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Abstract 
In order to stimulate ATP system development, and to expose ATP systems to interested 
researchers, the CADE-18 ATP System Competition (CASC-18) will be held on 28th July 
2002. CASC evaluates the performance of sound, fully automatic, classical 1st order ATP 
systems. The evaluation is in terms of: 
• the number of problems solved, and  
• the number of acceptable proof objects produced, and 
• the average runtime for problems solved;  
in the context of:  
• a bounded number of eligible problems, chosen from the TPTP Problem Library, and  
• a specified time limit for each solution attempt.  

 

1. Introduction 
The CADE-18 ATP System Competition (CASC-18) will be held at CADE-18 in Copenhagen, Denmark, on 
28th July 2002. CASC evaluates the performance of sound, fully automatic, 1st order ATP systems. The 
evaluation is in terms of the number of problems solved, the number of acceptable proof objects produced, 
and the average runtime for problems solved, in the context of a bounded number of eligible problems 
chosen from the TPTP Problem Library [SS98c] and a specified time limit for each solution attempt. CASC–
18 is the seventh such ATP system competition [SS97a, SS98d, SS99, Sut00a, Sut01a, SSP02]. 
Twenty four ATP systems, listed in Table 1, have been entered into the various competition and 
demonstration divisions. The winners of the CASC-JC divisions have been automatically entered into 
those divisions, to provide benchmarks against which progress can be judged (the competition archive 
provides access to the systems' executables and source code). 
The design and procedures of CASC-18 evolved from those of CASCs-13 to -17 [SS97b, SS98a, SS98b, 
Sut99, Sut00b, Sut01b]. Important changes for CASC-18 are:  
• The rules regarding limitations on tuning for TPTP problems have been clarified.  
• The sections and required information in the system description have changed.  
• The retrospective disqualification rule for systems that are found to be unsound after the competition 

has been changed.  
• The required system properties have changed, with respect to the UNIX system signals used to control 

execution. 
The competition organizers are Geoff Sutcliffe and Christian Suttner. The competition is overseen by a 
panel of knowledgeable researchers who are not participating in the event; the panel members are Alan 
Bundy, John Harrison, and Jeff Pelletier. The rules, deadlines, and specifications given here are absolute. 
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Only the competition panel has the right to make exceptions. The competition will be run on computers 
provided by the Department of Computer Science at the University of Manchester. The CASC-18 WWW site 
provides access to resources used before, during, and after the event: 
 http://www.tptp.org/CASC/18 

System  Divisions  Entrant  Institution  
Bliksem 1.12a MIX* UEQ SAT FOF Hans de Nivelle Max-Planck-Institut für Informatik 
CiME 2 UEQ Benjamin Monate 

(Evelyne Contejean) 
LRI Universite Paris-Sud 

DCTP 1.2 MIX EPR Gernot Stenz Technische Universität München 
DCTP 1.2-SAT SAT Gernot Stenz Technische Universität München 
DCTP 10.1p MIX FOF EPR Gernot Stenz Technische Universität München 
DCTP 10.1p-SAT SAT Gernot Stenz Technische Universität München 
E 0.7 MIX UEQ Stephan Schulz Tallinn Technical University and 

Safelogic AB 
EP 0.7 MIX* Stephan Schulz Tallinn Technical University and 

Safelogic AB 
E-SETHEO csp01 MIX FOF EPR  CASC-JC CASC 
E-SETHEO csp02 MIX FOF EPR Gernot Stenz (Reinhold 

Letz, Stephan Schulz) 
Technische Universität München 

E-SETHEO 
csp02–SAT 

SAT Gernot Stenz (Reinhold 
Letz, Stephan Schulz) 

Technische Universität München 

EXLOG 2 MIX SAT FOF EPR 
(Demo) 

Ivan Kossey Uzhgorod State University 

Gandalf c-2.5 MIX8 UEQ Tanel Tammet Tallinn Technical University and 
Safelogic AB 

Gandalf c-2.5-SAT SAT EPR Tanel Tammet Tallinn Technical University and 
Safelogic AB 

