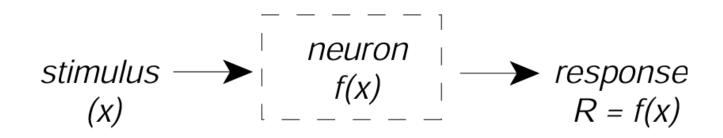
Spike-Triggered Approaches

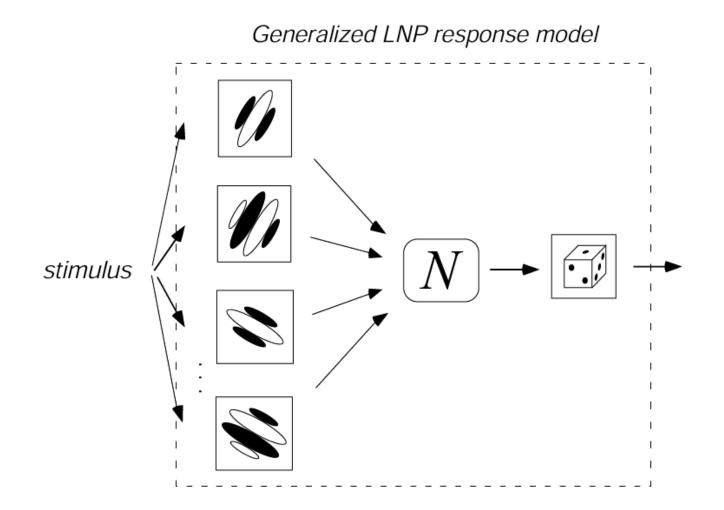
Odelia Schwartz

Characterizing neural responses



V1 Experiment

3



Methods paper on solving with Spike-triggered approaches: Schwartz, Pillow, Rust, Simoncelli 2006

Characterizing neural responses

stimulus
$$\longrightarrow$$
 $f(x)$ $f(x)$ $f(x)$ $R = f(x)$

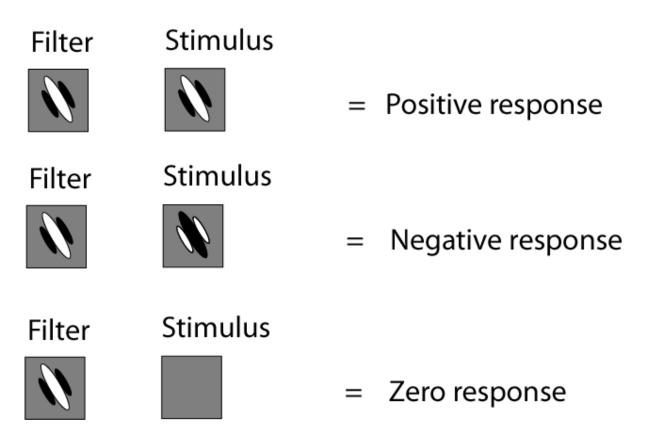
- Simple cell traditional approach
- Simple cell (STA)
- When STA fails
- Complex cell (STC)
- Another example (STC)
- More generic model with multiple filters (STA and STC)
- 4

Experimental receptive field (filter)

Spikes

Experimental receptive field (filter)

Experimental receptive field (filter)



• Response of a filter

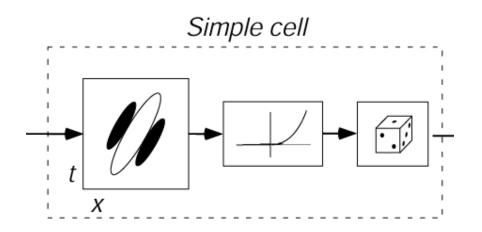
7

= inner/dot product/projection of filter with stimulus

Characterizing neural responses

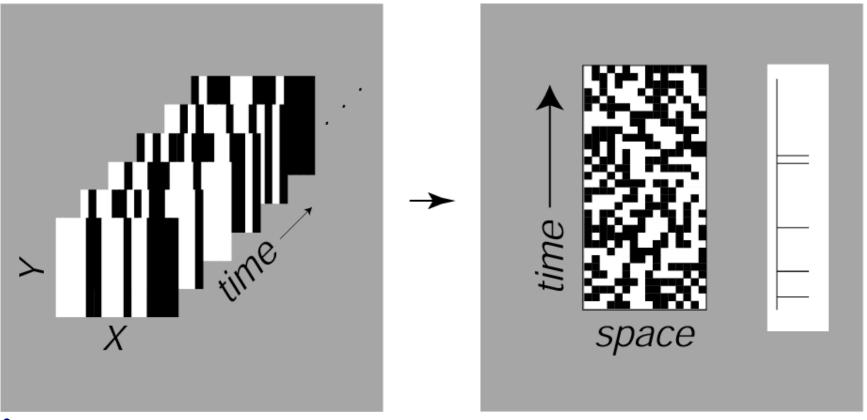
stimulus
$$\longrightarrow$$
 $f(x)$ $f(x)$ $f(x)$ $R = f(x)$

- Simple cell traditional approach
- Simple cell (STA)
- When STA fails
- Complex cell (STC)
- Another example (STC)
- More generic model with multiple filters (STA and STC)
- 8

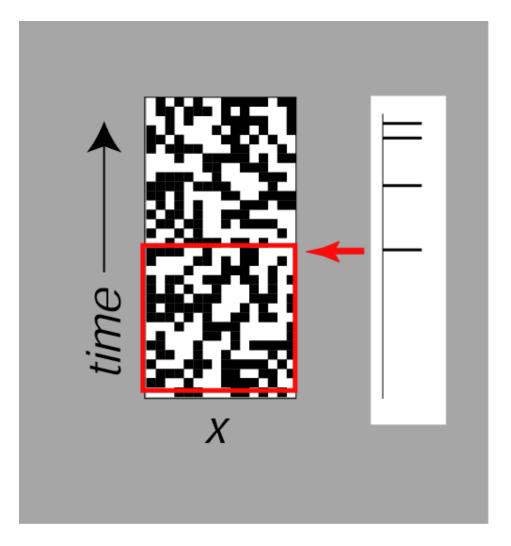


Spike-triggered approach

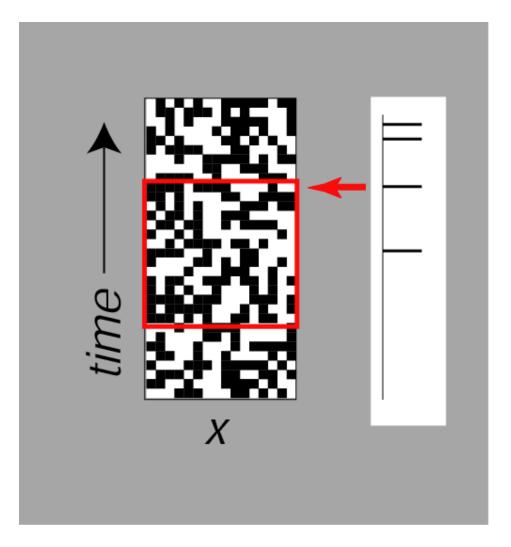
At each time step, we present randomly chosen bars

