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Abstract

The CADE ATP System Competition (CASC) evaluates the performance of sound,
fully automatic, classical logic, ATP systems. The evaluation is in terms of the number of
problems solved, the number of acceptable proofs and models produced, and the average
runtime for problems solved, in the context of a bounded number of eligible problems
chosen from the TPTP problem library, and specified time limits on solution attempts.
The 7th IJCAR ATP System Competition (CASC-J7) was held on 20th July 2014. The
design of the competition and its rules, and information regarding the competing systems,
are provided in this report.

1 Introduction

The CADE and IJCAR conferences are the major forum for the presentation of new research
in all aspects of automated deduction. In order to stimulate ATP research and system devel-
opment, and to expose ATP systems within and beyond the ATP community, the CADE ATP
System Competition (CASC) is held at each CADE and IJCAR conference. CASC-J7 was held
on 20th July 2014, as part of the 7th International Joint Conference on Automated Reasoning
(IJCAR 2014)1, which in turn was part of the Vienna Summer of Logic, in Vienna, Austria. It
was the nineteenth competition in the CASC series [109, 114, 112, 77, 79, 108, 106, 107, 84, 86,
88, 90, 93, 96, 98, 100, 102, 103].

CASC evaluates the performance of sound, fully automatic, classical logic, ATP systems.
The evaluation is in terms of:

• the number of problems solved,
• the number of acceptable proofs and models produced, and
• the average runtime for problems solved;

in the context of:

• a bounded number of eligible problems, chosen from the TPTP problem library [94], and
• specified time limits on solution attempts.

Twenty-five ATP system versions, listed in Table 1, entered into the various competition
and demonstration divisions. The winners of the CASC-24 (the previous CASC) divisions were
automatically entered into those divisions, to provide benchmarks against which progress can be
judged (the competition archive provides access to the systems’ executables and source code).2

1CADE was a constituent conference of IJCAR, hence CASC-“J7”.
2In the THF division the CASC-24 runner-up, Satallax 2.7, was entered, because it was too hard to get the

CASC-24 winner, Satallax-MaLeS 1.2, installed on StarExec. This additionally has the advantage of providing
a comparison between the raw Satallax and the MaLeS enhanced version. As the UEQ division had been
suspended since CASC-23 in 2011, the CASC-23 UEQ winner was entered.
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The design and procedures of this CASC evolved from those of previous CASCs [109, 110,
105, 111, 75, 76, 78, 80, 81, 82, 83, 85, 87, 89, 92, 95, 97, 99, 101]. Important changes for this
CASC were:

• The competition was run on StarExec [74]. Systems had to be delivered as StarExec
installation packages.

• Systems had to use the SZS ontology and standards [91] for reporting their results.
• The LTB division took a one year hiatus.
• The UEQ division returned from its three year hiatus.

The competition organizer was Geo↵ Sutcli↵e. The competition was overseen by a panel
of knowledgeable researchers who were not participating in the event; the CASC-J7 panel
members were Bernhard Beckert, Maria Paola Bonacina, and Aart Middeldorp. The CASC
rules, specifications, and deadlines are absolute. Only the panel has the right to make excep-
tions. The competition was run on computers provided by StarExec at the University of Iowa.
The CASC-J7 web site provides access to resources used before, during, and after the event:
http://www.tptp.org/CASC/J7

It is assumed that all entrants have read the web pages related to the competition, and
have complied with the competition rules. Non-compliance with the rules could lead to dis-
qualification. A “catch-all” rule is used to deal with any unforeseen circumstances: No cheating

is allowed. The panel is allowed to disqualify entrants due to unfairness, and to adjust the
competition rules in case of misuse.

2 Divisions

CASC is divided into divisions according to problem and system characteristics. There are
competition divisions in which systems are explicitly ranked, and a demonstration division in
which systems demonstrate their abilities without being ranked. Some divisions are further
divided into problem categories, which makes it possible to analyse, at a more fine grained
level, which systems work well for what types of problems. The problem categories have no
e↵ect on the competition rankings, which are made at only the division level.

2.1 The Competition Divisions

The competition divisions are open to ATP systems that meet the required system properties,
described in Section 6.1. Each division uses problems that have certain logical, language, and
syntactic characteristics, so that the ATP systems that compete in the division are, in principle,
able to attempt all the problems in the division.

The THF division: Typed Higher-order Form non-propositional theorems (axioms with a
provable conjecture), using the TH0 syntax. The THF division has two problem categories:

• The TNE category: THF with No Equality
• The TEQ category: THF with EQuality

The TFA division: Typed First-order with Arithmetic theorems (axioms with a provable
conjecture), using the TF0 syntax. The TFA division has three problem categories:

• The TFI category: TFA with only Integer arithmetic
• The TFR category: TFA with only Rational arithmetic
• The TFE category: TFA with only Real arithmetic

3

http://www.tptp.org/CASC/J7


CASC-J7 Sutcli↵e

The FOF division: First-Order Form syntactically non-propositional theorems (axioms with
a provable conjecture). The FOF division has two problem categories:

• The FNE category: FOF with No Equality
• The FEQ category: FOF with EQuality

The FNT division: First-order form syntactically non-propositional Non-Theorems (axioms
with a countersatisfiable conjecture, and satisfiable axiom sets). The FNT division has two
problem categories:

• The FNN category: FNT with No equality
• The FNQ category: FNT with eQuality

The EPR division: E↵ectively PRopositional (but syntactically non-propositional) clause
normal form theorems and non-theorems (clause sets). E↵ectively propositional means that
the problem is known to be reducible to a propositional problem, e.g., a problem that has no
functions with arity greater than zero. The EPR division has two problem categories:

• The EPT category: E↵ectively Propositional Theorems (unsatisfiable clause sets)
• The EPS category: E↵ectively Propositional non-theorems (Satisfiable clause sets)

TheUEQ division: Unit EQuality not e↵ectively propositional clause normal form theorems
(unsatisfiable clause sets).

Section 3.2 explains what problems are eligible for use in each division and category. Sec-
tion 4 explains how the systems are ranked in each division.

2.2 The Demonstration Division

ATP systems that cannot run in the competition divisions for any reason (e.g., the system
requires special hardware, or the entrant is an organizer) can be entered into the demonstration
division. Demonstration division systems can run on the competition computers, or the com-
puters can be supplied by the entrant. Computers supplied by the entrant may be brought to
CASC, or may be accessed via the internet. The demonstration division results are presented
along with the competition divisions’ results, but might not be comparable with those results.
The systems are not ranked and no prizes are awarded.

3 Infrastructure

3.1 Computers

The computers had

• Two quad-core Intel(R) Xeon(R) E5-2609, 2.40GHz CPUs
• 256GB memory
• The Red Hat Enterprise LinuxWorkstation release 6.3 (Santiago) operating system, kernel
2.6.32-431.1.2.el6.x86 64

Each ATP system ran one job on one computer at a time. Systems could use all the cores on
the computers (although this did not necessarily help, because a CPU time limit was imposed).

4
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3.2 Problems

3.2.1 Problem Selection

The problems were taken from the TPTP problem library, version v6.1.0. The TPTP version
used for CASC is released after the competition has started, so that new problems have not
seen by the entrants.

The problems have to meet certain criteria to be eligible for selection:

• The TPTP uses system performance data to compute problem di�culty ratings [113].
Di�cult problems with a rating in the range 0.21 to 0.99 are eligible. Problems of lesser
and greater ratings might also be eligible in some divisions if there are not enough prob-
lems with the desired ratings. Performance data from systems submitted by the system
submission deadline is used for computing the problem ratings for the TPTP version used
for the competition.

• The TPTP distinguishes versions of problems as one of standard, incomplete, augmented,
especial, or biased. All except biased problems are eligible.

The problems used are randomly selected from the eligible problems at the start of the
competition, based on a seed supplied by the competition panel.

• The selection is constrained so that no division or category contains an excessive number
of very similar problems.

• The selection mechanism is biased to select problems that are new in the TPTP version
used, until 50% of the problems in each category have been selected, after which random
selection (from old and new problems) continues. The actual percentage of new problems
used depends on how many new problems are eligible and the limitation on very similar
problems.