GandalfSat 1.0 SAT  CASC-JC CASC 
GrAnDe 1.1 EPR Geoff Sutcliffe, 

Stephan Schulz 
University of Miami 
Technische Universität München 

ICGNS 2002 SAT  William McCune  
(Olga Shumsky Matlin, 
Michael Rose) 

Argonne National Laboratory 

Otter 3.2 MIX* UEQ FOF CASC-18 
(William McCune) 

CASC 
(Argonne National Laboratory) 

SCOTT 6.1 MIX* UEQ SAT FOF 
EPR 

John Slaney  
(Kahlil Hodgson)  

Australian National University  

Vampire 2.0-CASC MIX* CASC-JC CASC 
Vampire 5.0 MIX* UEQ FOF EPR Andrei Voronkov 

(Alexandre Riazanov) 
University of Manchester 

Vampire 5.0-CASC MIX* Andrei Voronkov 
(Alexandre Riazanov) 

University of Manchester 

Waldmeister 601 UEQ  CASC-JC CASC 
Waldmeister 702 UEQ Thomas Hillenbrand 

(Bernd Löchner) 
Max-Planck-Institut für Informatik 
(Universität Kaiserslautern) 

MIX* indicates participation in the MIX division Proof class. See Section 2.1 for details. 

Table 1: The CASC-18 Entrants 
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2. Divisions 
CASC-18 is divided into divisions according to problem and system characteristics. There are five 
competition divisions in which systems are explicitly ranked, and one demonstration division in which 
systems demonstrate their abilities without being formally ranked. Entry into the competition divisions is 
subject to the following rules:  
• ATP systems can be entered at only the division level.  
• ATP systems can be entered into more than one division. A system that is not entered into a division is 

assumed to perform worse than the entered systems, for that type of problem.  
• The ATP systems have to run on a single locally provided standard UNIX workstation (the general 

hardware - see Section 3.1). ATP systems that cannot run on the general hardware can be entered into 
the demonstration division (see Section 2.2). 

2.1. Competition Divisions 
• The MIX division: Mixed CNF Really-Non-Propositional Theorems 
Mixed means Horn and non-Horn problems, with or without equality, but not unit equality problems (see 
the UEQ Division below). Really-Non-Propositional means with an infinite Herbrand universe. The MIX 
Division has five problem categories:  
• The HNE category: Horn with No Equality  
• The HEQ category: Horn with some (but not pure) Equality  
• The NNE category: Non-Horn with No Equality  
• The NEQ category: Non-Horn with some (but not pure) Equality  
• The PEQ category: Pure Equality  

The MIX division has two classes:  
• The Assurance class: Ranked according to the number of problems solved (a "yes" output, giving 

an assurance of the existence of a proof).  
• The Proof class: Ranked according to the number of problems solved with an acceptable proof 

output. The competition panel judges whether or not each system's proof format is acceptable. 
• The UEQ division: Unit Equality CNF Really-Non-Propositional Theorems 
• The SAT division: Mixed CNF Really-Non-Propositional Non-theorems  
The SAT Division has two problem categories:  
• The SNE category: SAT with No Equality  
• The SEQ category: SAT with Equality  

• The FOF division: Mixed FOF Non-Propositional Theorems 
The FOF Division has two categories:  
• The FNE category: FOF with No Equality  
• The FEQ category: FOF with Equality  

• The EPR division: CNF Effectively Propositional Theorems and Non-theorems. 
Effectively propositional means non-propositional with a finite Herbrand Universe. The EPR Division has 
two problem categories:  
• The EPT category: Effectively Propositional Theorems (unsatisfiable clauses) 
• The EPS category: Effectively Propositional  non-theorems (Satisfiable clauses) 

Section 3.2.1 explains what problems are eligible for use in each division and category.  

2.2. Demonstration Division 
ATP systems that cannot run on the general hardware, or cannot be entered into the competition divisions 
for any other reason, can be entered into the demonstration division. Demonstration division systems can 
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run on the general hardware, or the hardware can be supplied by the entrant. Hardware supplied by the 
entrant may be brought to CASC, or may be accessed via the internet. 
The entry specifies which competition divisions' problems are to be used. The results are presented along 
with the competition divisions' results, but may not be comparable with those results. 

