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Abstract—A suite of algorithms is presented for contact resolution in rigid body simulation under the Coulomb friction model: Given a

set of rigid bodies with many contacts among them, resolve dynamic contacts (collisions) and static (persistent) contacts. The suite

consists of four algorithms: 1) partial sequential collision resolution, 2) final resolution of collisions through the solution of a single

convex QP (positive semidefinite quadratic program), 3) resolution of static contacts through the solution of a single convex QP,

4) freezing of “stationary” bodies. This suite can generate realistic-looking results for simple examples yet, for the first time, can also

tractably resolve contacts for a simulation as large as 1,000 cubes in an “hourglass.” Freezing speeds up this simulation by more than

25 times. Thanks to excellent commercial QP technology, the contact resolution suite is simple to implement and can be “plugged into”

any simulation algorithm to provide fast and realistic-looking animations of rigid bodies.

Index Terms—Quadratic programming, computer graphics, physically-based modeling, simulation, animation.
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1 INTRODUCTION

EVERYBODY is familiar with computer generated images
and movies. Although most people are not aware of the

underlying theories and algorithms, computer graphics
(CG) techniques have found their way into living rooms
through animation and special effects for features and
advertisements in video and print. Our work focuses on
techniques for computer animation. Sometimes it is not of
the utmost importance that the final simulation be
100 percent physically accurate. It is the main concern of
CG to generate images and simulations that “look right.”
Therefore, CG allows liberty regarding implementation. It is
permissible to trade off realism for performance as long as
physical plausibility is not violated. In some instances, the
laws of physics are tweaked deliberately to generate more
dramatic results, as with the work which has been done in
fluid mechanics to generate water and smoke [13], [15].

Various researchers have developed different techniques

that generate pleasing results. Some animations from

commercials and film are of truly amazing quality. Yet

there is room for improvement and further research. It is

known that contact resolution for simulation is a nontrivial

problem if there is friction to be modeled [3], [20], [34]. In

fact, it has been reported as the bottleneck in many

simulation packages if the number of contacts rises greatly

[4], [18], [27], [28]. Our work focuses on simulations with a

very large number of contacts, such as in stacks, piles, or

otherwise “crowded” arrangements.

Most simulators use the modular design depicted in

Fig. 1. We propose here a new suite of algorithms for the

last stage: responding to and resolving contacts. First, a

standard sequential algorithm responds to collisions, but

only partially. This algorithm is halted after it has provided

sufficient realism and information about moving bodies but

before it has used up too much running time. Second, the

solution to a single convex QP (positive semidefinite

quadratic program) finishes resolving the collisions. Third,

the solution to another convex QP resolves the static

contacts: persistent contacts with pressure but no normal

velocity. Fourth, stationary bodies are detected and “fro-

zen.” Freezing reduces the number of contacts in Steps two

and three of the next iteration’s contact response, greatly

increasing their efficiency.
This contact resolution suite can make tractable the

simulation of 1,000 cubes falling through an hourglass. We

have found no evidence of other approaches solving

similarly large and computationally demanding simula-

tions. We demonstrate and test the new contact suite by

combining it with our previous algorithm for position

update [24], [37]. However, any existing software package

that aims at modeling a high number of concurrent contacts

can use our algorithms for its own benefit by replacing its

collision handling module.
The remainder of this paper is structured in the

following way: Section 2 gives a brief summary of existing

techniques. Section 3 introduces the notation in this paper

and physical concepts. Section 4 presents the QP-based

impulse approach for both dynamic (collision) and static

contact resolution (Steps two and three). Section 5 adds

partial sequential collision resolution (Step one) and

freezing (Step four) to improve both realism and efficiency.

Section 6 describes experiments which have been con-

ducted. We provide performance analysis and some

implementation detail. Section 7 concludes this paper.
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2 BACKGROUND

This section summarizes existing collision response meth-
ods and points out some relevant problems. We adopt the
standard terms collisions and static contacts.

Penalty force methods detect interpenetration and insert
a symbolic spring with large spring constant k between the
bodies. The spring exerts a repulsive force proportional to
the interpenetration depth d, F ¼ �kd, and is deleted
immediately as the bodies become receding. Stiff ordinary
differential equations resulting from large spring constants
can make the problem hard, but recent advances in implicit
integration make the problem tractable [5]. Mirtich got good
results for static force calculation using stiff integration [27].

