

Proceedings of the 8th IJCAR

ATP System Competition

(CASC-J8)

Geo↵ Sutcli↵e

University of Miami, USA

Abstract

The CADE ATP System Competition (CASC) evaluates the performance of sound,
fully automatic, classical logic, ATP systems. The evaluation is in terms of the number of
problems solved, the number of acceptable proofs and models produced, and the average
runtime for problems solved, in the context of a bounded number of eligible problems
chosen from the TPTP problem library and other useful sources of test problems, and
specified time limits on solution attempts. The 8th IJCAR ATP System Competition
(CASC-J8) was held on 29th July 2016. The design of the competition and its rules, and
information regarding the competing systems, are provided in this report.

1 Introduction

The CADE and IJCAR conferences are the major forum for the presentation of new research
in all aspects of automated deduction. In order to stimulate ATP research and system devel-
opment, and to expose ATP systems within and beyond the ATP community, the CADE ATP
System Competition (CASC) is held at each CADE and IJCAR conference. CASC-J8 was held
on 29th July 2016, as part of the 8th International Joint Conference on Automated Reasoning
(IJCAR 2016)1, in Coimbra, Portugal. It was the twenty-first competition in the CASC series
[110, 116, 113, 74, 76, 109, 107, 108, 81, 83, 85, 87, 90, 93, 95, 97, 99, 101, 103, 115].

CASC evaluates the performance of sound, fully automatic, classical logic, ATP systems.
The evaluation is in terms of:

• the number of problems solved,
• the number of acceptable proofs and models produced, and
• the average runtime for problems solved;

in the context of:

• a bounded number of eligible problems, chosen from the TPTP problem library [91] and
other useful sources of test problems, and

• specified time limits on solution attempts.

Twenty-one ATP system versions, listed in Table 1, entered into the various competition
and demonstration divisions. The winners of the CASC-25 (the previous CASC) divisions were
automatically entered into those divisions, to provide benchmarks against which progress can be
judged (the competition archive provides access to the systems’ executables and source code).2

The design and procedures of this CASC evolved from those of previous CASCs [110, 111,
106, 112, 72, 73, 75, 77, 78, 79, 80, 82, 84, 86, 89, 92, 94, 96, 98, 100, 102]. Important changes
for this CASC were:

1
CADE was a constituent conference of IJCAR, hence CASC-“J8”.

2
As the LTB division had been suspended since CASC-24 in 2013, the CASC-24 UEQ winner was entered.

1

CASC-J8 Geo↵ Sutcli↵e

A
T
P

S
y
stem

D
iv
ision

s
E
n
tran

t
(A

sso
ciates)

E
n
tran

t’s
A

�
liation

B
eagle

0.9.47
T
F
A

T
F
N

P
eter

B
au

m
gartn

er
(Josh

u
a
B
ax

)
D
ata61

C
V
C
4
1.5

T
F
N

C
A
S
C

C
A
S
C
-25

w
in
n
er

C
V
C
4
1.5.1

T
F
A

T
F
N

F
O
F

F
N
T

A
n
d
rew

R
ey
n
old

s
(C

lark
B
arrett,

U
n
iversity

of
Iow

a
C
esare

T
in
elli,

T
im

K
in
g)

E
2.0

F
O
F

F
N
T

E
P
R

L
T
B

S
tep

h
an

S
ch
u
lz

(M
artin

M
öh

rm
an

n
D
H
B
W

S
tu
ttgart

G
eo-III

2016C
F
O
F

F
N
T

E
P
R

H
an

s
d
e
N
ivelle

U
n
iversity

of
W
ro
c law

iP
rover

2.5
F
O
F

F
N
T

E
P
R

L
T
B

K
on

stan
tin

K
orov

in
U
n
iversity

of
M
an

ch
ester

Isab
elle

2015
T
H
F

Jasm
in

B
lan

ch
ette

(L
aw

ren
ce

P
au

lson
,

In
ria

N
an

cy
T
ob

ias
N
ip
kow

,
M
akariu

s
W
en

zel)
lean

C
oP

2.2
F
O
F

Jen
s
O
tten

U
n
iversity

of
P
otsd

am
L
E
O
-II

1.7.0
T
H
F

M
ax

W
isn

iew
sk
i
(A

lex
an

d
er

S
teen

F
reie

U
n
iversität

B
erlin

C
h
ristop

h
B
en

zm
ü
ller)

L
E
O
-III

1.0
T
H
F

M
ax

W
isn

iew
sk
i
(A

lex
an

d
er

S
teen

F
reie

U
n
iversität

B
erlin

C
h
ristop

h
B
en

zm
ü
ller)

L
E
O
+
III

1.0
T
H
F

M
ax

W
isn

iew
sk
i
(A

lex
an

d
er

S
teen

F
reie

U
n
iversität

B
erlin

C
h
ristop

h
B
en

zm
ü
ller)

M
aL

A
R
ea

0.6
L
T
B

(d
em

o)
Josef

U
rb
an

(Jan
Jak

u
b
u
v
,
C
ezary

C
zech

T
ech

n
ical

U
n
iversity

K
aliszy

k
,
S
tep

h
an

S
ch
u
lz,

Jiri
V
y
sko

cil)
in

P
ragu

e
N
itp

ick
2015

T
H
N

Jasm
in

B
lan

ch
ette

In
ria

N
an

cy
P
rin

cess
160606

T
F
A

T
F
N

P
h
ilip

p
R
ü
m
m
er

U
p
p
sala

U
n
iversity

P
rover9

2009-11A
F
O
F

C
A
S
C

(W
illiam

M
cC

u
n
e,

B
ob

V
ero↵

)
C
A
S
C

fi
x
ed

p
oin

t
P
rover9P

lu
s
1.0

L
T
B

(d
em

o)
B
ob

V
ero↵

(W
illiam

M
cC

u
n
e,

Josef
U
rb
an

U
n
iversity

of
N
ew

M
ex
ico

R
efu

te
2015

T
H
N

Jasm
in

B
lan

ch
ette

(T
jark

W
eb

er)
In
ria

N
an

cy
S
atallax

2.8
T
H
F

C
A
S
C

C
A
S
C
-25

w
in
n
er

S
atallax

3.0
T
H
F

M
ich

ael
F
ärb

er
(C

h
ad

B
row

n
)

U
n
iversität

In
n
sb
ru
ck

V
am

p
ire

4.0
F
O
F

F
N
T

E
P
R

L
T
B

C
A
S
C

C
A
S
C
-25

w
in
n
er

V
am

p
ire

4.1
T
F
A

F
O
F

F
N
T

E
P
R

L
T
B

G
iles

R
eger

(M
artin

S
u
d
a,

A
n
d
rei

V
oron

kov
U
n
iversity

of
M
an

ch
ester

E
v
gen

y
K
oteln

ikov
,
L
au

ra
K
ovacs

V
am

p
ireZ

3
1.0

T
F
A

C
A
S
C

C
A
S
C
-25

w
in
n
er

T
ab

le
1:

T
h
e
A
T
P

system
s
an

d
entrants

2

CASC-J8 Geo↵ Sutcli↵e

• The THN division was put into a hiatus state.
• E�ciency based on wall clock time was added to the results.

The competition organizer was Geo↵ Sutcli↵e. The competition is overseen by a panel of
knowledgeable researchers who are not participating in the event. The panel members were
Pascal Fontaine, Aart Middeldorp, and Christoph Wernhard. The CASC rules, specifications,
and deadlines are absolute. Only the panel has the right to make exceptions. The competition
was run on computers provided by StarExec at the University of Iowa. The CASC-J8 web site
provides access to resources used before, during, and after the event: http://www.tptp.org/
CASC/J8

It was assumed that all entrants had read the web pages related to the competition, and
have complied with the competition rules. Non-compliance with the rules could lead to disqual-
ification. A “catch-all” rule was used to deal with any unforeseen circumstances: No cheating
is allowed. The panel was allowed to disqualify entrants due to unfairness, and to adjust the
competition rules in case of misuse.

2 Divisions

CASC is divided into divisions according to problem and system characteristics. There are
competition divisions in which systems are explicitly ranked, and a demonstration division in
which systems demonstrate their abilities without being ranked. Some divisions are further
divided into problem categories, which makes it possible to analyse, at a more fine grained
level, which systems work well for what types of problems. The problem categories have no
e↵ect on the competition rankings, which are made at only the division level.

2.1 The Competition Divisions

The competition divisions are open to ATP systems that meet the required system properties,
described in Section 6.1. Each division uses problems that have certain logical, language, and
syntactic characteristics, so that the ATP systems that compete in the division are, in principle,
able to attempt all the problems in the division.

TheTHF division: Typed Higher-order Form theorems (axioms with a provable conjecture).
The THF division has two problem categories:

• The TNE category: THF with No Equality
• The TEQ category: THF with EQuality

The TFA division: Typed First-order with Arithmetic theorems (axioms with a provable
conjecture). The TFA division has three problem categories:

• The TFI category: TFA with only Integer arithmetic
• The TFR category: TFA with only Rational arithmetic
• The TFE category: TFA with only Real arithmetic

The TFN division: Typed First-order with arithmetic Non-theorems (axioms with a prov-
able conjecture).

The FOF division: First-Order Form theorems (syntactically non-propositional, axioms
with a provable conjecture). The FOF division has two problem categories:

• The FNE category: FOF with No Equality
• The FEQ category: FOF with EQuality

3

http://www.tptp.org/CASC/J8
http://www.tptp.org/CASC/J8

CASC-J8 Geo↵ Sutcli↵e

The FNT division: First-order form Non-Theorems (syntactically non-propositional, ax-
ioms with a countersatisfiable conjecture, and satisfiable axiom sets). The FNT division has
two problem categories:

• The FNN category: FNT with No equality
• The FNQ category: FNT with eQuality

The EPR division: E↵ectively PRopositional (but syntactically non-propositional) clause
normal form theorems and non-theorems (clause sets). E↵ectively propositional means that the
problems are known to be reducible to propositional problems, e.g., CNF problems that have
no functions with arity greater than zero. The EPR division has two problem categories:

• The EPT category: E↵ectively Propositional Theorems (unsatisfiable clause sets)
• The EPS category: E↵ectively Propositional non-theorems (Satisfiable clause sets)

The LTB division: First-order form theorems (axioms with a provable conjecture) from
Large Theories, presented in Batches. A large theory has many functors and predicates, and
many axioms of which typically only a few are required for the proof of a theorem. Problems in
a batch all use a common core set of axioms, and the problems in a batch are given to the ATP
system all at once. The batch presentation allows the ATP systems to load and preprocess the
common core set of axioms just once, and to share logical and control results between proof
searches. The LTB division’s problem categories are accompanied by sets of training problems
and their solutions, taken from the same exports as the competition problems, that can be used
for tuning and training during (typically at the start of) the competition. The LTB division
has three problem categories:

• The AIM category: Problems exported from the AIM loops project [34].
• The CML category: Problems exported from CakeML [40].
• The HLL category: Problems exported from the Flyspeck project in HOL Light [30].

Section 3.2 explains what problems are eligible for use in each division and category. Sec-
tion 4 explains how the systems are ranked in each division.

2.2 The Demonstration Division

ATP systems that cannot run in the competition divisions for any reason (e.g., the system
requires special hardware, or the entrant is an organizer) can be entered into the demonstration
division. Demonstration division systems can run on the competition computers, or the com-
puters can be supplied by the entrant. Computers supplied by the entrant may be brought to
CASC, or may be accessed via the internet. The demonstration division results are presented
along with the competition divisions’ results, but might not be comparable with those results.
The systems are not ranked and no prizes are awarded.

3 Infrastructure

3.1 Computers

The computers had:

• Two quad-core Intel(R) Xeon(R) E5-2609, 2.40GHz CPUs
• 128GB memory

4

CASC-J8 Geo↵ Sutcli↵e

• The Red Hat Enterprise LinuxWorkstation release 6.3 (Santiago) operating system, kernel
2.6.32-431.1.2.el6.x86 64

Each ATP system ran one job on one CPU at a time. Systems could use all the cores on
the CPU (although this did not necessarily help in the non-LTB divisions, because a CPU time
limit was imposed).

3.2 Problems

3.2.1 Problem Selection

Problems for the non-LTB divisions were taken from the TPTP Problem Library, version v6.4.0.
The TPTP version used for CASC is released after the competition has started, so that new
problems have not been seen by the entrants. The problems have to meet certain criteria to
be eligible for selection. The problems used are randomly selected from the eligible problems
based on a seed supplied by the competition panel.

• The TPTP tags problems that designed specifically to be suited or ill-suited to some
ATP system, calculus, or control strategy as biased, and they are excluded from the
competition.