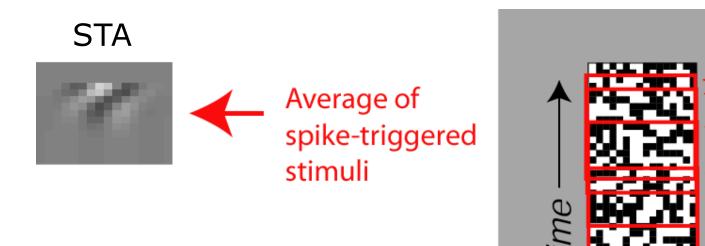


Spike-triggered approach



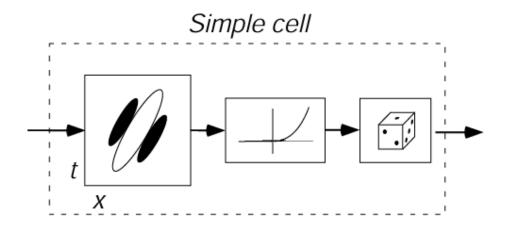
Spike-triggered approach



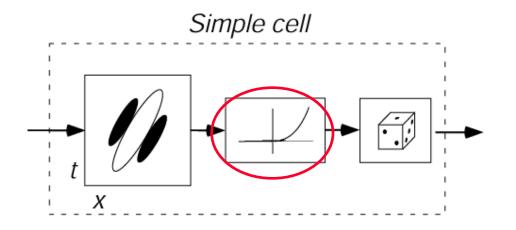


Х

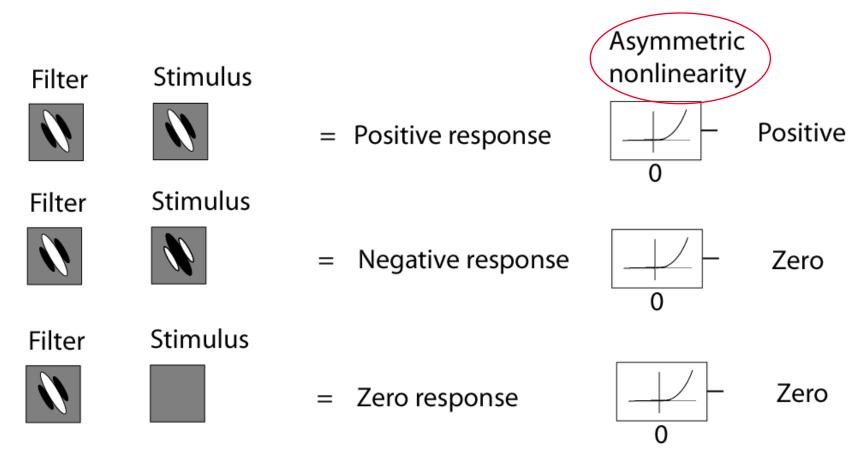
Effect of nonlinearity in model?



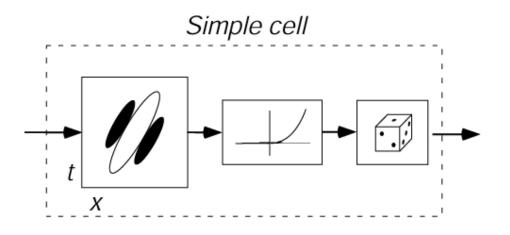
Effect of nonlinearity in model?



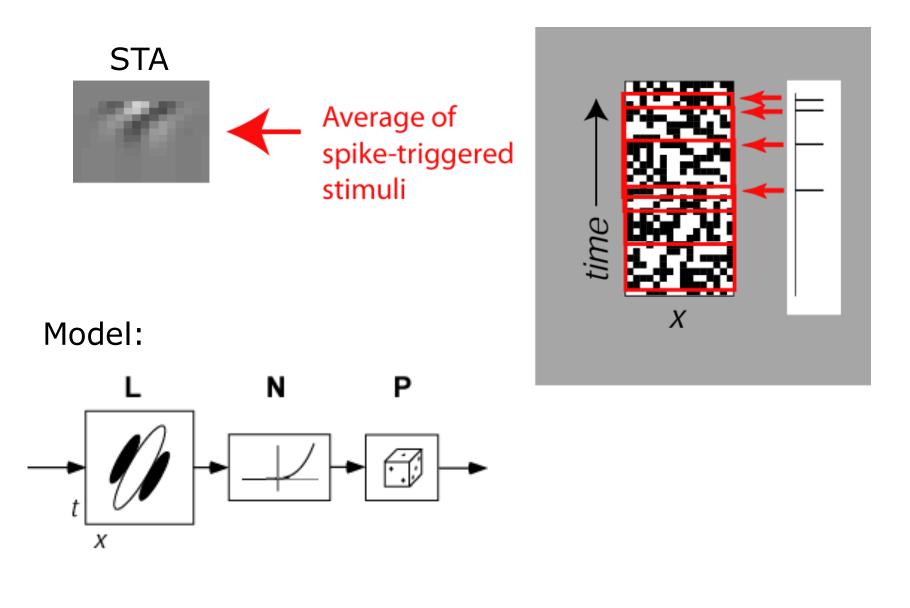
Effect of nonlinearity in model?



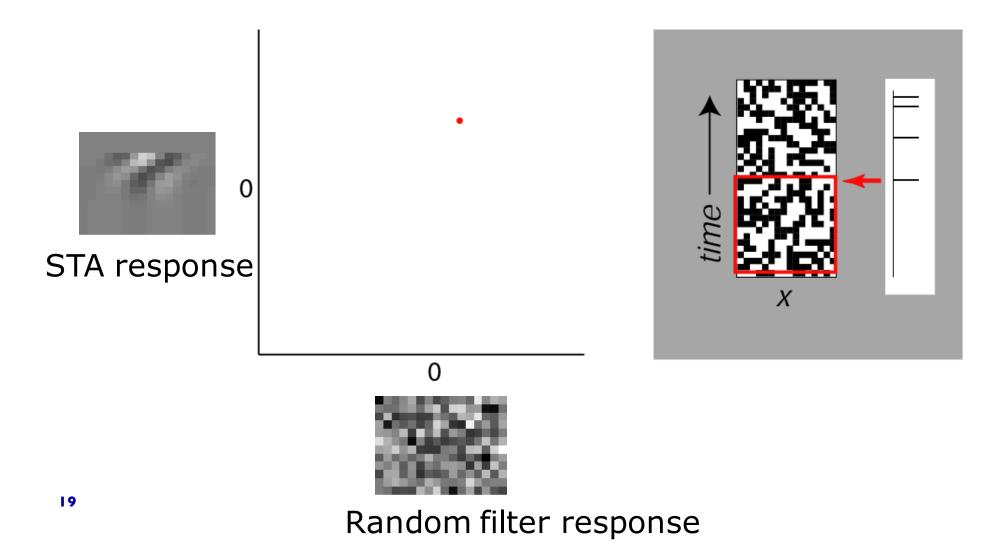
 Nonlinearity sets negative filter responses to zero (firing rates are positive)



