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Population  of  neurons  and  spikes

Adapted   from  Gatsby  Computational   Neuroscience  course



What  your  brain  “sees”

You  infer…
Palm  trees
UM  Campus
Warm  weather

Adapted   from  Gatsby  Computational   Neuroscience  course



Response

Single neuron and spikes



Stimulus

Response



Encoding: Probability(Response | Stimulus)

As an experimenter, we can present stimuli and find
what responses they lead to…

Stimulus
Response



Decoding: the reverse problem…
Probability(Stimulus | Response)

An organism receives sensory responses, and makes
judgments about the stimulus

Stimulus
Response



Decoding: the reverse problem…
Probability(Stimulus | Response)

An organism receives sensory responses, and makes
judgments about the stimulus

Stimulus
Response



Decoding: the reverse problem…
Probability(Stimulus | Response)

An organism receives sensory responses, and makes
judgments about the stimulus

Stimulus
Response

Reconstruction
Orientation
Spatial location
Sound pitch
Discrimination



Ideally, for any input we’d like to know the response
And vice versa

Problems in deciphering the neural code?

Stimulus

Response



Stimulus space huge

Response space huge

Stimulus

Response



What  kind  of  neural  codes?







Introduction
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Rate  codes:  example  2  

• Dayan  and  Abbott  textbook;;  adapted  from  Georgopoulos  et  al.  1982  



Rate  codes:  example  3

• Quiroga et  al.  2005  (Nature)
Quiroga et al. (2005) Nature 435: 1102



• The  only  important  characteristic  of  the  spike
train  is  the  mean  firing  rate

• What  other  codes?

Rate  codes



• The  only  important  characteristic  of  the  spike
train  is  the  mean  firing  rate

• What  other  codes?  
Temporal  codes:  temporal  structure  of  the  spike
train  carries  information  about  the  stimulus  beyond
what  is  conveyed  by  the  mean  firing  rate

Rate  codes



Neurons  in  the  fly  within  a  glomerulus:  “Responses  
across  flies  were  similar  not  just  in  intensity  but  also  in  
temporal  pattern,  implying  that  odors  elicit  stereotyped  
dynamics  in  the  antennal  lobe  network”;;  Wilson  et  al.  
2004

Temporal  codes
Example  1:  Coding  of  olfactory  stimuli



MT neurons, deCharms and Zador (after Buracas et al., 1998)

• Stimuli  that  change  quickly  typically  generate  rapidly
changing  firing  rates  regardless  of  coding  strategy





• Stimuli  that  change  quickly  typically  generate  rapidly
changing  firing  rates  regardless  of  coding  strategy

• Temporal  structure  in  spike  trains  carries  information  
about  temporal  structure  of  stimuli

• More  controversial:  temporal  structure  in  spike  trains  carries
information  not  arising  from  dynamics  of  stimuli  but  due  to
some  other  stimulus  property    



Same  stimulus  presented  many  times…









Variability  of  neuronal  spikes  similar  to  a  stochastic/random  process,  
specifically  a  Poisson  process

Process  is  defined  by  a  single  parameter—firing  rate.  The  probability  of  a  
spike  in  any  time  interval  is  a  random  event  (and  independent  of  
previous  spikes)

Poisson spike trains
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Poisson spike trains

Fano  factor:  var(count)/mean(count)  =  1  

Poisson spike trains

Fano factor: var(count)/mean(count) = 1  



Poisson spike trains
Poisson spike trains

Fano factor: var(count)/mean(count) = 1  

We’ll generate  Poisson  spikes
in  the  computer  lab…



Retinal Ganglion Cells, Pillow et al., 2006

RGC  cells

Poisson  model
(independent  spikes)

IF  model
(spike  history  matters)

Less  variability  than  Poisson



Summary  so  far…

• Rate  and  temporal  codes

• Neurons  are  “noisy”

• We’ve  seen  one  way  to  generate  spike  trains:
Poisson  model

• We’d  now  like  to  look  at  a  simple  encoding
model  (inputs  and  Poisson  spiking  outputs)
and  estimate  the  response  properties  of
a  neuron



How  do  we  characterize  the  response
properties  of  neurons  for  a  given  encoding  
model?



We’ve  already  seen…

• Tuning  curves  characterize  the  average  firing  rate  
response  of  a  neuron  to  a  given  stimulus  property  
(orientation;;  reaching  direction;;  etc)
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We’ve  already  seen…

• Tuning  curves  characterize  the  average  firing  rate  
response  of  a  neuron  to  a  given  stimulus  property  
(orientation;;  reaching  direction;;  etc)

• But  we’ve  decided  in  advance  on  a  stimulus
dimension  (such  as  orientation)!
Experimentalists  did  too  when  they  used  spots
of  light  or  bars…
That  seems  pretty  biased  or  lucky…



We’ve  already  seen…

• Tuning  curves  characterize  the  average  firing  rate  
response  of  a  neuron  to  a  given  stimulus  property  
(orientation;;  reaching  direction;;  etc)

• But  we’ve  decided  in  advance  on  a  stimulus
dimension  (such  as  orientation)!