• The problems are syntactically non-propositional.
• The TPTP uses system performance data in the Thousands of Solutions from Theorem
Provers (TSTP) solution library to compute problem di�culty ratings in the range 0.00
(easy) to 1.00 (unsolved) [114]. Di�cult problems with a rating in the range 0.21 to 0.99
are eligible for CASC. Problems of lesser and greater ratings might also be eligible in
some divisions if there are not enough problems with the desired ratings. Performance
data from systems submitted by the system submission deadline is used for computing
the problem ratings for the TPTP version used for the competition.

• The selection is constrained so that no division or category contains an excessive number
of very similar problems.

• The selection mechanism is biased to select problems that are new in the TPTP version
used, until 50% of the problems in each category have been selected, after which random
selection (from old and new problems) continues. The actual percentage of new problems
used depends on how many new problems are eligible and the limitation on very similar
problems.

Problems for the LTB division are taken from publicly available problem sets: the AIM prob-
lem category used the AIM2185 problem set3; the CML problem category used the CML10277
problem set4; the HLL problem category used the HH7150 problem set5; Entrants are expected
to honestly not use any of the (publicly available) problems for tuning or training before the
competition.

The problems in each category have a large number of common included axiom files (the
“common core set of axioms”). Systems can benefit from preloading and analyzing these com-
mon axioms once, in advance of problem solving.

In order to facilitate and promote learning from previous proofs, each problem category is
accompanied by a set of training problems and their solutions, which can be used for tuning and
training during (typically at the start of) the competition. The training problems are not used

3http://www.tptp.org/CASC/J8/AIM2185.tgz
4http://grid02.ciirc.cvut.cz/~mptp/CML10227.tar.gz
5https://github.com/JUrban/HH7150

5

http://www.tptp.org/CASC/J8/AIM2185.tgz
http://grid02.ciirc.cvut.cz/~mptp/CML10227.tar.gz
https://github.com/JUrban/HH7150

CASC-J8 Geo↵ Sutcli↵e

in the competition. In order to support learning, the problems in each category have consistent
symbol usage, and almost consistent axiom naming, between problems.

3.2.2 Number of Problems

The minimal numbers of problems that must be used in each division and category, to ensure
su�cient confidence in the competition results, are determined from the numbers of eligible
problems in each division and category [28] (the competition organizers have to ensure that
there are su�cient computers available to run the ATP systems on this minimal number of
problems). The minimal numbers of problems is used in determining the time limits imposed
on each solution attempt - see Section 3.3.

A lower bound on the total number of problems to be used is determined from the number
of computers available, the time allocated to the competition, the number of ATP systems to
be run on the competition computers over all the divisions, and the per-problem time limit,
according to the following relationship:

NumberOfProblems =
NumberOfComputers ⇤ T imeAllocated

NumberOfATPSystems ⇤ T imeLimit

It is a lower bound on the total number of problems because it assumes that every system
uses all of the time limit for each problem. Since some solution attempts succeed before the
time limit is reached, more problems can be used.

The numbers of problems used in the categories in the various divisions are (roughly) pro-
portional to the numbers of eligible problems, after taking into account the limitation on very
similar problems. The numbers of problems used in each division and category are determined
according to the judgement of the competition organizers.

3.2.3 Problem Preparation

The problems are in TPTP format, with include directives. The problems in each non-LTB
division are given in increasing order of TPTP di�culty rating. The problems in the LTB
division are given in the natural order of their export.

In order to ensure that no system receives an advantage or disadvantage due to the specific
presentation of the problems in the TPTP, the problems are preprocessed to:

• strip out all comment lines, including the problem header
• randomly reorder the formulae/clauses (the include directives are left before the formu-
lae, type declarations and definitions are kept before the symbols’ uses)

• randomly swap the arguments of associative connectives, and randomly reverse implica-
tions

• randomly reverse equalities

3.2.4 Batch Specification Files

The problems for each problem category of the LTB division are listed in a batch specification
file, containing containing global data lines and one or more batch specifications. The global
data lines are:

• A problem category line of the form
division.category division mnemonic.category mnemonic

For the LTB division it was

6

CASC-J8 Geo↵ Sutcli↵e

division.category LTB.category mnemonic where the category mnemonics were
AIM, CML, and HLL.

• The name of a directory that contains training data in the form of problems in TPTP
format and one or more solutions to each problem in TSTP format, in a line of the form
division.category.training directory directory name The directory contains a file
TrainingData.ProblemCategory.tgz that expands in place to three directories: Axioms,
Problems, and Solutions. Axioms contains all the axiom files that can be used in the
training and competition problems. Problems contains the training problems. Solutions
contains a subdirectory for each of the Problems, containing TPTP format solutions to
the problem.

Each batch specification consists of:

• A header line % SZS start BatchConfiguration

• A specification of whether or not the problems in the batch must be attempted in order
is given, in a line of the form

execution.order ordered/unordered
For the LTB division it was

execution.order ordered

i.e., systems may not start any attempt on a problem, including reading the problem file,
before ending the attempt on the preceding problem.

• A specification of what output is required from the ATP systems for each problem, in a
line of the form

output.required space separated list
where the available list values are the SZS values Assurance, Proof, Model, and Answer.
For the LTB division it was

output.required Proof.
• The wall clock time limit per problem, in a line of the form

limit.time.problem.wc limit in seconds
A value of zero indicates no per-problem limit.

• The overall wall clock time limit (for the batch), in a line of the form
limit.time.overall.wc limit in seconds

• A terminator line % SZS end BatchConfiguration

• A header line % SZS start BatchIncludes

• include directives that are used in every problem. Problems in the batch have all these
include directives, and can also have other include directives that are not listed here.

• A terminator line % SZS end BatchIncludes

• A header line % SZS start BatchProblems

• Pairs of absolute problem file names, and absolute output file names where the output
for the problem must be written.

• A terminator line % SZS end BatchProblems

3.3 Resource Limits

3.3.1 Non-LTB divisions

CPU and wall clock time limits are imposed. The minimal CPU time limit per problem
is 240s. The maximal CPU time limit per problem is determined using the relationship
used for determining the number of problems, with the minimal number of problems as the

7

CASC-J8 Geo↵ Sutcli↵e

NumberOfProblems. The CPU time limit is chosen as a reasonable value within the range
allowed, and is announced at the competition. The wall clock time limit is imposed in addition
to the CPU time limit, to limit very high memory usage that causes swapping. The wall clock
time limit per problem is double the CPU time limit. An additional memory limit is imposed,
depending on the computers’ memory. The time are imposed individually on each solution
attempt.

In the demonstration division, each entrant can choose to use either a CPU or a wall clock
time limit, whose value is the CPU time limit of the competition divisions.

3.3.2 LTB division

For each batch there is a wall clock time limit per problem, which is provided in the configuration
section at the start of each batch. The minimal wall clock time limit per problem is 30s. For each
problem category there is an overall wall clock time limit, which is provided in the configuration
section at the start of each batch, and is also available as a command line parameter. The overall
limit is the sum over the batches of the batch’s per-problem limit multiplied by the number of
problems in the batch. Time spent before starting the first problem of a batch (e.g., preloading
and analysing the batch axioms), and times spent between ending a problem and starting the
next (e.g., learning from a proof just found), are not part of the times taken on the individual
problems, but are part of the overall time taken. There are no CPU time limits.

4 System Evaluation

For each ATP system, for each problem, four items of data are recorded: whether or not the
problem was solved, the CPU time taken, the wall clock time taken, and whether or not a
solution (proof or model) was output. In the LTB division, the wall clock time is the time from
when the system reports starting on a problem and reports ending on a problem - the time
spent before starting the first problem, and times spent between ending a problem and starting
the next, are not part of the time taken on problems.

The systems are ranked in the competition divisions, from the performance data. The THF,
TFA, FOF, FNT, and LTB divisions are ranked according to the number of problems solved
with an acceptable proof/model output. The THN and EPR divisions are ranked according
to the number of problems solved, but not necessarily accompanied by a proof or model (but
systems that do output proofs/models are highlighted in the presentation of results). Ties are
broken according to the average time over problems solved (CPU time for non-LTB divisions,
wall clock time for the LTB division). In the competition divisions winners are announced and
prizes are awarded.

The competition panel decides whether or not the systems’ proofs and models are “accept-
able”. The criteria include:

• Derivations must be complete, starting at formulae from the problem, and ending at the
conjecture (for axiomatic proofs) or a false formula (for proofs by contradiction, including
CNF refutations).

• For proofs of FOF problems by CNF refutation, the conversion from FOF to CNF must
be adequately documented.

• Derivations must show only relevant inference steps.
• Inference steps must document the parent formulae, the inference rule used, and the
inferred formula.

• Inference steps must be reasonably fine-grained.

8

CASC-J8 Geo↵ Sutcli↵e

• An unsatisfiable set of ground instances of clauses is acceptable for establishing the un-
satisfiability of a set of clauses.

• Models must be complete, documenting the domain, function maps, and predicate maps.
The domain, function maps, and predicate maps may be specified by explicit ground lists
(of mappings), or by any clear, terminating algorithm.

In addition to the ranking criteria, other measures are made and presented in the results:
• The state-of-the-art contribution (SOTAC) quantifies the unique abilities of each system.
For each problem solved by a system, its SOTAC for the problem is the inverse of the
number of systems that solved the problem. A system’s overall SOTAC is its average
SOTAC over the problems it solves.

• The core usage is the average of the ratios of CPU time to wall clock time used, over
the problems solved. This measures the extent to which the systems take advantage the
multiple cores.

• The e�ciency measure balances the number of problems solved with the time taken. It is
the average of the inverses of the times for problems solved multiplied by the fraction of
problems solved. This can be interpreted intuitively as the average of the solution rates
for problems solved, multiplied by the fraction of problems solved. E�ciency is computed
for both CPU time and wall clock time, to measure how e�ciently the systems use one
core and how e�ciently systems use the multiple cores, respectively.

At some time after the competition, all high ranking systems in each division are tested
over the entire TPTP. This provides a final check for soundness (see Section 6.1 regarding
soundness checking before the competition). If a system is found to be unsound during or after
the competition, but before the competition report is published, and it cannot be shown that
the unsoundness did not manifest itself in the competition, then the system is retrospectively
disqualified. At some time after the competition, the proofs and models from the winners (of
divisions ranked by the numbers of proofs/models output) are checked by the panel. If any
of the proofs or models are unacceptable, i.e., they are significantly worse than the samples
provided, then that system is retrospectively disqualified. All disqualifications are explained in
the competition report.

5 System Entry

To be entered into CASC, systems must be registered using the CASC system registration
form. No registrations are accepted after the registration deadline. For each system entered, an
entrant has to be nominated to handle all issues (including execution di�culties) arising before
and during the competition. The nominated entrant must formally register for CASC. It is not
necessary for entrants to physically attend the competition.

Systems can be entered at only the division level, and can be entered into more than one
division. A system that is not entered into a competition division is assumed to perform worse
than the entered systems, for that type of problem - wimping out is not an option. Entering
many similar versions of the same system is deprecated, and entrants may be required to limit
the number of system versions that they enter. Systems that rely essentially on running other
ATP systems without adding value are deprecated; the competition panel may disallow or move
such systems to the demonstration division.

The division winners from the previous CASC are automatically entered into their divisions,
to provide benchmarks against which progress can be judged. Prover9 2009-11A is automatically
entered into the FOF division, to provide a fixed-point against which progress can be judged.

9

CASC-J8 Geo↵ Sutcli↵e

5.1 System Description

A system description has to be provided for each ATP system entered, using the HTML schema
supplied on the CASC web site. (See Section 7 for these descriptions.) The schema has the
following sections:

• Architecture. This section introduces the ATP system, and describes the calculus and
inference rules used.

• Strategies. This section describes the search strategies used, why they are e↵ective, and
how they are selected for given problems. Any strategy tuning that is based on specific
problems’ characteristics must be clearly described (and justified in light of the tuning
restrictions described in Section 6.1).

• Implementation. This section describes the implementation of the ATP system, including
the programming language used, important internal data structures, and any special code
libraries used. The availability of the system is also given here.

• Expected competition performance. This section makes some predictions about the per-
formance of the ATP system in each of the divisions and categories in which it is com-
peting.

• References.

The system description has to be emailed to the competition organizers by the system
description deadline. The system descriptions form part of the competition proceedings.

5.2 Sample Solutions

For systems in the proof/model classes, representative sample solutions must be emailed to the
competition organizers by the sample solutions deadline. Use of the TPTP format for proofs
and finite interpretations is encouraged. The competition panel decides whether or not proofs
and models are acceptable.