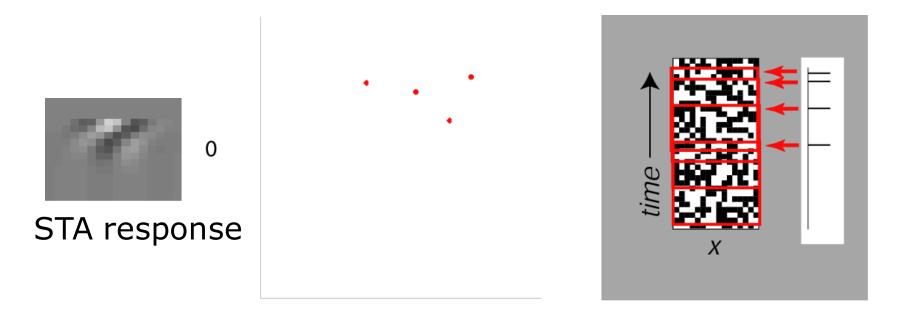
Stimuli that are more similar to filter are more likely to elicit a spike...

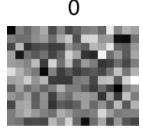


Geometrical view:



Geometrical view:



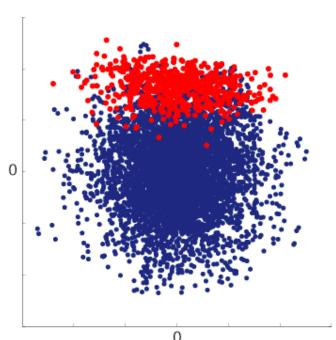


Random filter response

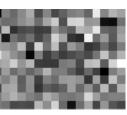
Geometrical view: change in the mean

Large filter response likely to elicit spike

STA response

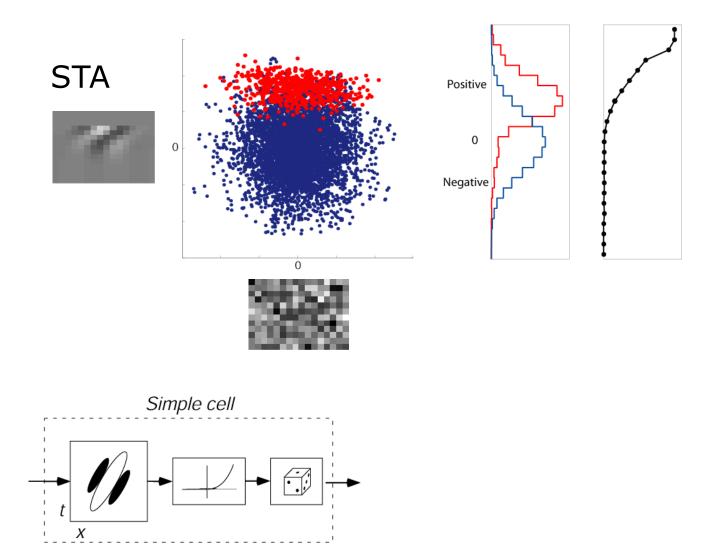


Spike stimuli Raw stimuli



Random filter response

We can also recover the nonlinearity



Steps

- Assume a model (filter/s, nonlinearity) (we assumed one filter and asymmetric nonlinearity)
- 2. Estimate model components (filter/s, nonlinearity) (we looked for changes in mean: STA)

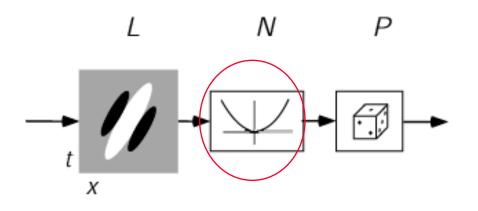
Characterizing neural responses

stimulus
$$\longrightarrow$$
 $f(x)$ $f(x)$ $f(x)$ $R = f(x)$

- Simple cell traditional approach
- Simple cell (STA)
- When STA fails
- Complex cell (STC)
- Another example (STC)
- More generic model with multiple filters ²⁴ (STA and STC)

But STA does not always work...

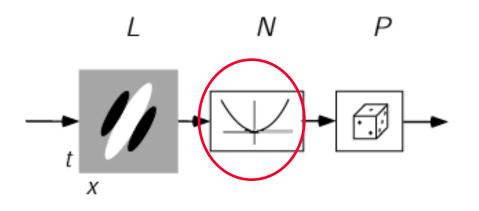
Example: Symmetric nonlinearity



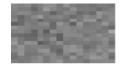
STA filter?

But STA does not always work...

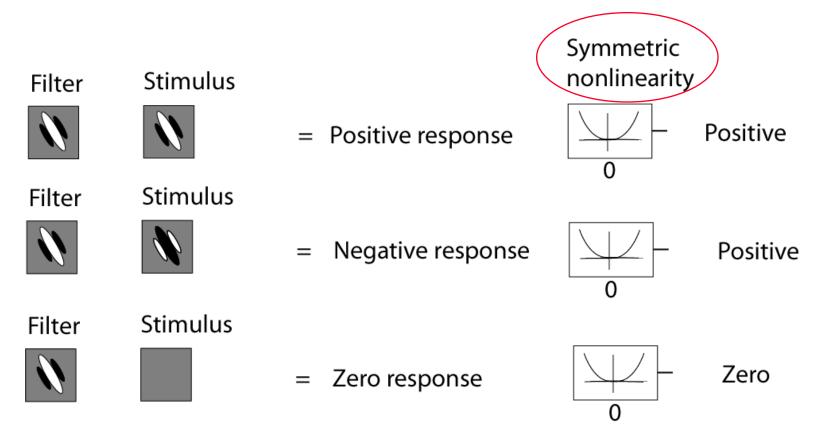
Example: Symmetric nonlinearity



STA filter!



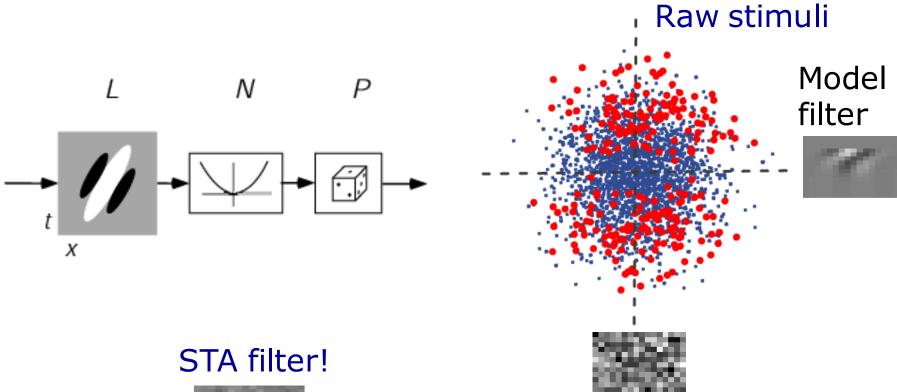
What happened?