3. Infrastructure 

3.1. Hardware and Software 
The general hardware is 30 P4 Dell Precision 330 workstations, each having:  
• Intel P4 993MHz CPU  
• 512MB memory  
• Linux 2.4.9-34 operating system  

3.2. Problems 

3.2.1. Problem Selection 
The problems are from the TPTP Problem Library, version v2.5.0. The TPTP version used for the 
competition is not released until after the system installation deadline. The problems have to meet certain 
criteria to be eligible for selection:  
• The TPTP uses system performance data to classify problems as one of [SS01]:  
• Easy: Solvable by all state-of-the-art ATP systems  
• Difficult: Solvable by some state-of-the-art ATP systems  
• Unsolved: Solvable by no ATP systems  
• Open: Theorem-hood unknown  
Difficult problems with a rating in the range 0.21 to 0.99 are eligible. Problem ratings are computed 
from systems' performance data. Data from systems submitted by the system submission deadline are 
used for computing the problem ratings for the TPTP version used for the competition. 

• The TPTP distinguishes versions of problems as one of standard, incomplete, augmented, especial, or 
biased. All except biased problems are eligible.  

The problems used are randomly selected from the eligible problems at the start of the competition, based 
on a seed supplied by the competition panel.  
• The selection is constrained so that no division or category contains an excessive number of very 

similar problems.  
• The selection mechanism is biased to select problems that are new in the TPTP version used, until 50% 

of the problems in each category have been selected, after which random selection (from old and new 
problems) continues. The actual percentage of new problems used depends on how many new 
problems are eligible and the limitation on very similar problems. 

3.2.2. Number of Problems 
The minimal numbers of problems that have to be used in each division and category, to ensure sufficient 
confidence in the competition results, are determined from the numbers of eligible problems in each 
division and category [GS96] (the competition organizers have to ensure that there is sufficient CPU time 
available to run the ATP systems on this minimal number of problems). The minimal numbers of 
problems is used in determining the CPU time limit imposed on each solution attempt.  
A lower bound on the total number of problems that is used is determined from the number of 
workstations available, the time allocated to the competition, the number of ATP systems to be run on the 
general hardware over all the divisions, and the CPU time limit, according to the following relationship: 
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! 

Number of problems =
Number of workstations "  Time allocated

Number of ATP systems "  CPU time limit
 

It is a lower bound on the total number of problems because it assumes that every system uses all of the 
CPU time limit for each problem. Since some solution attempts succeed before the CPU time limit is 
reached, more problems can be used. The numbers of problems used in each division and category are 
determined according to the judgement of the competition organizers.  

3.2.3. Problem Preparation 
It is necessary to ensure that no system receives an advantage or disadvantage due to the specific 
presentation of the problems in the TPTP. To this end the tptp2X utility, distributed with the TPTP, is 
used to:  
• replace all predicate and function symbols with meaningless symbols 
• randomly reorder the clauses and literals in CNF problems 
• randomly reorder the formulae in FOF problems 
• randomly reverse the unit equalities in UEQ problems 
• remove equality axioms that are not needed by some of the ATP systems 
• add equality axioms that are needed by some of the ATP systems 
• output the problems in the formats required by the ATP systems. (The clause type information, one of 

axiom, hypothesis, or conjecture, may be included in the final output of each formula.) 
Further, to prevent systems from recognizing problems from their file names, symbolic links are made to 
the selected problems, using names of the form CCCNNN-1.p for the symbolic links, with NNN running from 
001 to the number of problems in the respective division or category. The problems are specified to the 
ATP systems using the symbolic link names.  
In the demonstration division the same problems are used as for the competition divisions, with the same 
tptp2X transformations applied. However, the original file names are retained.  

3.3. Time Limits and Timing 
In the competition divisions, CPU and wall clock time limits are imposed on each solution attempt. A 
minimal CPU time limit of 180 seconds is used. The maximal CPU time limit is determined using the 
relationship used for determining the number of problems, with the minimal number of problems as the 
"Number of problems". The CPU time limit is chosen as a reasonable value within the range allowed , and 
is announced at the competition. The wall clock time limit is imposed in addition to the CPU time limit, to 
prevent very high memory usage that causes swapping. The wall clock time limit is double the CPU time 
limit. 
In the demonstration division, each entrant can choose to use either a CPU or a wall clock time limit, 
whose value is the CPU time limit of the competition divisions. 