Proof/model samples are required as follows:

• THF: SET0144̂
• TFA: DAT013=1
• FOF and LTB: SEU140+2
• FNT: NLP042+1 and SWV017+1

An explanation must be provided for any non-obvious features.

6 System Requirements

6.1 System Properties

Entrants must ensure that their systems execute in the competition environment, and have
the following properties. Entrants are advised to finalize their installation packages and check
these properties well in advance of the system delivery deadline. This gives the competition
organizers time to help resolve any di�culties encountered.

Soundness and Completeness

• Systems must be sound. At some time before the competition all the systems in the
competition divisions are tested for soundness. Non-theorems are submitted to the sys-
tems in the THF, TFA, FOF, EPR, and LTB divisions, and theorems are submitted to

10

CASC-J8 Geo↵ Sutcli↵e

the systems in the TFN, FNT and EPR divisions. Finding a proof of a non-theorem or
a disproof of a theorem indicates unsoundness. If a system fails the soundness testing
it must be repaired by the unsoundness repair deadline or be withdrawn. For systems
running on entrant supplied computers in the demonstration division, the entrant must
perform the soundness testing and report the results to the competition organizers.

• Systems do not have to be complete in any sense, including calculus, search control,
implementation, or resource requirements.

• All techniques used must be general purpose, and expected to extend usefully to new un-
seen problems. The precomputation and storage of information about individual TPTP
problems and axiom sets is not allowed. Strategies and strategy selection based on individ-
ual TPTP problems is not allowed. If machine learning procedures are used, the learning
must ensure that su�cient generalization is obtained so that no there is no specialization
to individual problems or their solutions.

• The LTB training problems and solutions may be used for producing generally useful
strategies that extend to other problems in the problem sets. Such strategies can rely
on the consistent naming of symbols and formulas in the problem sets, and may use
techniques for memorization and generalization of problems and solutions in the training
set. The system description must fully explain any such tuning or training that has
been done. Precomputation and storage of information about other problems in the LTB
problem sets, or their solutions, is not allowed.

• The competition panel may disqualify any system whose tuning or training is deemed to
be problem specific rather than general purpose.

• The system’s performance must be reproducible by running the system again.

Execution

• Systems that cannot run on the competition computers can be entered into the demon-
stration division.

• Systems must be fully automatic, i.e., all command line switches have to be the same for
all problems in each division.

• In the LTB division the systems must attempt the problems in the order given in the batch
specification file. Systems may not start any attempt on a problem, including reading the
problem file, before ending the attempt on the preceding problem.

Output

• In the non-LTB divisions all solution output must be to stdout. In the LTB division all
solution output must be to the named output file for each problem.

• In the LTB division the systems must print SZS notification lines to stdout when starting
and ending work on a problem (including any cleanup work, such as deleting temporary
files). For example

% SZS status Started for /home/graph/tptp/TPTP/Problems/CSR/CSR075+2.p

... (system churns away, result and solution output to file)

% SZS status Theorem for /home/graph/tptp/TPTP/Problems/CSR/CSR075+2.p

% SZS status Ended for /home/graph/tptp/TPTP/Problems/CSR/CSR075+2.p

11

CASC-J8 Geo↵ Sutcli↵e

• For each problem, the system must output a distinguished string indicating what solution
has been found or that no conclusion has been reached. Systems must use the SZS
ontology and standards [88] for this. For example

SZS status Theorem for SYN075+1

or

SZS status GaveUp for SYN075+1

In the LTB division this line must be the last line output before the ending notification
line (the line must also be output to the output file).

• When outputting proofs/models, the start and end of the proof/model must be delimited
by distinguished strings. Systems must use the SZS ontology and standards for this. For
example

SZS output start CNFRefutation for SYN075-1

...

SZS output end CNFRefutation for SYN075-1

The string specifying the problem status must be output before the start of a proof/model.
Use of the TPTP format for proofs and finite interpretations is encouraged [105].

Resource Usage

• Systems that run on the competition computers must be interruptible by a SIGXCPU signal,
so that the CPU time limit can be imposed, and interruptible by a SIGALRM signal, so that
the wall clock time limit can be imposed. For systems that create multiple processes, the
signal is sent first to the process at the top of the hierarchy, then one second later to all
processes in the hierarchy. The default action on receiving these signals is to exit (thus
complying with the time limit, as required), but systems may catch the signals and exit
of their own accord. If a system runs past a time limit this is noticed in the timing data,
and the system is considered to have not solved that problem.

• If a system terminates of its own accord, it may not leave any temporary or intermediate
output files. If a system is terminated by a SIGXCPU or SIGALRM, it may not leave any
temporary or intermediate files anywhere other than in /tmp.

• For practical reasons excessive output from an ATP system is not allowed. A limit,
dependent on the disk space available, is imposed on the amount of output that can be
produced.

6.2 System Delivery

For systems in the non-LTB divisions, entrants must email a StarExec installation package to
the competition organizers by the system delivery deadline. The installation package must be a
.tgz file containing only the components necessary for running the system (i.e., not including
source code, etc.). The entrants must also email a .tgz file containing the source code and any
files required for building the StarExec installation package to the competition organizers by
the system delivery deadline.

For systems running on entrant supplied computers in the demonstration division, entrants
must email a .tgz file containing the source code and any files required for building the exe-
cutable system to the competition organizers by the system delivery deadline.

12

CASC-J8 Geo↵ Sutcli↵e

After the competition all competition division systems’ source code is made publicly avail-
able on the CASC web site. In the demonstration division, the entrant specifies whether or not
the source code is placed on the CASC web site. An open source license is encouraged.

6.3 System Execution

Execution of the ATP systems is controlled by StarExec. The jobs are queued onto the com-
puters so that each CPU is running one job at a time. All attempts at the Nth problems in all
the divisions and categories are started before any attempts at the (N+1)th problems.

A system has solved a problem i↵ it outputs its termination string within the time limit,
and a system has produced a proof/model i↵ it outputs its end-of-proof/model string within
the time limit. The result and timing data is used to generate an HTML file, and a web browser
is used to display the results.

The execution of the demonstration division systems is supervised by their entrants.

7 The ATP Systems

These system descriptions were written by the entrants.

7.1 Beagle 0.9.47

Peter Baumgartner
Data61, Australia

Architecture

Beagle [4] is an automated theorem prover for sorted first-order logic with equality over built-
in theories. The theories currently supported are integer arithmetic, linear rational arithmetic
and linear real arithmetic. It accepts formulas in the FOF and TFF formats of the TPTP
syntax, and formulas in the SMT-LIB version 2 format.

Beagle first converts the input formulas into clause normal form. Pure arithmetic (sub-
)formulas are treated by eager application of quantifier elimination. The core reasoning compo-
nent implements the Hierarchic Superposition Calculus with Weak Abstraction (HSPWA) [5].
Extensions are a splitting rule for clauses that can be divided into variable disjoint parts, and a
partial instantiation rule for variables with finite domain, and two kinds of background-sorted
variables trading o↵ completeness vs. search space.

The HSPWA calculus generalizes the superposition calculus by integrating theory reasoning
in a black-box style. For the theories mentioned above, Beagle combines quantifier elimination
procedures and other solvers to dispatch proof obligations over these theories. The default
solvers are an improved version of Cooper’s algorithm for linear integer arithmetic, and the
CVC4 SMT solver for linear real/rational arithmetic. Non-linear integer arithmetic is treated
by partial instantiation and additional lemmas.

Strategies

Beagles uses the Discount loop for saturating a clause set under the calculus’ inference rules.
Simplification techniques include standard ones, such as subsumption deletion, demodulation
by ordered unit equations, and tautology deletion. It also includes theory specific simplification

13

CASC-J8 Geo↵ Sutcli↵e

rules for evaluating ground (sub)terms, and for exploiting cancellation laws and properties of
neutral elements, among others. In the competition an aggressive form of arithmetic simplifi-
cation is used, which seems to perform best in practice.

Beagle uses strategy scheduling by trying (at most) three flag settings sequentially.

Implementation

Beagle is implemented in Scala. It is a full implementation of the HSPWA calculus. It uses a
simple form of indexing, essentially top-symbol hashes, stored with each term and computed in
a lazy way. Fairness is achieved through a combination of measuring clause weights and their
derivation-age. It can be fine-tuned with a weight-age ratio parameter, as in other provers.
Beagle’s web site is

https://bitbucket.org/peba123/beagle

Expected Competition Performance

Beagle is implemented in a straightforward way and would benefit from optimized data
structures. We do not expect it to come in among the first.

7.2 CVC4 1.5

Andrew Reynolds
EPFL, Switzerland

Architecture

CVC4 [2] is an SMT solver based on the DPLL(T) architecture [45] that includes built-in
support for many theories, including linear arithmetic, arrays, bit vectors, datatypes and strings.
It incorporates approaches for handling universally quantified formulas. CVC4 primarily uses
heuristic approaches based on E-matching for theorems, and finite model finding approaches
for non-theorems.

Like other SMT solvers, CVC4 treats quantified formulas using a two-tiered approach. First,
quantified formulas are replaced by fresh Boolean predicates and the ground theory solver(s) are
used in conjunction with the underlying SAT solver to determine satisfiability. If the problem
is unsatisfiable at the ground level, then the solver answers “unsatisfiable”. Otherwise, the
quantifier instantiation module is invoked, and will either add instances of quantified formulas
to the problem, answer “satisfiable”, or return unknown.

Finite model finding in CVC4 targets problems containing background theories whose quan-
tification is limited to finite and uninterpreted sorts. In finite model finding mode, CVC4 uses a
ground theory of finite cardinality constraints that minimizes the number of ground equivalence
classes, as described in [60]. When the problem is satisfiable at the ground level, a candidate
model is constructed that contains complete interpretations for all predicate and function sym-
bols. It then adds instances of quantified formulas that are in conflict with the candidate model,
as described in [61]. If no instances are added, it reports “satisfiable”.

14

CASC-J8 Geo↵ Sutcli↵e

Strategies

For handling theorems, CVC4 primarily uses configurations that combine conflict-based
quantifier instantiation [59] and E-matching. CVC4 uses a handful of orthogonal trigger selec-
tion strategies for E-matching.

For handling non-theorems, CVC4 primarily uses finite model finding techniques. These
techniques can also be used for bounded integer quantification for non-theorems involving arith-
metic [57]. Since CVC4 with finite model finding is also capable of establishing unsatisfiability,
it is used as a strategy for theorems as well.

For problems in pure arithmetic, CVC4 uses techniques for counterexample-guided quantifier
instantiation [58], which select relevant quantifier instantiations based on models for counterex-
amples to quantified formulas. CVC4 relies on this method both for theorems in TFA and
non-theorems in TFN.

Implementation

CVC4 is implemented in C++. The code is available from

https://github.com/CVC4

Expected Competition Performance

CVC4 1.5 is the CASC-25 TFN division winner.

7.3 CVC4 1.5

Andrew Reynolds
University of Iowa, USA

Architecture

CVC4 [2] is an SMT solver based on the DPLL(T) architecture [45] that includes built-in
support for many theories, including linear arithmetic, arrays, bit vectors, datatypes, finite sets
and strings. It incorporates approaches for handling universally quantified formulas. For prob-
lems involving free function and predicate symbols, CVC4 primarily uses heuristic approaches
based on E-matching for theorems, and finite model finding approaches for non-theorems. For
problems in pure arithmetic, CVC4 uses techniques for counterexample-guided quantifier in-
stantiation [58].

Like other SMT solvers, CVC4 treats quantified formulas using a two-tiered approach. First,
quantified formulas are replaced by fresh Boolean predicates and the ground theory solver(s)
are used in conjunction with the underlying SAT solver to determine satisfiability. If the prob-
lem is unsatisfiable at the ground level, then the solver answers “unsatisfiable”. Otherwise, the
quantifier instantiation module is invoked, and will either add instances of quantified formu-
las to the problem, answer “satisfiable”, or return unknown. Finite model finding in CVC4
targets problems containing background theories whose quantification is limited to finite and
uninterpreted sorts. In finite model finding mode, CVC4 uses a ground theory of finite car-
dinality constraints that minimizes the number of ground equivalence classes, as described in
[60]. When the problem is satisfiable at the ground level, a candidate model is constructed that

15

CASC-J8 Geo↵ Sutcli↵e

contains complete interpretations for all predicate and function symbols. It then adds instances
of quantified formulas that are in conflict with the candidate model, as described in [61]. If no
instances are added, it reports “satisfiable”.