Analytical methods are based primarily on a physical
complementarity principle. Either the normal force or normal
acceleration at a contact must be zero: If the bodies are
pressing on each other, they are not accelerating away from
each other, and vice versa. Lötstedt [20], [21] was the first to
formulate analytic contact resolution as an LCP [12], [14].
Considerable work has been done since then [2], [4], [7], [18],
[25], [26], [35], [39], [42], much of it addressing infinities and/
or ambiguities that arise in some degenerate cases.

The paradigm of impulse-based contact resolution was
introduced by Mirtich [25], [26]. It addresses the problems
of ambiguous or infinite force solutions by completely
avoiding the calculation of forces. An advantage of using
the principle of impulse and momentum for collision
problems is that the solution is algebraic. Contact forces
require integration, which destroys this feature [9]. Mirtich
describes a simulator, called Impulse, that handles collisions
and contacts entirely with the application of impulses. It is
shown that both collisions and static contacts with Coulomb
friction can be modeled with impulses.

Moreau [29], [30], [31], [32] introduced the concept of
single convex QP contact response. This QP is based on
Gauss’s principle of least deviation. Moreau’s work is
presented in a theoretical context and assumes single
collisions. There is no evidence of an actual implementation
and example simulations. In contrast, our approach is
inspired by practicality and application.

Also, Baraff formulated QP approaches to contact
resolution [2], [3], but stated that they were impractical
[3], [4]. In previous work, the authors [24] also applied QP
to animation of rigid bodies. However, this work focused on
the position update and only used ad hoc methods for
resolving collisions and static contacts. In particular, the
collision resolution is unrealistic on small simulations such
as the “office toy.” The new contact suite is both much more
realistic and much faster. For our experiments (Section 6),
we combine the previous work on position update with the
new contact suite. However, the new contact suite could be
similarly “plugged into” any simulation system.

3 PHYSICS OF CONTACTS

We will now introduce important rigid body concepts and
also the physics of collision resolution with impulses. Along
the way, the notation in our paper will be explained.

3.1 Rigid Body Physics

Any text on classical mechanics can give a good introduc-
tion on rigid body concepts, e.g., Goldstein [17]. A rigid
body has mass m, inertia I, position x, and orientation R.
Any point q in body coordinates can be calculated in world
coordinates with qworld ¼ xþRq. The body has velocities v
and !! and corresponding momenta p ¼ mv and ‘‘ ¼ I!!. For
two contacting bodies A and B, we calculate a right-handed
collision coordinate frame. The normal n points from A to B

and vectors nx and ny span the tangential collision plane,
perpendicular to n. Note: Multiple contacts between bodies
can be handled in the obvious manner by using an
additional subscript.

3.2 Analytic Impulses

People expect rigid bodies to “bounce” as a result of
collisions. The idea of solving collisions with impulses is
based on the concept of restitution. It was originally defined
by Newton [33] who observed a constant, material
dependent ratio between rebound and incidence velocities
for two colliding spheres:

vþ ¼ ��v�: ð1Þ

The coefficient of restitution � 2 ½0; 1� determines how
elastic the collision is [41].

Newton’s model is also called kinematic definition of
restitution [22]. It is well-known, it is simple to implement,
and will be used in our contact suite. Although it was not
intended for multiple point three-dimensional collisions, we
find its application yields realistic-looking animations at
reasonable cost. Implied physical inconsistencies cannot be
detected by the human eye because the exact value for � is
not known [38].

For simplicity, we will first present the frictionless case
in this section and then modify it to deal with friction in the
next section. See the literature [1], [2], [37] for explanations
of point velocity, contact separation, and relative contact
normal velocity. We follow the literature by defining a
collision as a contact with v� < 0 and a static contact with
v� ¼ 0. For each collision, we calculate equal but opposite
impulses j using Newton’s empirical model [9], [41], which
are applied to the bodies at a contact point in order to
instantaneously make the bodies receding (vþ � 0).