4. Performance Evaluation 
At some time before the competition, all systems in the competition divisions are tested for soundness. 
Non-theorems (satisfiable variants of the eligible problems, e.g., without the conjecture clause, and 
satisfiable problems selected from the TPTP) are submitted to the systems in the MIX, UEQ, FOF, and 
EPR divisions, and theorems (selected from the TPTP) are submitted to the systems in the SAT and EPR 
divisions. Finding a proof of a non-theorem or a disproof of a theorem indicates unsoundness. If an ATP 
system fails the soundness testing it must be repaired or is disqualified. The soundness testing has a 
secondary aim of eliminating the possibility of an ATP system simply delaying for some amount of time 
and then claiming to have found a solution. In the demonstration division no soundness testing has to be 
performed. 



 

Proceedings of the CADE-18 ATP System Competition Page 6 

During the competition, for each ATP system, for each problem attempted, three items of data are 
recorded: whether or not a solution was found, the CPU time taken, and whether or not a solution (proof 
or model) was output. In the MIX division proof class, the systems are ranked according to the number of 
problems solved with a proof output. In the MIX division assurance class and all other divisions, the 
systems are ranked according to the numbers of problems solved. If there is a tie according to these 
rankings, then the tied systems are ranked according to their average CPU times over problems solved. If 
any division is won by the system that won that division in the previous CASC, then no winner is be 
announced in that division. Otherwise winners are announced in each division (two class winners in the 
MIX division), and prizes are awarded.  
At some time after the competition, all high ranking systems in each division are tested over the entire 
TPTP. This provides a final check for soundness. If a system is found to be unsound, and it cannot be 
shown that the unsoundness did not manifest itself in the competition, then the system is retrospectively 
disqualified. At some time after the competition, the proofs from the winner of the MIX division proof 
class are checked by the panel. If any of the proofs are unacceptable, i.e., they are significantly worse than 
the samples provided, then that system is retrospectively disqualified from the proof class. In all cases, the 
unsoundness will be reported in the journal paper about the competition. 

5. Entry Requirements and Procedures 
To be entered into CASC, systems have to be registered using the CASC system registration form. No 
registrations are accepted after the registration deadline. For each system entered, a person has to be 
nominated to handle all issues (including execution difficulties) arising before and during the competition. 
The nominated entrant must formally register for CASC. However, it is not necessary for entrants to 
physically attend the competition.  
Entering many similar versions of the same system is deprecated. Entrants may be required to limit the 
number of system versions that they enter. The division winners from the previous CASC are 
automatically entered into their divisions, to provide benchmarks against which progress can be judged. 
Systems entered in the MIX division are automatically ranked in the assurance class, and are ranked in the 
proof class if they output acceptable proofs. After the competition all systems' source code is made 
publically available on the CASC WWW site.  
It is assumed that each entrant has read the WWW pages related to the competition, and has complied 
with the competition rules. Non-compliance with the rules could lead to disqualification. A "catch-all" 
rule is used to deal with any unforseen circumstances: No cheating is allowed. The panel is allowed to 
disqualify entrants due to unfairness, and to adjust the competition rules in case of misuse. 

5.1. System Description and Proof Objects 
A system description has to be provided for each ATP system entered, using this HTML schema. The 
system description must fit onto two pages, using 12pt times font. The schema has the following sections:  
• Architecture. This section introduces the ATP system, and describes the calculus and inference rules 

used.  
• Implementation. This section describes the implementation of the ATP system, including the 

programming language used, important internal data structures, and any special code libraries used.  
• Strategies. This section describes the search strategies used, why they are effective, and how they are 

selected for given problems. Any strategy tuning that is based on specific problems' characteristics 
must be clearly described (and justified in light of the tuning restrictions).  

• Expected competition performance. This section makes some predictions about the performance of the 
ATP system in each of the divisions and categories the system is competing in.  

• References.  
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The system description has to be emailed to the competition organizers before the system description 
deadline. The system descriptions, along with information regarding the competition design and 
procedures, form the proceedings for the competition.  
For systems in the MIX division proof class, representative sample proofs must be emailed to the 
competition organizers before the sample solutions deadline. The sample proofs must illustrate the use of 
all inference rules. A key must be provided if any non-obvious abbreviations for inference rules or other 
information are used. The competition panel decides whether or not the proof objects are acceptable. 

