conditioned
predictions (abscissa); the full model predicts single-trial responses with
higher accuracy than the true PSTH.
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They communicate their choice by making a saccadic eye movement to one 
of two choice targets on the screen. From trial to trial, the fraction of dots 
moving coherently in the correct direction is varied, spanning a range of 
difficulties from easy (high coherence) to hard (low coherence). Figure 1a  
illustrates the decision-making task and the variable timings of the 
four principal task elements: fixation point, choice targets, moving dots 
and saccade. We varied the timings (and/or values) of the first three  
elements independently, and the saccade exhibited intrinsic timing 
variability as a part of the animal’s behavior (Online Methods).

Classical analyses of coding in LIP begin with the peri-stimulus 
time histogram (PSTH) aligned to events such as the onset of the mov-
ing dots or the occurrence of the saccade (Fig. 1b). Other approaches 
regress binned spike rates against levels of various experimental vari-
ables, and are sometimes applied at the level of single trials or sin-
gle neurons7,33–35. Our model works at the resolution of individual 
spikes, neurons and trials. It quantifies the dependencies of the neural 
response on multiple task variables by regressing single-trial spike 
trains against the timing and value of each variable represented on 
each trial, while also capturing the influence of spike history on sub-
sequent spikes, and a nonlinearity associated with spike generation. 
It is therefore possible to dissociate firing rate components associated 
with each task variable given their decorrelated design (for example,  
trial-to-trial variability in the relative timings of events and independ-
ent variation of motion coherence) while also capturing the neuron’s 
own temporal response properties (for example, refractoriness, bursti-
ness, longer timescale autocorrelations).

Encoding: a description of the neural code in area LIP
An encoding model aims to describe p(r|x), the probability of a spike 
train response r given a set of external variables x on a single trial. 
Our model defines this probability in terms of a time-varying spike 
rate t, given by

t
i

i ix t texp ( )( ) ( )( )k h rhist

where ( )( )ki ix t  denotes linear convolution of xi(t), the time course 
for the ith external event (for example, the target kernel is zero every-
where except the time at which the saccade targets appear), with the 
linear filter, or kernel, ki, which captures the time-varying relationship  

(1)(1)

between this event and the neuron’s probability of spiking. The second 
term ( )( )h rhist t  denotes the linear convolution of the neuron’s spike 
history rhist with the post-spike filter h. We illustrate these compo-
nents in a model diagram shown in Figure 2a.

Under this model, the probability of a spike train for a single trial 
is given by a Poisson distribution:

p p r e
t

T

t

T
t t

rt t( , ) ( , ) ( )r x x| |
0 0

where  is the time bin size, T is the number of time bins in  
the trial, rt is the spike count at time t, and {{ }, }k hi  are the  
model parameters.

Figure 2 illustrates the model fit to data from a typical LIP neuron. 
To provide intuition for the model’s basic capabilities, we highlight 
the kernels related to the three primary task elements that occur 
on each trial: the appearance of the choice targets, the moving dots 
stimulus and the saccade made by the monkey to indicate a deci-
sion (either into or out of the response field of the neuron under 
study, which we refer to as IN and OUT). We plot the predicted time- 
varying change in spike rate resulting from each task element for 
each of five possible motion coherences and two possible saccade 
directions (Fig. 2b). For each component, this change is given by 
the linear convolution of the kernel with the corresponding task  
element and then passed through an exponential nonlinearity. The 
product of three such components forms the predicted spike rate 
for a single trial (equation (1)). These predictions closely match the  
neuron’s actual PSTH (Fig. 2c).

Randomness and variability in the timings of experimental events 
are essential for dissociating the different components of the response. 
For example, if the interval between the onset of the choice targets 
and the saccade were constant, we could not differentiate spikes time-
locked to the targets from those time-locked to the saccade. Similarly, 
stimulus kernels for each motion coherence can be dissociated thanks 
to randomized coherences and duration, despite having onsets locked 
to the appearance of targets. The large number of task elements 
makes for a large number of model parameters; we therefore fit ker-
nels in smooth temporal bases and applied Bayesian regularization 
 methods to prevent over-fitting (Online Methods). We verified the 
fits via PSTH prediction (Fig. 3b), single trial prediction on a test set  

(2)(2)
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(Figs. 4 and 5a), time-varying spike count variance (Supplementary 
Fig. 1) and interspike interval statistics (Supplementary Fig. 2).

Previous work has shown that LIP neurons are heterogeneous36, 
with diverse response characteristics during the moving-dots task31. 
We fit the model to each LIP neuron in the data set and found that 
it captured the responses of both conventional and radically uncon-
ventional LIP neurons with high accuracy (Fig. 3a). The fitted model 
parameters reveal that LIP neurons carry information about a variety 
of task elements and that the output of each LIP neuron reflects a 
roughly multiplicative combination of signals (Supplementary Figs. 3  
and 4). Furthermore, individual cells encode these elements in dis-
tinct ways, both in terms of overall magnitude and in nuanced aspects 
of the time course. This cell-by-cell analysis suggests that the marked 
differences in PSTHs may arise from the combination of heterogene-
ous task-related components that can now be examined in isolation 
at the level of single neurons.

In addition to capturing the average time course of neural activity 
for different stimulus and choice conditions, the model can predict 

spiking activity on single trials from the timings and values of task 
elements (Fig. 4). Despite the diversity of responses across trials 
and across neurons, the model captures the details of single-trial 
spike rate modulations accurately, on par or better than the model’s 
account of the full PSTH. Note that these predictions are unique to 
each neuron, and differ for each trial because the task elements have  
randomized times.

Single-trial prediction accuracy improves even further when 
the model includes a post-spike filter, which captures the effects of 
spike history on a neuron’s probability of firing (Fig. 5a). The auto-
correlation functions of spike trains in LIP vary substantially across 
neurons (Fig. 5b) and frequently exhibit fine timescale structure that 
is inconsistent with a Poisson model. A model without a post-spike  
filter cannot account for the detailed shape of these autocorrelation 
functions, whereas the full model captures them accurately. The fitted 
post-spike filters (Fig. 5c) reveal detailed and diverse shapes that are 
not obvious from the autocorrelation function. For these neurons, 
the probability of firing was enhanced for more than 200 ms after a 
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(Figs. 4 and 5a), time-varying spike count variance (Supplementary 
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We fit the model to each LIP neuron in the data set and found that 
it captured the responses of both conventional and radically uncon-
ventional LIP neurons with high accuracy (Fig. 3a). The fitted model 
parameters reveal that LIP neurons carry information about a variety 
of task elements and that the output of each LIP neuron reflects a 
roughly multiplicative combination of signals (Supplementary Figs. 3  
and 4). Furthermore, individual cells encode these elements in dis-
tinct ways, both in terms of overall magnitude and in nuanced aspects 
of the time course. This cell-by-cell analysis suggests that the marked 
differences in PSTHs may arise from the combination of heterogene-
ous task-related components that can now be examined in isolation 
at the level of single neurons.

In addition to capturing the average time course of neural activity 
for different stimulus and choice conditions, the model can predict 

spiking activity on single trials from the timings and values of task 
elements (Fig. 4). Despite the diversity of responses across trials 
and across neurons, the model captures the details of single-trial 
spike rate modulations accurately, on par or better than the model’s 
account of the full PSTH. Note that these predictions are unique to 
each neuron, and differ for each trial because the task elements have  
randomized times.

Single-trial prediction accuracy improves even further when 
the model includes a post-spike filter, which captures the effects of 
spike history on a neuron’s probability of firing (Fig. 5a). The auto-
correlation functions of spike trains in LIP vary substantially across 
neurons (Fig. 5b) and frequently exhibit fine timescale structure that 
is inconsistent with a Poisson model. A model without a post-spike  
filter cannot account for the detailed shape of these autocorrelation 
functions, whereas the full model captures them accurately. The fitted 
post-spike filters (Fig. 5c) reveal detailed and diverse shapes that are 
not obvious from the autocorrelation function. For these neurons, 
the probability of firing was enhanced for more than 200 ms after a 
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Sequences of motor activity are encoded in many vertebrate
brains by complex spatio-temporal patterns of neural activity;
however, the neural circuit mechanisms underlying the gener-
ation of these pre-motor patterns are poorly understood. In
songbirds, one prominent site of pre-motor activity is the fore-
brain robust nucleus of the archistriatum (RA), which generates
stereotyped sequences of spike bursts during song1 and recapi-
tulates these sequences during sleep2. We show that the stereo-
typed sequences in RA are driven from nucleus HVC (high vocal
centre), the principal pre-motor input to RA3,4. Recordings of
identified HVC neurons in sleeping and singing birds show that
individual HVC neurons projecting onto RA neurons produce
bursts sparsely, at a single, precise time during the RA sequence.
These HVC neurons burst sequentially with respect to one
another. We suggest that at each time in the RA sequence, the
ensemble of active RA neurons is driven by a subpopulation of
RA-projecting HVC neurons that is active only at that time. As a
population, these HVC neurons may form an explicit represen-
tation of time in the sequence. Such a sparse representation, a
temporal analogue of the ‘grandmother cell’5 concept for object
recognition, eliminates the problem of temporal interference
during sequence generation and learning attributed to more
distributed representations6,7.