Strategies

For handling theorems, CVC4 primarily uses configurations that combine conflict-based
quantifier instantiation [59] and E-matching. CVC4 uses a handful of orthogonal trigger selec-
tion strategies for E-matching. For handling non-theorems, CVC4 primarily uses finite model
finding techniques. Since CVC4 with finite model finding is also capable of establishing un-
satisfiability, it is used as a strategy for theorems as well. For problems in pure arithmetic,
CVC4 uses variations of counterexample-guided quantifier instantiation, which select relevant
quantifier instantiations based on models for counterexamples to quantified formulas. CVC4
relies on this method both for theorems in TFA and non-theorems in TFN.

Implementation

CVC4 is implemented in C++. The code is available from

https://github.com/CVC4

Expected Competition Performance

CVC4 should perform moderately better than last year in FOF and TFA. The main im-
provements have been a new implementation of counterexample-guided quantifier instantiation
[58] for linear real and integer arithmetic, optimizations for ground theory combination and
conflict-based quantifier instantiation, and the use of new strategies. It should perform roughly
the same in FNT and TFN.

7.4 E 2.0

Stephan Schulz
DHBW Stuttgart, Germany

Architecture

E 2.0 [67, 71] is a purely equational theorem prover for many-sorted first-order logic with
equality. It consists of an (optional) clausifier for pre-processing full first-order formulae into
clausal form, and a saturation algorithm implementing an instance of the superposition calculus
with negative literal selection and a number of redundancy elimination techniques. E is based on
the DISCOUNT-loop variant of the given-clause algorithm, i.e., a strict separation of active and
passive facts. No special rules for non-equational literals have been implemented. Resolution
is e↵ectively simulated by paramodulation and equality resolution.

For the LTB divisions, a control program uses a SInE-like analysis to extract reduced ax-
iomatizations that are handed to several instances of E. E will not use on-the-fly learning this
year.

16

CASC-J8 Geo↵ Sutcli↵e

Strategies

Proof search in E is primarily controlled by a literal selection strategy, a clause selection
heuristic, and a simplification ordering. The prover supports a large number of pre-programmed
literal selection strategies. Clause selection heuristics can be constructed on the fly by combining
various parameterized primitive evaluation functions, or can be selected from a set of predefined
heuristics. Clause evaluation heuristics are based on symbol-counting, but also take other clause
properties into account. In particular, the search can prefer clauses from the set of support,
or containing many symbols also present in the goal. Supported term orderings are several
parameterized instances of Knuth-Bendix-Ordering (KBO) and Lexicographic Path Ordering
(LPO).

For CASC-J8, E implements a strategy-scheduling automatic mode. The total CPU time
available is broken into several (unequal) time slices. For each time slice, the problem is classified
into one of several classes, based on a number of simple features (number of clauses, maximal
symbol arity, presence of equality, presence of non-unit and non-Horn clauses, ...). For each
class, a schedule of strategies is greedily constructed from experimental data as follows: The
first strategy assigned to a schedule is the the one that solves the most problems from this class
in the first time slice. Each subsequent strategy is selected based on the number of solutions
on problems not already solved by a preceding strategy.

About 210 di↵erent strategies have been evaluated on all untyped first-order problems from
TPTP 6.0.0, and about 180 of these strategies are used in the automatic mode.

Implementation

E is build around perfectly shared terms, i.e. each distinct term is only represented once
in a term bank. The whole set of terms thus consists of a number of interconnected directed
acyclic graphs. Term memory is managed by a simple mark-and-sweep garbage collector. Un-
conditional (forward) rewriting using unit clauses is implemented using perfect discrimination
trees with size and age constraints. Whenever a possible simplification is detected, it is added
as a rewrite link in the term bank. As a result, not only terms, but also rewrite steps are
shared. Subsumption and contextual literal cutting (also known as subsumption resolution) is
supported using feature vector indexing [68]. Superposition and backward rewriting use fin-
gerprint indexing [70], a new technique combining ideas from feature vector indexing and path
indexing. Finally, LPO and KBO are implemented using the elegant and e�cient algorithms
developed by Bernd Löchner in [43, 42]. The prover and additional information are available at

http://www.eprover.org

Expected Competition Performance

E 2.0 has slightly better strategies than previous versions, and has some minor improvements
in the inference engine. The system is expected to perform well in most proof classes, but will
at best complement top systems in the disproof classes.

17

CASC-J8 Geo↵ Sutcli↵e

7.5 Geo-III 2016C

Hans de Nivelle
University of Wroc law, Poland

Architecture

Geo III is a theorem prover for Partial Classical Logic, based on reduction to Kleene Logic
[23]. Currently, only Chapters 4 and 5 are implemented. Since Kleene logic generalizes 2-valued
logic, Geo III can take part in CASC. Apart from being 3-valued, the main di↵erences with
earlier versions of Geo are (1) more sophisticated learning schemes, (2) improved proof logging,
and (3) replacement of recursion by explicit use of a stack. The Geo family of provers uses
exhaustive backtracking, combined with learning after failure. Earlier versions learned only
conflict formulas. Geo III learns disjunctions of arbitrary width. Experiments show that this
often results in shorter proofs.

If Geo will be ever embedded in proof assistants, these assistants will require proofs. In
order to be able to provide these at the required level of detail, Geo III contains a hierarchy
of proof rules that is independent of the rest of the system, and that can be modified indepen-
dently. In order to be flexible in the main loop, recursion was replaced by an explicit stack.
Using an explicit stack, it is easier to remove unused assumptions, or to rearrange the order of
assumptions. Also, restarts are easier to implement with a stack.

Strategies

Geo uses breadth-first, exhaustive model search, combined with learning. In case of branch-
ing, the branches are explored in random order. Specially for CASC, a restart strategy was
added, which ensures that proof search is always restarted after 4 minutes. This was done
because Geo III has no indexing. After some time, proof search becomes so ine�cient that it
makes no sense to continue, so that it is better to restart.

Implementation

Geo III is written in C++-11. No features outside of the standard are used. It has been
tested with g++ version 4.8.4 and with clang. Di↵erence with previous year’s version is that
version 2016C uses sophisticated matching algorithms [24] for establishing if a geometric formula
is false in an interpretation.

Expected Competition Performance

We expect that Geo 2016C will be better than Geo 2015E.

18

CASC-J8 Geo↵ Sutcli↵e

7.6 iProver 2.5

Kontantin Korovin
University of Manchester, United Kingdom

Architecture

iProver is an automated theorem prover based on an instantiation calculus Inst-Gen [26, 36]
which is complete for first-order logic. iProver combines first-order reasoning with ground rea-
soning for which it uses MiniSat [25] and optionally PicoSAT [12] (only MiniSat will be used
at this CASC). iProver also combines instantiation with ordered resolution; see [35, 36] for the
implementation details. The proof search is implemented using a saturation process based on
the given clause algorithm. iProver uses non-perfect discrimination trees for the unification
indexes, priority queues for passive clauses, and a compressed vector index for subsumption
and subsumption resolution (both forward and backward). The following redundancy elimi-
nations are implemented: blocking non-proper instantiations; dismatching constraints [27, 35];
global subsumption [35]; resolution-based simplifications and propositional-based simplifica-
tions. A compressed feature vector index is used for e�cient forward/backward subsumption
and subsumption resolution. Equality is dealt with (internally) by adding the necessary ax-
ioms of equality. Recent changes in iProver include improved preprocessing and incremental
finite model finding; support of the AIG format for hardware verification and model-checking
(implemented with Dmitry Tsarkov).

In the LTB division, iProver uses axiom selection based on the Sine algorithm [32] as imple-
mented in Vampire [39], i.e., axiom selection is done by Vampire and proof attempts are done
by iProver.

Some of iProver features are summarised below.

• proof extraction for both instantiation and resolution [38],

• model representation, using first-order definitions in term algebra [38],

• answer substitutions,

• semantic filtering,

• incremental finite model finding,

• sort inference, monotonic [21] and non-cyclic [37] sorts,

• predicate elimination [33].

Sort inference is targeted at improving finite model finding and symmetry breaking. Se-
mantic filtering is used in preprocessing to eliminated irrelevant clauses. Proof extraction is
challenging due to simplifications such global subsumption which involve global reasoning with
the whole clause set and can be computationally expensive.

Strategies

iProver has around 60 options to control the proof search including options for literal selec-
tion, passive clause selection, frequency of calling the SAT solver, simplifications and options
for combination of instantiation with resolution. At CASC iProver will execute a small num-
ber of fixed schedules of selected options depending on general syntactic properties such as

19

CASC-J8 Geo↵ Sutcli↵e

Horn/non-Horn, equational/non-equational, and maximal term depth. For the LTB and FNT
divisions several strategies are run in parallel.

Implementation

Prover is implemented in OCaml and for the ground reasoning uses MiniSat [25]. iProver
accepts FOF and CNF formats. Vampire [39, 31] and E prover [71] are used for proof-producing
clausification of FOF problems, Vampire is also used for axiom selection [32] in the LTB division.

iProver is available at:

http://www.cs.man.ac.uk/~korovink/iprover/

Expected Competition Performance

Compared to the last year, we restructured core datastructures aiming at flexibility to di↵er-
ent extensions rather than performance. We also improved preprocessing, including predicated
elimination. We expect a moderatly improved overall performance.

7.7 Isabelle 2015

Jasmin Blanchette
Inria Nancy, France

Architecture

Isabelle/HOL 2015 [47] is the higher-order logic incarnation of the generic proof assistant
Isabelle2015. Isabelle/HOL provides several automatic proof tactics, notably an equational
reasoner [46], a classical reasoner [55], and a tableau prover [53]. It also integrates external first-
and higher-order provers via its subsystem Sledgehammer [54, 13]. Isabelle includes a parser
for the TPTP syntaxes CNF, FOF, TFF0, and THF0, due to Nik Sultana. It also includes
TPTP versions of its popular tools, invokable on the command line as isabelle tptp tool

max secs file.p. For example:

isabelle tptp_isabelle_hot 100 SEU/SEU824^3.p

Isabelle is available in two versions. The HOT version (which is not participating in CASC-
J8) includes LEO-II [8] and Satallax [18] as Sledgehammer backends, whereas the competition
version leaves them out.

Strategies

The Isabelle tactic submitted to the competition simply tries the following tactics sequen-
tially:
sledgehammer

Invokes the following sequence of provers as oracles via Sledgehammer:

• satallax - Satallax 2.7 [18] (HOT version only);

• leo2 - LEO-II 1.6.2 [8] (HOT version only);

20

CASC-J8 Geo↵ Sutcli↵e

• spass - SPASS 3.8ds [15];

• vampire - Vampire 3.0 (revision 1435) [62];

• e - E 1.8 [69];

nitpick

For problems involving only the type $o of Booleans, checks whether a finite model exists
using Nitpick [17].
simp

Performs equational reasoning using rewrite rules [46].
blast

Searches for a proof using a fast untyped tableau prover and then attempts to reconstruct
the proof using Isabelle tactics [53].
auto+spass

Combines simplification and classical reasoning [55]
under one roof; then invoke Sledgehammer with SPASS on any subgoals that emerge.
z3

Invokes the SMT solver Z3 4.4.0 [22].
cvc4

Invokes the SMT solver CVC4 1.5pre [3].
fast

Searches for a proof using sequent-style reasoning, performing a depth-first search [55].
Unlike blast, it construct proofs directly in Isabelle. That makes it slower but enables it to
work in the presence of the more unusual features of HOL, such as type classes and function
unknowns.
best

Similar to fast, except that it performs a best-first search.
force

Similar to auto, but more exhaustive.
meson

Implements Loveland’s MESON procedure [44]. Constructs proofs directly in Isabelle.
fastforce

Combines fast and force.

Implementation

Isabelle is a generic theorem prover written in Standard ML. Its meta-logic, Isabelle/Pure,
provides an intuitionistic fragment of higher-order logic. The HOL object logic extends pure
with a more elaborate version of higher-order logic, complete with the familiar connectives and
quantifiers. Other object logics are available, notably FOL (first-order logic) and ZF (Zermelo-
Fraenkel set theory).

The implementation of Isabelle relies on a small LCF-style kernel, meaning that inferences
are implemented as operations on an abstract theorem datatype. Assuming the kernel is correct,
all values of type theorem are correct by construction.

Most of the code for Isabelle was written by the Isabelle teams at the University of Cam-
bridge and the Technische Universität München. Isabelle/HOL is available for all major plat-
forms under a BSD-style license from

http://www.cl.cam.ac.uk/research/hvg/Isabelle/

21

CASC-J8 Geo↵ Sutcli↵e

Expected Competition Performance

Thanks to the addition of CVC4 and a new version of Vampire, Isabelle might have become
now strong enough to take on Satallax and its various declensions. But we expect Isabelle to
end in second or third place, to be honest.