Assume now that we have two bodies A and B.
Subscripts a and b designate properties of bodies A and
B, respectively. The two bodies contact at a point qab. The
contact levers are calculated by subtracting the center of
mass coordinates from the contact, i.e., ra ¼ qab � xa and
rb ¼ qab � xb. Without friction, an impulse acts in the
direction of the contact normal n which points out of body
A and into body B. Therefore, for an impulse with
magnitude j, let �jn be the impulse on body A and jn

the impulse on body B. The following familiar formula
computes the impulse magnitude j [1], [37]:
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j ¼
�ð1þ �Þv�

m�1b þm�1a þ n � I�1b ðrb � nÞ
� �

� rb þ n � I�1a ðra � nÞ
� �

� ra
:

ð2Þ

All body properties in (2) are known and we can easily

calculate the impulse magnitude j. We know, in any case,

j � 0, i.e., the impulse always pushes the bodies apart and

never pulls the bodies together.

3.3 Impulse with Coulomb Friction

Friction is pervasively present in mechanical systems and a

usual consequence of it is the slow down of their move-

ment. Coulomb’s friction law is the simplest physical model

for dry friction. It relates the contact normal force to the

tangential, frictional force by a friction coefficient �.

Coulomb friction is widely used in many applications [2],

[6], [8], [10], [11], [24], [25], [37]. Coulomb’s friction law

relates forces but will be applied to impulses throughout the

developed suite due to its simplicity. This leads to useful

results if visual appearance is the main concern. Arising

physical inconsistencies are not detected by the human eye

because � is not known exactly.
With the orthonormal collision coordinate frame

ðnx;ny;nÞ from Section 3.1, we express the total contact

impulse:

j ¼ ðjx; jy; jÞ ¼ jxnx þ jyny þ jn: ð3Þ

Coulomb friction simply relates the tangential, frictional

impulse jt ¼ jxnx þ jyny to the impulse acting normal to the

touching surfaces jn ¼ jn [19]. It states that the magnitude

of jt can be maximally a friction factor � times the normal

component’s magnitude:

jjtj � �jjnj $ j2x þ j2y � �2j2: ð4Þ

This inequality geometrically describes the inside of a cone

and is commonly called the friction cone.
Typically [2], [25], [37], when two bodies A and B collide

with nonzero tangential velocity, one expects a slow down

of the tangential motion. Therefore, the direction of the

tangential component of the “bounce impulse” is chosen to

oppose the tangential velocity. The magnitude is set to �

times the magnitude of the normal impulse, as calculated in

the previous section:

jt ¼ ��jjnjjvtj�1vt; ð5Þ

where vt ¼ ðvx; vyÞ ¼ vxnx þ vyny is the tangential part of

the collision velocity vab between A and B. This method

calculates a frictionless normal impulse and adds friction

later via (5). Despite this nonphysical simplification, its use

for animation can be justified because it generates visually

pleasing results.
Alternatively, we can write down an extension of

Newton’s model that also takes into account tangential,

frictional impulse components:

j ¼
�ð1þ �Þv�

m�1b Jþm�1a Jþ n � ðI�1b ðrb � JÞÞ � rb þ n � ðI�1a ðra � JÞÞ � ra

ð6Þ

with J ¼ ��jvtj�1vxnx � �jvtj�1vyny þ n. Although the two

approaches of (5) and (6) will generate slightly different

motion, each is equally plausible. Exact simulation would

require exact knowledge of � and �.

4 QP-BASED COLLISION RESOLUTION

This section describes how to resolve collisions with a single

convex QP1 and how to similarly resolve static contacts

with a single convex QP. In terms of the entire contact suite,

these two algorithms come second and third and will

resolve collisions and static contacts even without Steps

one, partial sequential collision resolution, and four,

freezing of stationary bodies. However, the first and the

fourth step only make sense in the context of Steps two and

three.

4.1 Step 2: Pure QP-Based Momentum Update

The concepts of Sections 3.2 and 3.3 can be implemented

and solved as a QP. Collisions with Coulomb friction have

been well researched [8], [9], [19], [36], [41]. The two

parameters for our impulses are the friction coefficient �

and the coefficient of restitution �. Both can be understood

as material constants for the purpose of simulation. We

reformulate the Coulomb model from Section 3.3:

ðnx � jÞ2 þ ðny � jÞ2 � �2ðn � jÞ2 and n � j � 0: ð7Þ

This constraint is convex but nonlinear. AQP has a nonlinear

objective butmust have linear constraints. To formulate aQP,

we have to linearize the friction cone. Specifically, we

approximate the cone with a polygonal pyramid. Currently,

we use an eight-sided pyramid (as do Stewart and Trinkle

[39]). To do so, we inscribe a polygon with eight equal edges

into the base of the pyramid, as seen in Fig. 2b, yielding an

eight-sided pyramid as in Fig. 2c. The collision frame has its

origin centered at the cone tip and the collision normal n

points along the axis of the cone or pyramid. The original

nonlinearized cone (Fig. 2a) has slope 1=�.2 the linearized

cone’s sides have slope ð� cos�=8Þ�1 > ��1. To confine the

impulse j to the inside of the linearized friction cone, we

calculate inward pointing normal vectors to the cone sides

uh ¼ � cos
�

8
nþ cos

�h

4
nx þ sin

�h

4
ny; ð8Þ

for h ¼ 0; 1; 2; . . . ; 7.3 The impulse j lies inside the linearized

cone if and only if it lies inside all these sides:

uh � j � 0; for h ¼ 0; 1; 2; . . . ; 7: ð9Þ
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1. This paper only considers QPs with a positive-definite objective,
which are in P-time [16] and for which there is excellent commercial
software.

2. The right circular cone z2 ¼ s2ðx2 þ y2Þ has slope s.
3. For convenience, uh is not unit-length, but its nx;ny component is.



We now have eight linear inequalities per collision, which

can be added as constraints to a QP to implement the

Coulomb friction model.
We also have to address restitution by bouncing. We

followNewton’s impactmodel fromSection 3.2 and calculate

the (scalar) relative contact normal velocity v? between

bodiesA andBwith contact levers ra and rb [1], [37]:

v? ¼ n � ððvb þ !!b � rbÞ � ðva þ !!a � raÞÞ: ð10Þ

An impulse j acts on a body by changing its linear and

angular momentum. The impulse j between bodies A and

B adds to vb and !!b

vb  vb þm�1b j and !!b  !!b þ I�1b ðrb � jÞ; ð11Þ

and subtracts from va and !!a

va  va �m�1a j and !!a  !!a � I�1a ðra � jÞ: ð12Þ

The relative contact velocity before impact is a constant and

can be easily calculated with (10). The relative contact

velocity after impact can be calculated depending on j with

(10), (11), and (12): Just express the velocities after impact

with (11) and (12) and plug these into (10).
Let v� and vþ denote the relative contact normal velocity

before and after any impulses are applied (and va, !!a, vb,

and !!b have been updated). In the following, we adopt

some of Baraff’s ideas [2]. If the bodies were not really

colliding before the collision (v� � 0), then they must still

not be colliding after the collision, else they must semi-

elastically “bounce.” Baraff determined that the following

applies generally, even to nonpoint masses:

if v� � 0 then vþ � 0 else vþ � ��v�: ð13Þ

Using quadratic programming, we simultaneously solve

for each impulse j at each contact. The QP has six variables

per body: the components of v and !!. It has four variables

per contact: the components of j and the collision normal

velocity vþ. It has six equality constraints per body to

express how each body’s v and !! change as a result of

impulses according to (11) and (12). It has one equality

constraint per contact to relate vþ to the updated body

velocities according to (10). It has eight inequalities per

contact to constrain j to the linearized friction cone

according to (9). Finally, it has one more linear inequality

per contact to implement the bounce according to (13).
The objective of the QP is the total kinetic energy after

application of impulses, which is a positive definite

quadratic function of the updated vs and !!s. For i, the
index over all bodies, we have the objective:

X

i

1

2
miv

2
i þ

1

2
!!T
i Ii!!i: ð14Þ

Thus, we ask the system to dissipate a maximum amount of
kinetic energy as a result of friction. This produces plausible
results, although the maximum energy dissipation principle
applies to forces, not impulses, and it is not directly
equivalent to minimization of the system’s total kinetic
energy. Explicit maximum energy dissipation results in a
very stable simulation which brings a slowly moving
system to rest. The slow down of the system movement
will be seen as realistic as the exact friction and restitution
coefficients are not known.

4.2 Step 3: Impulsive Static Contact Response

After collisions are resolved with bounces, resulting static
contacts (vþ ¼ 0) must have contact forces computed to
prevent bodies from sinking into each other. We experi-
mented with several methods to calculate forces and
verified that it is a nontrivial problem. Mirtich’s work used
impulsive forces exclusively [25], [26] and other researchers
have stated that impulsive forces can be applied when
nonimpulsive contact forces are not easily calculated [3],
[40]. We realized that our pure QP momentum update can
be modified and used in the vein of an impulse-based
approach to resolve static contacts very reliably, efficiently,
and extremely stably.