Songbirds produce highly stereotyped, learned vocalizations8,9.
Zebra finch (Taeniopygia guttata) song consists of a complex pattern
of sounds with spectral and temporal modulation over a wide range
of timescales10. A basic acoustic element is the song syllable, which
may itself be composed of a complex sequence of sounds varying on
a 10-ms timescale, or even less11. Several distinct song syllables are
organized into a single, repeated pattern of about 1 s in duration,

called a song motif. Two pre-motor nuclei have been identified for
their importance in song generation: nucleus RA and nucleus
HVC12. Premotor HVC neurons project onto RA neurons, which
in turn project with amyotopic mapping ontomotor neurons of the
vocal organ13, and to respiratory brain areas14. During singing, RA
neurons generate a highly stereotyped, complex sequence of action
potential bursts, each precisely correlated to the song vocalization
on a submillisecond timescale1,15. The average burst duration is
roughly 10ms, and each RA neuron generates a unique pattern of
roughly ten bursts per song motif, such that on average 12% of
RA neurons are active at any time (A. Leonardo, and M.S.F.,
unpublished data) (Fig. 1a).

Figure 1 RA sequences and identification of HVC neurons. a, Neurons in nucleus RA
generate complex sequences of brief action potential bursts during song vocalizations.

Spectrogram (top) and acoustic signal of the song motif, and plots of instantaneous firing

rate (bottom) of song-related spike activity in three different RA neurons recorded in one

zebra finch. Neural activity is aligned using the onset of the second syllable of each motif

(arrowhead). Two renditions are displayed for each neuron. b, Single-unit recordings were
made in pre-motor nuclei HVC and RA. HVC neurons were antidromically identified by

electrical stimulation in RA and area X. RA projects to vocal motor neurons in the nucleus

of the twelfth nerve (nXIIts). c, RA-projecting neurons and putative interneurons could be
activated from RA but not from area X. Stimulation in RA, triggered by spontaneous spikes,

resulted in spike collision for RA-projecting neurons but not for interneurons.
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Sequences of motor activity are encoded in many vertebrate
brains by complex spatio-temporal patterns of neural activity;
however, the neural circuit mechanisms underlying the gener-
ation of these pre-motor patterns are poorly understood. In
songbirds, one prominent site of pre-motor activity is the fore-
brain robust nucleus of the archistriatum (RA), which generates
stereotyped sequences of spike bursts during song1 and recapi-
tulates these sequences during sleep2. We show that the stereo-
typed sequences in RA are driven from nucleus HVC (high vocal
centre), the principal pre-motor input to RA3,4. Recordings of
identified HVC neurons in sleeping and singing birds show that
individual HVC neurons projecting onto RA neurons produce
bursts sparsely, at a single, precise time during the RA sequence.
These HVC neurons burst sequentially with respect to one
another. We suggest that at each time in the RA sequence, the
ensemble of active RA neurons is driven by a subpopulation of
RA-projecting HVC neurons that is active only at that time. As a
population, these HVC neurons may form an explicit represen-
tation of time in the sequence. Such a sparse representation, a
temporal analogue of the ‘grandmother cell’5 concept for object
recognition, eliminates the problem of temporal interference
during sequence generation and learning attributed to more
distributed representations6,7.

Songbirds produce highly stereotyped, learned vocalizations8,9.
Zebra finch (Taeniopygia guttata) song consists of a complex pattern
of sounds with spectral and temporal modulation over a wide range
of timescales10. A basic acoustic element is the song syllable, which
may itself be composed of a complex sequence of sounds varying on
a 10-ms timescale, or even less11. Several distinct song syllables are
organized into a single, repeated pattern of about 1 s in duration,

called a song motif. Two pre-motor nuclei have been identified for
their importance in song generation: nucleus RA and nucleus
HVC12. Premotor HVC neurons project onto RA neurons, which
in turn project with amyotopic mapping ontomotor neurons of the
vocal organ13, and to respiratory brain areas14. During singing, RA
neurons generate a highly stereotyped, complex sequence of action
potential bursts, each precisely correlated to the song vocalization
on a submillisecond timescale1,15. The average burst duration is
roughly 10ms, and each RA neuron generates a unique pattern of
roughly ten bursts per song motif, such that on average 12% of
RA neurons are active at any time (A. Leonardo, and M.S.F.,
unpublished data) (Fig. 1a).

Figure 1 RA sequences and identification of HVC neurons. a, Neurons in nucleus RA
generate complex sequences of brief action potential bursts during song vocalizations.

Spectrogram (top) and acoustic signal of the song motif, and plots of instantaneous firing

rate (bottom) of song-related spike activity in three different RA neurons recorded in one

zebra finch. Neural activity is aligned using the onset of the second syllable of each motif

(arrowhead). Two renditions are displayed for each neuron. b, Single-unit recordings were
made in pre-motor nuclei HVC and RA. HVC neurons were antidromically identified by

electrical stimulation in RA and area X. RA projects to vocal motor neurons in the nucleus

of the twelfth nerve (nXIIts). c, RA-projecting neurons and putative interneurons could be
activated from RA but not from area X. Stimulation in RA, triggered by spontaneous spikes,

resulted in spike collision for RA-projecting neurons but not for interneurons.

letters to nature

NATURE |VOL 419 | 5 SEPTEMBER 2002 | www.nature.com/nature 65© 2002        Nature  Publishing Group

Hahnloser	
  et	
  al.	
  2002,	
  Nature	
  

RA	
  neurons	
  fire	
  at	
  mul:ple	
  :mes	
  during	
  a	
  song	
  

Songbird	
  



Hahnloser	
  et	
  al.	
  2002,	
  Nature	
  

Here, we avoid the question of how RA activity is translated into
sound, and simply ask how pre-motor burst patterns in RA are
generated. Previous studies have suggested that the syllable order
and tempo of the motif are generated by a network that resides
above RA, and includes HVC12,16, and that an HVC neural code for
syllables is transformed into a code for shorter acoustic elements
through the projection of HVC onto RA1,17. To re-examine these
issues, we have characterized the role of inputs to RA from pre-
motor nucleus HVC.
HVC contains at least three classes of neurons: neurons that

project to the RA, neurons that project to area X, and inter-
neurons18,19. We have identified HVC neuron classes by antidromic
activation20 from RA and from area X (Fig. 1b, c). Chronic single-
neuron recordings were made from identified neurons of all three
classes. Antidromically identified RA-projecting HVC neurons
(HVC(RA)) (n ¼ 16, three birds) were completely inactive in
awake, non-singing birds (,0.001 spikes s21), and burst extremely
sparsely during vocalizations, generating at most a single burst per
song motif (Fig. 2a). HVC(RA) bursts had a duration of 6.1 ^ 2ms,
and comprised 4.5 ^ 2 spikes at a firing rate of 613 ^ 210 s21

(ranges are^1 s.d. unless specified otherwise). HVC(RA) bursts were
highly stereotyped, tightly time-locked to the song motif
(0.66 ^ 0.14ms r.m.s. jitter), and occurred reliably on every rendi-
tion of the motif (Fig. 2b). Thus, on a millisecond timescale,
HVC(RA) bursts were maximally correlated to the vocalization.
Different HVC(RA) neurons tended to burst at different times in
the song, with no obvious timing relation to the onset or offset of
song syllables. Three identified HVC(RA) neurons generated no
bursts during the song, but produced a single burst during call
vocalizations. HVC neurons projecting to area X also burst sparsely
during singing (0–5 bursts per motif, n ¼ 30; data not shown). In
contrast to projection neurons, putative HVC interneurons
(n ¼ 31), most of which were spontaneously active in the non-
singing bird (11 ^ 7 spikes s21), produced high rates of spiking and

bursting activity throughout song and call vocalizations (Fig. 2b).
The firing patterns of putative HVC interneurons were similar to
those of unidentified neurons found in previous studies of HVC in
the singing bird1.