7.8 leanCoP 2.2

Jens Otten
University of Potsdam, Germany

Architecture

leanCoP [52, 48] is an automated theorem prover for classical first-order logic with equality.
It is a very compact implementation of the connection (tableau) calculus [11, 41].

Strategies

The reduction rule of the connection calculus is applied before the extension rule. Open
branches are selected in a depth-first way. Iterative deepening on the proof depth is performed
in order to achieve completeness. Additional inference rules and techniques include regularity,
lemmata, and restricted backtracking [49]. leanCoP uses an optimized structure-preserving
transformation into clausal form [49] and a fixed strategy scheduling, which is controlled by a
shell script.

Implementation

leanCoP is implemented in Prolog. The source code of the core prover consists only of a few
lines of code. Prolog’s built-in indexing mechanism is used to quickly find connections when
the extension rule is applied.

leanCoP can read formulae in leanCoP syntax and in TPTP first-order syntax. Equality
axioms and axioms to support distinct objects are automatically added if required. The leanCoP
core prover returns a very compact connection proof, which is then translated into a more
comprehensive output format, e.g., into a lean (TPTP-style) connection proof or into a readable
text proof.

The source code of leanCoP 2.2 is available under the GNU general public license. It can
be downloaded from the leanCoP website at:

http://www.leancop.de

The website also contains information about ileanCoP [48] and MleanCoP [50, 51], two versions
of leanCoP for first-order intuitionistic logic and first-order modal logic, respectively.

Expected Competition Performance

As the prover has not changed, the performance of leanCoP 2.2 is expected to be the same
as last year.

22

CASC-J8 Geo↵ Sutcli↵e

7.9 LEO-II 1.7.0

Max Wisniewski
Freie Universität Berlin, Germany

Architecture

LEO-II [8], the successor of LEO [7], is a higher-order ATP system based on extensional
higher-order resolution. More precisely, LEO-II employs a refinement of extensional higher-
order RUE resolution [6]. LEO-II is designed to cooperate with specialist systems for fragments
of higher-order logic. By default, LEO-II cooperates with the first-order ATP system E [66].
LEO-II is often too weak to find a refutation amongst the steadily growing set of clauses on its
own. However, some of the clauses in LEO-II’s search space attain a special status: they are
first-order clauses modulo the application of an appropriate transformation function. Therefore,
LEO-II launches a cooperating first-order ATP system every n iterations of its (standard)
resolution proof search loop (e.g., 10). If the first-order ATP system finds a refutation, it
communicates its success to LEO-II in the standard SZS format. Communication between
LEO-II and the cooperating first-order ATP system uses the TPTP language and standards.

Strategies

LEO-II employs an adapted “Otter loop”. Moreover, LEO-II uses some basic strategy
scheduling to try di↵erent search strategies or flag settings. These search strategies also include
some di↵erent relevance filters.

Implementation

LEO-II is implemented in OCaml 4, and its problem representation language is the TPTP
THF language [9]. In fact, the development of LEO-II has largely paralleled the development of
the TPTP THF language and related infrastructure [104]. LEO-II’s parser supports the TPTP
THF0 language and also the TPTP languages FOF and CNF.

Unfortunately the LEO-II system still uses only a very simple sequential collaboration model
with first-order ATPs instead of using the more advanced, concurrent and resource-adaptive
OANTS architecture [10] as exploited by its predecessor LEO.

The LEO-II system is distributed under a BSD style license, and it is available from

http://www.leoprover.org

Expected Competition Performance

Leo-II 1.7.0 di↵ers from last years CASC version only wrt to some proof generation aspects
and some other minor modifications. These changes are not expected to improve LEO-II’s
performance at CASC over the previous version.

23

CASC-J8 Geo↵ Sutcli↵e

7.10 Leo-III 1.0

Max Wisniewski
Freie Universität Berlin, Germany

Architecture

Leo-III [120], the successor of LEO-II [8], is a higher-order ATP system based on ordered
higher-order paramodulation employing an agent-based blackboard architecture. In its first
version, Leo-III is using multiple, adapted sequential DISCOUNT loops, each with di↵erent
search strategies. In addition, similar to LEO-II, each sequential loop will call non-blockingly
an external ATP every n iterations of the sequential loop. In the current version, the called
ATPs have to understand THF syntax and return the result in standard SZS format. In the
competition mode only our own prover LEO-II will be used as a cooperation prover. If either
one of the paramodulation loops or one of the external provers finds a proof, the system stops
and returns the result.

Strategies

Leo-III runs multiple search strategies in parallel. These strategies containing some incom-
plete versions, that are outperforming the complete versions for some problem inputs. The
search also di↵ers in the employed relevance filters, preprocessing techniques and hence the
considered formula set.

Ultimately, Leo-III is in its first version an enhancement of LEO-II. The main improvement
in comparison to its predecessor is the better equational handling with the new calculus, and
the multi-search of the agent architecture.

Implementation

Leo-III is implemented in Scala. Its natural problem representation is the TPTP THF
language [9], but it can process every language of the TPTP including TFF and FOF. Leo-III
is available from:

https://github.com/cbenzmueller/Leo-III

Expected Competition Performance

In its first version Leo-III is not yet tuned for performance, but more of a straight-forward
implementation of the calculus itself. Due to its cooperation with LEO-II it will work at least
as good as LEO-II, but it will most probably not be able to compete with the main competitors.

24

CASC-J8 Geo↵ Sutcli↵e

7.11 Leo+III 1.0

Max Wisniewski
Freie Universität Berlin, Germany

Architecture

Leo-III [120], the successor of LEO-II [8], is a higher-order ATP system based on ordered
higher-order paramodulation employing an agent-based blackboard architecture. In its first
version, Leo-III is using multiple, adapted sequential DISCOUNT loops, each with di↵erent
search strategies. In addition, similar to LEO-II, each sequential loop will call non-blockingly
an external ATP every n iterations of the sequential loop. In the current version, the called
ATPs have to understand THF syntax and return the result in standard SZS format. In the
competition mode only our own prover LEO-II will be used as a cooperation prover. If either
one of the paramodulation loops or one of the external provers finds a proof, the system stops
and returns the result. Leo+III is Leo-III ’plus’ Satallax as a subprover.

Strategies

Leo-III runs multiple search strategies in parallel. These strategies containing some incom-
plete versions, that are outperforming the complete versions for some problem inputs. The
search also di↵ers in the employed relevance filters, preprocessing techniques and hence the
considered formula set.

Ultimately, Leo-III is in its first version an enhancement of LEO-II. The main improvement
in comparison to its predecessor is the better equational handling with the new calculus, and
the multi-search of the agent architecture.

Implementation

Leo-III is implemented in Scala. Its natural problem representation is the TPTP THF
language [9], but it can process every language of the TPTP including TFF and FOF. Leo-III
is available from:

https://github.com/cbenzmueller/Leo-III

Expected Competition Performance

This version is only for demonstrative purposes. For the use of Satallax a di↵erent set of
preprocessing techniques is used, but this version should at least be as competitive as Leo-III
in the competition.

25

CASC-J8 Geo↵ Sutcli↵e

7.12 Nitpick 2015

Jasmin Blanchette
Inria Nancy, France

Architecture

Nitpick [17] is an open source counterexample generator for Isabelle/HOL [47]. It builds on
Kodkod [117], a highly optimized first-order relational model finder based on SAT. The name
Nitpick is appropriated from a now retired Alloy precursor. In a case study, it was applied
successfully to a formalization of the C++ memory model [16].

Strategies

Nitpick employs Kodkod to find a finite model of the negated conjecture. The translation
from HOL to Kodkod’s first-order relational logic (FORL) is parameterized by the cardinalities
of the atomic types occurring in it. Nitpick enumerates the possible cardinalities for each
atomic type, exploiting monotonicity to prune the search space [14]. If a formula has a finite
counterexample, the tool eventually finds it, unless it runs out of resources.

SAT solvers are particularly sensitive to the encoding of problems, so special care is needed
when translating HOL formulas. As a rule, HOL scalars are mapped to FORL singletons and
functions are mapped to FORL relations accompanied by a constraint. More specifically, an
n-ary first-order function (curried or not) can be coded as an (n + 1)-ary relation accompanied
by a constraint. However, if the return type is the type of Booleans, the function is more
e�ciently coded as an unconstrained n-ary relation. Higher-order quantification and functions
bring complications of their own. A function from sigma to tau cannot be directly passed as
an argument in FORL; Nitpick’s workaround is to pass —sigma— arguments of type tau that
encode a function table.

Implementation
Nitpick, like most of Isabelle/HOL, is written in Standard ML. Unlike Isabelle itself, which
adheres to the LCF small-kernel discipline, Nitpick does not certify its results and must be
trusted.

Nitpick is available as part of Isabelle/HOL for all major platforms under a BSD-style license
from

http://www.cl.cam.ac.uk/research/hvg/Isabelle/

Expected Competition Performance

Thanks to Kodkod’s amazing power, we expect that Nitpick will beat both Satallax and
Refute with its hands tied behind its back.

26

CASC-J8 Geo↵ Sutcli↵e

7.13 Princess 160606

Philipp Rümmer
Uppsala University, Sweden

Architecture

Princess [64, 65] is a theorem prover for first-order logic modulo linear integer arithmetic.
The prover uses a combination of techniques from the areas of first-order reasoning and SMT
solving. The main underlying calculus is a free-variable tableau calculus, which is extended with
constraints to enable backtracking-free proof expansion, and positive unit hyper-resolution for
lightweight instantiation of quantified formulae. Linear integer arithmetic is handled using a
set of built-in proof rules resembling the Omega test, which altogether yields a calculus that
is complete for full Presburger arithmetic, for first-order logic, and for a number of further
fragments. In addition, some built-in procedures for nonlinear integer arithmetic are available.

The internal calculus of Princess only supports uninterpreted predicates; uninterpreted func-
tions are encoded as predicates, together with the usual axioms. Through appropriate transla-
tion of quantified formulae with functions, the e-matching technique common in SMT solvers
can be simulated; triggers in quantified formulae are chosen based on heuristics similar to those
in the Simplify prover.

Strategies

For CASC, Princess will run a fixed schedule of configurations for each problem (portfolio
method). Configurations determine, among others, the mode of proof expansion (depth-first,
breadth-first), selection of triggers in quantified formulae, clausification, and the handling of
functions. The portfolio was chosen based on training with a random sample of problems from
the TPTP library.

Implementation

Princess is entirely written in Scala and runs on any recent Java virtual machine; besides
the standard Scala and Java libraries, only the Cup parser library is used. Princess is available
from:

http://www.philipp.ruemmer.org/princess.shtml

Expected Competition Performance

Princess should perform roughly as in 2015. Compared to last year, initial support for
outputting proofs was added, though not for all relevant configurations yet.

27

CASC-J8 Geo↵ Sutcli↵e

7.14 Refute 2015

Jasmin Blanchette
Inria Nancy, France

Architecture

Refute [119] is an open source counterexample generator for Isabelle/HOL [47] based on a
SAT solver, and Nitpick’s [17] precursor.

Strategies

Refute employs a SAT solver to find a finite model of the negated conjecture. The translation
from HOL to propositional logic is parameterized by the cardinalities of the atomic types
occurring in the conjecture. Refute enumerates the possible cardinalities for each atomic type.
If a formula has a finite counterexample, the tool eventually finds it, unless it runs out of
resources.

Implementation

Refute, like most of Isabelle/HOL, is written in Standard ML. Unlike Isabelle itself, which
adheres to the LCF small-kernel discipline, Refute does not certify its results and must be
trusted.

Refute is available as part of Isabelle/HOL for all major platforms under a BSD-style license
from

http://www.cl.cam.ac.uk/research/hvg/Isabelle/

Expected Competition Performance

We expect Refute to beat Satallax but also to be beaten by Nitpick.

7.15 Satallax 2.8

Nik Sultana
Cambridge University, United Kingdom

Architecture

Satallax 2.8 [18] is an automated theorem prover for higher-order logic. The particular form
of higher-order logic supported by Satallax is Church’s simple type theory with extensionality
and choice operators. The SAT solver MiniSat [25] is responsible for much of the search for a
proof. The theoretical basis of search is a complete ground tableau calculus for higher-order
logic [20] with a choice operator [1]. A problem is given in the THF format. A branch is formed
from the axioms of the problem and the negation of the conjecture (if any is given). From
this point on, Satallax tries to determine unsatisfiability or satisfiability of this branch. Satal-
lax progressively generates higher-order formulae and corresponding propositional clauses [19].
These formulae and propositional clauses correspond to instances of the tableau rules. Satallax
uses the SAT solver MiniSat as an engine to test the current set of propositional clauses for

28

CASC-J8 Geo↵ Sutcli↵e

unsatisfiability. If the clauses are unsatisfiable, then the original branch is unsatisfiable. Addi-
tionally, Satallax may optionally generate first-order formulas in addition to the propositional
clauses. If this option is used, then Satallax peroidically calls the first-order theorem prover E
to test for first-order unsatisfiability. If the set of first-order formulas is unsatisfiable, then the
original branch is unsatisfiable.