3.2.2 Number of Problems

The minimal numbers of problems that must be used in each division and category, to ensure
su�cient confidence in the competition results, are determined from the numbers of eligible
problems in each division and category [24] (the competition organizers have to ensure that
there are su�cient computers available to run the ATP systems on this minimal number of
problems). The minimal numbers of problems is used in determining the time limits imposed
on each solution attempt - see Section 3.3.

A lower bound on the total number of problems to be used is determined from the number
of computers available, the time allocated to the competition, the number of ATP systems to
be run on the competition computers over all the divisions, and the per-problem time limit,
according to the following relationship:

NumberOfProblems =
NumberOfComputers ⇤ T imeAllocated

NumberOfATPSystems ⇤ T imeLimit

It is a lower bound on the total number of problems because it assumes that every system
uses all of the time limit for each problem. Since some solution attempts succeed before the
time limit is reached, more problems can be used.

The numbers of problems used in the categories in the various divisions are (roughly) pro-
portional to the numbers of eligible problems, after taking into account the limitation on very
similar problems. The numbers of problems used in each division and category are determined
according to the judgement of the competition organizers.

5
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3.2.3 Problem Preparation

The problems are in TPTP format, with include directives. The problems in each division are
given in increasing order of TPTP di�culty rating.

In order to ensure that no system receives an advantage or disadvantage due to the specific
presentation of the problems in the TPTP, the problems are preprocessed to:

• strip out all comment lines, including the problem header
• randomly reorder the formulae/clauses (the include directives are left before the formu-
lae, type declarations and definitions are kept before the symbols’ uses)

• randomly swap the arguments of associative connectives, and randomly reverse implica-
tions

• randomly reverse equalities

In the demonstration division the same problems are used as for the competition divisions,
with the same preprocessing applied. However, the original file names can be retained for
systems running on computers provided by the entrant.

3.3 Resource Limits

CPU and wall clock time limits are imposed. The minimal CPU time limit per problem
is 240s. The maximal CPU time limit per problem is determined using the relationship
used for determining the number of problems, with the minimal number of problems as the
NumberOfProblems. The CPU time limit is chosen as a reasonable value within the range
allowed, and is announced at the competition. The wall clock time limit is imposed in addi-
tion to the CPU time limit, to limit very high memory usage that causes swapping. The wall
clock time limit per problem is double the CPU time limit. An additional memory limit is
imposed, depending on the computers’ memory. The time limits are imposed individually on
each solution attempt.

In the demonstration division, each entrant can choose to use either a CPU or a wall clock
time limit, whose value is the CPU time limit of the competition divisions.

4 System Evaluation

For each ATP system, for each problem, four items of data are recorded: whether or not the
problem was solved, the CPU time taken, the wall clock time taken, and whether or not a
solution (proof or model) was output.

The systems are ranked in the competitions division, from the performance data. The
THF, TFA, EPR, and UEQ, divisions have an assurance ranking class, ranked according to
the number of problems solved, but not necessarily accompanied by a proof or model (thus
giving only an assurance of the existence of a proof/model). The FOF and FNT divisions
have a proof/model ranking class, ranked according to the number of problems solved with an
acceptable proof/model output. Ties are broken according to the average time over problems
solved. In the competition divisions winners were announced and prizes are awarded.

The competition panel decides whether or not the systems’ proofs and models are acceptable
for the proof/model ranking classes. The criteria include:

• Derivations must be complete, starting at formulae from the problem, and ending at the
conjecture (for axiomatic proofs) or a false formula (for proofs by contradiction, including
CNF refutations).

6
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• For proofs of FOF problems by CNF refutation, the conversion from FOF to CNF must
be adequately documented.

• Derivations must show only relevant inference steps.
• Inference steps must document the parent formulae, the inference rule used, and the
inferred formula.

• Inference steps must be reasonably fine-grained.
• An unsatisfiable set of ground instances of clauses is acceptable for establishing the un-
satisfiability of a set of clauses.

• Models must be complete, documenting the domain, function maps, and predicate maps.
The domain, function maps, and predicate maps may be specified by explicit ground lists
(of mappings), or by any clear, terminating algorithm.

In the assurance ranking classes the ATP systems are not required to output solutions (proofs
or models). However, systems that do output solutions are highlighted in the presentation of
results.

In addition to the ranking criteria, other measures are made and presented in the results:

• The state-of-the-art contribution (SOTAC) quantifies the unique abilities of each system.
For each problem solved by a system, its SOTAC for the problem is the inverse of the
number of systems that solved the problem. A system’s overall SOTAC is its average
SOTAC over the problems it solves.

• The e�ciency measure balances the number of problems solved with the CPU time taken.
It is the average of the inverses of the times for problems solved (with times less than the
timing granularity rounded up to the granularity, to avoid skewing caused by very low
times) multiplied by the fraction of problems solved. This can be interpreted intuitively
as the average of the solution rates for problems solved, multiplied by the fraction of
problems solved.

• The core usage is the average of the ratios of CPU time to wall clock time used, over
the problems solved. This measures the extent to which the systems take advantage the
multiple cores.

At some time after the competition, all high ranking systems in each division are tested
over the entire TPTP. This provides a final check for soundness (see Section 6.1 regarding
soundness checking before the competition). If a system is found to be unsound during or after
the competition, but before the competition report is published, and it cannot be shown that
the unsoundness did not manifest itself in the competition, then the system is retrospectively
disqualified. At some time after the competition, the proofs and models from the winners of
the proof/model ranking classes are checked by the panel. If any of the proofs or models are
unacceptable, i.e., they are significantly worse than the samples provided, then that system is
retrospectively disqualified. All disqualifications are explained in the competition report.

5 System Entry

To be entered into CASC, systems must be registered using the CASC system registration
form. No registrations are accepted after the registration deadline. For each system entered, an
entrant has to be nominated to handle all issues (including execution di�culties) arising before
and during the competition. The nominated entrant must formally register for CASC. It is not
necessary for entrants to physically attend the competition.

7
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Systems can be entered at only the division level, and can be entered into more than one
division (a system that is not entered into a competition division is assumed to perform worse
than the entered systems, for that type of problem - wimping out is not an option). Entering
many similar versions of the same system is deprecated, and entrants may be required to limit
the number of system versions that they enter. Systems that rely essentially on running other
ATP systems without adding value are deprecated; the competition panel may disallow or move
such systems to the demonstration division. The division winners from the previous CASC are
automatically entered into their divisions, to provide benchmarks against which progress can
be judged.

5.1 System Description

A system description has to be provided for each ATP system entered, using the HTML schema
supplied on the CASC web site. (See Section 7 for these descriptions.) The schema has the
following sections:

• Architecture. This section introduces the ATP system, and describes the calculus and
inference rules used.

• Strategies. This section describes the search strategies used, why they are e↵ective, and
how they are selected for given problems. Any strategy tuning that is based on specific
problems’ characteristics must be clearly described (and justified in light of the tuning
restrictions described in Section 6.1).

• Implementation. This section describes the implementation of the ATP system, including
the programming language used, important internal data structures, and any special code
libraries used. The availability of system is described here.

• Expected competition performance. This section makes some predictions about the per-
formance of the ATP system in each of the divisions and categories in which it is com-
peting.

• References.

The system description has to be emailed to the competition organizers by the system de-
scription deadline. The system descriptions, along with information regarding the competition
design and procedures, form the proceedings for the competition.

5.2 Sample Solutions

For systems in the proof/model classes, representative sample solutions must be emailed to the
competition organizers by the sample solutions deadline. Use of the TPTP format for proofs
and finite interpretations is encouraged. The competition panel decides whether or not proofs
and models are acceptable for the proof/model ranking classes.

Proof samples for the FOF proof class must include a proof for SEU140+2. Model samples for
the FNT model class must include models for NLP042+1 and SWV017+1. The sample solutions
must illustrate the use of all inference rules. An explanation must be provided for any non-
obvious features.