• Instead:  Can  we  “blindly”  figure  out  what  a  neuron
cares  about??



• Cool  idea:  Explicitly  consider  an  encoding  model
(Linear  filter,  Nonlinearity,  Poisson  spiking)

• Estimate  the  missing  pieces  (eg,  the  Linear  filter)

• Here  we’ll  use  a  simple  approach  known  as
spike-triggered  average  (or  reverse  correlation)  

Characterizing  response  properties  
of  neurons



Basic  coding  model:  temporal

…shortcomings?  

Basic coding model: temporal filtering 

Linear filter:  r(t) =  s(t-t) f(t) dt     
• This  can  also  be  seen  as  a  descriptive  model!



Basic  coding  model:  temporalNext most basic coding model 

Linear filter & nonlinearity:  r(t) = g(  s(t-t) f(t) dt)     

s*f1 

Linear Nonlinear Poisson

• This  can  also  be  seen  as  a  descriptive  model!



Basic  coding  model:  temporalNext most basic coding model 

Linear filter & nonlinearity:  r(t) = g(  s(t-t) f(t) dt)     

s*f1 

Linear Nonlinear

In  an  experiment:
• We  know  the  input  stimuli
• And  we  measure  the  corresponding  spike  trains

Poisson



Basic  coding  model:  temporalNext most basic coding model 

Linear filter & nonlinearity:  r(t) = g(  s(t-t) f(t) dt)     

s*f1 

Linear Nonlinear

In  an  experiment:
• We  know  the  input  stimuli
• And  we  measure  the  corresponding  spike  trains
• We  don’t  know  the  Linear  or  Nolinear boxes!

?? ??

Poisson



Basic  coding  model:  temporalNext most basic coding model 

Linear filter & nonlinearity:  r(t) = g(  s(t-t) f(t) dt)     

s*f1 

Linear Nonlinear

In  an  experiment:
• We  know  the  input  stimuli
• And  we  measure  the  corresponding  spike  trains
• We  don’t  know  the  Linear  or  Nolinear boxes!
• Here  we  will  show  how  to  find  the  Linear

??

Poisson



Basic  coding  model:  temporalNext most basic coding model 

Linear filter & nonlinearity:  r(t) = g(  s(t-t) f(t) dt)     

s*f1 

Linear Nonlinear

In  an  experiment:
• We  know  the  input  stimuli

Or  at  least  we  have  control  over  input  stimuli.
What  should  we  use???

Poisson



Basic  coding  model:  temporalNext most basic coding model 

Linear filter & nonlinearity:  r(t) = g(  s(t-t) f(t) dt)     

s*f1 

Linear Nonlinear

In  an  experiment:
• We  know  the  input  stimuli

Or  at  least  we  have  control  over  input  stimuli
What  should  we  use???  Random  stimuli

Poisson



Spike-triggered  Average  (STA)

From  Dayan  and  Abbott  textbook;;  2001

Stimulus
intensity



Spike-triggered  Average  (STA)

From  Dayan  and  Abbott  textbook;;  2001

Stimulus
intensity



Spike-triggered  Average  (STA)

From  Dayan  and  Abbott  textbook;;  2001

Stimulus
intensity

=  estimated  linear  filter



Primary  Visual  Cortex  Receptive  Fields

15 R. Rao, 528 Lecture 1 

I. Descriptive Model of Receptive Fields 

Mapping a retinal receptive field with spots of light 

On-Center  
Off-Surround  
Receptive Field 

Off-Center  
On-Surround  
Receptive Field 

(From Nicholls et al., 1992) 
Retinal Ganglion Cells 

Retina 

16 R. Rao, 528 Lecture 1 

Descriptive Models: Cortical Receptive Fields 

Examples of 
receptive 
fields in 
primary 
visual cortex 
(V1) Retina 

Lateral 
Geniculate 

Nucleus (LGN) 
V1 

(From Nicholls et al., 1992) 



Spike-triggered  average  (STA)

Poisson  spikes

Linear,  Nonlinear,  Poisson  encoding  model

stimuli



Spike-triggered  average  (STA)

