
Pseudo-Genetic Algorithmic Composition

Harald Schmidl
Department of Computer Information Technology

Central Carolina Community College
Sanford, North Carolina, USA

Abstract This paper presents a realtime music

composition system based on a theme and varia-

tion approach. The system uses MIDI and allows

up to sixteen instruments to play together. Each

instrument requires input of short MIDI files con-

taining musical sequences. Operations inspired by

genetic algorithms generate new sequences. Op-

posed to true, bit-level genetic algorithms the op-

erations modify concrete note properties. This ap-

proach facilitates the generation of new sequences

within the context intended by the user. Based on

the input files the system establishes a list of filters

for the purpose of selection. Selection becomes a

straight-forward task that affords no user inter-

vention. Scheduling inserts an entire selected se-

quence into an output queue at a time.

Keywords: Algorithmic music composition, genetic al-

gorithms, realtime execution, interactive music perfor-

mance.

1 Introduction

Algorithmic composition uses strategies that emu-
late aspects of the traditional, human music compo-
sition process. A composer uses a set of composi-
tional rules, experience, style, and sometimes intu-
ition to determine the instruments, melodies, har-
monies, and rhythms in a piece. An often cited
early example of algorithmic composition is Mozart’s
“Musikalisches Würfelspiel” [1]. A computer is
therefore not strictly necessary.

There are great examples of music composed by
humans without computers. Why is there an inter-
est in algorithmic composition despite of that? Be-
sides the personal enjoyment of engaging in it there
are tangible advantages and applications [2, 3, 4].
Some composers use it as a means of facilitating,
enhancing, augmenting, or speeding up the creative
process [5]. One can send a computer program on a
search for appealing musical parts and complete or

refine them manually. Taking over tedious tasks of
searching and trying combinations are exactly some
of the applications where computers are helpful. A
clearly designed algorithm yields results that are eas-
ily reproducible. Furthermore, the computer does
not expect royalties. Entertainment-oriented appli-
cations could benefit from the ability to compose
their own versus using commercial music.

In the following text we will elaborate on some
relevant, previous work in section 2. Section 3 ex-
plains our approach in detail. Section 4 presents a
brief run-time analysis. We conclude this paper in
section 5.

2 Background

Existing approaches to algorithmic composition use
rule-based AI [6], neural nets [7], Markov chains [8],
grammars [8], and genetic algorithms (GAs) [9, 10,
11, 12, 13, 14, 15]. Since our work is based on them
we present a brief summary of GAs [16].

2.1 Genetic Algorithms in Music
Composition

When applied to music, GAs represent the musical
material as strings of bits. The GA starts out with
an initial parent pool of material. To derive new
generations the genetic operations used most com-
monly are mutation and crossover. Mutation ran-
domly flips bits in a string. Crossover copies parts
of two strings together to form a new one. The fittest
samples in a generation get priority for reproduction.

Use of GAs for music composition has the ad-
vantage of naturally inducing the evolution of new
material. One can create material drastically differ-
ent from the initial parents. On the other hand, if
desired, one can only accept material that retains
some resemblance to the initial parents. The lat-
ter is reminiscent of a theme and variation approach



as used in different, traditional composition styles,
such as canon, fugue, or counterpoint.

Scheduler:

-output queue

-state change event queue

-filtering/scheduling

-synchronization

Instrument 1:

generation of

sequences

Instruments 2..16

Script file:

state change events

Figure 1: Main system schematic. Optional compo-
nents are dashed.

Evolution seems to work reasonably well in na-
ture. However, copying nature verbatim will not
automatically give an ideal solution. If birds have
feathers then why don’t we put feathers on airplanes
also? In addition, observing the world around us
shows that mutation does not always lead to desir-
able results. When using GAs, selecting good sam-
ples is not a trivial task. This applies especially to
music, which is a highly subjective domain and often
a matter of taste. Selection in GA-driven music com-
position frequently involves user input. GenJam [9]
requires keystrokes to indicate the fitness of a cur-
rently playing sample. Variations [10, 11] has the
user enter valid note transitions and intervals man-
ually.