8
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6 System Requirements

6.1 System Properties

Entrants must ensure that their systems execute in a competition-like environment, and have
the following properties. Entrants are advised to finalize their installation packages and check
these properties well in advance of the system delivery deadline. This gives the competition
organizers time to help resolve any di�culties encountered. Entrants do not have access to the
competition computers.

6.1.1 Soundness and Completeness

• Systems must be sound. At some time before the competition all the systems in the com-
petition divisions are tested for soundness. Non-theorems are submitted to the systems
in the THF, TFA, FOF, EPR, and UEQ divisions, and theorems are submitted to the
systems in the FNT and EPR divisions. Finding a proof of a non-theorem or a disproof
of a theorem indicates unsoundness. If a system fails the soundness testing it must be
repaired by the unsoundness repair deadline or be withdrawn. For systems running on
entrant supplied computers in the demonstration division, the entrant must perform the
soundness testing and report the results to the competition organizers.

• Systems do not have to be complete in any sense, including calculus, search control,
implementation, or resource requirements.

• All techniques used must be general purpose, and expected to extend usefully to new un-
seen problems. The precomputation and storage of information about individual TPTP
problems and axiom sets is not allowed. Strategies and strategy selection based on individ-
ual TPTP problems is not allowed. If machine learning procedures are used, the learning
must ensure that su�cient generalization is obtained so that no there is no specialization
to individual problems or their solutions.

• The system’s performance must be reproducible by running the system again.

6.1.2 Execution

• Systems must run on StarExec (the competition computers - see Section 3.1). ATP systems
that cannot run on the competition computers can be entered into the demonstration
division.

• Systems must be fully automatic, i.e., all command line switches have to be the same for
all problems in each division.

6.1.3 Output

• For each problem, the system must output a distinguished string indicating what solution
has been found or that no conclusion has been reached. Systems must use the SZS
ontology and standards [91] for this. For example

SZS status Theorem for SYN075+1

or

SZS status GaveUp for SYN075+1

• When outputting proofs/models, the start and end of the proof/model must be delimited
by distinguished strings. Systems must use the SZS ontology and standards for this. For
example

9
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SZS output start CNFRefutation for SYN075-1
...

SZS output end CNFRefutation for SYN075-1

The string specifying the problem status must be output before the start of a proof/model.
Use of the TPTP format for proofs and finite interpretations is encouraged [104].

6.1.4 Resource Usage

• Systems that run on the competition computers must be interruptible by a SIGXCPU signal,
so that the CPU time limit can be imposed, and interruptible by a SIGALRM signal, so that
the wall clock time limit can be imposed. For systems that create multiple processes, the
signal is sent first to the process at the top of the hierarchy, then one second later to all
processes in the hierarchy. The default action on receiving these signals is to exit (thus
complying with the time limit, as required), but systems may catch the signals and exit
of their own accord. If a system runs past a time limit this is noticed in the timing data,
and the system is considered to have not solved that problem.

• If an ATP system terminates of its own accord, it may not leave any temporary or
intermediate output files. If an ATP system is terminated by a SIGXCPU or SIGALRM, it may
not leave any temporary or intermediate files anywhere other than in /tmp.

• For practical reasons excessive output from an ATP system is not allowed. A limit,
dependent on the disk space available, is imposed on the amount of output that can be
produced.

6.2 System Delivery

For systems running on the competition computers, entrants must email a StarExec installation
package to the competition organizers by the system delivery deadline. The entrants must also
email a .tgz file containing the source code and any files required for building the StarExec
installation package to the competition organizers by the system delivery deadline.

For systems running on entrant supplied computers in the demonstration division, entrants
must deliver a source code package to the competition organizers by the start of the competition.
The source code package must be a .tgz file containing the system source code.

After the competition all competition division systems’ source code is made publically avail-
able on the CASC web site. In the demonstration division, the entrant specifies whether or not
the source code is placed on the CASC web site. An open source license is encouraged.

6.3 System Execution

Execution of the ATP systems on the competition computers is controlled by StarExec. The
jobs are queued onto the computers so that each computer is running one job at a time. In
non-batch divisions, all attempts at the Nth problems in all the divisions and categories are
started before any attempts at the (N+1)th problems.

A system has solved a problem i↵ it outputs its termination string within the time limit,
and a system has produced a proof/model i↵ it outputs its end-of-proof/model string within
the time limit. The result and timing data is used to generate an HTML file, and a web browser
is used to display the results.

The execution of the demonstration division systems is supervised by their entrants.

10
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7 The ATP Systems

These system descriptions were written by the entrants.

7.1 agsyHOL 1.0

Fredrik Lindblad
University of Gothenburg, Sweden

Architecture
AgsyHOL 1.0 is based on intuitionistic sequent calculus extended with rules for classical and
equality reasoning. There is an introduction and elimination rule for each logical construct,
plus rules for RAA, AC and extensionality. There are special inference modes for elimination
and equality reasoning.

A backward search is applied to find proof derivations in the calculus. Search is controlled
by locally assigning priorities to di↵erent kind of constraints, and refining that part of the
half-finished proof which is blocking a constraint with the highest priority.

Strategies
The system has no set of strategies it chooses from by pre-analysing the problem. What it
does do before starting the proof search is to try to minimise the need for classical reasoning
by transforming the problem using double negation elimination and the de Morgan laws.

Implementation
The system is implemented in Haskell. It consists of a proof checker for the calculus. The proof
checker is annotated with search control information controlling priorities of constraints and
costs of choices. The system also consists of an implementation of lazy narrowing, a general
purpose search mechanism, which is applied to the proof checker in order to achieve proof search.
The lazy narrowing search has been extended in order to deal with customizable priorities and
costs. agsyHOL is available from:

https://github.com/frelindb/agsyHOL/

Expected Competition Performance
On SystemOnTPTP it solves 1722 of the THF problems (TPTP version 6.0.0).

7.2 Beagle 0.9

Peter Baumgartner, Josh Bax
NICTA and Australian National University, Australia

Architecture
Beagle is an automated theorem prover for sorted first-order logic with equality over built-in
theories. The theories currently supported are integer arithmetic, linear rational arithmetic and
linear real arithmetic. It accepts formulas in the FOF and TFF formats of the TPTP syntax,
and formulas in the SMT-LIB version 2 format.

Beagle first converts the input formulas into clause normal form. Pure arithmetic (sub-
)formulas are treated by eager application of quantifier elimination. The core reasoning compo-
nent implements the Hierarchic Superposition Calculus with Weak Abstraction (HSPWA) [6].
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Extensions are a splitting rule for clauses that can be divided into variable disjoint parts, and
a chaining inference rule for reasoning with inequalities.

The HSPWA calculus generalizes the superposition calculus by integrating theory reasoning
in a black-box style. For the theories mentioned above, Beagle combines quantifier elimination
procedures and other solvers to dispatch proof obligations over these theories. The default
solvers are an improved version of Cooper’s algorithm for linear integer arithmetic, and the
Fourier-Motzkin algorithm for linear real/rational arithmetic. Non-linear integer arithmetic is
treated by partial instantiation.

Strategies
Beagles uses the Discount loop for saturating a clause set under the calculus’ inference rules.
Simplification techniques include standard ones, such as subsumption deletion, demodulation
by ordered unit equations, and tautology deletion. It also includes theory specific simplification
rules for evaluating ground (sub)terms, and for exploiting cancellation laws and properties of
neutral elements, among others. In the competition an aggressive form of arithmetic simplifi-
cation is used, which seems to perform best in practice.

Beagle uses strategy scheduling by trying (at most) two flag settings sequentially.

Implementation
Beagle is implemented in Scala. It is a full implementation of the HSPWA calculus. It uses a
simple form of indexing, essentially top-symbol hashes, stored with each term and computed in
a lazy way. Fairness is achieved through a combination of measuring clause weights and their
derivation-age. It can be fine-tuned with a weight-age ratio parameter, as in other provers.

Beagle’s web site is

http://users.cecs.anu.edu.au/~baumgart/systems/beagle/

Expected Competition Performance
Beagle should perform reasonably well.