Poisson  spikes

Linear,  Nonlinear,  Poisson  (LNP)  encoding  model

We  would  like  to  characterize  the  linear  receptive  field  
or  filter  (and  the  nonlinearity;;  later)  for  a  neuron…

stimuli



Spike-triggered  Average  (STA):  example

From  Nicole  Rust



Spike-triggered  Average  (STA):  example

From  Nicole  Rust



Spike-triggered  Average  (STA):  example

From  Nicole  Rust



Spike-triggered  Average  (STA)  :  example

STA

From  Nicole  Rust



Spike-triggered  average  (STA)

Poisson  spikes

Linear,  Nonlinear,  Poisson  (LNP)  encoding  model

Will  estimate  of  Linear  always  work??

stimuli



Spike-triggered  average  (STA)

Poisson  spikes

Linear,  Nonlinear,  Poisson  (LNP)  encoding  model

When  can  this  estimation  fail?
• Non  Poisson  spiking
• Input  stimuli  not  spherically  symmetric  (Chichilnisky)
• Form  of  nonlinearity  
(geometric  view  and  more  on  later)

stimuli



Spike-triggered  average  (STA)

Poisson  spikes

Linear,  Nonlinear,  Poisson  (LNP)  encoding  model

Can  we  generalize  the  model?
• More  filters
• Other  metrics  of  spike  versus  non  spike  ensemble
beyond  the  mean

(more  on  later)

stimuli



So  far:  To  Spike  or  not  to  Spike!

But  can  we  also  partition  according  to  other
properties  of  interest  and  other  signal  types??



In  Psychology:  termed
“Classification  Images”

Figure 1. Behavior: From Face Detection Behavior to an Internal Face Template

(A) Illustration of the experimental design and behavioral reverse correlation analysis (illustrated with average of all observers).
(B) Behavioral classification images for each of the observers with (bottom row) and without (top row) threshold.
(C) Results of the split-half analysis indicating the relationship between the ‘‘faceness’’ of the noise stimuli (i.e., the correlation between each unique random
noise stimulus and the behavioral template of the observer) and the proportion of ‘‘face present’’ responses for each observer’s decisions, using their own
and each others’ behavioral templates to compute the faceness rankings.
(D) The noise stimulus with the highest correlation to the internal face template for each observer.

Current Biology Vol 22 No 3
192

Smith  et  al.  Current  Biology  2012:
Subjects  told  that  half  the  noise  stimuli  contain
faces,  although  there  are  no  faces…



In  Psychology:  termed
“Classification  Images”

Figure 2. Brain: From the Internal Face Template to Its Processing in the Brain

(A) Significant single-subject differences (p < 0.005) in the evoked activity on trials classified as ‘‘face present’’ versus ‘‘face absent’’ (see top panel of Fig-
ure S1 for the time course of this activation over frontal and occipitotemporal regions).
(B) Time course of associations (Z-scored, with respect to prestimulus baseline) of single-trial EEG amplitude modulations with face-like information in the
noise stimuli on trials classified as ‘‘face present’’ over frontal (red) and occipitotemporal (blue) regions. Significant associations (p < 0.01) are highlighted on
the curves. Inset topographies depict the topographic distribution of the significant associations in the critical 300–400ms time interval (see bottom panel of
Figure S1 for full set of topographic maps). Inset images depict EEG classification images illustrating the specific visual information driving modulations in
neuronal activity.
(C) Correlation of each observer’s EEG classification images with their own (same) and the other observers’ behavioral information templates (average and
maximum single correlation).

Current Biology Vol 22 No 3
194

Figure 2. Brain: From the Internal Face Template to Its Processing in the Brain

(A) Significant single-subject differences (p < 0.005) in the evoked activity on trials classified as ‘‘face present’’ versus ‘‘face absent’’ (see top panel of Fig-
ure S1 for the time course of this activation over frontal and occipitotemporal regions).
(B) Time course of associations (Z-scored, with respect to prestimulus baseline) of single-trial EEG amplitude modulations with face-like information in the
noise stimuli on trials classified as ‘‘face present’’ over frontal (red) and occipitotemporal (blue) regions. Significant associations (p < 0.01) are highlighted on
the curves. Inset topographies depict the topographic distribution of the significant associations in the critical 300–400ms time interval (see bottom panel of
Figure S1 for full set of topographic maps). Inset images depict EEG classification images illustrating the specific visual information driving modulations in
neuronal activity.
(C) Correlation of each observer’s EEG classification images with their own (same) and the other observers’ behavioral information templates (average and
maximum single correlation).