Previous observations have shown that sleep-related spike and
burst patterns in nucleus RA can closely recapitulate those gener-
ated during singing2, suggesting that a common neural mechanism
may underlie the generation of song- and sleep-related RA burst
patterns. A more detailed understanding of the role of HVC in
generating sleep-related activity in RA may provide a hint as to the
interaction of these two nuclei during singing. We next examined
the firing patterns of RA neurons and identified HVC neurons using
a new, sleeping-bird preparation where the head of the bird is fixed,
permitting simultaneous single-unit recordings in multiple brain
areas and pharmacological manipulation, which are not currently
possible in the singing bird.

Similar to the situation in the singing bird, HVC(RA) neurons
burst sparsely during sleep (0.06 ^ 0.05 bursts s21, n ¼ 116, 27
birds). Paired recordings in RA and HVC (Fig. 3a) neurons showed
that HVC(RA) neurons fired 13 ^ 3 times fewer bursts in the
sleeping bird than did RA neurons (n ¼ 53 pairs). The bursts had
properties similar to those observed during singing: duration of
bursts during sleep in RA and HVC(RA) neurons were 11.5 ^ 3.5ms
and 6.5 ^ 1.8ms, respectively. Bursts of HVC(RA) neurons during
sleep comprised 3.2 ^ 0.8 spikes per burst, and had an average
firing rate of 347 ^ 81 s21. The relationship between HVC(RA)

bursts and RA bursts is readily seen in raster plots of RA spike
trains aligned in time to the onset of bursts in HVC(RA) neurons
(Fig. 3b, c). RA neurons reliably showed a pattern of bursts locked to
the HVC(RA) bursts (n ¼ 45 of 53 pairs). Furthermore, multiple RA
neurons recorded sequentially with a single HVC(RA) neuron
(n ¼ 3) show that different RA neurons generate different patterns
of bursts, as is the case during singing. The relation between
HVC(RA) and RA spike trains was quantified using a correlation

Figure 2 Spiking activity of identified HVC neurons during singing. a, Extracellular record
of an RA-projecting HVC (HVC(RA)) neuron (bottom), with the simultaneously recorded

vocalization (top). The HVC(RA) neuron generates a single burst during each of three motif

renditions. b, Spike raster plot of ten HVC(RA) neurons and two HVC interneurons recorded
in one bird during singing (left) and call vocalizations (right). Each row of tick marks shows

spikes generated during one rendition of the song or call; roughly ten renditions are shown

for each neuron. Neural activity is aligned by the acoustic onset of the nearest syllable.

HVC(RA) neurons burst reliably at a single precise time in the song or call; however, HVC

interneurons spike or burst densely throughout the vocalizations.
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Here, we avoid the question of how RA activity is translated into
sound, and simply ask how pre-motor burst patterns in RA are
generated. Previous studies have suggested that the syllable order
and tempo of the motif are generated by a network that resides
above RA, and includes HVC12,16, and that an HVC neural code for
syllables is transformed into a code for shorter acoustic elements
through the projection of HVC onto RA1,17. To re-examine these
issues, we have characterized the role of inputs to RA from pre-
motor nucleus HVC.
HVC contains at least three classes of neurons: neurons that

project to the RA, neurons that project to area X, and inter-
neurons18,19. We have identified HVC neuron classes by antidromic
activation20 from RA and from area X (Fig. 1b, c). Chronic single-
neuron recordings were made from identified neurons of all three
classes. Antidromically identified RA-projecting HVC neurons
(HVC(RA)) (n ¼ 16, three birds) were completely inactive in
awake, non-singing birds (,0.001 spikes s21), and burst extremely
sparsely during vocalizations, generating at most a single burst per
song motif (Fig. 2a). HVC(RA) bursts had a duration of 6.1 ^ 2ms,
and comprised 4.5 ^ 2 spikes at a firing rate of 613 ^ 210 s21

(ranges are^1 s.d. unless specified otherwise). HVC(RA) bursts were
highly stereotyped, tightly time-locked to the song motif
(0.66 ^ 0.14ms r.m.s. jitter), and occurred reliably on every rendi-
tion of the motif (Fig. 2b). Thus, on a millisecond timescale,
HVC(RA) bursts were maximally correlated to the vocalization.
Different HVC(RA) neurons tended to burst at different times in
the song, with no obvious timing relation to the onset or offset of
song syllables. Three identified HVC(RA) neurons generated no
bursts during the song, but produced a single burst during call
vocalizations. HVC neurons projecting to area X also burst sparsely
during singing (0–5 bursts per motif, n ¼ 30; data not shown). In
contrast to projection neurons, putative HVC interneurons
(n ¼ 31), most of which were spontaneously active in the non-
singing bird (11 ^ 7 spikes s21), produced high rates of spiking and

bursting activity throughout song and call vocalizations (Fig. 2b).
The firing patterns of putative HVC interneurons were similar to
those of unidentified neurons found in previous studies of HVC in
the singing bird1.

Previous observations have shown that sleep-related spike and
burst patterns in nucleus RA can closely recapitulate those gener-
ated during singing2, suggesting that a common neural mechanism
may underlie the generation of song- and sleep-related RA burst
patterns. A more detailed understanding of the role of HVC in
generating sleep-related activity in RA may provide a hint as to the
interaction of these two nuclei during singing. We next examined
the firing patterns of RA neurons and identified HVC neurons using
a new, sleeping-bird preparation where the head of the bird is fixed,
permitting simultaneous single-unit recordings in multiple brain
areas and pharmacological manipulation, which are not currently
possible in the singing bird.

Similar to the situation in the singing bird, HVC(RA) neurons
burst sparsely during sleep (0.06 ^ 0.05 bursts s21, n ¼ 116, 27
birds). Paired recordings in RA and HVC (Fig. 3a) neurons showed
that HVC(RA) neurons fired 13 ^ 3 times fewer bursts in the
sleeping bird than did RA neurons (n ¼ 53 pairs). The bursts had
properties similar to those observed during singing: duration of
bursts during sleep in RA and HVC(RA) neurons were 11.5 ^ 3.5ms
and 6.5 ^ 1.8ms, respectively. Bursts of HVC(RA) neurons during
sleep comprised 3.2 ^ 0.8 spikes per burst, and had an average
firing rate of 347 ^ 81 s21. The relationship between HVC(RA)

bursts and RA bursts is readily seen in raster plots of RA spike
trains aligned in time to the onset of bursts in HVC(RA) neurons
(Fig. 3b, c). RA neurons reliably showed a pattern of bursts locked to
the HVC(RA) bursts (n ¼ 45 of 53 pairs). Furthermore, multiple RA
neurons recorded sequentially with a single HVC(RA) neuron
(n ¼ 3) show that different RA neurons generate different patterns
of bursts, as is the case during singing. The relation between
HVC(RA) and RA spike trains was quantified using a correlation

Figure 2 Spiking activity of identified HVC neurons during singing. a, Extracellular record
of an RA-projecting HVC (HVC(RA)) neuron (bottom), with the simultaneously recorded

vocalization (top). The HVC(RA) neuron generates a single burst during each of three motif

renditions. b, Spike raster plot of ten HVC(RA) neurons and two HVC interneurons recorded
in one bird during singing (left) and call vocalizations (right). Each row of tick marks shows

spikes generated during one rendition of the song or call; roughly ten renditions are shown

for each neuron. Neural activity is aligned by the acoustic onset of the nearest syllable.