7.3 cocATP 0.2.0

Cristóbal Camarero
University of Cantabria, Spain

Architecture
cocATP is a Coq-inspired [7] automated theorem prover made on the free time of the author.
It implements (the non-inductive) part of Coq’s logic (calculus of constructions) and syntax.
The proof terms it creates are accepted as proofs by Coq by the addition of a few definitions
(substituting the respective inductive definitions of Coq). As in Coq, equality and logical
connectives other than implication (which is a dependent product of the logic) are defined
adding the proper axioms. The reasoning is tried to be done the more general possible, avoiding
to give any special treatment to both equality and logical connectives. ¡p¿ At di↵erence of most
of the other provers, cocATP does not rely on SAT or first-order solver. All reasoning is done
in the high-order logic that is the calculus of constructions.
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Strategies
The first of the rules is: for a node with conjecture (forall x:T, P x) create a new node with
hypothesis (x:T) and conecture (P x). Other of the major rules consist in: when having a node
with conjecture (C) and some hypothesis (H:forall (x1:T1) (x2:T2) ... (xn:Tn), P x1 x2 ... xn),
to unificate P with C and prove the Ti necessary. The unification is a subset of the possible
high-order unifications. And in this case is a one-sided unification. There is a lot of other ad-hoc
rules and conditions to apply them. Some of the rules can create existential terms (x:=??:T)
alike to Coq’s tactic evar. With these rules resulting proofs are very similar to human-made
proofs.

There is a partially implemented second strategy more similar to the ones found in other
theorem provers. It consist a saturation algorithm with the high-order modus ponens. As
example, given a hypothesis (P) and another (or the same) hypothesis (forall x:T, Q x), unficate
P with T generating a new hypothesis Q. This generalizes the typical saturation rules, as
resolution and superposition. The strategy yet lacks a good conditions for subsumption and
simplifcation. Probably it will not be used in competition.

Implementation
cocATP is implemented in Python-2.7 and C. It uses the Ply-3.4 library to build the parsers for
both the Coq and TPTP syntaxes. Recently, the processing core has been reimplemented in C
as a Python module, and a Python variable controls if using a pure Python or the C version.
Using the C module can be an order of magnitude faster, but it is less tested and introduces
the possibility of SEGFAULTS.

Includes a type-verifier of Calculus of Constructions without inductive constructions, which
must be defined with axioms. That is, a buggy partial clone of Coq. There is support for most of
the TPTP syntax, problems are translated to a set of calculus of constructions terms. cocATP
has been specially prepared for THF, but all the other TPTP formulae without numbers should
be accepted. However cocATP does NOT include a SAT solver, thus it will probably not solve
your trivial CNF problems.

More info at:

http://www.alumnos.unican.es/ccc66/cocATP.htm

Expected Competition Performance
With the reimplementation of the kernel in C it is expected a great reduction in the execution
time, but not a lot of newly solved problems.

7.4 Crossbow 0.1

Radek Micek
Charles University in Prague, Czech Republic

Architecture
Crossbow 0.1 is a MACE2-style finite model finder similar to Paradox. It is an implementation
of techniques from [19] plus improved flattening and built-in support for commutativity.

Strategies
The same strategy is used for all problems:

1. First order formulas are clausified by another prover.
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2. Additional lemmas are generated by another prover, small lemmas are added to the clauses
of the problem.

3. Clauses of the problem are preprocessed (simplification, flattening, splitting, term defini-
tions, commutativity detection).

4. Clauses are instantiated for increasing domain sizes until some model is found. Instanti-
tion takes into account commutativity of functions and symmetry of predicates.

Implementation
Crossbow is implemented in OCaml. Clausification and lemma generation is done by E. MiniSat
is used for incremental SAT solving. Source code is available from:

https://github.com/radekm/crossbow

Expected Competition Performance
It should perform slightly better than Paradox.

7.5 CVC4 1.4

Andrew Reynolds
EPFL, Switzerland

Architecture
CVC4 [4] is an SMT solver based on the DPLL(T) architecture [46] that includes built-in sup-
port for many theories including linear arithmetic, arrays, bit vectors, datatypes and strings.
It incorporates various approaches for handling universally quantified formulas. In particular,
CVC4 uses primarily uses heuristic approaches based on E-matching for answering “unsatisfi-
able”, and finite model finding approaches for answering “satisfiable”.

Like other SMT solvers, CVC4 treats quantified formulas using a two-tiered approach. First,
quantified formulas are replaced by fresh boolean predicates and the ground theory solver(s) are
used in conjunction with the underlying SAT solver to determine satisfiability. If the problem
is unsatisfiable at the ground level, then the solver answers “unsatisfiable”. Otherwise, the
quantifier instantiation module is invoked, and will either add instances of quantified formulas
to the problem, answer “satisfiable”, or return unknown.

The finite model finding has been developed to target problems containing background
theories, whose quantification is limited to finite and uninterpreted sorts. In finite model
finding mode, CVC4 uses a ground theory of finite cardinality constraints that minimizes the
number of ground equivalence classes, as described in [65]. When the problem is satisfiable at
the ground level, a candidate model is constructed that contains complete interpretations for
all predicate and function symbols. Quantifier instantiation strategies are then invoked to add
instances of quantified formulas that are in conflict with the candidate model, as described in
[66]. If no instances are added, then the solver reports “satisfiable”.

Strategies
For handling theorems, CVC4 primarily uses various configurations of E-matching. This year,
CVC4 incorporates new methods for finding conflicting instances of quantified formulas [64],
which have been shown to lead to improved performance on unsatisfiable TPTP benchmarks.
CVC4 also incorporates a model-based heuristic for handling quantified formulas containing
only pure arithmetic, which will be used in the TFA division.
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For handling non-theorems, the finite model finding feature of CVC4 will use a number of
orthogonal quantifier instantiation strategies. This year, it will incorporate several new features,
including an optimized implementation of model-based quantifier instantiation which improves
upon [66], as well as techniques for sort inference. Since CVC4 with finite model finding is also
capable of answering “unsatisfiable”, it will be used as a strategy for theorems as well.

Implementation
CVC4 is implemented in C++. The code is available from

https://github.com/CVC4

Expected Competition Performance
In the FOF division, CVC4 should perform better than last year, primarily due to the incor-
poration of methods from [64]. In the FNT division, CVC4 should also perform better than
last year, due to its incorporation of sort inference techniques and general improvements to the
implementation. This is the first year CVC4 has entered the TFA division, where it should be
fairly competitive due to its e�cient handling of ground arithmetic constraints.

7.6 E 1.9

Stephan Schulz
DHBW Stuttgart, Germany

Architecture
E [70, 73] is a purely equational theorem prover for full first-order logic with equality. It con-
sists of an (optional) clausifier for pre-processing full first-order formulae into clausal form,
and a saturation algorithm implementing an instance of the superposition calculus with neg-
ative literal selection and a number of redundancy elimination techniques. E is based on the
DISCOUNT-loop variant of the given-clause algorithm, i.e., a strict separation of active and
passive facts. No special rules for non-equational literals have been implemented. Resolution
is e↵ectively simulated by paramodulation and equality resolution.

Strategies
Proof search in E is primarily controlled by a literal selection strategy, a clause evaluation
heuristic, and a simplification ordering. The prover supports a large number of pre-programmed
literal selection strategies. Clause evaluation heuristics can be constructed on the fly by com-
bining various parameterized primitive evaluation functions, or can be selected from a set of
predefined heuristics. Clause evaluation heuristics are based on symbol-counting, but also take
other clause properties into account. In particular, the search can prefer clauses from the set
of support, or containing many symbols also present in the goal. Supported term orderings
are several parameterized instances of Knuth-Bendix-Ordering (KBO) and Lexicographic Path
Ordering (LPO).

For CASC-J7, E implements a strategy-scheduling automatic mode. The total CPU time
available is broken into 8 (unequal) time slices. For each time slice, the problem is classified
into one of several classes, based on a number of simple features (number of clauses, maximal
symbol arity, presence of equality, presence of non-unit and non-Horn clauses, ...). For each
class, a schedule of strategies is greedily constructed from experimental data as follows: The
first strategy assigned to a schedule is the the one that solves the most problems from this class
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in the first time slice. Each subsequent strategy is selected based on the number of solutions
on problems not already solved by a preceding strategy.