Current Biology Vol 22 No 3
194



In  Psychology:  termed
“Classification  Images”

Figure 2. Brain: From the Internal Face Template to Its Processing in the Brain

(A) Significant single-subject differences (p < 0.005) in the evoked activity on trials classified as ‘‘face present’’ versus ‘‘face absent’’ (see top panel of Fig-
ure S1 for the time course of this activation over frontal and occipitotemporal regions).
(B) Time course of associations (Z-scored, with respect to prestimulus baseline) of single-trial EEG amplitude modulations with face-like information in the
noise stimuli on trials classified as ‘‘face present’’ over frontal (red) and occipitotemporal (blue) regions. Significant associations (p < 0.01) are highlighted on
the curves. Inset topographies depict the topographic distribution of the significant associations in the critical 300–400ms time interval (see bottom panel of
Figure S1 for full set of topographic maps). Inset images depict EEG classification images illustrating the specific visual information driving modulations in
neuronal activity.
(C) Correlation of each observer’s EEG classification images with their own (same) and the other observers’ behavioral information templates (average and
maximum single correlation).

Current Biology Vol 22 No 3
194



fMRI:  Voxel  triggered



fMRI:  Voxel  triggered

with the relevant template. In order to assess the significance of the r-
values in our r-maps, we perform a randomisation test where we
create a series of null distributions, one per voxel, independently for
each expression, observer and template (note we have an
independent set of classification images for each expression and
observer). To create one such series, we randomly permute the
mapping of BOLD amplitudes to bubble masks 999 times, while
each time using the given mapping to create a classification image
for each voxel (this preserves within each randommapping the inter-
correlational structure of the real BOLD data). We correlate, on each
mapping, each voxel’s classification image with the relevant
template to obtain the set of r-values for that mapping. The null
distribution for any voxel is simply the distribution of r-values which
we obtain for that voxel across the 999 randommappings. The (one-
sided) p value for a given voxel is simply the probability of
observing the actual r-value (or greater) in the null distribution (we
compute it as the number of times a value equal to, or greater than the

actual r occurs in the null distribution, as our hypothesis is one
sided). Thus we obtain a p-map for each expression, template and
observer. Finally, in order to correct for multiple comparisons, we set
a cluster level threshold (see Goebel et al., 2006; Forman et al., 1995)
for each p-map independently, based on keeping the probability of
observing a false positive cluster at 0.05 (voxel-wise p values are
first thresholded at pb=0.05 in this procedure).

Information States of Brain Regions

In addition to discovering where significant information
sensitivity is present across the brain, we also want to be able
to describe the specific visual information each sensitive region is
maximally modulated by. To describe the information state of a
whole brain region, i.e. a cluster of voxels displaying significant
information sensitivity (such as left Anterior Cingulate or right
Fusiform Gyrus) for a particular observer, expression and

Table 1
Regions showing significant information sensitivity for each combination of observer, expression and feature template

Observer Expression Template Region Laterality TAL Cluster size

ETS Happy D (mouth) Anterior cingulate Left −4 42 5 645
Right 7 36 8 384

Posterior cingulate Right 3 −59 17 303
Middle temporal gyrus Right 41 −64 28 412
Inferior occipital gyrus Left −10 −92 −7 490

ETS Happy AD (eyes) Nil
ETS Fear D (eyes) Superior frontal gyrus Left −23 41 39 340
ETS Fear AD (mouth) Lingual gyrus Right 17 −89 −4 506

Cuneus Left −4 −72 21 313
Parahippocampal gyrus Left −16 −30 −3 308

EGA Happy D (mouth) Insula Right 44 −2 12 328
Precuneus Right 13 −57 19 400

EGA Happy AD (eyes) Nil
EGA Fear D (eyes) Nil
EGA Fear AD (mouth) Nil

p-maps were thresholded at pb=.05 voxel wise and further cluster size thresholded to ensure the probability of observing a false positive cluster was b=.05.
D=diagnostic template, AD=anti-diagnostic template.

Fig. 2. Flow diagram indicating the main stages of fMRI data analysis. For a given observer, expression and voxel, we sort the bubble masks into two sums, those
associated with greater and those associated with less than median BOLD amplitude. We form the voxel-based classification image as the difference of these two
image sums. We then correlate all the voxel-based classification images, for a given expression and observer, with both a mouth (diagnostic for happy) and an
eyes (diagnostic for fear) feature template, resulting in a mouth and an eyes r-map for that specific expression and observer.