HVC(RA) neurons burst reliably at a single precise time in the song or call; however, HVC

interneurons spike or burst densely throughout the vocalizations.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with

rj!t" ! f #!
i$1

Nh

Wjihi!t" " #j% (1)

and

Ok!t" ! !
j$1

Nr

Akjrj!t" (2)

where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function

C !"
0

T

dt !
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For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
ent-descent rule
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where f (j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f ((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
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A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
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learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
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context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with

rj!t" ! f #!
i$1

Nh

Wjihi!t" " #j% (1)

and

Ok!t" ! !
j$1

Nr

Akjrj!t" (2)

where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function

C !"
0

T

dt !
k$1

No

#dk!t" " ok!t"%2 (3)

For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
ent-descent rule

&Wji ! '$
%C

%Wji
! $"

0

T

dt !
k$1

No

2#dk!t" " ok!t"%Akj f (j hi (4)

where f (j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
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ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f ((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
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feedforward model network (of HVC, RA, and an output motor
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by gradual adjustment of the HVC-to-RA weights, until the
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change, although it is thought that if distance to the goal is
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A common computational approach in modeling this phenom-
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steepest descent. This can be done by direct gradient calcula-
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technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
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similar class, we expect sparseness arguments made in the
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same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
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where f (j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f ((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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where f (j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f ((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
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where f (j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f ((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
ent-descent rule
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where f (j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f ((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
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where f (j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f ((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
ent-descent rule
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where f (j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f ((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with
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and
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
ent-descent rule
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where f (j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f ((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with
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and
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
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where f (j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f ((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
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where f (j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f ((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with
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Wjihi!t" " #j% (1)

and
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
ent-descent rule
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where f (j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f ((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
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where f (j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f ((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with
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Wjihi!t" " #j% (1)

and

Ok!t" ! !
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
ent-descent rule

&Wji ! '$
%C

%Wji
! $"

0

T

dt !
k$1

No

2#dk!t" " ok!t"%Akj f (j hi (4)

where f (j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f ((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function

C !"
0

T

dt !
k$1

No

#dk!t" " ok!t"%2 (3)

For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
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where f (j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f ((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with
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and
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
ent-descent rule
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where f (j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f ((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with
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and
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
ent-descent rule
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where f (j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f ((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with
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i$1

Nh

Wjihi!t" " #j% (1)

and
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
ent-descent rule
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where f (j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f ((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.

2275NEURAL NETWORK MODEL OF BIRDSONG

J Neurophysiol • VOL 92 • OCTOBER 2004 • www.jn.org

Songbird	
  model	
  



Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with

rj!t" ! f #!
i$1

Nh

Wjihi!t" " #j% (1)

and

Ok!t" ! !
j$1

Nr

Akjrj!t" (2)

where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
ent-descent rule
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where f (j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f ((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
ent-descent rule
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where f (j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f ((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
ent-descent rule
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where f (j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f ((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with

rj!t" ! f #!
i$1

Nh

Wjihi!t" " #j% (1)

and

Ok!t" ! !
j$1
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function

C !"
0

T

dt !
k$1

No

#dk!t" " ok!t"%2 (3)

For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
ent-descent rule
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where f (j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f ((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).
It is not known how the brain translates goal-directed prob-

lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with
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and
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where Nh, Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and #j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.
Observational evidence suggests that vocal motor learning in the

zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function
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For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
ent-descent rule
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where f (j is the derivative of the activation function of RA neuron j,
and the parameter $ scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh $
500 HVC neurons, Nr $ 800 RA neurons, and No $ 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times )ti1, ti2,. . ., tiB*
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration &b, so that hi(t) $ 1 for {ti1 ' t '
ti1 + &b, ti2 ' t ' ti2 + &b, . . . , tiB ' t ' tiB + &b}, and hi(t) $ 0
otherwise (Fig. 2A). We use values of B $ 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use &b $ 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) $ rmax/(1 + e'2x/a), so
f ((x) $ f(x)[rmax ' f(x)](2/srmax), with rmax $ 600 Hz and s $ 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s $ 5
and rmax $ 600 Hz. In all simulations, the total duration of the
simulated song motif is T $ 150 ms, and time is discretized with a
grain of dt $ 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil $ 0.4) randomly
diluted to zero. The threshold for RA neurons is given by # $ 1.2(1'
Pdil)Nh&b / T, where Nh&b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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block-diagonal), and equal numbers of RA neurons project to each
output. The nonzero entries of A are chosen from a Gaussian distri-
bution with mean 1 and SD 1/4. Desired sequences dk(t) for the output
units are fixed by choosing a sequence of steps of 12-ms duration and
random heights chosen from the interval [0, Nr /(8No)], and are
smoothed with a 2-ms linear low-pass filter. The gradient-following
rule, Eq. 4, is used to update the weights W after each epoch.
To study the effects of sparse HVC activity on learning speed, we

performed 4 groups of simulations where B, the number of bursts per
HVC neuron per song motif, was fixed at B ! 1, 2, 4, or 8,
respectively. For each B, we performed several sets of learning trials
with a separate, systematically varied value of the overall learning
step-size ! for each set (more details below). Within each set of
simulations, consisting of 15 trials each with fixed !, the weights A
and W were drawn randomly and independently for every trial, as
described above. All other parameters, including the desired outputs
dk(t), were kept fixed for all B and all !. Initially 25 evenly spaced
values of ! were chosen for each B, always in a range where some of
the values were too large and resulted in divergence of the learning
curve, whereas most values resulted in decreasing errors. The (15-
trial) averaged learning curves for each ! were judged to be rapidly or
slowly converging based on the number of epochs taken to cross a
preselected, reasonably small error value (see below); only learning
curves with nonincreasing error over the length of the simulation were
considered. Typically, very small values of ! result in very slow
learning, whereas very large values lead to divergence. Thus, the best
learning speeds could be obtained by a choice of ! away from both
extremes. To make sure the learning curves chosen for comparison as
a function of B were reasonably close to the best possible curve for

each B, we picked 2 values of ! for each B that resulted in the 2 fastest
averaged learning curves, and used these as endpoints in another set
of learning trials with 10 values of ! spaced between the endpoints.
For each !, we again averaged 15 trials. By this process, a value of
! ! !* (B) was found that resulted in the fastest learning for each B.
The threshold error value at which we consider the network to have

learned the task is when it reached an error of 0.02 or better
[corresponding to "dt #k (dk $ ok)2 % 1% " dt #k dk2, thin horizontal
line in Fig. 3; for an example of the output performance in what we
consider to be a well-learned task, see Fig. 2c where " dt #k (dk $
ok)2 ! 0.15% " dt #k dk2]; learning speeds are judged by the number
of epochs taken for the learning curves to reach this value.

Parameter variations and ranges

The network converged to produce outputs close to the desired
outputs over a large range of parameters, so long as a sufficiently
small value of the learning rate parameter, !, was used. This is
expected, because with small !, the learning rule follows the gradient
of the error function, and will converge to a local minimum of the
error surface; more interestingly, the dependency of learning time on
B (see RESULTS) was also consistent across a large parameter range.
In simulation, we tried variations where W was drawn from a

Gaussian, instead of uniform, random distribution; the initial weight
dilution, Pdil, ranged from 0 to 0.6 (0–60% of the initial weights
initially diluted to 0); half of all nonzero weights from RA to each
output unit (in A) were made negative, mimicking push–pull rather
than just pull control over the outputs; the numbers of HVC, RA, and
output units were independently varied by factors of 0.5 and 2; the
simulated song length ranged from 80 to 400 ms; RA unit activation
functions were taken to be linear or sigmoidal. In all of these cases, it
was possible to find ! so that the simulations converged to the desired
output, and the dependency of learning time on B was found to be
qualitatively the same as for the specific parameters described here.
The results shown here are with parameters chosen according to the

following priorities. 1) Simulate the largest network that would run in
a reasonable amount of time. We used Nh ! 500, Nr ! 800, and No !
2, in place of Nh & 20,000, Nr & 7,000, and No & 7 in the actual bird,
where No is taken to be the number of individual vocal muscles
controlled by RA. The simulated song length T had to be scaled down

FIG. 3. Four curves track error as a function of epoch while learning with
B ! 1, 2, 4, and 8 bursts per HVC neuron per simulated song segment. For
each B, the overall weight update step size was optimized to give the fastest
possible monotonic convergence toward zero error. Number of epochs taken to
reach a prespecified learning criterion (thin horizontal line) grows sharply with
B, nearly doubling each time B doubles.