• Nonlinearity sets negative filter responses to positive (firing rates are positive)

What happened?

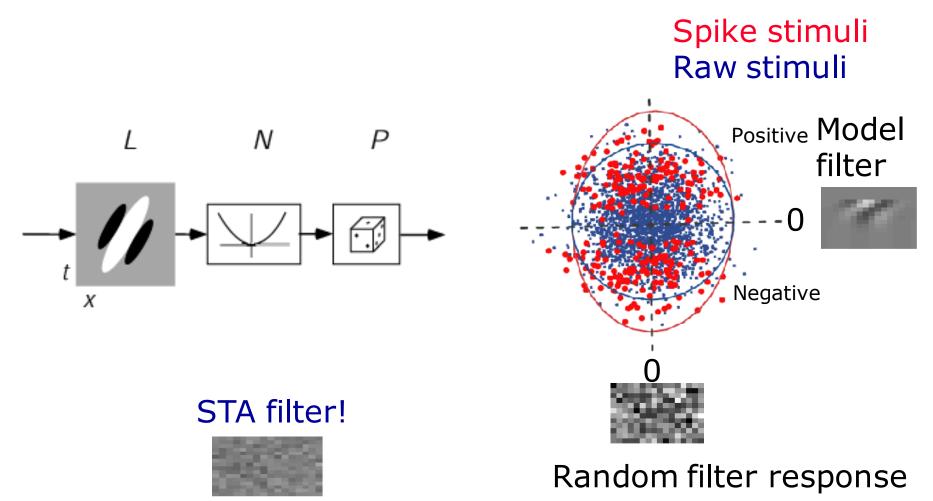
Large or small filter response likely to elicit spike Mean stimuli eliciting spikes = 0 Spike stimuli



Random filter response

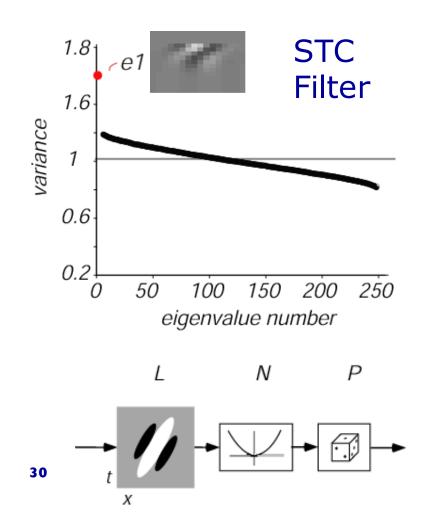
Change in the variance

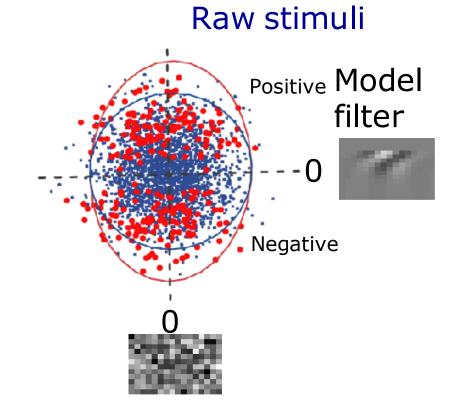
Large or small filter response likely to elicit spike



Change in the variance (STC)

Standard algebra techniques (eigenvector analysis) recovers changes in variance Spike stimuli

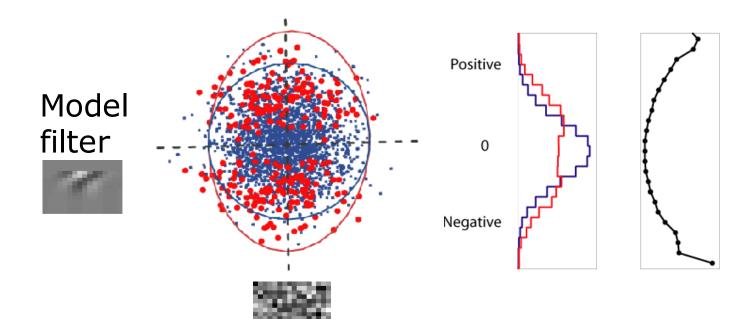




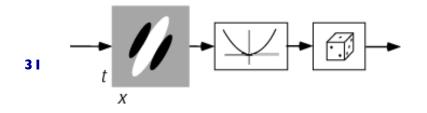
Random filter response

Change in the variance (STC)

We can also recover the nonlinearity



Random filter response



Steps

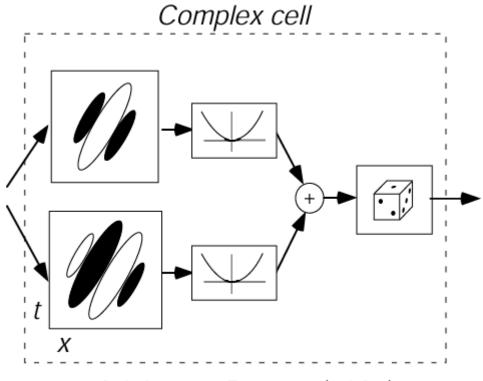
- Assume a model (filter/s, nonlinearity) (we assumed one filter and symmetric nonlinearity)
- 2. Estimate model components (filter/s, nonlinearity) (STA failed) (we looked for changes in variance: STC)

Characterizing neural responses

stimulus
$$\longrightarrow$$
 $f(x)$ $f(x)$ $f(x)$ $R = f(x)$

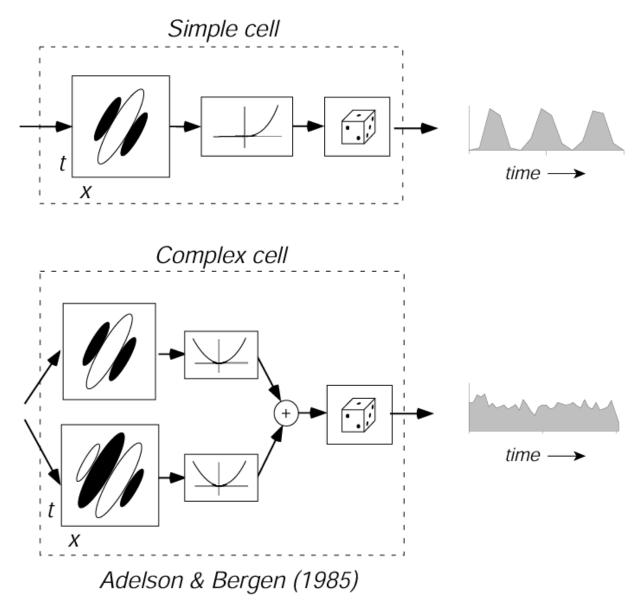
- Simple cell traditional approach
- Simple cell (STA)
- When STA fails
- Complex cell (STC)
- Another example (STC)
- More generic model with multiple filters 33 (STA and STC)

What about multiple filters??