Opposed to existing works we introduce an aug-
mented version of GAs. We devise operations that
ensure the generated material lies within the user’s
intended context. We focus on minimizing human
input, avoiding randomness, and ensuring realtime
execution. A framework for driving the output inter-
actively is in place. We will now explain the system’s
components in detail.

3 Our Approach

To get a better picture of our work the reader
may access a website with output samples in MP3
format1. Our system’s central modules are the
scheduler and the individual instruments. Figure 1
gives an overview. The instruments generate and
maintain all musical material as sequences of MIDI

events. MIDI is a protocol for electronic music de-
vices [17]. It provides sixteen channels. Each chan-
nel usually represents a different instrument. A note
played on a channel consists of a note-on and a
note-off event. The events are simple data struc-
tures which hold the channel number, note value
(pitch), note velocity (volume), and a time stamp.
The difference between time stamps of a note’s note-
on and note-off events determines the note’s dura-
tion. MIDI is a keyboard-oriented protocol. It per-
forms superior for this class of instruments. Other
instruments may lack control of timbre [18].

All instruments create their own generations of
sequences. Generations start out with a set of ini-
tial parent sequences. To create new sequences we
employ the following operations which modify pitch,
velocity, and time stamps in a parent sequence:

• replicate

• reverse

• rest

• crossover

• synchronize

• three versions of shuffle

• three versions of mutate

The user can enter any combination of at least
one and up to sixteen general MIDI instruments. At
least one parent sequence must be input per instru-
ment as a MIDI file, but multiple inputs are possi-
ble. The user can also choose which operations an
instrument should use to create new sequences.

The scheduler takes care of all global control. It
governs the tempo and key the instruments play in.
It also selects sequences from each instrument for
insertion into an output queue. It processes events
in the output queue, synchronizes them by utilizing
the computer’s internal clock, and sends them to a
connected MIDI output device when they become
due.

An optional script file serves for scheduling state
change events. Currently possible state change
events are tempo and key changes, activation or de-
activation of an instrument, and end of song. State
change events can occur at distinct measures or
beats within a song. We place state change events
in a separate queue which the scheduler processes
synchronously to the output queue.

1http://www.cs.miami.edu/˜harald/pgac



G 4
4 ""! " 2 """ """

Figure 2: A simple example score.

0

4

7

0

4

7

2

0

5

9

Figure 3: Patterns after mapping the example score.
We indicate pitches by numbers and note durations
by line lengths.

3.1 Filters

Jacob describes a way of using filters for selec-
tion [10, 11]. His work requires the filters to be input
by the user before the GA starts running. To select
fit samples he applies the filters at a fixed sampling
rate. This approach is prone to missing fine detail
if the sampling rate is not small enough. We follow
a similar idea but do not require filters to be user
input, nor do we utilize a fixed sampling step size.

Once initialized our system analyzes all parent se-
quences and establishes a list of filters automatically.
These filters encode notes that would sound together
if the instruments played their user-entered parent
sequences simultaneously. The thought is that the
initial parent sequences should match according to
user intentions. The latter can range from “pleas-
ant” to atonal.

To find the filters we first map all pitches in the
parent sequences to a scale of twelve semitones, i.e.
an octave. We represent C by 0, C] by 1, D by 2,
and so on. We then overlay the resulting sequences
and find patterns of notes sounding together at any
time. Each distinct pattern becomes a filter. We
encode a filter as a string of twelve bits. Each bit
indicates whether a note is present or not with a
value of 1 or 0 respectively. A filter starts out with
all bits set to zero. If a C is included in a pattern
we set the least significant bit in the corresponding
filter to 1. If a C] is included we set the next bit
to 1, etc. Note that in the actual implementation a
filter is a 16 bit integer with 4 bits unused.

To illustrate the building of filters assume that
the score depicted in figure 2 is the result of overlay-
ing the initial parent sequences of some instruments.
Figure 3 shows the patterns yielded after mapping
the notes in the example score. We sweep through
the patterns from left to right. The analysis will gen-

erate two filters: 000010010001 and 001000100001,
representing the patterns (0, 4, 7) and (0, 5, 9) re-
spectively.