5.2.  System Properties 
The precomputation and storage of any information specifically about TPTP problems is not allowed. 
Strategies and strategy selection based on the characteristics of a few specific TPTP problems is not 
allowed, i.e., strategies and strategy selection must be general purpose and expected to extend usefully to 
new unseen problems. If automatic strategy learning procedures are used, the learning must ensure that 
sufficient generalization is obtained, and that no learning at the individual problem level is performed.  
For every problem solved, the system's solution process has to be reproducible by running the system 
again.  
With the exception of the MIX division proof class, the ATP systems are not required to output solutions 
(proofs or models). However, systems that do output solutions to stdout are highlighted in the 
presentation of results.  

5.3. System Installation 
Access to the general hardware (or equivalent) is available from the general hardware access deadline. 
Entrants must install their systems on the general hardware, and ensure that their systems execute in the 
competition environment, according to the checks listed below. Entrants are advised to perform these 
checks well in advance of the system installation deadline. This gives the competition organizers time to 
help resolve any difficulties encountered.  
The ATP systems have to be executable by a single command line, using an absolute path to the 
executable that may not be in the current directory. The command line arguments are the absolute path 
name for a symbolic link as the problem file name, the time limit (if required by the entrant), and entrant 
specified system switches (the same for all problems). No shell features, such as input or output 
redirection, may be used in the command line. No assumptions may be made about the format of the 
problem file name. 
• Check: The ATP system can be run by an absolute path to the executable. For example:  

prompt> pwd 
/home/tptp 
prompt> which MyATPSystem 
/home/tptp/bin/MyATPSystem 
prompt> /home/tptp/bin/MyATPSystem /home/tptp/TPTP/Problems/GRP/GRP001-1.p 
Proof found in 147 seconds. 

• Check: The ATP system accepts an absolute path name for a symbolic link as the problem file name. 
For example:  
prompt> cd /home/tptp/tmp 
prompt> ln -s /home/tptp/TPTP/Problems/GRP/GRP001-1.p CCC001-1.p 
prompt> cd /home/tptp 
prompt> /home/tptp/bin/MyATPSystem /home/tptp/tmp/CCC001-1.p 
Proof found in 147 seconds. 

• Check: The ATP system makes no assumptions about the format of the problem file name. For 
example:  

prompt> cp /home/tptp/TPTP/Problems/PUZ/PUZ031-1.p _foo-Blah 
prompt> /home/tptp/bin/MyATPSystem _foo-Blah 
Proof found in 147 seconds. 
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The ATP systems that run on the general hardware have to be interruptable by a SIGXCPU signal, so that 
the CPU time limit can be imposed on each solution attempt, and interruptable by a SIGALRM signal, so 
that the wall clock time limit can be imposed on each solution attempt. For systems that create multiple 
processes, the signal is sent first to the process at the top of the hierarchy, then one second later to all 
processes in the hierarchy. Any orphan processes are killed after that, using SIGKILL.The default action 
on receiving these signals is to exit (thus complying with the time limit, as required), but systems may 
catch the signals and exit of their own accord. Both approaches are acceptable for the competition. If a 
system runs past a time limit this is noticed in the timing data, and the system is considered to have not 
solved that problem. 
• Check: The ATP system can run under the TreeLimitedRun program (sources are available from the 

CASC-18 WWW site) For example:  
prompt> which TreeLimitedRun 
/home/tptp/bin/TreeLimitedRun 
prompt> /home/tptp/bin/TreeLimitedRun –
q0 200 400 /home/tptp/bin/MyATPSystem /home/tptp/tmp/CCC001-1.p 
TreeLimitedRun: ---------------------------------------------------------- 
TreeLimitedRun: /home/tptp/bin/MyATPSystem 
TreeLimitedRun: CPU time limit is 200s 
TreeLimitedRun: WC  time limit is 400s 
TreeLimitedRun: PID is 4867 
TreeLimitedRun: ---------------------------------------------------------- 
Proof found in 147 seconds. 
FINAL WATCH: 147.8 CPU 150.0 WC 