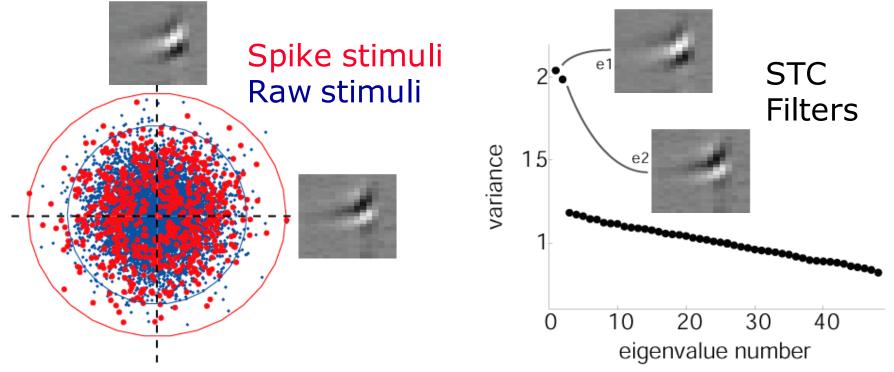


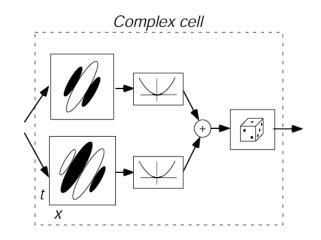
Adelson & Bergen (1985)

What about multiple filters??



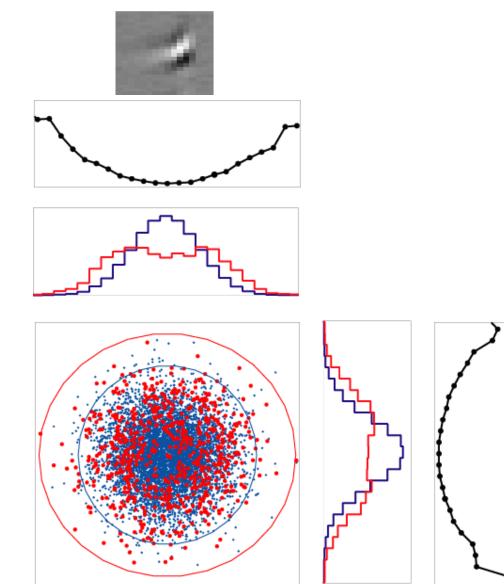
Changes in the variance (STC)





STA filter!

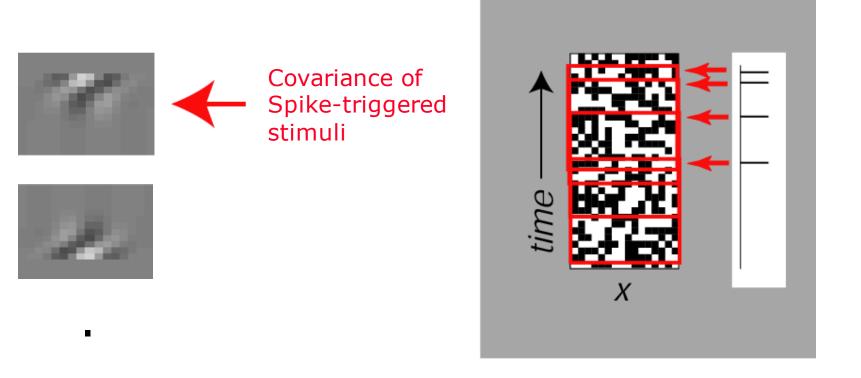
Changes in the variance (STC)



Steps

- Assume a model (filter/s, nonlinearity) (we assumed more than one filter and symmetric nonlinearity)
- 2. Estimate model components (filter/s, nonlinearity) (we looked for changes in variance: STC)

Spike-triggered covariance (STC)



 Look for changes in variance of spike-triggered stimuli

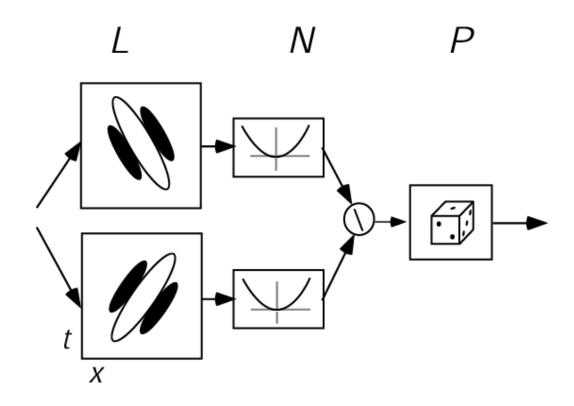
Characterizing neural responses

stimulus
$$\longrightarrow$$
 $f(x)$ $f(x)$ $f(x)$ $R = f(x)$

- Simple cell traditional approach
- Simple cell (STA)
- When STA fails
- Complex cell (STC)
- Another example (STC)
- More generic model with multiple filters (STA and STC)

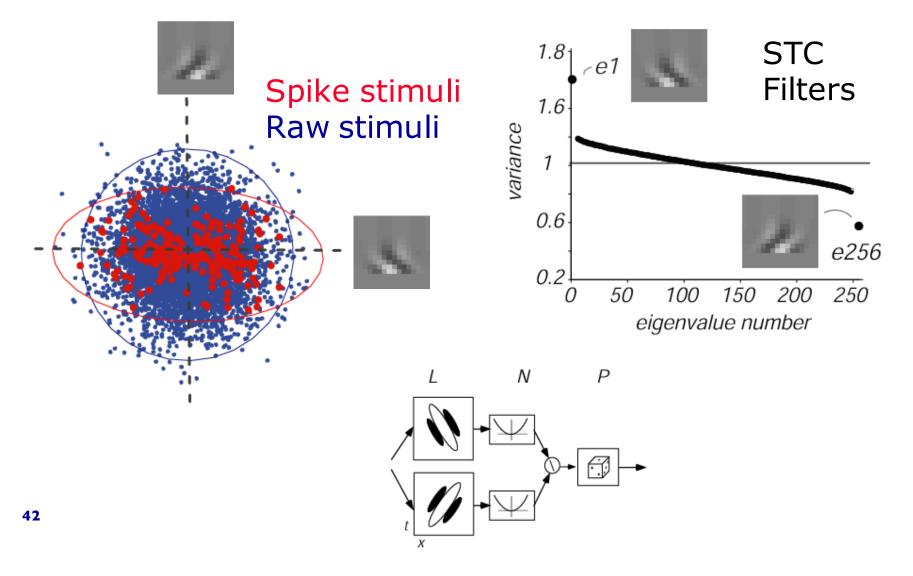
What about multiple filters??