FIG. 2. A: activity of RA-projecting HVC neurons as a function of time,
shown for 20 of the 500 neurons in the simulation. Black bars indicate that the
neuron is bursting at that time, whereas otherwise the neuron is silent. b:
desired (thick line) and actual (thin line) output activity for one of the 2 output
units, before learning begins. C: desired (thick line) and actual (thin line)
activity of the same output unit after learning; the second output behaves
similarly. D–F: example of the activities of 3 RA units, after learning (see text
for further discussion).
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block-diagonal), and equal numbers of RA neurons project to each
output. The nonzero entries of A are chosen from a Gaussian distri-
bution with mean 1 and SD 1/4. Desired sequences dk(t) for the output
units are fixed by choosing a sequence of steps of 12-ms duration and
random heights chosen from the interval [0, Nr /(8No)], and are
smoothed with a 2-ms linear low-pass filter. The gradient-following
rule, Eq. 4, is used to update the weights W after each epoch.
To study the effects of sparse HVC activity on learning speed, we

performed 4 groups of simulations where B, the number of bursts per
HVC neuron per song motif, was fixed at B ! 1, 2, 4, or 8,
respectively. For each B, we performed several sets of learning trials
with a separate, systematically varied value of the overall learning
step-size ! for each set (more details below). Within each set of
simulations, consisting of 15 trials each with fixed !, the weights A
and W were drawn randomly and independently for every trial, as
described above. All other parameters, including the desired outputs
dk(t), were kept fixed for all B and all !. Initially 25 evenly spaced
values of ! were chosen for each B, always in a range where some of
the values were too large and resulted in divergence of the learning
curve, whereas most values resulted in decreasing errors. The (15-
trial) averaged learning curves for each ! were judged to be rapidly or
slowly converging based on the number of epochs taken to cross a
preselected, reasonably small error value (see below); only learning
curves with nonincreasing error over the length of the simulation were
considered. Typically, very small values of ! result in very slow
learning, whereas very large values lead to divergence. Thus, the best
learning speeds could be obtained by a choice of ! away from both
extremes. To make sure the learning curves chosen for comparison as
a function of B were reasonably close to the best possible curve for

each B, we picked 2 values of ! for each B that resulted in the 2 fastest
averaged learning curves, and used these as endpoints in another set
of learning trials with 10 values of ! spaced between the endpoints.
For each !, we again averaged 15 trials. By this process, a value of
! ! !* (B) was found that resulted in the fastest learning for each B.
The threshold error value at which we consider the network to have

learned the task is when it reached an error of 0.02 or better
[corresponding to "dt #k (dk $ ok)2 % 1% " dt #k dk2, thin horizontal
line in Fig. 3; for an example of the output performance in what we
consider to be a well-learned task, see Fig. 2c where " dt #k (dk $
ok)2 ! 0.15% " dt #k dk2]; learning speeds are judged by the number
of epochs taken for the learning curves to reach this value.

Parameter variations and ranges

The network converged to produce outputs close to the desired
outputs over a large range of parameters, so long as a sufficiently
small value of the learning rate parameter, !, was used. This is
expected, because with small !, the learning rule follows the gradient
of the error function, and will converge to a local minimum of the
error surface; more interestingly, the dependency of learning time on
B (see RESULTS) was also consistent across a large parameter range.
In simulation, we tried variations where W was drawn from a

Gaussian, instead of uniform, random distribution; the initial weight
dilution, Pdil, ranged from 0 to 0.6 (0–60% of the initial weights
initially diluted to 0); half of all nonzero weights from RA to each
output unit (in A) were made negative, mimicking push–pull rather
than just pull control over the outputs; the numbers of HVC, RA, and
output units were independently varied by factors of 0.5 and 2; the
simulated song length ranged from 80 to 400 ms; RA unit activation
functions were taken to be linear or sigmoidal. In all of these cases, it
was possible to find ! so that the simulations converged to the desired
output, and the dependency of learning time on B was found to be
qualitatively the same as for the specific parameters described here.
The results shown here are with parameters chosen according to the

following priorities. 1) Simulate the largest network that would run in
a reasonable amount of time. We used Nh ! 500, Nr ! 800, and No !
2, in place of Nh & 20,000, Nr & 7,000, and No & 7 in the actual bird,
where No is taken to be the number of individual vocal muscles
controlled by RA. The simulated song length T had to be scaled down

FIG. 3. Four curves track error as a function of epoch while learning with
B ! 1, 2, 4, and 8 bursts per HVC neuron per simulated song segment. For
each B, the overall weight update step size was optimized to give the fastest
possible monotonic convergence toward zero error. Number of epochs taken to
reach a prespecified learning criterion (thin horizontal line) grows sharply with
B, nearly doubling each time B doubles.

FIG. 2. A: activity of RA-projecting HVC neurons as a function of time,
shown for 20 of the 500 neurons in the simulation. Black bars indicate that the
neuron is bursting at that time, whereas otherwise the neuron is silent. b:
desired (thick line) and actual (thin line) output activity for one of the 2 output
units, before learning begins. C: desired (thick line) and actual (thin line)
activity of the same output unit after learning; the second output behaves
similarly. D–F: example of the activities of 3 RA units, after learning (see text
for further discussion).
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random heights chosen from the interval [0, Nr /(8No)], and are
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rule, Eq. 4, is used to update the weights W after each epoch.
To study the effects of sparse HVC activity on learning speed, we

performed 4 groups of simulations where B, the number of bursts per
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respectively. For each B, we performed several sets of learning trials
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simulations, consisting of 15 trials each with fixed !, the weights A
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learning speeds could be obtained by a choice of ! away from both
extremes. To make sure the learning curves chosen for comparison as
a function of B were reasonably close to the best possible curve for

each B, we picked 2 values of ! for each B that resulted in the 2 fastest
averaged learning curves, and used these as endpoints in another set
of learning trials with 10 values of ! spaced between the endpoints.
For each !, we again averaged 15 trials. By this process, a value of
! ! !* (B) was found that resulted in the fastest learning for each B.
The threshold error value at which we consider the network to have

learned the task is when it reached an error of 0.02 or better
[corresponding to "dt #k (dk $ ok)2 % 1% " dt #k dk2, thin horizontal
line in Fig. 3; for an example of the output performance in what we
consider to be a well-learned task, see Fig. 2c where " dt #k (dk $
ok)2 ! 0.15% " dt #k dk2]; learning speeds are judged by the number
of epochs taken for the learning curves to reach this value.

Parameter variations and ranges

The network converged to produce outputs close to the desired
outputs over a large range of parameters, so long as a sufficiently
small value of the learning rate parameter, !, was used. This is
expected, because with small !, the learning rule follows the gradient
of the error function, and will converge to a local minimum of the
error surface; more interestingly, the dependency of learning time on
B (see RESULTS) was also consistent across a large parameter range.
In simulation, we tried variations where W was drawn from a

Gaussian, instead of uniform, random distribution; the initial weight
dilution, Pdil, ranged from 0 to 0.6 (0–60% of the initial weights
initially diluted to 0); half of all nonzero weights from RA to each
output unit (in A) were made negative, mimicking push–pull rather
than just pull control over the outputs; the numbers of HVC, RA, and
output units were independently varied by factors of 0.5 and 2; the
simulated song length ranged from 80 to 400 ms; RA unit activation
functions were taken to be linear or sigmoidal. In all of these cases, it
was possible to find ! so that the simulations converged to the desired
output, and the dependency of learning time on B was found to be
qualitatively the same as for the specific parameters described here.
The results shown here are with parameters chosen according to the

following priorities. 1) Simulate the largest network that would run in
a reasonable amount of time. We used Nh ! 500, Nr ! 800, and No !
2, in place of Nh & 20,000, Nr & 7,000, and No & 7 in the actual bird,
where No is taken to be the number of individual vocal muscles
controlled by RA. The simulated song length T had to be scaled down

FIG. 3. Four curves track error as a function of epoch while learning with
B ! 1, 2, 4, and 8 bursts per HVC neuron per simulated song segment. For
each B, the overall weight update step size was optimized to give the fastest
possible monotonic convergence toward zero error. Number of epochs taken to
reach a prespecified learning criterion (thin horizontal line) grows sharply with
B, nearly doubling each time B doubles.

FIG. 2. A: activity of RA-projecting HVC neurons as a function of time,
shown for 20 of the 500 neurons in the simulation. Black bars indicate that the
neuron is bursting at that time, whereas otherwise the neuron is silent. b:
desired (thick line) and actual (thin line) output activity for one of the 2 output
units, before learning begins. C: desired (thick line) and actual (thin line)
activity of the same output unit after learning; the second output behaves
similarly. D–F: example of the activities of 3 RA units, after learning (see text
for further discussion).
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Figure 7: Unary coding in HVC helps to speed the acquisition of the motor map. A,
The activity of three hypothetical HVC neurons. The first two are each active only once in the
song motif, but the third is active twice. B, Hypothetical pitch of the tutor song (black), and the
pupil network (gray). C, Direction in which synapses should change to reduce error between tutor
and pupil pitch. Synapses from HVC neuron 3 should be strengthened (weakened) to improve the
tutor-pupil match at the first (second) activity burst. Such conflicting demands on the synapses
of neurons that are active at two or more random times in a motif cause a slow-down in learning
speed. D, Contours of iso-error in the learning surface. Learning a feedforward map in a network
with unary coding in the top layer is like learning on an isotropic cost surface, and can be fast.
Denser coding in the input layer produces correlations and makes the learning surface anisotropic.
To keep the error from diverging along the steep directions, the learning rate must be kept low. As
a result, best-case learning is slower than in the isotropic case.HVC activity tuned to acoustic

features may be helpful for generalizable learning. E, If HVC neurons fired multiple bursts,
at selected points when the acoustic features of tutor song are similar, F, rather than at random
times, there would be no interference in the learning update, F. If HVC neurons acquired such a
tuning to features in the tutor song, it could be easy for the bird to quickly reproduce a specific
heard sound, by activating the requisite sound-tuned HVC neuron.
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drive (one s.d. above versus below the mean), we did not observe 
substantially more suppression with stronger drive (mean MR of 0.58 
for both cases, P = 0.73).