• Check: The ATP system's CPU time can be limited using the TreeLimitedRun program. For example:  
prompt> which TreeLimitedRun 
/home/tptp/bin/TreeLimitedRun 
prompt> /home/tptp/bin/TreeLimitedRun –
q0 10 20 /home/tptp/bin/MyATPSystem /home/tptp/tmp/CCC001-1.p 
TreeLimitedRun: ---------------------------------------------------------- 
TreeLimitedRun: /home/tptp/bin/MyATPSystem 
TreeLimitedRun: CPU time limit is 10s 
TreeLimitedRun: WC  time limit is 20s 
TreeLimitedRun: PID is 5827 
TreeLimitedRun: ---------------------------------------------------------- 
CPU time limit exceeded 
FINAL WATCH: 10.7 CPU 13.1 WC 

• Check: The ATP system's wall clock time can be limited using the TreeLimitedRun program. For  
example:  
prompt> /home/tptp/bin/TreeLimitedRun –
q0 20 10 /home/tptp/bin/MyATPSystem /home/tptp/tmp/CCC001-1.p 
TreeLimitedRun: ---------------------------------------------------------- 
TreeLimitedRun: /home/tptp/bin/MyATPSystem 
TreeLimitedRun: CPU time limit is 20s 
TreeLimitedRun: WC  time limit is 10s 
TreeLimitedRun: PID is 5827 
TreeLimitedRun: ---------------------------------------------------------- 
Alarm clock 
FINAL WATCH: 9.7 CPU 10.1 WC 

When terminating of their own accord, the ATP systems have to output a distinguished string (specified 
by the entrant) to stdout indicating the result, one of:  
• A solution exists (for CNF problems, the clause set is unsatisfiable, for FOF problems, the conjecture is 

a theorem) 
• No solution exists (for CNF problems, the clause set is satisfiable, for FOF problems, the conjecture is 

a non-theorem) 
• No conclusion reached 
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When outputing proofs for MIX division's Proof class, the start and end of the proof must be identified by 
distinguished strings (specified by the entrant). 
• Check: The system outputs a distinguished string when terminating of its own accord. For example, 

here the entrant has specified that the distinguished string Proof found indicates that a solution 
exists. If appropriate, similar checks should be made for the cases where no solution exists and where 
no conclusion is reached.  
prompt> /home/tptp/bin/TreeLimitedRun –
q0 200 400 /home/tptp/bin/MyATPSystem /home/tptp/tmp/CCC001-1.p 
TreeLimitedRun: ---------------------------------------------------------- 
TreeLimitedRun: /home/tptp/bin/MyATPSystem 
TreeLimitedRun: CPU time limit is 200s 
TreeLimitedRun: WC  time limit is 400s 
TreeLimitedRun: PID is 5827 
TreeLimitedRun: ---------------------------------------------------------- 
Proof found in 147 seconds. 
FINAL WATCH: 147.8 CPU 150.0 WC 

• Check: The system outputs distinguished strings at the start and end of its proof object. For example, 
here the entrant has specified that the distinguished strings START OF PROOF and END OF PROOF 
identify the start and end of the proof. 
prompt> /home/tptp/bin/TreeLimitedRun –q0 200 400 /home/tptp/bin/MyATPSystem –
output_proof /home/tptp/tmp/CCC001-1.p 
TreeLimitedRun: ---------------------------------------------------------- 
TreeLimitedRun: /home/tptp/bin/MyATPSystem 
TreeLimitedRun: CPU time limit is 200s 
TreeLimitedRun: WC  time limit is 400s 
TreeLimitedRun: PID is 5827 
TreeLimitedRun: ---------------------------------------------------------- 
Proof found in 147 seconds. 
START OF PROOF 
     ... acceptable proof here ...  
END OF PROOF 
FINAL WATCH: 147.8 CPU 150.0 WC 