Only at least two simultaneously playing notes
create a filter. Hence, the lonely D with associated
note value 2 does not appear in any filter. Note also
that there are no separate filters for the patterns (0,
4) and (0, 4, 7). The latter contains the former. Fi-
nally, we remove all duplicate filters. Although there
are two Cmaj chords in the score, the very first and
last chords, the pattern (0, 4, 7) inserts only one
filter.

3.2 Filling a Generation

After establishing filters each instrument immedi-
ately creates its first generation of sequences. To do
so we apply a subset of the earlier stated operations
to the instrument’s parent sequences. A generation
is a list of sequences with a zero-based index.

3.3 Hit-Ratio and Scheduling

Next, scheduling of notes for each instrument be-
gins. The goal is to find and schedule the sequence
in an instrument’s generation which fits best into all
other already scheduled notes. To test a sequence we
follow an equivalent strategy as outlined for creat-
ing the filters in subsection 3.1. We find all patterns
that would sound if the sequence was inserted into
the output queue and establish reference strings con-
sisting of twelve bits. We compare these references
against the filters by a bit-wise “and” operation. If
a filter contains a reference we call it a hit:

if filter and reference equals reference then
declare hit

end if

We measure the quality of a sequence by its ratio
r of hits over its number of references:

r = hits/references. (1)

The user can enter a threshold t per instrument for
the minimum hit-ratio required to consider a se-
quence a good fit. We maintain a variable i per
instrument that indicates the next sequence to be
tested. Initially i = 0 in order to ensure testing
starts with the generation’s first sequence. After
testing a sequence we increment i, i = i+1. We im-
mediately schedule a sequence that achieves r ≥ t.
Note that before a sequence can be inserted into
the output queue it must have its time stamps and



pitch values adjusted to the current tempo and key
in which the system is playing.

As long as an instrument has notes scheduled in
the output queue we suspend all testing and schedul-
ing for it. When an instrument’s last scheduled note
is processed and sent to the output device, testing
immediately resumes. Testing continues until we
identify the next sequence that qualifies for schedul-
ing.

When i reaches the last sequence in an instru-
ment’s generation without any sequence exceeding t
a special case arises, and we schedule the sequence
with the overall maximum r. In addition we create
a new generation of sequences and reset i to point
to the first sequence in it, i = 0.

3.4 New Generations, Fitness and
Selection

Generations after the first generation start out by
having their parents selected through elite and tour-
nament selection. To do so we first evaluate the fit-
ness of all sequences in the current generation. Elite
selection chooses sequences with the highest fitness.
Tournament selection randomly picks two sequences
and chooses the one with the higher fitness.

Elite selection ensures that strong features are
passed on. Tournament selection on the other hand
prevents that only the fittest sequences survive. Se-
lecting always only the fittest sequences as parents
will cause convergence to self-similar features. Once
the parent sequences are established we fill the gen-
eration according to subsection 3.2.

To calculate a sequence’s fitness we maintain
three values per sequence: the most recently cal-
culated hit-ratio r, a counter p that indicates how
many times this sequence has been played, and a
counter s that indicates how many times it has been
selected as a parent. We assess a sequence’s fitness
as a weighted sum of these three values:

fitness = wr · r + wp · p + ws · s. (2)

We use default weights with values wr = +1 and −1
for the other two. This will give preference to se-
quences that fit well with the user’s intentions and
it will penalize sequences that have been selected
and played in the past. Thus, we prevent genera-
tions from becoming self-similar. If desired the user
can customize the weights.

3.5 Operations

What remains to be explained are the operations we
use to fill a generation once its parents are deter-
mined.
Replicate operation: The replicate operation creates
an exact copy of a parent.
Reverse operation: The reverse operation reverses
all notes in a parent.
Rest operation: The rest operation inserts rests of
varying durations into a parent. Insertion of rests
keeps the output from sounding monotonous, repet-
itive, and mechanical. Rests break up the flow of
notes and make the output less predictable.
Crossover operation: The crossover operation joins
subsets of notes from two different parents to form a
new sequence. Crossover helps with avoiding repeti-
tiveness and prevents convergence to self-similar se-
quences.
Synchronize operation: The synchronize operation
synchronizes the time stamps of two parents up to
the length of the shorter one.
Shuffle operations: The three shuffle operations
swap a number of pairs of pitches, velocities, or time
stamps of notes in a parent.
Mutation operations: The three mutation operations
can change the pitch, velocity, or time stamps of
notes. Pitch can only change up or down by ex-
actly an octave. Time stamps can either be halved
or doubled. Velocity can assume one of three val-
ues corresponding roughly to forte, mezzo forte, and
piano.