Under true physics, the force of gravity accelerates the
bodies. A force arises at each contact that provides a
nonnegative relative contact normal acceleration a? � 0.
Since the impulse update ensures nonnegative relative
normal velocity v? � 0 at the contacts, the integration of a?
ensures that v? remains nonnegative. Contact forces do no
positiveworkon thebodies, i.e., theydonot increase the body
energies. In other words, the contact forces are “just strong
enough” to prevent negative contact normal acceleration.

We mimic this behavior as follows: First, our algorithm
integrates the accelerations without regard to contacts: add
�t times the acceleration of gravity to the linear velocity of
each body. At this point, the relative contact normal
velocities may have changed from nonnegative to negative.
The algorithm applies small impulses at all contacts to make
all relative contact normal velocities nonnegative again. It
does so by solving a QP that is the momentum update QP
with restitution � set to zero, but otherwise with the same
objective and constraints. Consider the example of a single
body at rest on the ground. Initially, its relative contact
normal velocity v? is zero. As a result of gravity, v? < 0.
The QP generates an impulse at the contact sufficiently
strong to set v? equal to zero again. Since � ¼ 0, it will not
“bounce up.” Since the QP minimizes kinetic energy, it will
not give the body a spurious tangential impulse nor will it
otherwise violate the laws of physics. The tangential
impulse will at the most diminish tangential contact
velocity, i.e., until the contact has made its transition from
sliding to sticking. This reduces our system to impulse-
based physics and works very well in practice. The
simulations are stable and efficient.
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5 INCREASING REALISM AND SPEED

This section presents Steps one and four of the contact
resolution suite. The first step is a partial sequential
collision response. This is necessary for realism in small
examples and also to determine moving bodies for the
fourth step, freezing (Section 5.2). Freezing, in turn, greatly
increases the speed of Steps two and three, QP collision
resolution and QP static contact resolution, which have
been described in the previous section. Obviously, freezing
does not help Steps two and three in the current time-step: It
speeds up Steps two and three of the next time-step.

5.1 Step 1: Partial Sequential Collision Resolution

Fig. 3a depicts the expected behavior of three aligned balls
with equal mass that collide elastically: The right, incoming
ball stops and only the leftmost ball bounces off. In contrast,
the QP-based simultaneous impulse algorithm of Section 4.1
generates the output shown in Fig. 3b: Although the total
momentum is conserved, all balls are in motion after the
collision [2].

The standard solution to this problem is sequential
application of impulses [1], [25], [26]. All colliding contacts
are placed in a priority queue ordered by collision velocity.
The following two steps are repeated until all contacts
separate (vþ � 0). 1) The fastest collision (most negative v�)
is dequeued and resolved according to the impulse
response of Section 3.3. 2) All other contacts involving
either of the two colliding bodies have their velocities
updated.

Unfortunately, PQ (priority queue-based sequential
collision resolution) does not scale well to large problems
[2]. We avoid this problem and stop running PQ before it
takes too much time. Instead, in Step two of the contact
suite, the QP-based algorithm finishes the collision resolu-
tion. We can specify a number cb of bounces to be resolved
sequentially that ensures the office toy, or some other
specific scene, is modeled properly. For s, the number of
spheres in the office toy, cb ¼ s� 1 sequential bounces will
produce the desired outcome.

Specifying cb has another advantage. Solving a QP has a
certain overhead even if there are only a few true collisions
(v� < 0). Invoking the QP solver, building the constraints,
and solving the QP comes at a cost. For only a few
collisions, PQ is much faster. If the number of actual
collisions is less than cb, PQ alone will finish the bouncing
very cheaply. Therefore, we call the QP momentum update
only if necessary. Currently, we use a heuristic to find the
value of cb: It usually works well to set cb equal to the

number of bodies for scenes with fewer than 50 bodies and
equal to 10 percent of the number of contacts for scenes
with more than 50 bodies. Unless one wants to create the
office toy with more than 50 bodies, this heuristic will create
plausible animations. For other scenes with a large number
of bodies, not all collisions will be in the same direction.
Consequently, the scene is too complex for a human to
accurately make predictions. Hence, our heuristic provides
sufficient realism, yet it maximizes performance.

