Neural coding: Part 3
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More sophisticated recent
approaches for characterizing
neural properties



Last time

Generalized LNP response model

Methods paper on solving with Spike-triggered approaches:
Schwartz, Pillow, Rust, Simoncelli 2006



More complete visual system (retina)
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More complete visual system (retina)
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Stimulus filter: spatio-temporal
light integration

Post-spiking filter: Voltage-activated
currents (time course of recovery after
a spike)

Coupling filters: Synaptic or electrical
interactions between cells

Pillow et al., Nature, 2008



More complete visual system (retina)
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More complete visual system (retina)
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Beyond vision: LIP neurons

LIP

midbrain

and pons

Pillow et al., Nature Neuroscience 2014:
Encoding and decoding in parietal cortex during sensorimotor decision-making



Decision making

Moving dots discrimination task

Fixation

Fixation point

Targets
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Task: move eyes in direction of target

Pillow et al., Nature Neuroscience, 2014



Decision making

6.4% coherence 51.2% coherence

http://cns.bu.edu/~advait/RDMstimuli.html coherence



Decision making: LIP neurons
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Pillow et al., Nature Neuroscience 2014:
Encoding and decoding in parietal cortex during sensorimotor decision-making



Decision making
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Filters related to three primary tasks: appearance of choice targets,

moving dots, saccade

Pillow et al., Nature Neuroscience, 2014



Another example
system and coding



Ultra Sparse Song Bird System




Song before learning
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Songbird

Fiete et al. 2009 review paper



Songbird

b 100 ms

Stimulus

Stimulus

Syrinx

Hahnloser et al. 2002, Nature

HVC neurons connect to RA neurons, which
control muscles



Songbird

, Song motif ,

Frequency (kHz) ®

RA neurons

Hahnloser et al. 2002, Nature

RA neurons fire at multiple times during a song



Songbird

Motif no.
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Hahnloser et al. 2002, Nature

HVC neurons burst reliably at a single precise
time in the song or call!
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HVC neurons burst reliably at a single precise
time in the song or call



Songbird model

Why ultra sparse responses in the
songbird??



Songbird model

Why ultra sparse responses in the
songbird??

We’'ll look at modeling work, and
also introduce network modeling
approaches...



Songbird model
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Fiete et al. 2004: Temporal Sparseness of the Premotor Drive
Is Important for Rapid Learning in a Neural Network Model of Birdsong



Songbird model

500 HVC neurons  HVC | Input known

800 RA neurons RA

Hidden

2 Output Neurons
(number of vocal
muscles controlled;
7 in real system)

Desired output known

Fiete et al. 2004: Temporal Sparseness of the Premotor Drive
Is Important for Rapid Learning in a Neural Network Model of Birdsong



Songbird model
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Fiete et al. 2004: Temporal Sparseness of the Premotor Drive
Is Important for Rapid Learning in a Neural Network Model of Birdsong



Songbird model
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Songbird model
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Fiete et al. 2004: Temporal Sparseness of the Premotor Drive
Is Important for Rapid Learning in a Neural Network Model of Birdsong



Sigmoid curve
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Songbird model
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We know inputs and desired outputs

Back Propagation: 1970s; Rumelhart, Williams, Hinton,
Nature, 1986; and prominent again today in deep networks



Songbird model
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Back propagation:
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Back Propagation: 1970s; Rumelhart, Williams, Hinton,
Nature, 1986; and prominent again today in deep networks



Songbird model
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Back propagation:

e Compare current outputs with correct desired
answer to get error

 Update weights by small step down gradient

Back Propagation: 1970s; Rumelhart, Williams, Hinton,
Nature, 1986; and prominent again today in deep networks



Back propagation

Error:
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Back Propagation: 1970s; Rumelhart, Williams, Hinton,
Nature, 1986; and prominent again today in deep networks



Songbird model

Do sparse HVC responses help learning??
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Songbird model
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Fiete et al. 2004: Temporal Sparseness of the Premotor Drive
Is Important for Rapid Learning in a Neural Network Model of Birdsong
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Fiete et al. 2004: Temporal Sparseness of the Premotor Drive
Is Important for Rapid Learning in a Neural Network Model of Birdsong



Songbird model

Squared Error
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Fiete et al. 2004: Temporal Sparseness of the Premotor Drive
Is Important for Rapid Learning in a Neural Network Model of Birdsong



Songbird model
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Songbird model
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Synapse should be
strengthened and
weakened ->
Conflicting demands
causes slowdown

of learning



Canonical computations in the brain??



Divisive normalization model

Input —_— - — Qutput

Other inputs

* Descriptive neural model

* Canonical computation (Carandini, Heeger, Nature Reviews, 2012)
* Has mechanistic and interpretive versions

* Related to gain control in engineering



Divisive normalization model

Input —_— - — Qutput

Light level
Sound level 1‘

Other inputs

Mean light level
Standard deviation light level

* Descriptive neural model

* Canonical computation (Carandini, Heeger, Nature Reviews, 2012)
* Has mechanistic and interpretive versions

* Related to gain control in engineering



Divisive normalization model

Simple version of descriptive model:

2
. Rm awK

R_K2-+—c72

K corresponds to illumination, contrast,

sound intensity, etc.



Divisive normalization model

Simple version of descriptive model:
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Figure 1.3. Behavior of Naka-Rushton equation. Left, The Naka-Rushton equ K2 + 02
tion for a constant R,,,, = 1 and variable . Note that higher values of ¢ shift
the response curve to the right on a log axis. Right, The Naka-Rushton equation
for a constant ¢ = .1 and variable R,,,.. Note that lower vales of R,,,, reduce

the saturation level of the response curve.



Example: light adaptation
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Light adaptation to mean intensity in the retina
(in figure: turtle cone photoreceptor)
Carandini and Heeger, Nature Review Neuroscience, 2012



Example: primary visual cortex

Standard normalization
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Cagli, Kohn, Schwartz, Nature Neuroscience 2015



Example: multisensory integration

Multisensory neurons

%1%

Audltory neurons

— Excitatory
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Multisensory integration (eg, can explain change in neural
responses with cue reliability)

Ohshiro, Angelaki, DeAngelis, Nature Neuroscience 2011
Figure from Churchland News and Views.



Example: decision making
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“Context-dependent choice behavior is of particular interest in
economics because it violates one of the fundamental assumptions of
many rational-choice theories, namely, that decisions reflect absolute
valuations assigned to individual options” .. Distractors can reduce or
even reverse choice”

Louie, Khaw and Glimcher, PNAS 2013: Normalization is a general neural
mechanism for context-dependent decision making



Alterations in Divisive Normalization?

* Rosenberg, Patterson, Angelaki, PNAS 2015: A
computational perspective on autism

 Tibber MS, et al. (2013) Visual surround
suppression in schizophrenia. Front Psychol 4:88.

e Betts LR, Taylor CP, Sekuler AB, Bennett PJ (2005)
Aging reduces center-surround antagonism in
visual motion processing. Neuron 45(3):361-366



Mechanism of divisive normalization model
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