About 210 di↵erent strategies have been evaluated on all untyped first-order problems from
TPTP 6.0.0, and about 180 of these strategies are used in the automatic mode.

Implementation
E is build around perfectly shared terms, i.e. each distinct term is only represented once in
a term bank. The whole set of terms thus consists of a number of interconnected directed
acyclic graphs. Term memory is managed by a simple mark-and-sweep garbage collector. Un-
conditional (forward) rewriting using unit clauses is implemented using perfect discrimination
trees with size and age constraints. Whenever a possible simplification is detected, it is added
as a rewrite link in the term bank. As a result, not only terms, but also rewrite steps are
shared. Subsumption and contextual literal cutting (also known as subsumption resolution) is
supported using feature vector indexing [71]. Superposition and backward rewriting use fin-
gerprint indexing [72], a new technique combining ideas from feature vector indexing and path
indexing. Finally, LPO and KBO are implemented using the elegant and e�cient algorithms
developed by Bernd L̀‘ochner in [42, 42]. The prover and additional information are available
at

http://www.eprover.org

Expected Competition Performance
E 1.9 has slightly better strategies than previous versions, and can produce proof objects quite
e�ciently. The system is expected to perform well in most proof classes, but will at best
complement top systems in the disproof classes.

7.7 E.T. 0.1

Josef Urban1, Cezary Kaliszyk2, Stephan Schulz3, Jiri Vyskocil4
1Radboud University Nijmegen, The Netherlands, 2University of Innsbruck, Switzerland, 3DHBW
Stuttgart, Germany, 4Czech Technical University, Czech Republic

Architecture
E.T. 0.1 is a metasystem using E prover with specific strategies [115, 35] and preprocessing
tools [33, 31, 32] that are targeted mainly at problems with many redundant axioms. Its design
is motivated by the recent experiments in the Large-Theory Batch division [37] and on the
Flyspeck, Mizar and Isabelle datasets, however, E.T. does no learning from related proofs.

Strategies
We characterize formulas by the symbols and terms that they contain, normalized in various
ways. Then we run various algorithms that try to remove the redundant axioms and use special
strategies on such problems.

Implementation
The metasystem is implemented in ca. 1000 lines of Perl. It uses a number of external programs,
some of them based on E’s code base, some of them independently implemented in C++.
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Expected Competition Performance
E.T. can solve some problems that E 1.8 cannot prove, and even some TPTP problems with
rating 1. The CASC performance should not be much worse than that of E, possibly better,
depending on problem selection.

7.8 HOLyHammer 140616

Cezary Kaliszyk1, Josef Urban2, Stephan Schulz3
1University of Innsbruck, Switzerland, 2Radboud University Nijmegen, The Netherlands, 3DHBW
Stuttgart, Germany

Architecture
HOLyHammer [36, 34] is a metasystem for premise selection and proof translation from poly-
morphic HOL to FOF ATP provers. This is a version restricted to THF0 and to using E prover
with specific strategies.

Strategies
The translation uses polymorphic type tags, the apply functor, lambda lifting and predicate
abstraction. The premise selection [36] uses k-NN, naive Bayes and a modified implementation
of the Meng-Paulson relevance filter. We characterize formulas by the symbols and terms that
they contain, normalized in various ways.

Implementation
The HH metasystem consists of about 2000 lines of OCaml code on top of about 5000 lines
of HOL Light code. The predictors are about 400 lines of C++ code. The system produces
higher-order logic proofs internally that match the HOL Light kernel, however no TSTP proofs
are produced [34].

Expected Competition Performance
We expect HOLyHammer to solve some large problems with many redundant axioms, however
we have not tested it on the whole set of THF0 TPTP problems.

7.9 iProver 0.9

Konstantin Korovin
University of Manchester, United Kingdom

Architecture
iProver is an automated theorem prover based on an instantiation calculus Inst-Gen [22, 39]
which is complete for first-order logic. One of the distinctive features of iProver is a modular
combination of first-order reasoning with ground reasoning. In particular, iProver currently
integrates MiniSat [21] for reasoning with ground abstractions of first-order clauses. In ad-
dition to instantiation, iProver implements ordered resolution calculus and a combination of
instantiation and ordered resolution; see [38] for the implementation details. The saturation
process is implemented as a modification of a given clause algorithm. iProver uses non-perfect
discrimination trees for the unification indexes, priority queues for passive clauses, and a com-
pressed vector index for subsumption and subsumption resolution (both forward and backward).
The following redundancy eliminations are implemented: blocking non-proper instantiations;
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dismatching constraints [23, 38]; global subsumption [38]; resolution-based simplifications and
propositional-based simplifications. A compressed feature vector index is used for e�cient for-
ward/backward subsumption and subsumption resolution. Equality is dealt with (internally)
by adding the necessary axioms of equality with an option of using Brand’s transformation.
In the LTB division, iProver-SInE uses axiom selection based on the SInE algorithm [30] as
implemented in Vampire [28], i.e., axiom selection is done by Vampire and proof attempts are
done by iProver.

Major additions in the current version are:

• answer computation,
• several modes for model output using first-order definitions in term algebra,
• Brand’s transformation.

Strategies
iProver has around 40 options to control the proof search including options for literal selection,
passive clause selection, frequency of calling the SAT solver, simplifications and options for
combination of instantiation with resolution. At CASC iProver will execute a small number of
fixed schedules of selected options depending on general syntactic properties such as Horn/non-
Horn, equational/non-equational, and maximal term depth.

Implementation
iProver is implemented in OCaml and for the ground reasoning uses MiniSat. iProver accepts
FOF and CNF formats, where Vampire [28] is used for clausification of FOF problems.

iProver is available from

http://www.cs.man.ac.uk/~korovink/iprover/

Expected Competition Performance
iProver 0.9 is the CASC-24 EPR division winner.

7.10 iProver 1.0

Konstantin Korovin, Christoph Sticksel
University of Manchester, United Kingdom

Architecture
iProver is an automated theorem prover based on an instantiation calculus Inst-Gen [22, 40]
which is complete for first-order logic. iProver combines first-order reasoning with ground rea-
soning for which it uses MiniSat [21] and was recently extended with PicoSAT [9] and Lingeling
[10] (only MiniSat will be used at this CASC). iProver also combines instantiation with ordered
resolution; see [38] for the implementation details. The proof search is implemented using a
saturation process based on the given clause algorithm. iProver uses non-perfect discrimination
trees for the unification indexes, priority queues for passive clauses, and a compressed vector
index for subsumption and subsumption resolution (both forward and backward). The follow-
ing redundancy eliminations are implemented: blocking non-proper instantiations; dismatching
constraints [23, 38]; global subsumption [38]; resolution-based simplifications and propositional-
based simplifications. A compressed feature vector index is used for e�cient forward/backward
subsumption and subsumption resolution. Equality is dealt with (internally) by adding the nec-
essary axioms of equality with an option of using Brand’s transformation. In the LTB division,
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iProver uses axiom selection based on the SInE algorithm [30] as implemented in Vampire [29],
i.e., axiom selection is done by Vampire and proof attempts are done by iProver.

Some of iProver features are summarised below.
• proof extraction for both instantiation and resolution,
• model representation, using first-order definitions in term algebra,
• answer substitutions,
• semantic filtering,
• type inference, monotonic [18] and non-cyclic types,
• Brand’s transformation.

Type inference is targeted at improving finite model finding and symmetry breaking. Se-
mantic filtering is used in preprocessing to eliminated irrelevant clauses. Proof extraction is
challenging due to simplifications such global subsumption which involve global reasoning with
the whole clause set and can be computationally expensive.

Strategies
iProver has around 60 options to control the proof search including options for literal selec-
tion, passive clause selection, frequency of calling the SAT solver, simplifications and options
for combination of instantiation with resolution. At CASC iProver will execute a small num-
ber of fixed schedules of selected options depending on general syntactic properties such as
Horn/non-Horn, equational/non-equational, and maximal term depth. The strategy for satis-
fiable problems (FNT division) includes finite model finding.