 
If an ATP system terminates of its own accord, it may not leave any temporary or other output files. If an 
ATP system is terminated by a SIGXCPU or SIGALRM, it may not leave any temporary or other output files 
anywhere other than in /tmp.  
Multiple copies of the ATP systems have to be executable concurrently on different machines but in the 
same (NFS cross mounted) directory. It is therefore necessary to avoid producing temporary files that do 
not have unique names, with respect to the machines and other processes. An adequate solution is a file 
name including the host machine name and the process id. 
For practical reasons excessive output from the ATP systems is not allowed. A limit, dependent on the 
disk space available, is imposed on the amount of stdout and stderr output that can be produced. The 
limit is at least 10KB per problem (averaged over all problems so that it is possible to produce some long 
proofs).  
• Check: No temporary or other files are left if the system terminates of its own accord, and no 

temporary or other files are left anywhere other than in /tmp if the system is terminated by a SIGXCPU 
or SIGALRM. Check in the current directory, the ATP system's directory, the directory where the 
problem's symbolic link is located, and the directory where the actual problem file is located.  
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prompt> pwd 
/home/tptp 
prompt> /home/tptp/bin/TreeLimitedRun –
q0 200 400 /home/tptp/bin/MyATPSystem /home/tptp/tmp/CCC001-1.p 
TreeLimitedRun: ---------------------------------------------------------- 
TreeLimitedRun: /home/tptp/bin/MyATPSystem 
TreeLimitedRun: CPU time limit is 200s 
TreeLimitedRun: WC  time limit is 400s 
TreeLimitedRun: PID is 13526 
TreeLimitedRun: ---------------------------------------------------------- 
Proof found in 147 seconds. 
FINAL WATCH: 147.8 CPU 150.0 WC 
prompt> ls /home/tptp 
     ... no temporary or other files left here ...  
prompt> ls /home/tptp/bin 
     ... no temporary or other files left here ...  
prompt> ls /home/tptp/tmp 
     ... no temporary or other files left here ...  
prompt> ls /home/tptp/TPTP/Problems/PUZ 
     ... no temporary or other files left here ...  
prompt> ls /tmp 
     ... no temporary or other files left here by decent systems ... 

• Check: Multiple concurrent executions do not clash. For example:  
prompt> (/bin/time /home/tptp/bin/TreeLimitedRun –
q0 200 400 /home/tptp/bin/MyATPSystem /home/tptp/tmp/CCC001–
1.p) & (/bin/time /home/tptp/bin/TreeLimitedRun –
q0 200 400 /home/tptp/bin/MyATPSystem /home/tptp/tmp/CCC001–1.p) 
TreeLimitedRun: ---------------------------------------------------------- 
TreeLimitedRun: /home/tptp/bin/MyATPSystem 
TreeLimitedRun: CPU time limit is 200s 
TreeLimitedRun: WC  time limit is 400s 
TreeLimitedRun: PID is 5827 
TreeLimitedRun: ---------------------------------------------------------- 
TreeLimitedRun: ---------------------------------------------------------- 
TreeLimitedRun: /home/tptp/bin/MyATPSystem 
TreeLimitedRun: CPU time limit is 200s 
TreeLimitedRun: WC  time limit is 400s 
TreeLimitedRun: PID is 5829 
TreeLimitedRun: ---------------------------------------------------------- 
Proof found in 147 seconds. 
FINAL WATCH: 147.8 CPU 150.0 WC 
 
Proof found in 147 seconds. 
FINAL WATCH: 147.8 CPU 150.0 WC 

5.4. System Delivery 
For systems running on the general hardware, entrants have to deliver an installation package to the 
competition organizers by the installation deadline. The installation package must be a .tar.gz file 
containing the system source code, any other files required for installation, and a ReadMe file with 
instructions for installation , instructions for executing the system, and the distinguished strings output to 
indicate the result.  
The installation procedure may require changing path variables, invoking make or something similar, etc, 
but nothing unreasonably complicated. All system binaries must be created in the installation process; 
they cannot be delivered as part of the installation package. The system is reinstalled onto the general 
hardware by the competition organizers, following the instructions in the ReadMe file. Installation 
failures before the installation deadline are passed back to the entrant. After the installation deadline 
access to the general hardware is denied, and no further changes or late systems are accepted. 
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For systems running on entrant supplied hardware in the demonstration division, the systems are installed 
on the respective hardware by the entrants. 