1646 F.W. Smith et al. / NeuroImage 40 (2008) 1643–1654

Smith  it  el.  2008Building on these lines of research, we sought to apply Bubbles
to the analysis of fMRI data. Standard methods of fMRI data
analysis involve the contrast of activation patterns obtained from a
small number of experimental conditions of interest, relying essen-
tially on a subtractive method. Such methods do not have much
power to resolve questions regarding the fine-grained response
properties of given voxels in the human brain, beyond a basic
correlation of a given voxel with a given experimental condition.
More recent analysis methods (e.g. Kamitani and Tong, 2005;
Haynes and Rees., 2005; Haxby et al., 2001; Kriegeskorte et al.,
2006) have shown that it is possible to find reliable brain sensitivity
to specific types of information (e.g. visual category, orientation)
that is distributed weakly across many voxels, when the approach is

multivariate. Hence this kind of sensitivity is not evident from
standard, univariate, methods of analysis.

The Bubbles method, like the newer multivariate techniques,
goes beyond standard methods of fMRI data analysis. The power
of Bubbles, however, is to provide a fine-grained description (2D
image) of the response properties of each individual voxel (these can
be summed across a collection of voxels to represent a region of the
brain) with respect to the visual information contained in complex
stimuli (hence it is univariate in the present implementation).
That is, in terms of describing what features of some (reasonably
complex) input stimulus (such as a face) correlate with modulations
of signal amplitudes at each specific voxel (i.e. to find the “optimal”
stimulus for each voxel relative to the given task). Thus, for instance,
we might expect a set of brain regions to highly correlate with the
presentation of the eyes when participants make fearful judgments to
faces (i.e. the diagnostic information), whereas to the mouth when
participants make happy judgments (e.g. Smith et al., 2005; Adolphs
et al., 2005; Schyns et al., 2007).

It is unclear from work using standard subtractive methods what
the regions usually activated in such expression categorisation tasks
actually do, in terms of the face information they are sensitive to.
Hence the potential of Bubbles is to provide such a characterisation,
an important step to depict the brain as an information processing
system (Smith et al., 2007a,b).

Our observers performed a 3AFC expressions categorization
task where they had to decide whether each sparsely sampled face
(see Fig. 1 and Methods) was a happy, fearful or neutral face. We
concurrently measured the fMRI BOLD signal elicited. We reverse
correlated BOLD amplitudes to information samples, after appro-
priate preprocessing, to reveal the ‘information states’ of each voxel
in the brain. That is, to reveal the facial information modulating each
voxel across different emotional expressions.

Methods

Stimuli

Original face stimuli were gray-scale images of five females and
five males taken under standardized illumination, each displaying
three facial expressions (happy, fearful, neutral). All 30 stimuli
(normalized for the location of the nose and mouth) complied with
the Facial Action Coding System (FACS; Ekman and Friesen,
1978), and form part of the California Facial Expressions (CAFE)
database (Dailey et al., 2001).

Participants

Two adult subjects (ETS and EGA) with normal (or corrected to
normal) vision participated in the study. Both gave informed consent
prior to taking part in the experiment. The procedure of the experi-
ment was approved by the local ethics committee in Frankfurt.

Imaging Methods

Participants performed multiple runs of the present experiment
(ETS— 20; EGA— 12), with between four and six runs collected in
each scanning session. Different scanning sessions were performed
on different days. During each functional run, we acquired 572 EPI
image volumes (17 slices, 3 Tesla Siemens Allegra and Trio,
TR=1000 ms, TE=30 ms, FA=62, 3.1×3.1×4 mm, PACE motion
correction, PSF distortion correction (Zeng and Constable, 2002;

Fig. 1. Examples of original (first row) and sparse stimuli used (second row),
and (bottom two rows) behavioural classification images (thresholded and
mulitplied with an appropriate original stimulus image) revealing the
diagnostic visual information required by each observer (rows) for each
expression (columns).

1644 F.W. Smith et al. / NeuroImage 40 (2008) 1643–1654

Building on these lines of research, we sought to apply Bubbles
to the analysis of fMRI data. Standard methods of fMRI data
analysis involve the contrast of activation patterns obtained from a
small number of experimental conditions of interest, relying essen-
tially on a subtractive method. Such methods do not have much
power to resolve questions regarding the fine-grained response
properties of given voxels in the human brain, beyond a basic
correlation of a given voxel with a given experimental condition.
More recent analysis methods (e.g. Kamitani and Tong, 2005;
Haynes and Rees., 2005; Haxby et al., 2001; Kriegeskorte et al.,
2006) have shown that it is possible to find reliable brain sensitivity
to specific types of information (e.g. visual category, orientation)
that is distributed weakly across many voxels, when the approach is

multivariate. Hence this kind of sensitivity is not evident from
standard, univariate, methods of analysis.