Implementation
iProver is implemented in OCaml and for the ground reasoning uses MiniSat [21]. iProver
accepts FOF and CNF formats. Vampire [29, 27] is used for proof-producing clausification of
FOF problems as well as for axiom selection [30] in the LTB division.

iProver is available from

http://www.cs.man.ac.uk/~korovink/iprover/

Expected Competition Performance
iProver 1.0 is the CASC-24 FNT division winner.

7.11 Isabelle 2013

Jasmin C. Blanchette1, Lawrence C. Paulson2,
Tobias Nipkow1, Makarius Wenzel3¡BR¿ 1Technische Universität München, Germany, 2University
of Cambridge, United Kingdom, 3Université Paris Sud, France

Architecture
Isabelle/HOL 2013 [48] is the higher-order logic incarnation of the generic proof assistant Is-
abelle2013. Isabelle/HOL provides several automatic proof tactics, notably an equational rea-
soner [47], a classical reasoner [62], and a tableau prover [60]. It also integrates external first-
and higher-order provers via its subsystem Sledgehammer [61, 11].

Isabelle includes a parser for the TPTP syntaxes CNF, FOF, TFF0, and THF0, due to Nik
Sultana. It also includes TPTP versions of its popular tools, invokable on the command line as
isabelle tptp tool max secs file.p. For example:

isabelle tptp_isabelle_hot 100 SEU/SEU824^3.p
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Strategies
The Isabelle tactic submitted to the competition simply tries the following tactics sequentially:

• sledgehammer : Invokes the following sequence of provers as oracles via Sledgehammer:

– spass - SPASS 3.8ds [12];
– vampire - Vampire 1.8 (revision 1435) [67];
– e - E 1.4 [71];
– z3 tptp - Z3 3.2 with TPTP syntax [20].

• nitpick : For problems involving only the type $o of Booleans, checks whether a finite
model exists using Nitpick [14].

• simp : Performs equational reasoning using rewrite rules [47].

• blast : Searches for a proof using a fast untyped tableau prover and then attempts to
reconstruct the proof using Isabelle tactics [60].

• auto+spass : Combines simplification and classical reasoning [62] under one roof; then
invoke Sledgehammer with SPASS on any subgoals that emerge.

• z3 : Invokes the SMT solver Z3 3.2 [20].

• cvc3 : Invokes the SMT solver CVC3 2.2 [5].

• fast : Searches for a proof using sequent-style reasoning, performing a depth-first search
[62]. Unlike blast, it construct proofs directly in Isabelle. That makes it slower but
enables it to work in the presence of the more unusual features of HOL, such as type
classes and function unknowns.

• best : Similar to fast, except that it performs a best-first search.

• force : Similar to auto, but more exhaustive.

• meson : Implements Loveland’s MESON procedure [43]. Constructs proofs directly in
Isabelle.

• fastforce : Combines fast and force.

Implementation
Isabelle is a generic theorem prover written in Standard ML. Its meta-logic, Isabelle/Pure,
provides an intuitionistic fragment of higher-order logic. The HOL object logic extends pure
with a more elaborate version of higher-order logic, complete with the familiar connectives and
quantifiers. Other object logics are available, notably FOL (first-order logic) and ZF (Zermelo-
Fraenkel set theory).

The implementation of Isabelle relies on a small LCF-style kernel, meaning that inferences
are implemented as operations on an abstract theorem datatype. Assuming the kernel is correct,
all values of type theorem are correct by construction.

Most of the code for Isabelle was written by the Isabelle teams at the University of Cam-
bridge and the Technische Universität München. Isabelle/HOL is available for all major plat-
forms under a BSD-style license from

http://www.cl.cam.ac.uk/research/hvg/Isabelle
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Expected Competition Performance
Third place, after Satallax and Satallax-MaLeS but before AgsyHOL and LEO-II.

7.12 leanCoP 2.2

7.13 LEO-II 1.6.2

Jens Otten
University of Potsdam, Germany

Architecture
leanCoP [53, 49] is an automated theorem prover for classical first-order logic with equality. It
is a very compact implementation of the connection (tableau) calculus [8, 41].

Strategies
The reduction rule of the connection calculus is applied before the extension rule. Open branches
are selected in a depth-first way. Iterative deepening on the proof depth is performed in order
to achieve completeness. Additional inference rules and techniques include regularity, lemmata,
and restricted backtracking [50]. leanCoP uses an optimized structure-preserving transforma-
tion into clausal form [50] and a fixed strategy scheduling, which is controlled by a shell script.

Implementation
leanCoP is implemented in Prolog. The source code of the core prover consists only of a few
lines of code. Prolog’s built-in indexing mechanism is used to quickly find connections when
the extension rule is applied. leanCoP can read formulae in leanCoP syntax and in TPTP
first-order syntax. Equality axioms and axioms to support distinct objects are automatically
added if required. The leanCoP core prover returns a very compact connection proof, which
is then translated into a more comprehensive output format, e.g., into a lean (TPTP-style)
connection proof or into a readable text proof.

The source code of leanCoP 2.2 is available under the GNU general public license. It can
be downloaded from the leanCoP website at: available from

http://www.leancop.de

The website also contains information about ileanCoP [49] and MleanCoP [51, 52], two versions
of leanCoP for first-order intuitionistic logic and first-order modal logic, respectively.

Expected Competition Performance
As the core prover has not changed, the performance of leanCoP 2.2 is expected to be similar
to the performance of leanCoP 2.1.

7.14 Muscadet 4.4

Dominique Pastre
University Paris Descartes, France
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Architecture
The Muscadet theorem prover is a knowledge-based system. It is based on Natural Deduction,
following the terminology of [13] and [54], and uses methods which resembles those used by
humans. It is composed of an inference engine, which interprets and executes rules, and of
one or several bases of facts, which are the internal representation of “theorems to be proved”.
Rules are either universal and put into the system, or built by the system itself by metarules
from data (definitions and lemmas). Rules may add new hypotheses, modify the conclusion,
create objects, split theorems into two or more subtheorems or build new rules which are local
for a (sub-)theorem.

Strategies
There are specific strategies for existential, universal, conjonctive or disjunctive hypotheses and
conclusions, and equalities. Functional symbols may be used, but an automatic creation of
intermediate objects allows deep subformulae to be flattened and treated as if the concepts
were defined by predicate symbols. The successive steps of a proof may be forward deduction
(deduce new hypotheses from old ones), backward deduction (replace the conclusion by a new
one), refutation (only if the conclusion is a negation), search for objects satisfying the conclusion
or dynamic building of new rules.

The system is also able to work with second order statements. It may also receive knowledge
and know-how for a specific domain from a human user; see [55] and [56]. These two possibilities
are not used while working with the TPTP Library.

Implementation
Muscadet [57] is implemented in SWI-Prolog. Rules are written as more or less declarative
Prolog clauses. Metarules are written as sets of Prolog clauses. The inference engine includes
the Prolog interpreter and some procedural Prolog clauses. A theorem may be split into several
subtheorems, structured as a tree with “and” and “or” nodes. All the proof search steps are
memorized as facts including all the elements which will be necessary to extract later the useful
steps (the name of the executed action or applied rule, the new facts added or rule dynamically
built, the antecedents and a brief explanation).

Muscadet is available from

http://www.math-info.univ-paris5.fr/~pastre/muscadet/muscadet.html

Expected Competition Performance
The best performances of Muscadet will be for problems manipulating many concepts in which
all statements (conjectures, definitions, axioms) are expressed in a manner similar to the practice
of humans, especially of mathematicians [58, 59]. It will have poor performances for problems
using few concepts but large and deep formulas leading to many splittings. Its best results will
be in set theory, especially for functions and relations. Its originality is that proofs are given
in natural style. Changes since last year are only minor corrections.