When we apply any of our operations to parent
sequences, a new, modified sequence is returned and
appended to the generation. Except for crossover
and synchronize, which act on two, all operations
act on exactly one sequence.

Each instrument can use its own subset of op-
erations and each operation can be applied multi-
ple times. As a result the generation size is not
fixed. It increases with the numbers of parent se-
quences, operations chosen, and applications made.
The choice of a subset of operations will influence
the output when paying attention to rhythmic and
melodic detail locally. However, the overall, global
outcome changes less dramatically. One can gen-
erate interesting output with only the shuffle, rest,
and crossover operations as long as one applies them
consistently.

The operations are based on and motivated by
genetics but are not rigorous, traditional GA oper-
ators. Our findings show that GAs work well in the
sense that they provide a natural approach to evo-
lution of material. True GAs, however, exhibit a



strong trait of randomness through mutation at bit-
level. Changes from a parent to a derived sequence
can be severe, the generated material may not follow
the user’s intentions consistently, and selection work
increases.

Our operations also allow creation of very differ-
ent, new material. At the same time they ensure
the results stay within the tonal vocabulary of the
initial parent sequences. The longer the system runs
the more diverse the output becomes. If one desires
the repetition of a main theme one can occasionally
reintroduce an initial parent sequence as parent for
a new generation.

We summarize our system’s main steps in the fol-
lowing algorithm:

for all instruments do
enter initial parent sequences
fill first generation

end for
analyze initial parent sequences and build filter
list
while not end of song do

process state change events
process output events
for all active instruments do

if no more notes scheduled then
find best fitting sequence and schedule it
if end of generation reached then

select parents for next generation
fill next generation

end if
end if

end for
end while

4 Analysis

We will now present a brief run-time analysis. Our
goal was to implement a system that is not only
capable of realtime execution but that can be used
interactively, e.g. in video games, animation, or vir-
tual reality (VR). The typical frame rate for these
applications is 30 frames per second (fps). In the
case of VR it is preferably even higher. The ques-
tion is whether our music composition algorithm will
leave enough time for handling graphics and anima-
tion.

Refer to figure 4 for the following analysis. As-
suming a frame rate of 30 fps we time our system
for a composition using three instruments with two
or three initial parent sequences each. The total
duration of the composed piece is approximately 2

minutes and 10 seconds or 3916 animation frames.
Figure 4 shows how much of the frame time is con-
sumed by the composition process. We observe that
in 3898 frames (99.54%) less than 10% of the frame
time goes into music composition. Furthermore, we
find that only 10 frames (0.15%) exhibit a cost that
takes up more than 30% of the frame time.

0%

20%

40%

60%

80%

100%

0 500 1000 1500 2000 2500 3000 3500 4000

Frame number

F
r
a

m
e

 t
im

e
 c

o
n

s
u

m
e

d
Figure 4: Percentage of animation frame time used
by the composition algorithm assuming 30 fps.

Further investigation reveals a surprise. The very
first frame is one of the 10 where more than 30% of
processing power went into music composition. That
is to be expected because during the first frame the
system has to initialize itself, create first generations
for all instruments, and schedule the first sequences.
However, of the remaining 9 frames only 2 have tasks
related to scheduling. During the other 7 the sched-
uler is idle. We interpret these 7 spikes as related
to background tasks done by the operating system
and not our algorithm. That means only 3 frames
(0.08%) have a cost related to music composition
that consumes more than 30% of the frame time.

Considering that we did our experiments on
an old 866MHz laptop these results give an ex-
tremely promising outlook towards adding interac-
tivity. Modern, faster machines and existing real-
time animation algorithms should have no difficul-
ties to interface with our system.