The Bubbles method, like the newer multivariate techniques,
goes beyond standard methods of fMRI data analysis. The power
of Bubbles, however, is to provide a fine-grained description (2D
image) of the response properties of each individual voxel (these can
be summed across a collection of voxels to represent a region of the
brain) with respect to the visual information contained in complex
stimuli (hence it is univariate in the present implementation).
That is, in terms of describing what features of some (reasonably
complex) input stimulus (such as a face) correlate with modulations
of signal amplitudes at each specific voxel (i.e. to find the “optimal”
stimulus for each voxel relative to the given task). Thus, for instance,
we might expect a set of brain regions to highly correlate with the
presentation of the eyes when participants make fearful judgments to
faces (i.e. the diagnostic information), whereas to the mouth when
participants make happy judgments (e.g. Smith et al., 2005; Adolphs
et al., 2005; Schyns et al., 2007).

It is unclear from work using standard subtractive methods what
the regions usually activated in such expression categorisation tasks
actually do, in terms of the face information they are sensitive to.
Hence the potential of Bubbles is to provide such a characterisation,
an important step to depict the brain as an information processing
system (Smith et al., 2007a,b).

Our observers performed a 3AFC expressions categorization
task where they had to decide whether each sparsely sampled face
(see Fig. 1 and Methods) was a happy, fearful or neutral face. We
concurrently measured the fMRI BOLD signal elicited. We reverse
correlated BOLD amplitudes to information samples, after appro-
priate preprocessing, to reveal the ‘information states’ of each voxel
in the brain. That is, to reveal the facial information modulating each
voxel across different emotional expressions.

Methods

Stimuli

Original face stimuli were gray-scale images of five females and
five males taken under standardized illumination, each displaying
three facial expressions (happy, fearful, neutral). All 30 stimuli
(normalized for the location of the nose and mouth) complied with
the Facial Action Coding System (FACS; Ekman and Friesen,
1978), and form part of the California Facial Expressions (CAFE)
database (Dailey et al., 2001).

Participants

Two adult subjects (ETS and EGA) with normal (or corrected to
normal) vision participated in the study. Both gave informed consent
prior to taking part in the experiment. The procedure of the experi-
ment was approved by the local ethics committee in Frankfurt.

Imaging Methods

Participants performed multiple runs of the present experiment
(ETS— 20; EGA— 12), with between four and six runs collected in
each scanning session. Different scanning sessions were performed
on different days. During each functional run, we acquired 572 EPI
image volumes (17 slices, 3 Tesla Siemens Allegra and Trio,
TR=1000 ms, TE=30 ms, FA=62, 3.1×3.1×4 mm, PACE motion
correction, PSF distortion correction (Zeng and Constable, 2002;

Fig. 1. Examples of original (first row) and sparse stimuli used (second row),
and (bottom two rows) behavioural classification images (thresholded and
mulitplied with an appropriate original stimulus image) revealing the
diagnostic visual information required by each observer (rows) for each
expression (columns).
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difference in prediction accuracy was significant (p < 0.0001,
Wilcoxon signed-rank test). An earlier study showed that the
static model tested here recovered much more information
from BOLD signals than had been obtained with any previous
model [8, 19]. Nevertheless, both motion models developed
here provide far more accurate predictions than are obtained
with the static model. Note that the difference in prediction
accuracy between the directional and nondirectional motion
models, though significant, was small (Figure 2E; Figure S1A).
This suggests that BOLD signals convey spatially localized
but predominantly nondirectional motion information. These
results show that the motion-energy encoding model predicts
BOLD signals evoked by novel natural movies.

To further explore what information can be recovered from
these data, we estimated the spatial, spatial frequency, and
temporal frequency tuning of the directional motion-energy
encoding model fit to each voxel. The spatial receptive fields
of individual voxels were spatially localized (Figures 2F and
2G, left) and were organized retinotopically (Figures 2H and
2I), as reported in previous fMRI studies [12, 19–23]. Voxel-
based receptive fields also showed spatial and temporal
frequency tuning (Figures 2F and 2G, right), as reported in
previous fMRI studies [24, 25].

To determine how motion information is represented in
human visual cortex, we calculated the optimal speed for
each voxel by dividing the peak temporal frequency by the
peak spatial frequency. Projecting the optimal speed of the
voxels onto a flattened map of the cortical surface (Figure 2J)
revealed a significant positive correlation between eccentricity
and optimal speed: relatively more peripheral voxels were
tuned for relatively higher speeds. This pattern was observed
in areas V1, V2, and V3 and for all three subjects (p < 0.0001,
t test for correlation coefficient; see Figure S1B for subject-
and area-wise comparisons). To our knowledge, this is the first
evidence that speed selectivity in human early visual areas
depends on eccentricity, though a consistent trend has been
reported in human behavioral studies [26–28] and in neuro-
physiological studies of nonhuman primates [29, 30]. These
results show that the motion-energy encoding model de-
scribes tuning for both spatial and temporal information at
the level of single voxels.