Second filter suppressive (here division)



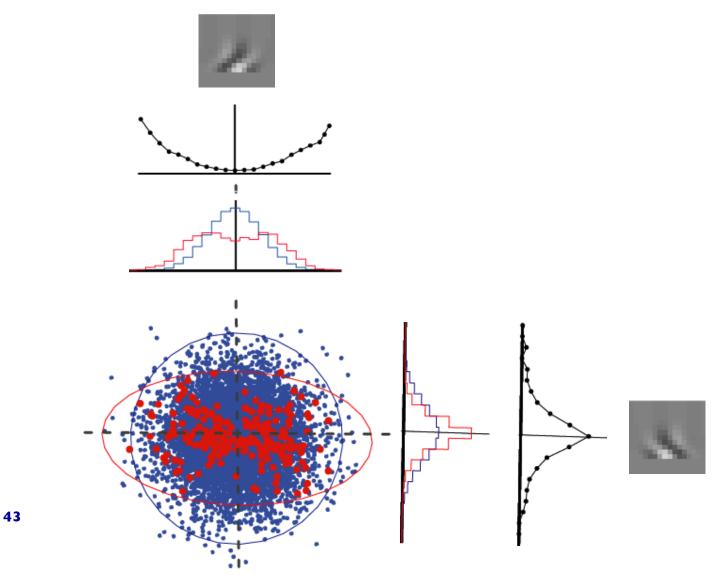
What about multiple filters??

Second filter brings about reduction in variance!

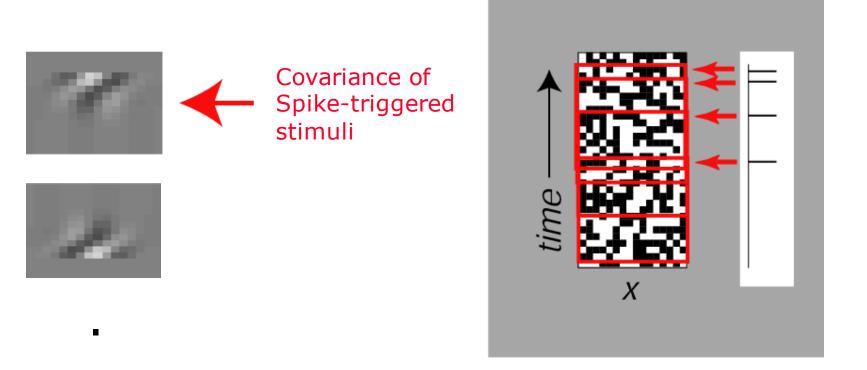


What about multiple filters??

Second filter brings about reduction in variance!



Spike-triggered covariance (STC)

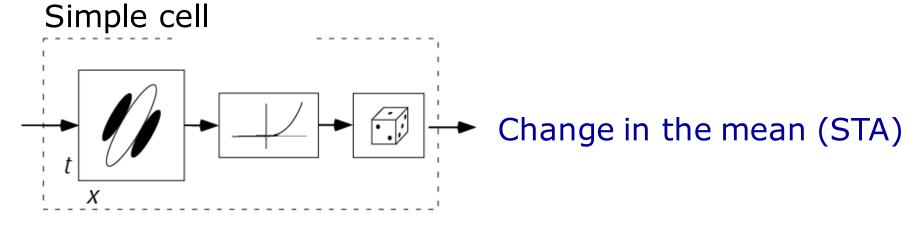


 Look for increase or decrease of variance of spike-triggered stimuli

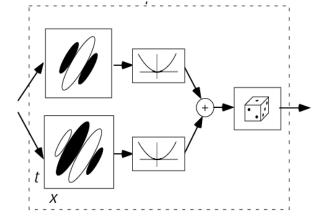
Steps

- Assume a model (filter/s, nonlinearity) (we assumed more than one filter and symmetric nonlinearity)
- 2. Estimate model components (filter/s, nonlinearity) (we looked for changes in variance: STC)

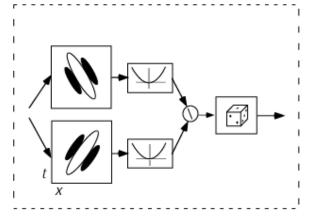
Spike-triggered approaches



Complex cell



Divisive normalization



Changes in the variance (STC)

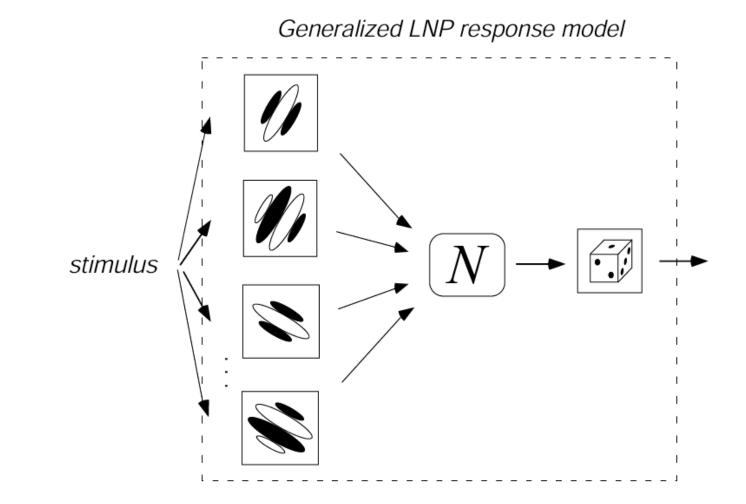
Characterizing neural responses

stimulus
$$\longrightarrow$$
 $f(x)$ $f(x)$ $f(x)$ $R = f(x)$

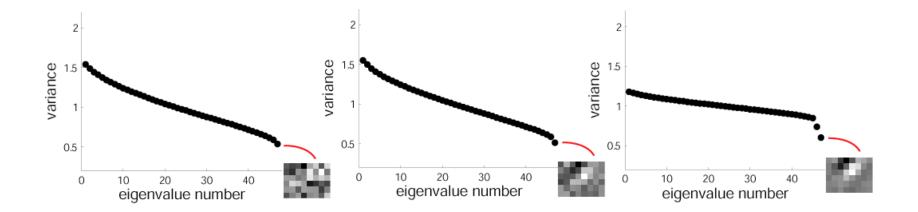
- Simple cell traditional approach
- Simple cell (STA)
- When STA fails
- Complex cell (STC)
- Another example (STC)
- More generic model with multiple filters
- 47 (STA and STC)

More general class of model

Look for changes in both the mean and in the variance...