7.15 Princess—140704

Philipp Rümmer, Peter Backeman¡BR¿ Uppsala University, Sweden
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Architecture
Princess [68, 69] is a theorem prover for first-order logic modulo linear integer arithmetic.
The prover uses a combination of techniques from the areas of first-order reasoning and SMT
solving. The main underlying calculus is a free-variable tableau calculus, which is extended with
constraints to enable backtracking-free proof expansion, and positive unit hyper-resolution for
lightweight instantiation of quantified formulae. Linear integer arithmetic is handled using a
set of built-in proof rules resembling the Omega test, which altogether yields a calculus that
is complete for full Presburger arithmetic, for first-order logic, and for a number of further
fragments. In addition, some built-in procedures for nonlinear integer arithmetic are available.

The internal calculus of Princess only supports uninterpreted predicates; uninterpreted func-
tions are encoded as predicates, together with the usual axioms. Through appropriate transla-
tion of quantified formulae with functions, the e-matching technique common in SMT solvers
can be simulated; triggers in quantified formulae are chosen based on heuristics similar to those
in the Simplify prover.

Strategies
For CASC, Princess will run a fixed schedule of configurations for each problem (portfolio
method). Configurations determine, among others, the mode of proof expansion (depth-first,
breadth-first), selection of triggers in quantified formulae, clausification, and the handling of
functions. The portfolio was chosen based on training with a random sample of problems from
the TPTP library.

Implementation
Princess is entirely written in Scala and runs on any recent Java virtual machine; besides the
standard Scala and Java libraries, only the Cup parser library is used. Princess is available
from:

http://www.philipp.ruemmer.org/princess.shtml

Expected Competition Performance
Princess is mainly designed for integer problems (TFI), and should perform reasonably well
here. Reasoning about rationals or reals is not the main focus of the work, and results will be
accordingly.

7.16 Prover9 2009-11A

Bob Vero↵ on behalf of William McCune
University of New Mexico, USA

Architecture
Prover9, Version 2009-11A, is a resolution/paramodulation prover for first-order logic with
equality. Its overall architecture is very similar to that of Otter-3.3 [45]. It uses the “given clause
algorithm”, in which not-yet-given clauses are available for rewriting and for other inference
operations (sometimes called the “Otter loop”).

Prover9 has available positive ordered (and nonordered) resolution and paramodulation,
negative ordered (and nonordered) resolution, factoring, positive and negative hyperresolution,
UR-resolution, and demodulation (term rewriting). Terms can be ordered with LPO, RPO, or
KBO. Selection of the “given clause” is by an age-weight ratio.
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Proofs can be given at two levels of detail: (1) standard, in which each line of the proof
is a stored clause with detailed justification, and (2) expanded, with a separate line for each
operation. When FOF problems are input, proof of transformation to clauses is not given.

Completeness is not guaranteed, so termination does not indicate satisfiability.

Strategies
Like Otter, Prover9 has available many strategies; the following statements apply to CASC-
2012.

Given a problem, Prover9 adjusts its inference rules and strategy according to syntactic
properties of the input clauses such as the presence of equality and non-Horn clauses. Prover9
also does some preprocessing, for example, to eliminate predicates.

In previous CASC competitions, Prover9 has used LPO to order terms for demodulation
and for the inference rules, with a simple rule for determining symbol precedence. For CASC
2012, we are going to use KBO instead.

For the FOF problems, a preprocessing step attempts to reduce the problem to independent
subproblems by a miniscope transformation; if the problem reduction succeeds, each subproblem
is clausified and given to the ordinary search procedure; if the problem reduction fails, the
original problem is clausified and given to the search procedure.

Implementation
Prover9 is coded in C, and it uses the LADR libraries. Some of the code descended from EQP
[44]. (LADR has some AC functions, but Prover9 does not use them). Term data structures
are not shared (as they are in Otter). Term indexing is used extensively, with discrimination
tree indexing for finding rewrite rules and subsuming units, FPA/Path indexing for finding
subsumed units, rewritable terms, and resolvable literals. Feature vector indexing [71] is used
for forward and backward nonunit subsumption. Prover9 is available from

http://www.cs.unm.edu/~mccune/prover9/

Expected Competition Performance
Some of the strategy development for CASC was done by experimentation with the CASC-2004
competition “selected” problems. (Prover9 has not yet been run on other TPTP problems.)
Prover9 is unlikely to challenge the CASC leaders, because (1) extensive testing and tuning over
TPTP problems has not been done, (2) theories (e.g., ring, combinatory logic, set theory) are
not recognized, (3) term orderings and symbol precedences are not fine-tuned, and (4) multiple
searches with di↵ering strategies are not run.

Finishes in the middle of the pack are anticipated in all categories in which Prover9 competes.

7.17 Satallax 2.7

Chad E. Brown
Saarland University, Germany

Architecture
Satallax 2.7 [15] is an automated theorem prover for higher-order logic. The particular form of
higher-order logic supported by Satallax is Church’s simple type theory with extensionality and
choice operators. The SAT solver MiniSat [21] is responsible for much of the search for a proof.
The theoretical basis of search is a complete ground tableau calculus for higher-order logic [17]
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with a choice operator [3]. A problem is given in the THF format. A branch is formed from
the axioms of the problem and the negation of the conjecture (if any is given). From this point
on, Satallax tries to determine unsatisfiability or satisfiability of this branch.

Satallax progressively generates higher-order formulae and corresponding propositional clauses
[16]. These formulae and propositional clauses correspond to instances of the tableau rules. Sa-
tallax uses the SAT solver MiniSat as an engine to test the current set of propositional clauses
for unsatisfiability. If the clauses are unsatisfiable, then the original branch is unsatisfiable.

Additionally, Satallax may optionally generate first-order formulas in addition to the propo-
sitional clauses. If this option is used, then Satallax peroidically calls the first-order theorem
prover E to test for first-order unsatisfiability. If the set of first-order formulas is unsatisfiable,
then the original branch is unsatisfiable.

Strategies
There are about a hundred flags that control the order in which formulas and instantiation
terms are considered and propositional clauses are generated. Other flags activate some optional
extensions to the basic proof procedure (such as whether or not to call the theorem prover E).
A collection of flag settings is called a mode. Approximately 500 modes have been defined and
tested so far. A strategy schedule is an ordered collection of modes with information about
how much time the mode should be allotted. Satallax tries each of the modes for a certain
amount of time sequentially. Satallax 2.7 has strategy schedule consisting of 68 modes. Each
mode is tried for time limits ranging from 0.1 seconds to 54.9 seconds. The strategy schedule
was determined through experimentation using the THF problems in version 5.4.0 of the TPTP
library.

Implementation
Satallax 2.7 is implemented in OCaml. A foreign function interface is used to in teract with
MiniSat 2.2.0. Satallax is available from

http://satallax.com

Expected Competition Performance
Satallax 2.7 is the CASC-24 THF division runner-up.

7.18 Satallax-MaLeS 1.3

Daniel Kuehlwein
Radboud University Nijmegen, The Netherlands

Architecture
Satallax-MaLeS 1.3 improves Satallax’s automatic mode with machine learning techniques to
predict which search strategy is most likely to find a proof.

Strategies
Satallax-MaLeS 1.3 relies on Geo↵ Sutcli↵e’s MakeListStat to classify problems. It uses the
same data as Satallax-MaLeS 1.2 as basis for the learning algorithms.
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Implementation
Satallax-MaLeS is based on Python, in particular the Sklearn library that contains many ma-
chine learning algorithms. After CASC Satallax-MaLeS will be available from

http://www.cs.ru.nl/~kuehlwein/

Expected Competition Performance
We expect Satallax-MaLeS 1.3 to perform slightly better than Satallax-MaLeS 1.2.

7.19 SPASS+T 2.2.19

Uwe Waldmann
Max-Planck-Insitut für Informatik, Germany

Architecture
SPASS+T is an extension of the superposition-based theorem prover SPASS that integrates
algebraic knowledge into SPASS in three complementary ways: by passing derived formulas
to an external SMT procedure (currently Yices or CVC3), by adding standard axioms, and
by built-in arithmetic simplification and inference rules. A first version of the system has
been described in [63]; later a much more sophisticated coupling of the SMT procedure has
been added [117]. The latest version provides improved support for isint/1, israt/1, floor/1
and ceiling/1 and adds partial input abstraction and history-dependent weights for numerical
constants.