We conclude that the surround drive provided by an image does not 
predict accurately the suppression it recruits. As a result, the standard 
normalization model provides a poor prediction of the suppression 
provided by images.

A principled account of surround suppression
Rather than attempting to improve the standard normalization  
model by searching for additional descriptive components, we  
instead sought to apply recent progress in understanding how con-
textual effects should function, given the statistics of natural images 
and the computational goal of representing those images efficiently. 
Previous work has successfully explained basic response properties 
of neurons in the early visual system using this approach22–25,32,33. 
Despite this success, this approach has not been used to over-
come the limited ability of models derived from simple stimuli to  
predict responses to images21,34.

Our starting point was the observation that natural images often  
produce a characteristic nonlinear dependence in the output of fil-
ters representing the RF and surround24 (called a bowtie dependency 
because of its shape; Fig. 4a). This dependency is a result of global image 
properties, such as the contrast or orientation of a texture, which pro-
vide common modulation to neighboring filters24. This form of depend-
ency can be effectively reduced by dividing the output of the RF by that 
of the surround, thereby resulting in a more efficient representation24. 
In this framework, spatial contextual effects take the form of divisive 
normalization because precisely this interaction is needed to remove the 
empirically observed dependencies between filter outputs.

The outputs of the RF and surround filters are dependent when 
they fall on homogeneous regions of an image (for example, on a 
single object). When the filters are driven by different objects, their 
outputs tend to be statistically independent (Fig. 4a). In such cases, 

no interaction between the RF and surround is needed or desired, as 
this would introduce a relationship between the two. Consideration of 
an optimal representation of images therefore suggests that surround 
suppression should be engaged when the image patch falling on the 
RF and surround is homogeneous, and absent when it is heterogene-
ous27. Previous work has shown that this principle can explain con-
textual effects in displays of simple stimuli4.

Given a specific input to the RF and surround, how is one to decide 
if it is homogeneous or heterogeneous? If one were able to calculate 
the dependence between the RF and surround filters’ outputs to 
a single input image, one could assess homogeneity and modulate 
suppression strength accordingly. Unfortunately, the dependence  
cannot be defined using a single set of filters’ responses, much like 
correlation between variables (a simpler form of dependency than 
the bowtie) cannot be defined with a single sample. Instead, one 
needs to infer whether that single observation is more likely to 
have arisen from a homogeneous or heterogeneous image. Optimal 
inference relies on combining the likelihood of the evidence (how 
likely the pattern of filters outputs arose from a homogenous or 
heterogeneous image) with prior knowledge about how often natural  
images are homogeneous, according to Bayes’ rule27. An analytical 
expression for the resultant inferred probability is provided in the 
Online Methods.

The inference about homogeneity amounts to a gating parameter 
on the surround influence. When the input is inferred to be homo-
geneous, surround suppression is fully active and takes the form of 
divisive normalization. When the input is inferred to be heterogene-
ous, the surround is muted, even if it is strongly driven by the image  
(Fig. 4b). When an input contains some evidence of being homogeneous  
and some evidence of being heterogeneous, surround suppression is 
engaged in proportion to the probability that the image is homogene-
ous, between fully active and muted.
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Figure 2 Standard and flexible normalization models of surround 
suppression. (a) Left, schematic of the standard normalization model. 
Visual input is first passed through linear filters representing the RF (top 
left) and its surround (bottom left). Gray symbols denote the location of 
the center of each filter. The output of the RF filters is divided by the 
filters representing the RF and surround. Right, the flexible normalization 
model is identical to the standard normalization except that the surround 
can be turned on and off, on an image-by-image basis, depending on an 
inference about image homogeneity. (b) Black symbols indicate MR for 
each pair of responses shown in Figure 1a; orange and green symbols 
indicate MR derived from the standard and flexible models, respectively, 
fit to the firing rates. In the flexible model, facilitation results when 
the surround stimulus provides additional drive to the RF, but surround 
suppression is inferred off.
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above average (abscissa) drive. MR is only weakly modulated by surround 
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μi =K
Vi

σH +
P

j wVj
; [2]

where Vi is the value of the option under consideration, the index
j is summed over all available options, and the parameters K, σH,
and w represent gain, semisaturation, and weight terms, re-
spectively. The critical feature of this representation is the pres-
ence of all option values in the denominator, which mediates the
relative nature of the value coding.

Model of Normalized Value Coding and Choice. A fundamental
prediction of many rational theories of choice is that the relative
preference of a chooser between any two options should be
unaffected by choice context. A prominent example is the choice
axiom of Luce, an instantiation of IIA (23). This requires that the
ratio of stochastic choice probabilities for two given, or target,
options (p1/p2) should be independent of the presence or value of
a third, or distracter, option. Our simulations reveal, however,
that the combination of normalized value coding and variability
alone produces context-dependent choice behavior.
We modeled stochastic choice behavior with a simple algorith-

mic simulation comprising three components: value representa-
tion to transform each option value into a firing rate, stochastic
variability to model noise in the coding process, and option se-
lection to implement choice (Fig. 1A). For each option i, a mean
firing rate μiwas calculated from the option value and the values of
other alternatives using Eq. 2, thus implementing normalization.
Note that because value is quantified in arbitrary units, the gain
term K was set to reproduce realistic firing rates [∼75 spikes per

second (sp/s)]. For simplicity, the semisaturation and weight terms
were set to standard fixed values (Materials and Methods).
To introduce structured trial-to-trial variability into the model,

we added two forms of noise to each mean firing rate: a fixed noise
term («f), drawn from a zero-meanGaussian distribution with fixed
variance σ2fixed, and a mean-scaled noise term («s), a class of noise
commonly observed in cortical neurons that increases as mean
firing rate increases (30, 31). Mean-scaled noise was drawn from
a zero-mean Gaussian distribution with variance Sμi, where the
parameter S controls the degree of mean scaling. Both types of
noise were included to avoid assumptions about the specific formof
variability; themagnitude of each termwas varied independently to
examine their relative contribution to model behavior (SIMaterials
and Methods). In each simulated trial, option selection was imple-
mented by simply choosing the option with the highest postnoise
activity in that trial. This procedure produces stochastic choice
governed by the values of the offered options and the noise terms.
To demonstrate the critical nature of value coding repre-

sentations, we show in Fig. 1B example choice simulations under
either absolute or normalized value coding. We use the term
“distracter” to denote a low-valued alternative that is eligible for
selection; the critical issue is how distracter value affects relative
target choice. In a traditional absolute value representation, rel-
ative preference between two fixed target options (V1 = 150 and
V2 = 140, arbitrary units) remains constant as distracter value
increases (V3 = 0, p1/p2 = 53.3, bootstrap confidence interval [CI],
[51.2, 55.8]; V3 = 120, p1/p2 = 52.9, bootstrap CI [50.5, 55.3]). In
a relative value representation, however, the mean firing rate of
each option depends on the values of the other options. As dis-
tracter value (red) increases, divisive scaling decreases the dis-
tance between the target option firing rates (black and blue). The
resulting increase in overlap between firing rate distributions
decreases the relative preference of the chooser for the better
target option (V3 = 0, p1/p2 = 51.7, bootstrap CI [49.3, 54.0]; V3 =
120, p1/p2 = 15.8, bootstrap CI [15.3, 16.2]).
Examined as a function of distracter value, normalized value

coding produces a consistent decrease in relative target choice
(p1/p2) that is absent under absolute value coding (Fig. 1C). No-
tably, a second type of context dependence emerges in both
value representations when distracter values approach the target
values (black and blue triangles): Increasing the value of the
distracter increases the relative preference of the model for the
better target option. This effect is driven by choices captured by
the distracter option, which selectively competes with the lower-
valued target option. Thus, under normalization context dependence
is biphasic: Effective choice consistently decreases until distracter
competition counteracts the effect of divisive scaling and offsets
the normalization-induced decrease in relative target preference.