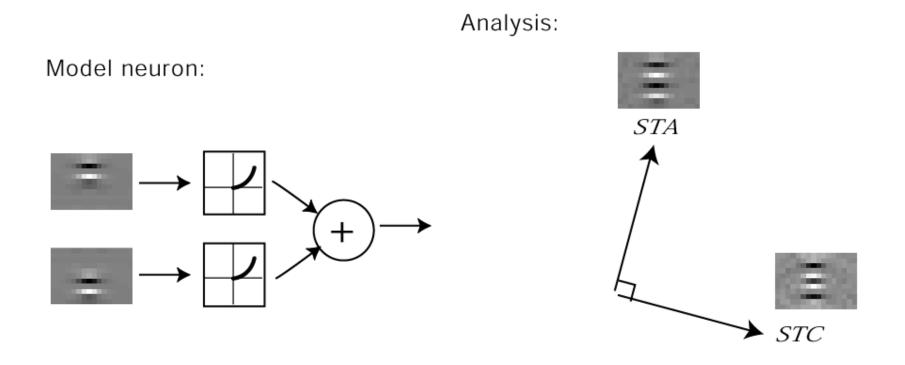
Issues: How many spikes?



Filter estimate depends on:

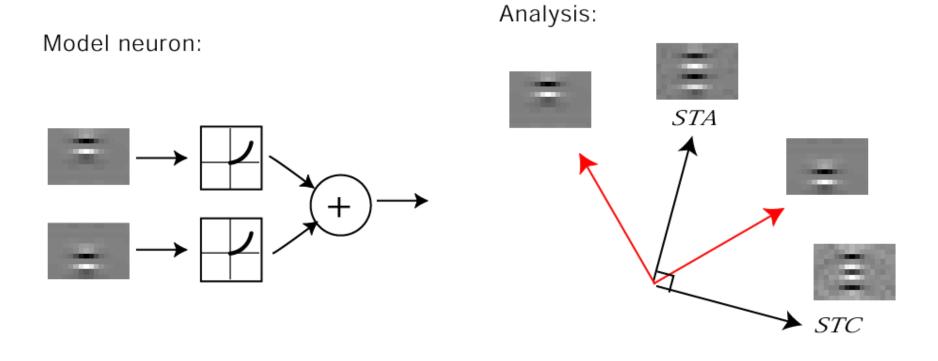
- Spatial and time dimensionality of input stimulus (smaller = better estimate)
- Number of spikes (more = better estimate)

Caveats



 Analysis forces filters that are 90 degrees apart! Filters should not be taken literally as physiological mechanisms

Caveats



 But true filters are linear combinations of original ("span the same subspace")

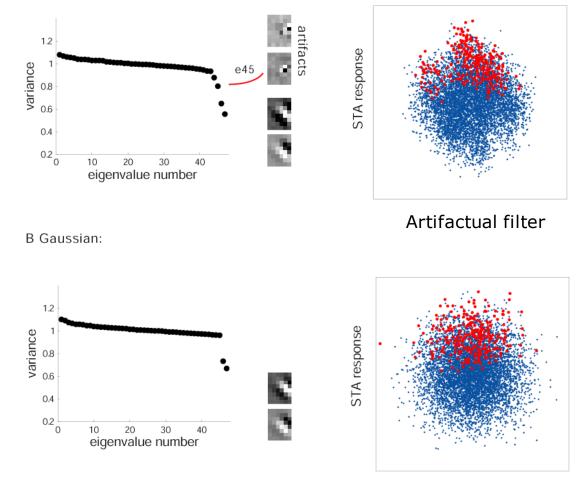
Caveats

- Analysis forces filters that are 90 degrees apart! Filters should not be taken literally as physiological mechanisms
- Spiking in neuron may be non Poisson (bursts; refractory period; etc.)
 Filters should not be taken literally as physiological mechanisms
- There might be more filters affecting neural response than what analysis finds
- Labeling of excitatory and suppressive based on net change in mean and variance

Failure modes

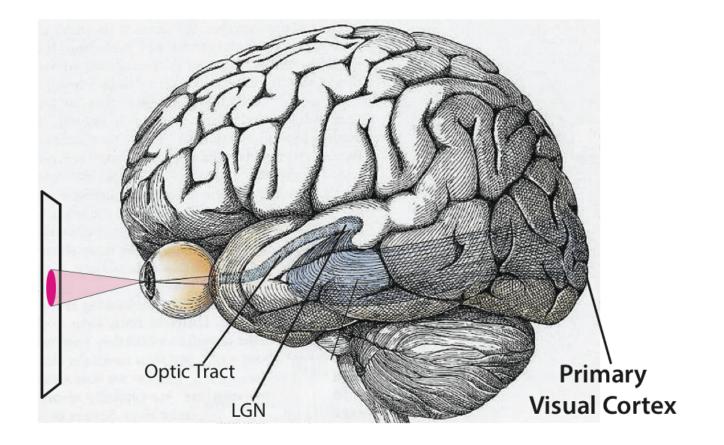
• STC Guaranteed to work only for Gaussian stimuli

A Binary stimuli simulation:

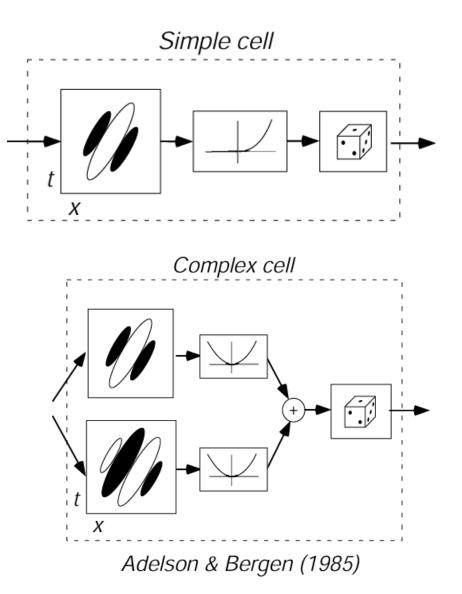


Filter corrected

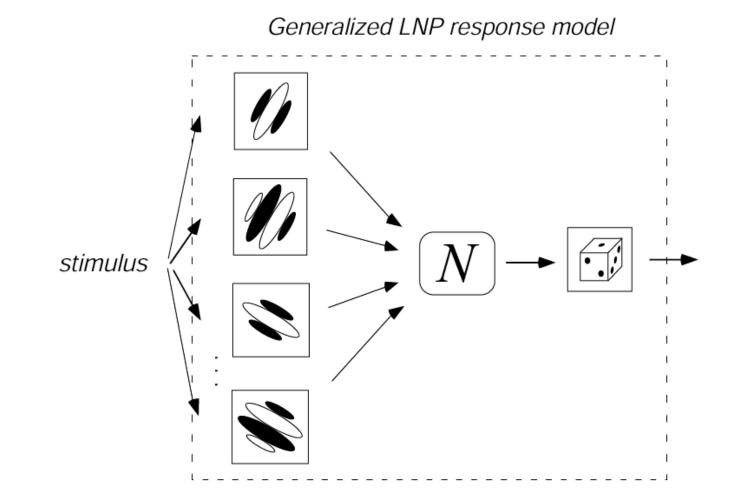
Application: V1 experiment



Standard models

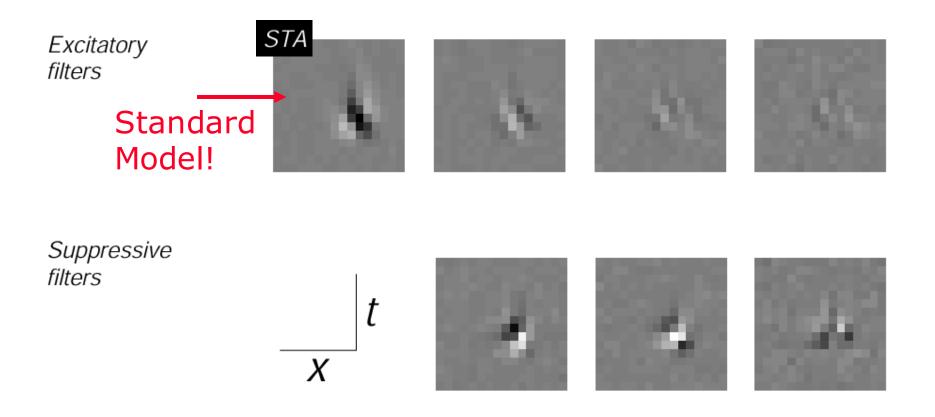


V1 Experiment



Simple Cell is Not so Simple

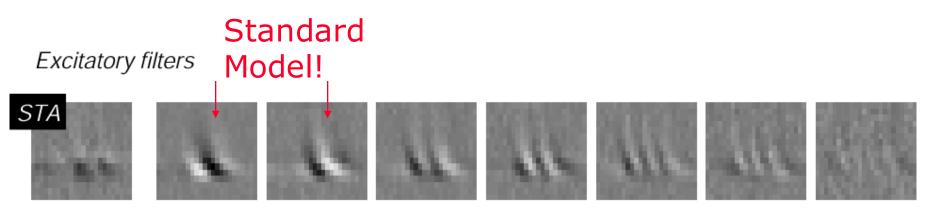
Estimating multiple filters in an experiment



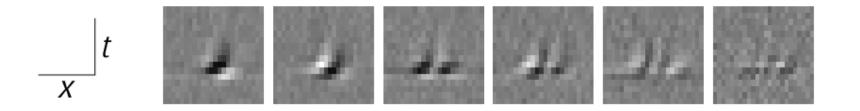
Data from Rust, Schwartz, Movshon, Simoncelli, 2005

Complex Cell

Estimating multiple filters in an experiment

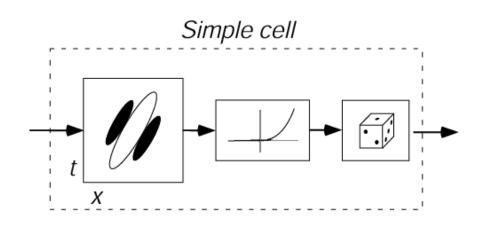


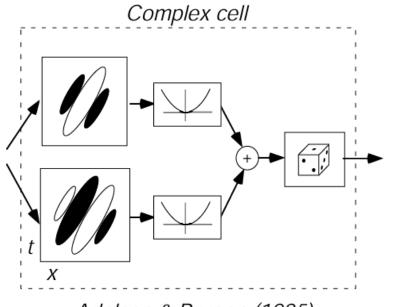
Suppressive filters



Data from Rust, Schwartz, Movshon, Simoncelli, 2005

Recall the standard models





But...

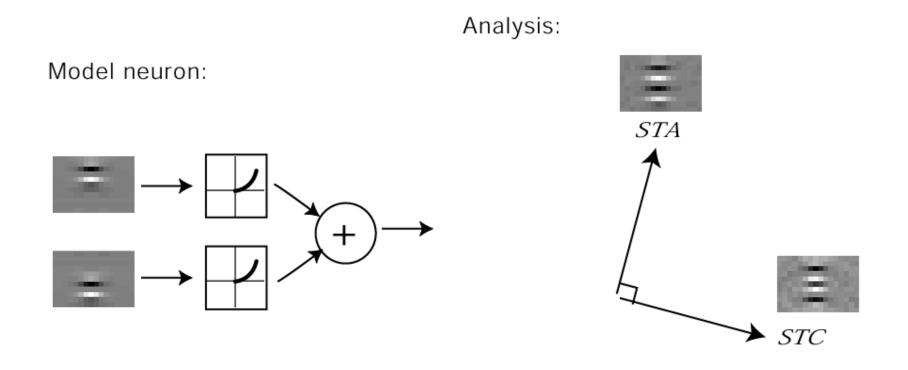
Data show multiple filters (excitatory and suppressive) for both.

Are these really two different classes of neurons, or is there a continuum??

Adelson & Bergen (1985)

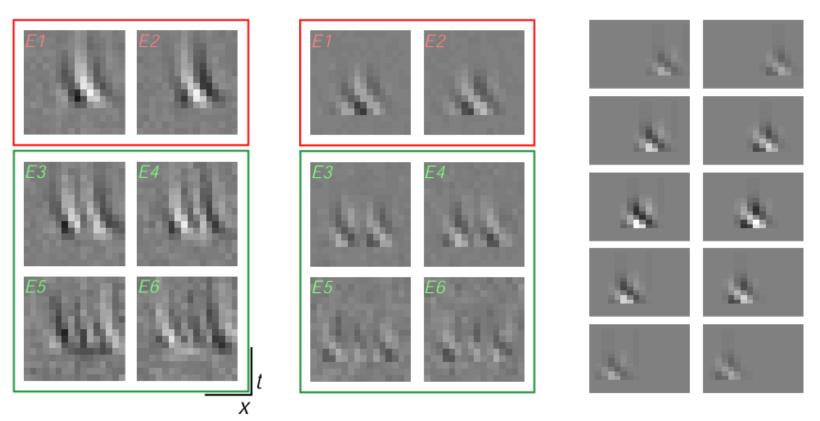
- 1. Assume a model (filter/s, nonlinearity) (we assumed multiple filters)
- Estimate model components (filter/s, nonlinearity) (we looked for changes in mean and variance)
- (3. Experimental validation)

Recall: Caveats



 Analysis forces filters that are 90 degrees apart! Filters should not be taken literally as physiological mechanisms

Estimated filters should not be taken literally...



STC simulation

Subunits

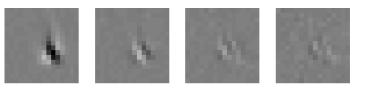
Data from Rust, Schwartz, Movshon, Simoncelli, 2005

STC data

Conclusions

Spike-triggered approaches

- Changes in the mean (STA)
- Changes in the variance (STC) multiple filters!





- Nonlinearity rule
- Ultimate goal: characterize input-output relation such that we can predict response of neuron to any arbitrary stimulus