Strategies

There are about a hundred flags that control the order in which formulas and instantiation
terms are considered and propositional clauses are generated. Other flags activate some optional
extensions to the basic proof procedure (such as whether or not to call the theorem prover E).
A collection of flag settings is called a mode. Approximately 500 modes have been defined and
tested so far. A strategy schedule is an ordered collection of modes with information about
how much time the mode should be allotted. Satallax tries each of the modes for a certain
amount of time sequentially. Satallax 2.7 has strategy schedule consisting of 68 modes. Each
mode is tried for time limits ranging from 0.1 seconds to 54.9 seconds. The strategy schedule
was determined through experimentation using the THF problems in version 5.4.0 of the TPTP
library.

Implementation

Satallax is implemented in OCaml. A foreign function interface is used to interact with
MiniSat 2.2.0. Satallax is available from

http://mathgate.info/cebrown/satallax/

Expected Competition Performance

Satallax 2.8 is the CASC-25 THF division winner.

7.16 Satallax 3.0

Michael Färber
Universität Innsbruck, Austria

Architecture

Satallax 3.0 [18] is an automated theorem prover for higher-order logic. The particular form
of higher-order logic supported by Satallax is Church’s simple type theory with extensionality
and choice operators. The SAT solver MiniSat [25] is responsible for much of the proof search.
The theoretical basis of search is a complete ground tableau calculus for higher-order logic [20]
with a choice operator [1]. Problems are given in the THF format.

Proof search: A branch is formed from the axioms of the problem and the negation of the
conjecture (if any is given). From this point on, Satallax tries to determine unsatisfiability or
satisfiability of this branch. Satallax progressively generates higher-order formulae and corre-
sponding propositional clauses [Bro13]. These formulae and propositional clauses correspond
to instances of the tableau rules. Satallax uses the SAT solver MiniSat to test the current set of
propositional clauses for unsatisfiability. If the clauses are unsatisfiable, then the original branch

29

CASC-J8 Geo↵ Sutcli↵e

is unsatisfiable. Optionally, Satallax generates first-order formulae in addition to the propo-
sitional clauses. If this option is used, then Satallax periodically calls the first-order theorem
prover E to test for first-order unsatisfiability. If the set of first-order formulae is unsatisfiable,
then the original branch is unsatisfiable. Upon request, Satallax attempts to reconstruct a proof
which can be output in the TSTP format.

Strategies

There are about 140 flags that control the order in which formulae and instantiation terms
are considered and propositional clauses are generated. Other flags activate some optional
extensions to the basic proof procedure (such as whether or not to call the theorem prover E).
A collection of flag settings is called a mode. Approximately 500 modes have been defined and
tested so far. A strategy schedule is an ordered collection of modes with information about
how much time the mode should be allotted. Satallax tries each of the modes for a certain
amount of time sequentially. Satallax 3.0 has a strategy schedule consisting of 54 modes (15 of
which make use of E). Each mode is tried for time limits ranging from less than a second to
about 90 seconds. The strategy schedule was determined through experimentation using the
THF problems in version 6.3.0 of the TPTP library.

Implementation

Satallax is implemented in OCaml. A foreign function interface is used to interact with
MiniSat 2.2.0 Satallax is available at:

http://satallaxprover.com

Expected Competition Performance

Since 2015, systems are required to return TSTP proofs. Previous versions of Satallax could
only construct such proofs if E was not used in the search. Satallax 3.0 can construct a proof
when using E. Since some problems are (e↵ectively) only solvable when using E, this should
improve performance over last year. In addition, some support for guiding the search using
interpretations has been implemented. This is also expected to improve performance.

7.17 Vampire 4.0

Giles Reger
University of Manchester, United Kingdom

Architecture

Vampire 4.0 is an automatic theorem prover for first-order logic. Vampire implements the
calculi of ordered binary resolution and superposition for handling equality. It also implements
the Inst-gen calculus and a MACE-style finite model builder. Splitting in resolution-based proof
search is controlled by the AVATAR architecture, which uses a SAT solver to make splitting
decisions. Both resolution and instantiation based proof search make use of global subsumption.

A number of standard redundancy criteria and simplification techniques are used for pruning
the search space: subsumption, tautology deletion, subsumption resolution and rewriting by

30

CASC-J8 Geo↵ Sutcli↵e

ordered unit equalities. The reduction ordering is the Knuth-Bendix Ordering. Substitution
tree and code tree indexes are used to implement all major operations on sets of terms, literals
and clauses. Internally, Vampire works only with clausal normal form. Problems in the full
first-order logic syntax are clausified during preprocessing. Vampire implements many useful
preprocessing transformations including the Sine axiom selection algorithm.

When a theorem is proved, the system produces a verifiable proof, which validates both the
clausification phase and the refutation of the CNF.

Strategies

Vampire 4.0 provides a very large number of options for strategy selection. The most
important ones are:

• Choices of saturation algorithm:

– Limited Resource Strategy

– DISCOUNT loop

– Otter loop

– Instantiation using the Inst-Gen calculus

– MACE-style finite model building with sort inference

• Splitting via AVATAR

• A variety of optional simplifications.

• Parameterized reduction orderings.

• A number of built-in literal selection functions and di↵erent modes of comparing literals.

• Age-weight ratio that specifies how strongly lighter clauses are preferred for inference
selection.

• Set-of-support strategy.

• Ground equational reasoning via congruence closure.

• Evaluation of interpreted functions.

• Extensionality resolution with detection of extensionality axioms

Implementation

Vampire 4.0 is implemented in C++.

Expected Competition Performance

Vampire 4.0 is the CASC-25 FOF, FNT, EPR, and LTB division winner.

31

CASC-J8 Geo↵ Sutcli↵e

7.18 Vampire 4.1

Giles Reger
University of Manchester, United Kingdom

Architecture

Vampire [39] 4.1 is an automatic theorem prover for first-order logic. Vampire implements
the calculi of ordered binary resolution and superposition for handling equality. It also im-
plements the Inst-gen calculus [36] and a MACE-style finite model builder [56]. Splitting in
resolution-based proof search is controlled by the AVATAR architecture [118] which uses a SAT
or SMT solver to make splitting decisions. Both resolution and instantiation based proof search
make use of global subsumption [36].

A number of standard redundancy criteria and simplification techniques are used for pruning
the search space: subsumption, tautology deletion, subsumption resolution and rewriting by
ordered unit equalities. The reduction ordering is the Knuth-Bendix Ordering. Substitution
tree and code tree indexes are used to implement all major operations on sets of terms, literals
and clauses. Internally, Vampire works only with clausal normal form. Problems in the full
first-order logic syntax are clausified during preprocessing. Vampire implements many useful
preprocessing transformations including the SinE axiom selection algorithm.

When a theorem is proved, the system produces a verifiable proof, which validates both the
clausification phase and the refutation of the CNF.

Strategies

Vampire 4.1 provides a very large number of options for strategy selection. The most
important ones are:

• Choices of saturation algorithm:

– Limited Resource Strategy [63].

– DISCOUNT loop

– Otter loop

– Instantiation using the Inst-Gen calculus

– MACE-style finite model building with sort inference

• Splitting via AVATAR

• A variety of optional simplifications.

• Parameterized reduction orderings.

• A number of built-in literal selection functions and di↵erent modes of comparing literals.

• Age-weight ratio that specifies how strongly lighter clauses are preferred for inference
selection.

• Set-of-support strategy.

• Ground equational reasoning via congruence closure.

32

CASC-J8 Geo↵ Sutcli↵e

• Addition of theory axioms and evaluation of interpreted functions.

• Use of Z3 [22] with AVATAR to restrict search to ground-theory-consistent splitting
branches.

• Extensionality resolution [29] with detection of extensionality axioms.

Implementation

Vampire 4.1 is implemented in C++.

Expected Competition Performance

Vampire 4.1 should be an improvement on Vampire 4.0 and VampireZ3 1.0, which won 5
divisions between them last year. Note that this year there is not a seperate VampireZ3 entry
as Vampire 4.1 includes Z3.

7.19 VampireZ3 1.0

Giles Reger
University of Manchester, United Kingdom

Architecture

VampireZ3 version 1.0 is a combination of Vampire 4.0 and Z3 4.3.1. Vampire 4.0 uses
the AVATAR architecture to make splitting decisions. Briefly, the first-order search space is
represented in the SAT solver with propositional symbols consistently naming variable-disjoint
components. A SAT solver is then used to (iteratively) select a subset of components to search.
In VampireZ3 the Z3 SMT solver is used in place of a SAT solver and ground components are
translated into Z3 terms. This means Z3’s e�cient methods for ground reasoning with equality
and theories are exposed by AVATAR, as the SMT solver only produces theory-consistent
models.

Strategies

All strategies of Vampire 4.0 are available. Z3 is only used when splitting is selected.

Implementation

Vampire and Z3 are both implemented in C++.

Expected Competition Performance

VampireZ3 1.0 is the CASC-25 TFA division winner.

33

CASC-J8 Geo↵ Sutcli↵e

8 Conclusion

The CADE-J8 ATP System Competition was the twenty-first large scale competition for classi-
cal logic ATP systems. The organizer believes that CASC fulfills its main motivations: stimu-
lation of research, motivation for improving implementations, evaluation of relative capabilities
of ATP systems, and providing an exciting event. Through the continuity of the event and
consistency in the the reporting of the results, performance comparisons with previous and
future years are easily possible. The competition provides exposure for system builders both
within and outside of the community, and provides an overview of the implementation state of
running, fully automatic, classical logic, ATP systems.

References

[1] J. Backes and C.E. Brown. Analytic Tableaux for Higher-Order Logic with Choice. Journal of
Automated Reasoning, 47(4):451–479, 2011.

[2] C. Barrett, C. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reynolds, and
C. Tinelli. CVC4. In G. Gopalakrishnan and S. Qadeer, editors, Proceedings of the 23rd Interna-
tional Conference on Computer Aided Verification, number 6806 in Lecture Notes in Computer
Science, pages 171–177. Springer-Verlag, 2011.

[3] C. Barrett and C. Tinelli. CVC3. In W. Damm and H. Hermanns, editors, Proceedings of the
19th International Conference on Computer Aided Verification, number 4590 in Lecture Notes in
Computer Science, pages 298–302. Springer-Verlag, 2007.

[4] P. Baumgartner, J. Bax, and U. Waldmann. Beagle - A Hierarchic Superposition Theorem
Prover. In A. Felty and A. Middeldorp, editors, Proceedings of the 25th International Conference
on Automated Deduction, number 9195 in Lecture Notes in Computer Science, pages 285–294.
Springer-Verlag, 2015.

[5] P. Baumgartner and U. Waldmann. Hierarchic Superposition With Weak Abstraction. In M.P.
Bonacina, editor, Proceedings of the 24th International Conference on Automated Deduction,
number 7898 in Lecture Notes in Artificial Intelligence, pages 39–57. Springer-Verlag, 2013.

[6] C. Benzmüller. Extensional Higher-order Paramodulation and RUE-Resolution. In H. Ganzinger,
editor, Proceedings of the 16th International Conference on Automated Deduction, number 1632
in Lecture Notes in Artificial Intelligence, pages 399–413. Springer-Verlag, 1999.

[7] C. Benzmüller and M. Kohlhase. LEO - A Higher-Order Theorem Prover. In C. Kirchner and
H. Kirchner, editors, Proceedings of the 15th International Conference on Automated Deduction,
number 1421 in Lecture Notes in Artificial Intelligence, pages 139–143. Springer-Verlag, 1998.

[8] C. Benzmüller, L. Paulson, F. Theiss, and A. Fietzke. LEO-II - A Cooperative Automatic
Theorem Prover for Higher-Order Logic. In P. Baumgartner, A. Armando, and D. Gilles, editors,
Proceedings of the 4th International Joint Conference on Automated Reasoning, number 5195 in
Lecture Notes in Artificial Intelligence, pages 162–170. Springer-Verlag, 2008.

[9] C. Benzmüller, F. Rabe, and G. Sutcli↵e. THF0 - The Core TPTP Language for Classical
Higher-Order Logic. In P. Baumgartner, A. Armando, and D. Gilles, editors, Proceedings of the
4th International Joint Conference on Automated Reasoning, number 5195 in Lecture Notes in
Artificial Intelligence, pages 491–506. Springer-Verlag, 2008.