Context Dependence in Simulated Choice Behavior. To examine tri-
nary-choice behavior in detail, we simulated choice while varying
both target value differences and distracter value under a range of
noise parameters. Fig. 2A shows example data for a specific set of
noise parameters (σfixed = 8, S = 0). In this simplex plot, each point
represents how the average choice behavior for a given set of value
conditions is divided between the three options, color-coded by
distracter value (probability for a given option increases linearly
with distance to its vertex). Notably, choice behavior as a function
of distracter value for a given pair of target values (blue lines)
differs markedly from the constant relative preference assumption
(straight gray lines) of rational choice theory (23).
Fig. 2B summarizes this data as relative choice probabilities

between the two targets, segregated by distracter value. In con-
trast to the constancy of relative preference predicted by IIA,
these stochastic choice curves are shallower at higher distracter
values. To quantify this stochasticity, we computed for each
choice function the average efficiency (E), which ranges from 0.5
(random chooser) to 1 (perfect chooser) and varies inversely
with stochasticity. Consistent with the previous example, the
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We examined in subsequent choice trials how trinary-choice
behavior depended on distracter valuations. For each subject, we
selected a subset of 10 high-value items and 10 low-value items
based on their individual mean valuations (targets and distracters,
respectively; Fig. 4C). We then constructed 250 different trinary-
choice sets pairing a range of single distracters with different target
pairs, allowing us to examine how distracter value modulates
choice efficiency. Consistent with value-guided decision making,
overall choice behavior was governed by the values extracted from
bid trials (population choice probabilities: high-value target 60.5%,
low-value target 33.3%, and distracter 6.2%).
To examine context dependence across the subject population, we

normalized distracter value relative to the target pair with a metric
that ranges from 0 (small value) to 1 (large value). As predicted by
the normalization model, relative choice of the better target con-
sistently decreased as distracter value increased (Fig. 5A), with strong
correlation between conditional choice probability and normalized
distracter value (r = −0.80, P = 0.006). This effect exists across the
population of subjects, as was evident when we examined individual
conditional target choice under conditions of low versus high dis-
tracter value (Fig. 5B; mean difference in target choice 0.064, P =
0.0019, t test).
To examine this effect parametrically, we performed a gener-

alized linear regression of the form

η= β0 + β1V1 + β1V2 + β3normV3;

quantifying the effect of the target values (V1 and V2) and nor-
malized distracter value (normV3) on conditional choice behavior

across the aggregate population data. This analysis showed that
choice of the better target depended on the values of the target
options, consistent with value-guided decision making (β1 = 0.88,
P = 1.2 × 10−52; β2 = −1.01, P = 4.5 × 10−58); the larger
the difference in the value of the two targets, the more likely
the subject was to choose the better target. More importantly, the
likelihood that a subject chose the best target depended signifi-
cantly on the value of the distracter, with target choice decreasing
as distracter value increased (β3 = −0.42, P = 2.1 × 10−7).
In addition to the general decrease in choice efficiency with

rising distracter value, model simulations predicted a biphasic
response at high distracter value. To examine this in detail, we fit
logistic choice functions to the population data, segregated by
normalized distracter value. This analysis revealed a clear bi-
phasic profile in empirical context dependence (Fig. 5C): The
logistic slope parameter consistently decreased for the majority
of the range of distracter values (normV3 0–0.8) but increased as
distracter values approached the value of the target pairs
(normV3 0.8–1.0). Fig. 5D plots the effective choice functions
corresponding to these fits (distracter value range 0.0–0.8 shown
for clarity). We confirmed this biphasic effect by repeating the
generalized linear regression on low- versus high-valued dis-
tracters: Low distracter values (normV3 < 0.8) decreased the
efficiency of target choice (β3 = −0.54, P = 1.2 × 10−8), whereas
sufficiently high distracter values (normV3 > 0.8) had the
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We examined in subsequent choice trials how trinary-choice
behavior depended on distracter valuations. For each subject, we
selected a subset of 10 high-value items and 10 low-value items
based on their individual mean valuations (targets and distracters,
respectively; Fig. 4C). We then constructed 250 different trinary-
choice sets pairing a range of single distracters with different target
pairs, allowing us to examine how distracter value modulates
choice efficiency. Consistent with value-guided decision making,
overall choice behavior was governed by the values extracted from
bid trials (population choice probabilities: high-value target 60.5%,
low-value target 33.3%, and distracter 6.2%).
To examine context dependence across the subject population, we

normalized distracter value relative to the target pair with a metric
that ranges from 0 (small value) to 1 (large value). As predicted by
the normalization model, relative choice of the better target con-
sistently decreased as distracter value increased (Fig. 5A), with strong
correlation between conditional choice probability and normalized
distracter value (r = −0.80, P = 0.006). This effect exists across the
population of subjects, as was evident when we examined individual
conditional target choice under conditions of low versus high dis-
tracter value (Fig. 5B; mean difference in target choice 0.064, P =
0.0019, t test).
To examine this effect parametrically, we performed a gener-

alized linear regression of the form

η= β0 + β1V1 + β1V2 + β3normV3;

quantifying the effect of the target values (V1 and V2) and nor-
malized distracter value (normV3) on conditional choice behavior

across the aggregate population data. This analysis showed that
choice of the better target depended on the values of the target
options, consistent with value-guided decision making (β1 = 0.88,
P = 1.2 × 10−52; β2 = −1.01, P = 4.5 × 10−58); the larger
the difference in the value of the two targets, the more likely
the subject was to choose the better target. More importantly, the
likelihood that a subject chose the best target depended signifi-
cantly on the value of the distracter, with target choice decreasing
as distracter value increased (β3 = −0.42, P = 2.1 × 10−7).
In addition to the general decrease in choice efficiency with

rising distracter value, model simulations predicted a biphasic
response at high distracter value. To examine this in detail, we fit
logistic choice functions to the population data, segregated by
normalized distracter value. This analysis revealed a clear bi-
phasic profile in empirical context dependence (Fig. 5C): The
logistic slope parameter consistently decreased for the majority
of the range of distracter values (normV3 0–0.8) but increased as
distracter values approached the value of the target pairs
(normV3 0.8–1.0). Fig. 5D plots the effective choice functions
corresponding to these fits (distracter value range 0.0–0.8 shown
for clarity). We confirmed this biphasic effect by repeating the
generalized linear regression on low- versus high-valued dis-
tracters: Low distracter values (normV3 < 0.8) decreased the
efficiency of target choice (β3 = −0.54, P = 1.2 × 10−8), whereas
sufficiently high distracter values (normV3 > 0.8) had the
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phasic effect on choice efficiency. Points show the population logistic func-
tion slope parameter as a function of normalized distracter value (lines, 95%
CI of the parameter estimation). (D) Context-dependent choice curves. Curves
show logistic functions fit to the population data, color-coded by distracter
value for the range of decreasing efficiency (0–0.8). As distracter value ini-
tially increases from low magnitudes, the choice functions grow shallower
and choice grows increasingly inefficient.
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Shunting inhibition increases membrane conductance 
without introducing depolarizing or hyperpolarizing 
synaptic currents (FIG. 5c). Conductance increases could 
be obtained either through channels with a reversal 
potential close to the resting potential25,43 (for example, 
GABA type A (GABAA) receptors permeable to Cl– ions) 
or by concomitant increases in excitation and inhibi-
tion, balanced so that there is an increase in conduct-
ance with no net synaptic current45. It is easy to see how 
conductance controls the gain of membrane potential 
responses, as this follows directly from Ohm’s law: the 
membrane potential response V to a synaptic input cur-
rent I is scaled by membrane conductance g as V = I / g.  
It is less obvious to see how conductance controls the 
gain of firing rate responses, because spiking itself intro-
duces large, albeit brief, conductance increases89. It is 
now agreed that the effect of conductance increases on 
firing rates is divisive, but only if the source of increased 

conductance varies in time90. This variation could be 
achieved if the conductance changes were evoked by the 
noisy activity of other neurons91.

The shunting inhibition hypothesis makes a strong 
prediction: that normalization should affect not only the 
amplitude of the responses but also their time course. 
Increasing the conductance of a resistor–capacitor cir-
cuit such as the cellular membrane reduces not only the 
gain but also the time constant of the responses (FIG. 5c). 
The reduction in time constant is another way to reduce 
responsiveness, as briefer responses allow for less tem-
poral summation. This prediction is valid in the retina 
during light adaptation35,92 and during contrast normali-
zation35 (FIG. 5d). The evidence for conductance increases 
in normalization, however, is mixed. In V1, for example, 
intracellular measurements show that conductance does 
grow with stimulus contrast, but that it is not invariant 
with orientation93,94 as it would be if it reflected only the 
strength of normalization.