To further characterize the temporal specificity of the
estimated motion-energy encoding models, we used the test
data to estimate movie identification accuracy. Identification
accuracy [7, 19] measures how well a model can correctly

associate an observed BOLD signal pattern with the specific
stimulus that evoked it. Our motion-energy encoding model
could identify the specific movie stimulus that evoked an
observed BOLD signal 95% of the time (464 of 486 volumes)
within 6 one volume (1 s; subject S1; Figures 3A and 3B).
This is far above what would be expected by chance (<1%).
Identification accuracy (within 6 one volume) was >75% for
all three subjects even when the set of possible natural movie
clips included 1,000,000 separate clips chosen at random from
the internet (Figure 3C). This result demonstrates that the
motion-energy encoding model is both valid and temporally
specific. Furthermore, it suggests that the model might
provide good reconstructions of natural movies from brain
activity measurements [5].
We used a Bayesian approach [8] to reconstruct movies

from the evoked BOLD signals (see also Figure S2). We esti-
mated the posterior probability by combining a likelihood
function (given by the estimated motion-energy model; see
Supplemental Experimental Procedures) and a sampled
natural movie prior. The sampled natural movie prior consists
of w18,000,000 s of natural movies sampled at random from
the internet. These clips were assigned uniform prior proba-
bility (and consequently all other clips were assigned zero prior
probability; note also that none of the clips in the prior were
used in the experiment). Furthermore, to make decoding
tractable, reconstructions were based on 1 s clips (15 frames),
using BOLD signals with a delay of 4 s. In effect, this procedure
enforces an assumption that the spatiotemporal stimulus that
elicited each measured BOLD signal must be one of the movie
clips in the sampled prior.
Figure 4 shows typical reconstructions of natural movies

obtained using the motion-energy encoding model and the
Bayesian decoding approach (see Movie S1 for the corre-
sponding movies). The posterior probability was estimated
across the entire sampled natural movie prior separately for
each BOLD signal in the test data. The peak of this posterior
distribution was the conventional maximum a posteriori
(MAP) reconstruction [8] for each BOLD signal (see second
row in Figure 4). When the sampled natural movie prior con-
tained clips similar to the viewed clip, theMAP reconstructions
were good (e.g., the close-up of a human speaker shown in Fig-
ure 4A). However, when the prior contained no clips similar to
the viewed clip, the reconstructions are poor (e.g., Figure 4B).
This likely reflects both the limited size of the sampled natural
movie prior and noise in the fMRI measurements. One way to
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Figure 1. Schematic Diagram of the Motion-Energy
Encoding Model

(A) Stimuli pass first through a fixed set of nonlinear
spatiotemporal motion-energy filters (shown in detail in
B) and then through a set of hemodynamic response
filters fit separately to each voxel. The summed output
of the filter bank provides a prediction of BOLD signals.
(B) The nonlinear motion-energy filter bank consists of
several filtering stages. Stimuli are first transformed
into the Commission Internationale de l’Éclairage L*A*
B* color space, and the color channels are stripped off.
Luminance signals then pass through a bank of 6,555
spatiotemporal Gabor filters differing in position, orien-
tation, direction, spatial, and temporal frequency (see
Supplemental Experimental Procedures for details).
Motion energy is calculated by squaring and summing
Gabor filters in quadrature. Finally, signals pass through
a compressive nonlinearity and are temporally down-
sampled to the fMRI sampling rate (1 Hz).
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difference in prediction accuracy was significant (p < 0.0001,
Wilcoxon signed-rank test). An earlier study showed that the
static model tested here recovered much more information
from BOLD signals than had been obtained with any previous
model [8, 19]. Nevertheless, both motion models developed
here provide far more accurate predictions than are obtained
with the static model. Note that the difference in prediction
accuracy between the directional and nondirectional motion
models, though significant, was small (Figure 2E; Figure S1A).
This suggests that BOLD signals convey spatially localized
but predominantly nondirectional motion information. These
results show that the motion-energy encoding model predicts
BOLD signals evoked by novel natural movies.

To further explore what information can be recovered from
these data, we estimated the spatial, spatial frequency, and
temporal frequency tuning of the directional motion-energy
encoding model fit to each voxel. The spatial receptive fields
of individual voxels were spatially localized (Figures 2F and
2G, left) and were organized retinotopically (Figures 2H and
2I), as reported in previous fMRI studies [12, 19–23]. Voxel-
based receptive fields also showed spatial and temporal
frequency tuning (Figures 2F and 2G, right), as reported in
previous fMRI studies [24, 25].