[10] C. Benzmüller, V. Sorge, M. Jamnik, and M. Kerber. Combined Reasoning by Automated
Cooperation. Journal of Applied Logic, 6(3):318–342, 2008.

[11] W. Bibel. Automated Theorem Proving. Vieweg and Sohn, 1987.

[12] A. Biere. PicoSAT Essentials. Journal on Satisfiability, Boolean Modeling and Computation,
4:75–97, 2008.

34

CASC-J8 Geo↵ Sutcli↵e

[13] J. Blanchette, S. Boehme, and L. Paulson. Extending Sledgehammer with SMT Solvers. In
N. Bjorner and V. Sofronie-Stokkermans, editors, Proceedings of the 23rd International Confer-
ence on Automated Deduction, number 6803 in Lecture Notes in Artificial Intelligence, pages
116–130. Springer-Verlag, 2011.

[14] J. Blanchette and A. Kraus. Monotonicity Inference for Higher-Order Formulas. Journal of
Automated Reasoning, page To appear, 2011.

[15] J. Blanchette, A. Popescu, D. Wand, and C. Weidenbach. More SPASS with Isabelle. In
L. Beringer and A. Felty, editors, Proceedings of Interactive Theorem Proving 2012, number
7406 in Lecture Notes in Computer Science, pages 345–360. Springer-Verlag, 2012.

[16] J. Blanchette, T. Weber, M. Batty, S. Owens, and S. Sarkar. Nitpicking C++ Concurrency. In
M. Hanus, editor, Proceedings of the 13th International ACM SIGPLAN Symposium on Principles
and Practice of Declarative Programming, pages 113–124. ACM Press, 2011.

[17] S. Böhme and T. Nipkow. Sledgehammer: Judgement Day. In J. Giesl and R. Haehnle, editors,
Proceedings of the 5th International Joint Conference on Automated Reasoning, number 6173 in
Lecture Notes in Artificial Intelligence, pages 107–121, 2010.

[18] C.E. Brown. Satallax: An Automated Higher-Order Prover (System Description). In B. Gram-
lich, D. Miller, and U. Sattler, editors, Proceedings of the 6th International Joint Conference on
Automated Reasoning, number 7364 in Lecture Notes in Artificial Intelligence, pages 111–117,
2012.

[19] C.E. Brown. Reducing Higher-Order Theorem Proving to a Sequence of SAT Problems. Journal
of Automated Reasoning, 51(1):57–77, 2013.

[20] C.E. Brown and G. Smolka. Analytic Tableaux for Simple Type Theory and its First-Order
Fragment. Logical Methods in Computer Science, 6(2), 2010.

[21] K. Claessen, A. Lilliestrom, and N. Smallbone. Sort It Out with Monotonicity - Translating be-
tween Many-Sorted and Unsorted First-Order Logic. In N. Bjorner and V. Sofronie-Stokkermans,
editors, Proceedings of the 23rd International Conference on Automated Deduction, number 6803
in Lecture Notes in Artificial Intelligence, pages 207–221. Springer-Verlag, 2011.

[22] L. de Moura and N. Bjorner. Z3: An E�cient SMT Solver. In C. Ramakrishnan and J. Rehof,
editors, Proceedings of the 14th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, number 4963 in Lecture Notes in Artificial Intelligence, pages
337–340. Springer-Verlag, 2008.

[23] H. de Nivelle. Theorem Proving for Classical Logic with Partial Functions by Reduction to Kleene
Logic. Journal of Logic and Computation, page To appear, 2014.

[24] H. de Nivelle. Subsumption Algorithms for Three-Valued Geometric Resolution. In N. Olivetti
and A. Tiwari, editors, Proceedings of the 8th International Joint Conference on Automated
Reasoning, Lecture Notes in Artificial Intelligence, page To appear, 2016.

[25] N. Eén and N. Sörensson. An Extensible SAT-solver. In E. Giunchiglia and A. Tacchella, edi-
tors, Proceedings of the 6th International Conference on Theory and Applications of Satisfiability
Testing, number 2919 in Lecture Notes in Computer Science, pages 502–518. Springer-Verlag,
2004.

[26] H. Ganzinger and K. Korovin. New Directions in Instantiation-Based Theorem Proving. In
P. Kolaitis, editor, Proceedings of the 18th IEEE Symposium on Logic in Computer Science,
pages 55–64. IEEE Press, 2003.

[27] H. Ganzinger and K. Korovin. Integrating Equational Reasoning into Instantiation-Based Theo-
rem Proving. In J. Marcinkowski and A. Tarlecki, editors, Proceedings of the 18th International
Workshop on Computer Science Logic, 13th Annual Conference of the EACSL, number 3210 in
Lecture Notes in Computer Science, pages 71–84. Springer-Verlag, 2004.

[28] M. Greiner and M. Schramm. A Probablistic Stopping Criterion for the Evaluation of Bench-
marks. Technical Report I9638, Institut für Informatik, Technische Universität München,
München, Germany, 1996.

35

CASC-J8 Geo↵ Sutcli↵e

[29] A. Gupta, L. Kovacs, B. Kragl, and A. Voronkov. Extensional Crisis and Proving Identity. In
F. Cassez and J-F. Franck, editors, Proceedings of the 12th International Symposium on Au-
tomated Technology for Verification and Analysis, number 8837 in Lecture Notes in Computer
Science, pages 185–200, 2014.

[30] T. Hales. A Revision of the Proof of the Kepler Conjecture. Discrete and Computational Geom-
etry, 44(1):1–34, 2010.

[31] K. Hoder, Z. Khasidashvili, K. Korovin, and A. Voronkov. Preprocessing Techniques for First-
Order Clausification. In G. Cabodi and S. Singh, editors, Proceedings of the Formal Methods in
Computer-Aided Design 2012, pages 44–51. IEEE Press, 2012.

[32] K. Hoder and A. Voronkov. Sine Qua Non for Large Theory Reasoning. In V. Sofronie-
Stokkermans and N. Bjœrner, editors, Proceedings of the 23rd International Conference on
Automated Deduction, number 6803 in Lecture Notes in Artificial Intelligence, pages 299–314.
Springer-Verlag, 2011.

[33] Z. Khasidashvili and K. Korovin. Predicate Elimination for Preprocessing in First-order Theorem
Proving. In N. Creignou and D. Le Berre, editors, Proceedings of the 19th International Con-
ference on Theory and Applications of Satisfiability Testing, Lecture Notes in Computer Science.
Springer-Verlag, 2016.

[34] M. Kinyon, R. Vero↵, and P. Vojtechovsky. Loops with Abelian Inner Mapping Groups: an
Application of Automated Deduction. In M.P. Bonacina and M. Stickel, editors, Automated
Reasoning and Mathematics: Essays in Memory of William W. McCune, number 7788 in Lecture
Notes in Artificial Intelligence, pages 151–164. Springer-Verlag, 2013.

[35] K. Korovin. iProver - An Instantiation-Based Theorem Prover for First-order Logic (System
Description). In P. Baumgartner, A. Armando, and D. Gilles, editors, Proceedings of the 4th In-
ternational Joint Conference on Automated Reasoning, number 5195 in Lecture Notes in Artificial
Intelligence, pages 292–298, 2008.

[36] K. Korovin. Inst-Gen - A Modular Approach to Instantiation-Based Automated Reasoning. In
A. Voronkov and C. Weidenbach, editors, Programming Logics, Essays in Memory of Harald
Ganzinger, number 7797 in Lecture Notes in Computer Science, pages 239–270. Springer-Verlag,
2013.

[37] K. Korovin. Non-cyclic Sorts for First-order Satisfiability. In P. Fontaine, C. Ringeissen, and
R. Schmidt, editors, Proceedings of the International Symposium on Frontiers of Combining
Systems, number 8152 in Lecture Notes in Computer Science, pages 214–228, 2013.

[38] K. Korovin and C. Sticksel. A Note on Model Representation and Proof Extraction in the
First-order Instantiation-based Calculus Inst-Gen. In R. Schmidt and F. Papacchini, editors,
Proceedings of the 19th Automated Reasoning Workshop, pages 11–12, 2012.

[39] L. Kovacs and A. Voronkov. First-Order Theorem Proving and Vampire. In N. Sharygina and
H. Veith, editors, Proceedings of the 25th International Conference on Computer Aided Veri-
fication, number 8044 in Lecture Notes in Artificial Intelligence, pages 1–35. Springer-Verlag,
2013.

[40] R. Kumar, M. Myreen, M. Norrish, and S. Owens. CakeML: A Verified Implementation of ML.
In P Sewell, editor, Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 179–191. ACM Press, 2014.

[41] R. Letz and G. Stenz. System Description: DCTP - A Disconnection Calculus Theorem Prover.
In R. Gore, A. Leitsch, and T. Nipkow, editors, Proceedings of the International Joint Conference
on Automated Reasoning, number 2083 in Lecture Notes in Artificial Intelligence, pages 381–385.
Springer-Verlag, 2001.

[42] B. Loechner. Things to Know When Implementing KBO. Journal of Automated Reasoning,
36(4):289–310, 2006.

[43] B. Loechner. Things to Know When Implementing LBO. Journal of Artificial Intelligence Tools,
15(1):53–80, 2006.

36

CASC-J8 Geo↵ Sutcli↵e

[44] D.W. Loveland. Automated Theorem Proving : A Logical Basis. Elsevier Science, 1978.

[45] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theories: from
an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the ACM,
53(6):937–977, 2006.

[46] T. Nipkow. Equational Reasoning in Isabelle. Science of Computer Programming, 12(2):123–149,
1989.

[47] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-Order Logic.
Number 2283 in Lecture Notes in Computer Science. Springer-Verlag, 2002.

[48] J. Otten. leanCoP 2.0 and ileancop 1.2: High Performance Lean Theorem Proving in Classical and
Intuitionistic Logic. In P. Baumgartner, A. Armando, and D. Gilles, editors, Proceedings of the
4th International Joint Conference on Automated Reasoning, number 5195 in Lecture Notes in
Artificial Intelligence, pages 283–291, 2008.

[49] J. Otten. Restricting Backtracking in Connection Calculi. AI Communications, 23(2-3):159–182,
2010.

[50] J. Otten. Implementing Connection Calculi for First-order Modal Logics. In K. Korovin and
S. Schulz, editors, Proceedings of the 9th International Workshop on the Implementation of Logics,
number 22 in EPiC, pages 18–32, 2012.

[51] J. Otten. MleanCoP: A Connection Prover for First-Order Modal Logic. In S. Demri, D. Kapur,
and C. Weidenbach, editors, Proceedings of the 7th International Joint Conference on Automated
Reasoning, number 8562 in Lecture Notes in Artificial Intelligence, pages 269–276, 2014.

[52] J. Otten and W. Bibel. leanCoP: Lean Connection-Based Theorem Proving. Journal of Symbolic
Computation, 36(1-2):139–161, 2003.

[53] L. Paulson. A Generic Tableau Prover and its Integration with Isabelle. Artificial Intelligence,
5(3):73–87, 1999.

[54] L. Paulson and J. Blanchette. Three Years of Experience with Sledgehammer, a Practical Link
between Automatic and Interactive Theorem Provers. In G. Sutcli↵e, E. Ternovska, and S. Schulz,
editors, Proceedings of the 8th International Workshop on the Implementation of Logics, number 2
in EPiC, pages 1–11, 2010.

[55] L.C. Paulson and T. Nipkow. Isabelle: A Generic Theorem Prover. Number 828 in Lecture Notes
in Computer Science. Springer-Verlag, 1994.

[56] G. Reger, M. Suda, and A. Voronkov. Finding Finite Models in Multi-Sorted First Order Logic. In
N. Creignou and D. Le Berre, editors, Proceedings of the 19th International Conference on Theory
and Applications of Satisfiability Testing, Lecture Notes in Computer Science. Springer-Verlag,
2016.

[57] A. Reynolds. Finite Model Finding in Satisfiability Modulo Theories. PhD thesis, The University
of Iowa, Iowa City, USA, 2013.

[58] A. Reynolds, M. Deters, V. Kuncak, C. Barrett, and C. Tinelli. Counterexample Guided Quanti-
fier Instantiation for Synthesis in CVC4. In D. Kroening and C. Pasareanu, editors, Proceedings
of the 27th International Conference on Computer Aided Verification, number 9207 in Lecture
Notes in Computer Science, pages 198–216. Springer-Verlag, 2015.