More generally, inhibition seems to have a role in 
some but not all forms of normalization. In the olfactory 
system of the fruitfly, normalization seems to be due to 
presynaptic inhibitory connections between neurons in 
the antennal lobe83, because blocking inhibition with a 
GABA antagonist greatly reduces the suppressive effect 
of a mask stimulus27. However, in V1 the normalization 
mechanisms underlying contrast saturation (FIG. 3a) or 
cross-orientation suppression (FIG. 3b) do not seem to 
rely on GABAA inhibition: they are unaffected by block-
age of GABAA receptors82. Inhibition in V1 may contrib-
ute to surround suppression95 (FIG. 3d), but this remains 
controversial96.

Alternative mechanisms have been proposed that 
could explain normalization phenomena without relying 
on inhibition. Some of these explanations rely on non- 
linearities in the afferent input27,84,97. In particular, a mech-
anism that could provide the appropriate non-linearity is 
synaptic depression98: if a synapse is engaged in transmit-
ting both test signals and mask signals, its effectiveness is 
reduced in a way that resembles the divisive effect required 
by normalization84 (FIG. 5e). Explanations of this kind, 
however, can only explain divisive effects provided by the 
same afferents that feed the numerator of the normaliza-
tion equation. In area V1, for example, they could explain 
phenomena of cross-orientation suppression (FIG. 3b) but 
not phenomena of surround suppression (FIG. 3d).

Other possible mechanisms rely on the effect of fluc-
tuations in membrane potential on firing rate responses51 
(FIG. 5f,g). The membrane potential of neurons is not only 
dependent on the afferent signals that are meant to drive 
the neuron but also on other signals originating from 
the rest of the brain in the form of ongoing activity99. In 
neurons such as those in area V1, the resulting fluctua-
tions in membrane potential are essential in making the 
neuron fire: without them, many stimuli would evoke 
membrane potential fluctuations that are too small to 
reach spike threshold100,101. Consequently, the ampli-
tude of ongoing activity controls the responsiveness of 
these neurons. As ongoing activity is weaker in V1 when 
stimulus contrast increases51, the neurons become less 
responsive, mimicking divisive suppression.  

Figure 5 | Some networks and mechanisms that have been proposed for 
normalization. a | The connections underlying normalization can be arranged in a 

feedforward manner, in which signals contributing to the denominator have not been 

normalized themselves. b | An alternative configuration involves feedback. The function f 
performs the appropriate transformation of signals so that they can be multiplied by the 

input, giving rise to division in steady state43,44. c | A resistor–capacitor (C) circuit and its 

transformation of an impulse into an exponential response. Conductance g determines 

both response gain and time constant. d | Effect of stimulus contrast on impulse 

responses of a lateral geniculate nucleus (LGN) neuron. Increasing contrast (left part) 

causes impulse responses to be weaker and faster, both in the model (middle part) and in 

the data (right part). e | Synaptic depression as a mechanism for normalization. 

Depression changes the relationship between presynaptic current and postsynaptic 

current (arbitrary units) in a divisive way. f,g | Noise as a mechanism for normalization 

(arbitrary units). The transformation between stimulus-driven membrane potential (g) 

and firing rate (f) depends on signals originating from the rest of the brain in the form of 

‘ongoing activity’, modelled from the point of view of a single neuron as noise added to 

the membrane potential (shown by the inset Gaussian curve in g). Data in part d from 

REF. 35; data in part e from REF. 84; data in parts f and g from REF. 143.
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Shunting inhibition increases membrane conductance 
without introducing depolarizing or hyperpolarizing 
synaptic currents (FIG. 5c). Conductance increases could 
be obtained either through channels with a reversal 
potential close to the resting potential25,43 (for example, 
GABA type A (GABAA) receptors permeable to Cl– ions) 
or by concomitant increases in excitation and inhibi-
tion, balanced so that there is an increase in conduct-
ance with no net synaptic current45. It is easy to see how 
conductance controls the gain of membrane potential 
responses, as this follows directly from Ohm’s law: the 
membrane potential response V to a synaptic input cur-
rent I is scaled by membrane conductance g as V = I / g.  
It is less obvious to see how conductance controls the 
gain of firing rate responses, because spiking itself intro-
duces large, albeit brief, conductance increases89. It is 
now agreed that the effect of conductance increases on 
firing rates is divisive, but only if the source of increased 

conductance varies in time90. This variation could be 
achieved if the conductance changes were evoked by the 
noisy activity of other neurons91.

The shunting inhibition hypothesis makes a strong 
prediction: that normalization should affect not only the 
amplitude of the responses but also their time course. 
Increasing the conductance of a resistor–capacitor cir-
cuit such as the cellular membrane reduces not only the 
gain but also the time constant of the responses (FIG. 5c). 
The reduction in time constant is another way to reduce 
responsiveness, as briefer responses allow for less tem-
poral summation. This prediction is valid in the retina 
during light adaptation35,92 and during contrast normali-
zation35 (FIG. 5d). The evidence for conductance increases 
in normalization, however, is mixed. In V1, for example, 
intracellular measurements show that conductance does 
grow with stimulus contrast, but that it is not invariant 
with orientation93,94 as it would be if it reflected only the 
strength of normalization.

More generally, inhibition seems to have a role in 
some but not all forms of normalization. In the olfactory 
system of the fruitfly, normalization seems to be due to 
presynaptic inhibitory connections between neurons in 
the antennal lobe83, because blocking inhibition with a 
GABA antagonist greatly reduces the suppressive effect 
of a mask stimulus27. However, in V1 the normalization 
mechanisms underlying contrast saturation (FIG. 3a) or 
cross-orientation suppression (FIG. 3b) do not seem to 
rely on GABAA inhibition: they are unaffected by block-
age of GABAA receptors82. Inhibition in V1 may contrib-
ute to surround suppression95 (FIG. 3d), but this remains 
controversial96.

Alternative mechanisms have been proposed that 
could explain normalization phenomena without relying 
on inhibition. Some of these explanations rely on non- 
linearities in the afferent input27,84,97. In particular, a mech-
anism that could provide the appropriate non-linearity is 
synaptic depression98: if a synapse is engaged in transmit-
ting both test signals and mask signals, its effectiveness is 
reduced in a way that resembles the divisive effect required 
by normalization84 (FIG. 5e). Explanations of this kind, 
however, can only explain divisive effects provided by the 
same afferents that feed the numerator of the normaliza-
tion equation. In area V1, for example, they could explain 
phenomena of cross-orientation suppression (FIG. 3b) but 
not phenomena of surround suppression (FIG. 3d).

Other possible mechanisms rely on the effect of fluc-
tuations in membrane potential on firing rate responses51 
(FIG. 5f,g). The membrane potential of neurons is not only 
dependent on the afferent signals that are meant to drive 
the neuron but also on other signals originating from 
the rest of the brain in the form of ongoing activity99. In 
neurons such as those in area V1, the resulting fluctua-
tions in membrane potential are essential in making the 
neuron fire: without them, many stimuli would evoke 
membrane potential fluctuations that are too small to 
reach spike threshold100,101. Consequently, the ampli-
tude of ongoing activity controls the responsiveness of 
these neurons. As ongoing activity is weaker in V1 when 
stimulus contrast increases51, the neurons become less 
responsive, mimicking divisive suppression.  

Figure 5 | Some networks and mechanisms that have been proposed for 
normalization. a | The connections underlying normalization can be arranged in a 

feedforward manner, in which signals contributing to the denominator have not been 

normalized themselves. b | An alternative configuration involves feedback. The function f 
performs the appropriate transformation of signals so that they can be multiplied by the 

input, giving rise to division in steady state43,44. c | A resistor–capacitor (C) circuit and its 

transformation of an impulse into an exponential response. Conductance g determines 

both response gain and time constant. d | Effect of stimulus contrast on impulse 

responses of a lateral geniculate nucleus (LGN) neuron. Increasing contrast (left part) 

causes impulse responses to be weaker and faster, both in the model (middle part) and in 

the data (right part). e | Synaptic depression as a mechanism for normalization. 

Depression changes the relationship between presynaptic current and postsynaptic 

current (arbitrary units) in a divisive way. f,g | Noise as a mechanism for normalization 

(arbitrary units). The transformation between stimulus-driven membrane potential (g) 

and firing rate (f) depends on signals originating from the rest of the brain in the form of 

‘ongoing activity’, modelled from the point of view of a single neuron as noise added to 

the membrane potential (shown by the inset Gaussian curve in g). Data in part d from 

REF. 35; data in part e from REF. 84; data in parts f and g from REF. 143.
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