5 Conclusion

This paper presented an augmented version of GAs
for algorithmic music composition. Encoding all mu-
sical sequences through MIDI and applying opera-
tions that directly change the MIDI events’ pitch,
velocity, and time stamps has several advantages.
It facilitates creation of new material that follows



the user’s intentions. It also avoids the otherwise
necessary extra step of translating a bit-string rep-
resentation into the language of the output device.
MIDI, however, has the drawback of lacking control
of expression.

A key requirement of our system is to create the
initial parent sequences to sound “well” together.
This assumption is the basis for the effectiveness of
our filtering stage. One must also ensure that the
input sequences cover a large tonal spectrum since
only notes present in them and their transpositions
by octaves will occur in the output. It is furthermore
advisable to use several shorter input sequences ver-
sus few longer ones.

The strategies for filtering and fitness evaluation
produce appealing output and achieve realtime ex-
ecution. The latter is important in order to ensure
the system’s capability of interactive performance.
Future work will include driving the scheduling and
creation of new sequences through interfacing with
animation or VR.

References

[1] Curtis Roads. The Computer Music Tutorial.
MIT Press, Cambridge, MA, 1996.

[2] A. Gartland-Jones and P. Copley. What aspects
of musical creativity are sympathetic to evolu-
tionary modeling. Contemporary Music Review
Special Issue: Evolutionary Models of Music,
22(3):43–55, 2003.

[3] Peter Copley and Andrew Gartland-Jones. Mu-
sical form and algorithmic solutions. Proceed-
ings of the 2005 Conference on Creativity and
Cognition, pages 226–231, 2005.

[4] A. Gartland-Jones. Can a genetic algorithm
think like a composer? 5th International Con-
ference on Generative Art, 2002.

[5] Anthony R. Burton and Tanya R. Vladimirova.
Generation of musical sequences with genetic
techniques. Computer Music Journal, 23(4):59–
73, 1999.

[6] D. Cope. An expert system for computer as-
sisted composition. Computer Music Journal,
11(4):30–46, 1987.

[7] C. Chen and R. Miikkulainen. Creating
melodies with evolving recurrent neural net-
works. Proceedings of the 2001 International
Joint Conference on Neural Networks, pages
2241–2246, 2001.

[8] M. Supper. A few remarks on algorithmic com-
position. Computer Music Journal, 25(1):48–
53, 2001.

[9] J. Biles. GenJam: A genetic algorithm for gen-
erating jazz solos. Proceedings of the 1994 In-
ternational Computer Music Conference, pages
131–137, 1994.

[10] B. Jacob. Composing with genetic algorithms.
Proceedings of the 1994 International Computer
Music Conference, pages 452–455, 1995.

[11] B. Jacob. Algorithmic composition as a model
of creativity. Organised Sound, 1(3):157–165,
1996.

[12] A. Moroni, J. Manzolli, and F. Von Zuben.
Composing with interactive genetic algorithms.
Brazilian Symposium of Computer Music, 1999.

[13] A. Moroni, J. Manzolli, F. Von Zuben, and
R. Gudwin. Evolutionary computation applied
to algorithmic composition. Proceedings of the
Congress on Evolutionary Computation, pages
807–811, 1999.

[14] A. Ayesh and A.Hugill. Genetic approaches for
evolving form in musical composition. Proceed-
ings of the 23rd IASTED International Multi-
Conference, pages 318–321, 2005.

[15] Y. Khalifa and M. Basel Al-Mourad. Au-
tonomous evolutionary music composer. In
GECCO ’06: Proceedings of the 8th annual con-
ference on Genetic and evolutionary computa-
tion, pages 1873–1874, 2006.

[16] M. Mitchell. An Introduction to Genetic Algo-
rithms. The MIT Press, Cambridge, MA, 1998.

[17] MIDI Manufacturers Association. Com-
plete MIDI 1.0 Detailed Specification v96.1.
http://www.midi.org, 2nd edition, 2001.

[18] G. Loy. Musicians make a standard: The MIDI
phenomenon. Computer Music Journal, 9(4):8–
26, 1985.