5.2 Step 4: Freezing

Steps one, two, and three of the contact resolution suite can
efficiently generate stable simulations of several hundred
bodies with a high number of concurrent contacts. Yet we
found them to be too slow when the number of bodies is
raised to 1,000. The running time of the algorithm is
determined by the solution time for the impulse QPs and,
thus, their individual sizes. The latter clearly depends on
the number of contacts. This section presents a technique
for reducing the number of contacts that we call “freezing.”
This fourth step in the contact suite trades away a tiny
amount of realism (if any in practice) in exchange for a
tremendous increase in speed.

We observed that much computation goes into calcula-
tion of static contact response once bodies settle into a stable
arrangement. Although the motion has stopped for a settled
stack of bodies, contacts have to be resolved at every time
step to keep the bodies from sinking into each other.
Freezing acts to remove from consideration contacts
between stationary bodies. We distinguish fixed, dynamic,
and frozen bodies. Walls are examples of fixed bodies.
Dynamic, free moving bodies can become frozen and vice
versa.

Lack of motion is defined by a heuristic which compares
the current kinetic energy (Elin þErot) for a body to the
kinetic energy it would pick up in free-fall starting at rest:

1

2
mv2 þ 1

2
!!T I!! <

p2
g

2m
; ð15Þ

where pg ¼ mg�t is the momentum a body with mass m

picks up during a time step �t ¼ 1=30 sec as a result of
gravity.4 the freezing algorithm allocates a counter to each
body, initially zero. If (15) is satisfied and if the body was in
contact with a fixed or currently frozen body, increment the
counter. Otherwise, reset it to zero. If a counter exceeds cf ,
freeze the body. For purposes of collision and contact
handling and setting up the QPs in Steps two and three,
ignore contacts between frozen bodies or between a frozen
body and a fixed body. Also, a frozen body does not pick up
momentum through gravity or any other external potential
and stays at its current position. The only way for a frozen
body to get free again is by picking up momentum through
a collision which increases its sum of energies about the
threshold of (15), in which case its counter is reset to zero.

Note. 1) If PQ (Step one) is applied, then (15) is also checked
for each body in each sequential collision. If it is violated,
the respective body’s counter is reset to zero and it is
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4. For simplicity, our only external potential is gravity but others can be
added.

Fig. 3. Explanation of momentum conservation.



unfrozen if applicable. 2) After static contact response
(Step three), every body which is designated as frozen
has its momentum set to zero. This prevents unnatural
“drifting” in the position update.

Consider a single cube sitting on a solid, static surface.
Without freezing, the cube picks up momentum from
gravity during each time step, interpenetration has to be
prevented and static contact has to be resolved just to keep
the cube at a visually resting state. If (15) was satisfied while
the cube was in contact with the static surface, its counter is
incremented. If the counter exceeds cf , we freeze the cube.
This now frozen cube will no longer pick up energy through
gravity; it stays at its current position and the contacts
between the frozen cube and static surface will not be
considered in the QP collision response (Step two) and the
QP static contact response (Step three). For this simple
example, the number of effective contacts has shrunk to
zero, yet interpenetration is prevented. The simulation has
virtually zero runtime.

Now, consider a more interesting scene with many cubes
and a fixed container. We define “cold” volumes in which
the cubes can freeze. For example, the cold volume could be
the entire lower container portion. Once the cubes settle in
the cold volume, we examine their energies according to
(15). Each cube maintains a counter, which we set
appropriately. If a counter exceeds cf , we freeze the cube.
Again, a frozen cube stays at its current position; it no
longer picks up energy from gravity nor will its contacts
with fixed or frozen bodies require immediate resolution.

Since freezing freezes bodies which are very likely to
move very little, it has little effect on realism. However,
consider the example in Fig. 4. A sphere is resting on a table
with another sphere on it. This is clearly an unstable
configuration and contact between the spheres should not
persist. Instead, one would expect the top sphere to roll off
after a short time. Care must be taken in selecting a high
enough value for cf if freezing has to model this scene
correctly. Selecting cf too small will allow the upper sphere
to be frozen, maintaining the unstable configuration
indefinitely. However, if the value of cf is chosen large
enough, the top sphere has enough chance to start its rolling
and the contact will not be frozen unrealistically.