[59] A. Reynolds, C. Tinelli, and L. de Moura. Finding Conflicting Instances of Quantified Formulas
in SMT. In K. Claessen and V. Kuncak, editors, Proceedings of the 14th Conference on Formal
Methods in Computer-Aided Design, pages 195–202, 2014.

[60] A. Reynolds, C. Tinelli, A. Goel, and S. Krstic. Finite Model Finding in SMT. In N. Sharygina
and H. Veith, editors, Proceedings of the 25th International Conference on Computer Aided Ver-
ification, number 8044 in Lecture Notes in Computer Science, pages 640–655. Springer-Verlag,
2013.

[61] A. Reynolds, C. Tinelli, A. Goel, S. Krstic, M. Deters, and C. Barrett. Quantifier Instantiation
Techniques for Finite Model Finding in SMT. In M.P. Bonacina, editor, Proceedings of the 24th
International Conference on Automated Deduction, number 7898 in Lecture Notes in Artificial

37

CASC-J8 Geo↵ Sutcli↵e

Intelligence, pages 377–391. Springer-Verlag, 2013.

[62] A. Riazanov and A. Voronkov. The Design and Implementation of Vampire. AI Communications,
15(2-3):91–110, 2002.

[63] A. Riazanov and A. Voronkov. Limited Resource Strategy in Resolution Theorem Proving.
Journal of Symbolic Computation, 36(1-2):101–115, 2003.

[64] P. Rümmer. A Constraint Sequent Calculus for First-Order Logic with Linear Integer Arithmetic.
In I. Cervesato, H. Veith, and A. Voronkov, editors, Proceedings of the 15th International Con-
ference on Logic for Programming Artificial Intelligence and Reasoning, number 5330 in Lecture
Notes in Artificial Intelligence, pages 274–289. Springer-Verlag, 2008.

[65] P. Rümmer. E-Matching with Free Variables. In N. Bjorner and A. Voronkov, editors, Proceedings
of the 18th International Conference on Logic for Programming Artificial Intelligence and Rea-
soning, number 7180 in Lecture Notes in Artificial Intelligence, pages 359–374. Springer-Verlag,
2012.

[66] S. Schulz. A Comparison of Di↵erent Techniques for Grounding Near-Propositional CNF For-
mulae. In S. Haller and G. Simmons, editors, Proceedings of the 15th International FLAIRS
Conference, pages 72–76. AAAI Press, 2002.

[67] S. Schulz. E: A Brainiac Theorem Prover. AI Communications, 15(2-3):111–126, 2002.

[68] S. Schulz. Simple and E�cient Clause Subsumption with Feature Vector Indexing. In G. Sutcli↵e,
S. Schulz, and T. Tammet, editors, Proceedings of the Workshop on Empirically Successful First
Order Reasoning, 2nd International Joint Conference on Automated Reasoning, 2004.

[69] S. Schulz. System Abstract: E 0.81. In M. Rusinowitch and D. Basin, editors, Proceedings of the
2nd International Joint Conference on Automated Reasoning, number 3097 in Lecture Notes in
Artificial Intelligence, pages 223–228. Springer-Verlag, 2004.

[70] S. Schulz. Fingerprint Indexing for Paramodulation and Rewriting. In B. Gramlich, D. Miller,
and U. Sattler, editors, Proceedings of the 6th International Joint Conference on Automated
Reasoning, number 7364 in Lecture Notes in Artificial Intelligence, pages 477–483. Springer-
Verlag, 2012.

[71] S. Schulz. System Description: E 1.8. In K. McMillan, A. Middeldorp, and A. Voronkov,
editors, Proceedings of the 19th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning, number 8312 in Lecture Notes in Computer Science, pages 477–483.
Springer-Verlag, 2013.

[72] G. Sutcli↵e. Proceedings of the CADE-16 ATP System Competition. Trento, Italy, 1999.

[73] G. Sutcli↵e. Proceedings of the CADE-17 ATP System Competition. Pittsburgh, USA, 2000.

[74] G. Sutcli↵e. The CADE-16 ATP System Competition. Journal of Automated Reasoning,
24(3):371–396, 2000.

[75] G. Sutcli↵e. Proceedings of the IJCAR ATP System Competition. Siena, Italy, 2001.

[76] G. Sutcli↵e. The CADE-17 ATP System Competition. Journal of Automated Reasoning,
27(3):227–250, 2001.

[77] G. Sutcli↵e. Proceedings of the CADE-18 ATP System Competition. Copenhagen, Denmark,
2002.

[78] G. Sutcli↵e. Proceedings of the CADE-19 ATP System Competition. Miami, USA, 2003.

[79] G. Sutcli↵e. Proceedings of the 2nd IJCAR ATP System Competition. Cork, Ireland, 2004.

[80] G. Sutcli↵e. Proceedings of the CADE-20 ATP System Competition. Tallinn, Estonia, 2005.

[81] G. Sutcli↵e. The IJCAR-2004 Automated Theorem Proving Competition. AI Communications,
18(1):33–40, 2005.

[82] G. Sutcli↵e. Proceedings of the 3rd IJCAR ATP System Competition. Seattle, USA, 2006.

[83] G. Sutcli↵e. The CADE-20 Automated Theorem Proving Competition. AI Communications,
19(2):173–181, 2006.

38

CASC-J8 Geo↵ Sutcli↵e

[84] G. Sutcli↵e. Proceedings of the CADE-21 ATP System Competition. Bremen, Germany, 2007.

[85] G. Sutcli↵e. The 3rd IJCAR Automated Theorem Proving Competition. AI Communications,
20(2):117–126, 2007.

[86] G. Sutcli↵e. Proceedings of the 4th IJCAR ATP System Competition. Sydney, Australia, 2008.

[87] G. Sutcli↵e. The CADE-21 Automated Theorem Proving System Competition. AI Communica-
tions, 21(1):71–82, 2008.

[88] G. Sutcli↵e. The SZS Ontologies for Automated Reasoning Software. In G. Sutcli↵e, P. Rudnicki,
R. Schmidt, B. Konev, and S. Schulz, editors, Proceedings of the LPAR Workshops: Knowledge
Exchange: Automated Provers and Proof Assistants, and The 7th International Workshop on the
Implementation of Logics, number 418 in CEUR Workshop Proceedings, pages 38–49, 2008.

[89] G. Sutcli↵e. Proceedings of the CADE-22 ATP System Competition. Montreal, Canada, 2009.

[90] G. Sutcli↵e. The 4th IJCAR Automated Theorem Proving System Competition - CASC-J4. AI
Communications, 22(1):59–72, 2009.

[91] G. Sutcli↵e. The TPTP Problem Library and Associated Infrastructure. The FOF and CNF
Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337–362, 2009.

[92] G. Sutcli↵e. Proceedings of the 5th IJCAR ATP System Competition. Edinburgh, United
Kingdom, 2010.

[93] G. Sutcli↵e. The CADE-22 Automated Theorem Proving System Competition - CASC-22. AI
Communications, 23(1):47–60, 2010.

[94] G. Sutcli↵e. Proceedings of the CADE-23 ATP System Competition. Wroclaw, Poland, 2011.

[95] G. Sutcli↵e. The 5th IJCAR Automated Theorem Proving System Competition - CASC-J5. AI
Communications, 24(1):75–89, 2011.

[96] G. Sutcli↵e. Proceedings of the 6th IJCAR ATP System Competition. Manchester, England,
2012.

[97] G. Sutcli↵e. The CADE-23 Automated Theorem Proving System Competition - CASC-23. AI
Communications, 25(1):49–63, 2012.

[98] G. Sutcli↵e. Proceedings of the 24th CADE ATP System Competition. Lake Placid, USA, 2013.

[99] G. Sutcli↵e. The 6th IJCAR Automated Theorem Proving System Competition - CASC-J6. AI
Communications, 26(2):211–223, 2013.

[100] G. Sutcli↵e. Proceedings of the 7th IJCAR ATP System Competition. Vienna, Austria, 2014.

[101] G. Sutcli↵e. The CADE-24 Automated Theorem Proving System Competition - CASC-24. AI
Communications, 27(4):405–416, 2014.

[102] G. Sutcli↵e. Proceedings of the CADE-25 ATP System Competition. Berlin, Germany, 2015.
http://www.tptp.org/CASC/25/Proceedings.pdf.

[103] G. Sutcli↵e. The 7th IJCAR Automated Theorem Proving System Competition - CASC-J7. AI
Communications, 28(4):683–692, 2015.

[104] G. Sutcli↵e and C. Benzmüller. Automated Reasoning in Higher-Order Logic using the TPTP
THF Infrastructure. Journal of Formalized Reasoning, 3(1):1–27, 2010.

[105] G. Sutcli↵e, S. Schulz, K. Claessen, and A. Van Gelder. Using the TPTP Language for Writing
Derivations and Finite Interpretations. In U. Furbach and N. Shankar, editors, Proceedings of
the 3rd International Joint Conference on Automated Reasoning, number 4130 in Lecture Notes
in Artificial Intelligence, pages 67–81, 2006.

[106] G. Sutcli↵e and C. Suttner. The CADE-14 ATP System Competition. Technical Report 98/01,
Department of Computer Science, James Cook University, Townsville, Australia, 1998.

[107] G. Sutcli↵e and C. Suttner. The CADE-18 ATP System Competition. Journal of Automated
Reasoning, 31(1):23–32, 2003.

[108] G. Sutcli↵e and C. Suttner. The CADE-19 ATP System Competition. AI Communications,
17(3):103–182, 2004.

39

CASC-J8 Geo↵ Sutcli↵e

[109] G. Sutcli↵e, C. Suttner, and F.J. Pelletier. The IJCAR ATP System Competition. Journal of
Automated Reasoning, 28(3):307–320, 2002.

[110] G. Sutcli↵e and C.B. Suttner, editors. Special Issue: The CADE-13 ATP System Competition,
volume 18, 1997.

[111] G. Sutcli↵e and C.B. Suttner. The Procedures of the CADE-13 ATP System Competition.
Journal of Automated Reasoning, 18(2):163–169, 1997.

[112] G. Sutcli↵e and C.B. Suttner. Proceedings of the CADE-15 ATP System Competition. Lindau,
Germany, 1998.

[113] G. Sutcli↵e and C.B. Suttner. The CADE-15 ATP System Competition. Journal of Automated
Reasoning, 23(1):1–23, 1999.

[114] G. Sutcli↵e and C.B. Suttner. Evaluating General Purpose Automated Theorem Proving Systems.
Artificial Intelligence, 131(1-2):39–54, 2001.

[115] G. Sutcli↵e and J. Urban. The CADE-25 Automated Theorem Proving System Competition -
CASC-25. AI Communications, 29(3):423–433, 2016.

[116] C.B. Suttner and G. Sutcli↵e. The CADE-14 ATP System Competition. Journal of Automated
Reasoning, 21(1):99–134, 1998.

[117] E. Torlak and D. Jackson. Kodkod: A Relational Model Finder. In O. Grumberg and M. Huth,
editors, Proceedings of the 13th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, number 4424 in Lecture Notes in Computer Science, pages
632–647. Springer-Verlag, 2007.

[118] A. Voronkov. AVATAR: The New Architecture for First-Order Theorem Provers. In A. Biere
and R. Bloem, editors, Proceedings of the 26th International Conference on Computer Aided
Verification, number 8559 in Lecture Notes in Computer Science, pages 696–710, 2014.

[119] T. Weber. SAT-based Finite Model Generation for Higher-Order Logic. PhD thesis, Technische
Universität München, Munich, Germany, 2008.

[120] M. Wisniewski, A. Steen, and C. Benzmüller. The Leo-III Project. In A. Bolotov and M. Kerber,
editors, Proceedings of the Joint Automated Reasoning Workshop and Deduktionstre↵en, page 38,
2014.

40

	Introduction
	Divisions
	The Competition Divisions
	The Demonstration Division

	Infrastructure
	Computers
	Problems
	Problem Selection
	Number of Problems
	Problem Preparation
	Batch Specification Files

	Resource Limits
	Non-LTB divisions
	LTB division

	System Evaluation
	System Entry
	System Description
	Sample Solutions

	System Requirements
	System Properties
	System Delivery
	System Execution

	The ATP Systems
	Beagle 0.9.47
	CVC4 1.5
	CVC4 1.5
	E 2.0
	Geo-III 2016C
	iProver 2.5
	Isabelle 2015
	leanCoP 2.2
	LEO-II 1.7.0
	Leo-III 1.0
	Leo+III 1.0
	Nitpick 2015
	Princess 160606
	Refute 2015
	Satallax 2.8
	Satallax 3.0
	Vampire 4.0
	Vampire 4.1
	VampireZ3 1.0

	Conclusion