Strategies
Standard axioms and built-in arithmetic simplification and inference rules are integrated into
the standard main loop of SPASS. Inferences between standard axioms are excluded, so the user-
supplied formulas are taken as set of support. The external SMT procedure runs in parallel in
a separate process, leading occasionally to non-deterministic behaviour.

Implementation
SPASS+T is implemented in C. SPASS+T is available from

http://www.mpi-inf.mpg.de/~uwe/software/#TSPASS

Expected Competition Performance
SPASS+T 2.2.16 came second in the TFA division of last CASC; we expect a similar perfor-
mance in CASC 2013.

7.20 SPASS+T 2.2.20

Uwe Waldmann
Max-Planck-Insitut für Informatik, Germany
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Architecture
SPASS+T is an extension of the superposition-based theorem prover SPASS that integrates
algebraic knowledge into SPASS in three complementary ways: by passing derived formulas
to an external SMT procedure (currently Yices or CVC3), by adding standard axioms, and
by built-in arithmetic simplification and inference rules. A first version of the system has
been described in [63]; later a much more sophisticated coupling of the SMT procedure has
been added [117]. The latest version provides improved support for isint/1, israt/1, floor/1
and ceiling/1 and adds partial input abstraction and history-dependent weights for numerical
constants.

Strategies
Standard axioms and built-in arithmetic simplification and inference rules are integrated into
the standard main loop of SPASS. Inferences between standard axioms are excluded, so the user-
supplied formulas are taken as set of support. The external SMT procedure runs in parallel in
a separate process, leading occasionally to non-deterministic behaviour.

Implementation
SPASS+T is implemented in C. SPASS+T is available from

http://www.mpi-inf.mpg.de/~uwe/software/#TSPASS

Expected Competition Performance
SPASS+T 2.2.19 came first in the TFA division of last CASC; we expect a similar performance
in CASC 2014.

7.21 Vampire 2.6

Krystof Hoder, Andrei Voronkov
University of Manchester, England

Architecture
Vampire 2.6 is an automatic theorem prover for first-order classical logic. It consists of a shell
and a kernel. The kernel implements the calculi of ordered binary resolution and superposition
for handling equality. It also implements the Inst-gen calculus. The splitting rule in kernel adds
propositional parts to clauses, which are being manipulated using binary decision diagrams and
a SAT solver. A number of standard redundancy criteria and simplification techniques are used
for pruning the search space: subsumption, tautology deletion, subsumption resolution and
rewriting by ordered unit equalities. The reduction ordering is the Knuth-Bendix Ordering.

Substitution tree and code tree indexes are used to implement all major operations on sets
of terms, literals and clauses. Although the kernel of the system works only with clausal normal
form, the shell accepts a problem in the full first-order logic syntax, clausifies it and performs
a number of useful transformations before passing the result to the kernel. Also the axiom
selection algorithm Sine [30] can be enabled as part of the preprocessing.

When a theorem is proved, the system produces a verifiable proof, which validates both the
clausification phase and the refutation of the CNF.
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Strategies
The Vampire 2.6 kernel provides a fairly large number of options for strategy se lection. The
most important ones are:

• Choice of the main procedure:

– Limited Resource Strategy
– DISCOUNT loop
– Otter loop
– Goal oriented mode based on tabulation
– Instantiation using the Inst-gen calculus

• A variety of optional simplifications.
• Parameterized reduction orderings.
• A number of built-in literal selection functions and di↵erent modes of comparing literals.
• Age-weight ratio that specifies how strongly lighter clauses are preferred for inference
selection.

• Set-of-support strategy.

Implementation
Vampire 2.6 is implemented in C++.

Expected Competition Performance
Vampire 2.6 is the CASC-24 FOF division winner.

7.22 Waldmeister 710

Thomas Hillenbrand
Max-Planck-Institut für Informatik, Germany

Architecture
Waldmeister 710 [25] is a system for unit equational deduction. Its theoretical basis is unfailing
completion in the sense of [2] with refinements towards ordered completion (cf. [1]). The system
saturates the input axiomatization, distinguishing active facts, which induce a rewrite relation,
and passive facts, which are the one-step conclusions of the active ones up to redundancy.
The saturation process is parameterized by a reduction ordering and a heuristic assessment of
passive facts [26]. This year’s version is the result of polishing and fixing a few things in last
year’s.

Strategies
The prover is coded in ANSI-C. It runs on Solaris, Linux, MacOS X, and Windows/Cygwin.
The central data strucures are: perfect discrimination trees for the active facts; group-wise
compressions for the passive ones; and sets of rewrite successors for the conjectures. Visit the
Waldmeister web pages at:

http://www.waldmeister.org
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Implementation
The approach taken to control the proof search is to choose the search parameters - reduction
ordering and heuristic assessment - according to the algebraic structure given in the problem
specification [26]. This is based on the observation that proof tasks sharing major parts of their
axiomatization often behave similarly.

Expected Competition Performance
Waldmeister 710 is the CASC-23 UEQ division winner.

7.23 VanHElsing 1.0

Daniel Kuehlwein
Radboud University Nijmegen, The Netherlands

Architecture
VanHElsing improves E’s automatic mode with machine learning techniques to predict which
search strategy is most likely to find a proof.

Strategies
VanHElsing relies on E’s features to classify problems. It uses the same data as E 1.8 as basis
for the learning algorithms.

Implementation
VanHElsing is based on Python, in particular the Sklearn library that contains many machine
learning algorithms. After CASC VanHElsing will be availble from

http://www.cs.ru.nl/~kuehlwein/

Expected Competition Performance
We expect VanHElsing to perform slightly better than E 1.8.

7.24 Zipperposition 0.4

Simon Cruanes
INRIA, France

Architecture
Zipperposition is a typed first-order superposition theorem prover written in OCaml for proto-
typing. It deals with hashconsed polymorphic terms, has a Hindley-Milner-like type-inference
algorithm and accepts TFF1 input. Its core superposition calculus is strongly inspired from E
(discount loop, mostly same inferences including condensation and contextual literal cutting).

The new version has experimental support for linear integer arithmetic. It features a new
calculus (not published yet), inspired from the work of Waldmann on superposition modulo
rational arithmetic [116]. The calculus is an extension of superposition that doesn’t use a
black-box solver, but has special inferences to deal with arithmetic equations, inequations and
divisibility literals. Additional redundancy criteria are used to make the search space more
tractable. As we don’t have completeness results yet, the solver will fail on satisfiable problems,
even if it finds a saturated set of clauses.
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Strategies
Zipperposition uses several clause queues, but unlike E it has no heuristic to choose them based
on the input. The strategy is therefore a simple alternance of old clauses, and “small” clauses,
in one run.

Implementation
Zipperposition is in pure OCaml, with a mix of imperative and functional style, including
iterators, zippers, etc. It uses Non-perfect Discrimination Trees and Feature Vectors [71] for
indexing. Numbers are handled by Zarith, a frontend to GMP.

Expected Competition Performance
In FOF, we expect decent performance. The results should be quite similar to last year as the
superposition core isn’t the focus of our research.

In TFA, since we feature a new calculus, performance is hard to predict. We expect the
prover to perform well on problems SMT solvers will struggle with, and conversely; best perfor-
mance should be reached on unsatisfiable problems with few inequations but possibly function
symbols and quantifiers; worst will be on combinatorial ground problems that require little
symbolic reasoning.

8 Conclusion

The 7th IJCAR ATP System Competition was the nineteenth large scale competition for clas-
sical logic ATP systems. The organizer believes that CASC fulfills its main motivations: stimu-
lation of research, motivation for improving implementations, evaluation of relative capabilities
of ATP systems, and providing an exciting event. Through the continuity of the event and
consistency in the the reporting of the results, performance comparisons with previous and
future years are easily possible. The competition provides exposure for system builders both
within and outside of the community, and provides an overview of the implementation state of
running, fully automatic, classical logic, ATP systems.
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