Only Steps two and three of the contact suite are truly
essential, but, if freezing (Step four) is applied, then it is best
that PQ (Step one) also be applied. Consider the situation of
Fig. 5 with a frozen pair of contacting bodies A and B. A
third body C bounces against B. The QP momentum update

will unfreeze only body B because it resolves collisions
simultaneously. The contacts between A and B are inactive
and will not be processed in the QP. Body A cannot be
unfrozen until the contact resolution after the next position
update. In contrast, the PQ will first unfreeze B and then
unfreeze A. For a large cluster of frozen bodies, the number
of unfrozen bodies is dependent on the limit of bounces cb
after which we terminate the PQ. However, if cb is selected
such that PQ uses about 1 percent of the running time for a
large simulation, PQ appears to unfreeze virtually all the
bodies that should be unfrozen. Hence, it is easy to attain a
simulation that is both lively and realistic yet efficient. In
conclusion, freezing provides an effective means for
speeding up the simulation with little or no visible loss of
realism.

6 EXPERIMENTS, ANALYSIS, AND IMPLEMENTATION

We constructed scenes that simulate stacks or otherwise
“crowded” arrangements of bodies. These scenes are
nontrivial to simulate and show the advantages of our
proposed techniques due to their high number of contacts.
We simulate scenes whenever possible with and without
freezing of bodies for comparison. Our experiments were
conducted by combining the OBA position update [24], [37]
and the new contact suite. OBA position update assumes
convex object geometry. This is the reason why we used
convex spheres and cubes in our simulations. However, the
contact suite’s applicability is not limited to convex objects
only. It can be employed to resolve collisions for general
objects. Page limits prevent us from including color plates.
Still images and a video are available at http://
www.cs.miami.edu/~harald/ics/ics.html.5

The “stack” simulation simply shows how 10 cubes get
stacked on top of each other. The “cubejam” scene has
100 cubes, which fall into a container with obstacles. This
scene is somewhat more complicated, but, in essence, also
here the final arrangement is a stack. In addition, “c-s stack”
simulates a stack that mixes cubes and spheres. Our
findings show that freezing compares favorably to simula-
tions that do not make use of it. We also simulated the
“office toy” to demonstrate the correct transfer of momen-
tum. This last scene makes no use of freezing because each
body would be unfrozen during each iteration anyway.

We provide some implementation detail to illustrate our
following performance analysis. The CPLEX 7.0 runtime
library was used for solving the QPs in our experiments. All
examples were coded in Java on a Pentium III PC with
450MHz running Windows NT. Our initial experiments
without freezing limited the number of bodies which we
could simulate in acceptable time to just a few hundred.
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5. The authors wish to thank Adam McMahon for rendering and
generation of the video.

Fig. 4. An unstable configuration: Care must be taken when freezing is

used.

Fig. 5. Frozen bodies (dashed) are revived one at a time.



Milenkovic has simulated an hourglass with 1,000 spheres
using position-based physics [23]. The OBA algorithm of
Milenkovic and Schmidl [24], [37] improved Milenkovic’s
earlier work: It can simulate bounces, Newtonian trajec-
tories (second order physics), and friction. However, even
here the 1,000 sphere hourglass was frictionless. With our
freezing method, we are able to simulate a frictional
hourglass with 1,000 cubes. Frictionless spheres have only
three degrees of freedom, whereas frictional cubes have six.
Furthermore, two touching spheres have only one contact
point, whereas two cubes can have up to eight if they are
stacked and slightly rotated. Also, since the “cubeglass” has
friction, the cubes temporarily wedge in the funnel opening,
clogging the downward flow of cubes. Hence, contacts
persist longer than in Milenkovic’s older “sphereglass.”
Simulating the “cubeglass” is more difficult than the
“sphereglass” for these reasons. There is no experimental
evidence of similarly complicated simulations by other
research.

It is clear that the overall performance of our impulse
algorithm is governed by how fast we can solve each
individual QP. In general, this depends on the number m ¼
6nþ 10k of constraints in the QP, where n is the number of
bodies and k is the number of contacts. The number of
contacts depends on the body geometry and is roughly
proportional to the number of contacting bodies. For a tight
packing of n bodies, the number m of constraints is
therefore proportional to n. Fig. 6 shows the development
of number of contacts and solution times for the collision
and contact QPs, with and without freezing, for the
“cubejam” simulation. Without freezing (Fig. 6a), the
number of contacts grows slowly up to its maximum at

about 500 contacts per frame. The solution time for the two
QPs solved develops in correlation with the number of
contacts up to a maximum. (Interestingly, although practi-
cally the same QP is solved for collision and contact
resolution, the solver spends more time on the contact QP.)