To determine how motion information is represented in
human visual cortex, we calculated the optimal speed for
each voxel by dividing the peak temporal frequency by the
peak spatial frequency. Projecting the optimal speed of the
voxels onto a flattened map of the cortical surface (Figure 2J)
revealed a significant positive correlation between eccentricity
and optimal speed: relatively more peripheral voxels were
tuned for relatively higher speeds. This pattern was observed
in areas V1, V2, and V3 and for all three subjects (p < 0.0001,
t test for correlation coefficient; see Figure S1B for subject-
and area-wise comparisons). To our knowledge, this is the first
evidence that speed selectivity in human early visual areas
depends on eccentricity, though a consistent trend has been
reported in human behavioral studies [26–28] and in neuro-
physiological studies of nonhuman primates [29, 30]. These
results show that the motion-energy encoding model de-
scribes tuning for both spatial and temporal information at
the level of single voxels.

To further characterize the temporal specificity of the
estimated motion-energy encoding models, we used the test
data to estimate movie identification accuracy. Identification
accuracy [7, 19] measures how well a model can correctly

associate an observed BOLD signal pattern with the specific
stimulus that evoked it. Our motion-energy encoding model
could identify the specific movie stimulus that evoked an
observed BOLD signal 95% of the time (464 of 486 volumes)
within 6 one volume (1 s; subject S1; Figures 3A and 3B).
This is far above what would be expected by chance (<1%).
Identification accuracy (within 6 one volume) was >75% for
all three subjects even when the set of possible natural movie
clips included 1,000,000 separate clips chosen at random from
the internet (Figure 3C). This result demonstrates that the
motion-energy encoding model is both valid and temporally
specific. Furthermore, it suggests that the model might
provide good reconstructions of natural movies from brain
activity measurements [5].
We used a Bayesian approach [8] to reconstruct movies

from the evoked BOLD signals (see also Figure S2). We esti-
mated the posterior probability by combining a likelihood
function (given by the estimated motion-energy model; see
Supplemental Experimental Procedures) and a sampled
natural movie prior. The sampled natural movie prior consists
of w18,000,000 s of natural movies sampled at random from
the internet. These clips were assigned uniform prior proba-
bility (and consequently all other clips were assigned zero prior
probability; note also that none of the clips in the prior were
used in the experiment). Furthermore, to make decoding
tractable, reconstructions were based on 1 s clips (15 frames),
using BOLD signals with a delay of 4 s. In effect, this procedure
enforces an assumption that the spatiotemporal stimulus that
elicited each measured BOLD signal must be one of the movie
clips in the sampled prior.
Figure 4 shows typical reconstructions of natural movies

obtained using the motion-energy encoding model and the
Bayesian decoding approach (see Movie S1 for the corre-
sponding movies). The posterior probability was estimated
across the entire sampled natural movie prior separately for
each BOLD signal in the test data. The peak of this posterior
distribution was the conventional maximum a posteriori
(MAP) reconstruction [8] for each BOLD signal (see second
row in Figure 4). When the sampled natural movie prior con-
tained clips similar to the viewed clip, theMAP reconstructions
were good (e.g., the close-up of a human speaker shown in Fig-
ure 4A). However, when the prior contained no clips similar to
the viewed clip, the reconstructions are poor (e.g., Figure 4B).
This likely reflects both the limited size of the sampled natural
movie prior and noise in the fMRI measurements. One way to
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Figure 1. Schematic Diagram of the Motion-Energy
Encoding Model

(A) Stimuli pass first through a fixed set of nonlinear
spatiotemporal motion-energy filters (shown in detail in
B) and then through a set of hemodynamic response
filters fit separately to each voxel. The summed output
of the filter bank provides a prediction of BOLD signals.
(B) The nonlinear motion-energy filter bank consists of
several filtering stages. Stimuli are first transformed
into the Commission Internationale de l’Éclairage L*A*
B* color space, and the color channels are stripped off.
Luminance signals then pass through a bank of 6,555
spatiotemporal Gabor filters differing in position, orien-
tation, direction, spatial, and temporal frequency (see
Supplemental Experimental Procedures for details).
Motion energy is calculated by squaring and summing
Gabor filters in quadrature. Finally, signals pass through
a compressive nonlinearity and are temporally down-
sampled to the fMRI sampling rate (1 Hz).
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Summary

• Simple  encoding  model:  Linear,  Nonlinear,
Poisson

• It’s  a  descriptive  model  of  a  neuron

• We’ve  looked  at  estimating  the  Linear  with
Spike  Triggered  Average  (later:  limitations)

• Approach  useful  beyond  single  neurons
to  other  types  of  data  (EEG,  fMRI)

• Next:  population  codes
Later:  more  sophisticated  encoding  models