With freezing (Fig. 6b), we observe a similar correlation
between solution time and number of contacts. As bodies
settle, they lose most of their kinetic energy and are frozen.
Consequently, the effective number of contacts is dimin-
ished and tends toward zero. The number of contacts stays
reasonable at all times during the simulation until all bodies
are frozen and no more contacts remain to be treated. We
observe a strongly diminished time for handling collisions
and contacts.

Table 1 makes a comparison between scenes with and
without the freezing technique. We examine the solution
time per QP for the collision and contact update and find a
tremendous speed-up by up to a factor 28. For the “c-s
stack,” the speed-up is the smallest. Simulation of spheres is
a priori at a lesser cost because involved computations are
cheaper. Therefore, the gap between the two timings is
smaller here. It is clear that freezing reduces the number of
static contacts drastically. Therefore, also the number of
frames with static contacts and, hence, the number of QPs
solved for contact resolution is reduced at a higher rate than
for collisions. This is the reason why an overall larger
speed-up is achieved for static contact handling.

The final simulations are as plausible as without
freezing. Assuming this factor, it should be clear why we
cannot provide the same comparison for the “cubeglass.”
The contacts per frame are averages. The actual number
peaks for the “cubeglass” at over 4,000 contacts per frame.
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Fig. 6. Number of contacts and QP solution times (a) without and (b) with freezing.



The contact geometry of the “cubeglass” compares with the
“cubejam.” Therefore, it is safe to assume similar factors for
speed-up. With freezing, the program spent a total of
9.5 hours for updating collisions and contacts. Hence,
simulation of collisions and contacts for the “cubeglass”
without freezing would have taken almost 10 days.

Note. Although PQ (Step one) takes a small and very
predictable amount of time, it can sometimes greatly
reduce the running time of Step two or eliminate the
need for it entirely. For this reason, the experiments to
determine the speed-up from freezing always skip
Step one. This reduces the variability in the running
times and provides a more accurate estimate of the
speed-up factor. For a realistic result, one would always
apply PQ (Step one) when using freezing (Step four) (see
Section 5.2).

For the “stack,” we set cf ¼ 1 for freezing. In contrast, we
have to use a higher threshold for the “cubejam.” As cubes
squeeze around the obstacles, they come to a rest only
seemingly due to friction although they are still far from the
bottom. We had to set cf ¼ 3 and declare a cube then as
frozen.

7 CONCLUSIONS AND FUTURE WORK

We presented a method which is easily implemented and
efficient. Despite trade offs made for efficiency, they exhibit
no sign of visually lacking realism. Our model makes
approximations and uses physically inspired models for
efficiency purposes when possible. Contacts and collisions
are resolved with impulses only. This follows Mirtich’s
impulse simulations and addresses the findings of other
researchers who noted that impulsive forces are necessary
whenever true contact forces cannot be calculated. The
simulations are stable. Stability is an important trait of any
simulation algorithm. The QP-based, impulsive contact
suite can be used in any existing simulator that follows a
modular structure as in Fig. 1. Partial sequential collision
response (Step one) ensures realistic “liveliness” at a
modest cost. Freezing (Step four) allows tremendous
speed-up of rigid body simulation, making the simulation
of 1,000 cubes in an hourglass tractable. Collisions and static
contacts are each solved with a single convex QP. The entire
contact suite is implemented by solving only two successive
convex QPs.

Traditional PQ bouncing can increase kinetic energy,
which is not realistic. On the one hand, the energy
minimization QP always ensures that the laws of thermo-
dynamics are not violated. On the other hand, its
simultaneous resolution of collisions is not realistic for
examples like the office toy. Ideally, one might want to
apply the QP technique to individual bounces in the PQ
algorithm, but, in practice, it would take too much time to
set up a QP for each individual bounce. Instead, we are
working on methods that allow detection of contacts which
actually need to be treated with care in order to avoid
increase of energy. We are also considering development of
specialized code that solves small QPs very efficiently and
without invocation of CPLEX.
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