6. System Execution 
Execution of the ATP systems on the general hardware is controlled by a perl script, provided by the 
competition organizers. The jobs are queued onto the workstations so that each workstation is running one 
job at a time. All attempts at the Nth problems in all the divisions and categories are started before any 
attempts at the (N+1)th problems. 
During the competition a perl script parses the systems' outputs. If any of an ATP system's distinguished 
strings are found then the CPU time used to that point is noted. A system has solved a problem iff it 
outputs its "success" string within the CPU time limit, and a system has produced a proof iff it outputs its 
"end of proof" string within the CPU time limit. The result and timing data is used to generate an HTML 
file, and a WWW browser is used to display the results. 
The execution of the demonstration division systems is supervised by their entrants.  

7. The ATP Systems 
These system descriptions were written by the entrants. 

7.1. Bliksem 1.12a 
H. de Nivelle 
Max-Planck-Institut für Informatik, Germany 
nivelle@mpi-sb.mpg.de  

7.1.1. Architecture 
Bliksem is a theorem prover implementing resolution and paramodulation. It implements many different 
strategies, including several orders that define decision procedures. It does not implement basicness or 
constraints. The automatic selection of strategies is poor, which partially explains the bad performance. A 
special feature of Bliksem is that it is able to output total proofs that can be easily verified [BHN00]. 
Additional programs that can check the proofs, or convert them into Coq-format [COQ02], are available 
from the home page.  
Bliksem 1.12a is a reduced version of Bliksem 1.12. It was planned to replace the CNF-transformer by a 
Java program that is able to generate correctness proofs. In order to prepare for this, the CNF-transformer 
of Bliksem has been reduced to a minimum. Unfortunately, the new CNF-transformer will not be 
completed before the competition. 

7.1.2. Implementation 
Bliksem is written in portable C. High priority has been given to portability. Bliksem has been compiled 
succcessfully using cc, gcc, and djpcc. As said above, the CNF-transformer is to be replaced by a Java 
program. Bliksem (together with the additional proof checking programs) can be downloaded from:  
    http://www.mpi-sb.mpg.de/~bliksem 

7.1.3. Strategies 
Stategy selection is primitive. Bliksem 1.12a checks if the problem is Horn or non-Horn, and it checks if 
the problem contains equality. If the problem is Horn, then hyperresolution is selected. If the problem 
contains equality, then paramodulation and equality factoring are switched on. 

7.1.4. Expected Competition Performance 
It can be expected that Bliksem 1.12a will perform worse than Bliksem 1.12, because of the fact that part 
of the system was removed. 
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7.2. CiME 2 
E. Contejean, B. Monate 
LRI, Universite Paris-Sud, France 
{contejea,monate}@lri.fr 

7.2.1. Architecture 
CiME2 is intended to be a toolkit, which contains nowadays the following features:  
• An interactive toplevel to allow naming of objects and call to various functions.  
• Solving Diophantine constraints over finite intervals  
• Solving Presburger constraints  
• String Rewriting Systems, KB completion.  
• Parameterized String Rewriting Systems confluence checking  
• Term Rewriting Systems, possibly with commutative or associative-commutative symbols, KB or 

ordered completion.  
• Termination of TRSs using standard or dependency pairs criteria, automatic generation of termination 

orderings based on polynomial interpretations, including weak orderings for dependency pairs criteria.  
The ordered completion of term rewriting systems [CM96] will be used during the competion to attempt 
to solve unification problems, that is problems in the UEQ division. 

7.2.2. Implementation 
CiME 2 [CM+02] is fully written in Objective CAML, a functional language of the ML family developed 
in the CRISTAL project at INRIA Rocquencourt. CiME 2 is available at:  
    http://cime.lri.fr/ 

as binaries for SPARC workstations running Solaris (at least version 2.6) and for pentium PCs running 
Linux, and its sources are available by read-only anynomous CVS. Strategies 

7.2.3. Strategies 
There are two distinct kinds of strategies to perform completion:  
• The first one is, given an equation, how to choose its orientation when it becomes a rule? The choice is 

made thanks to an ordering which has usually to be provided by the user. During the competition, this 
ordering is arbitrarily fixed to be an RPO ordering based on a precedence where the symbols are 
ordered according to their arities.  

• The second one is which inference rule has to be applied to the system, among orienting an equation 
into a rule and computing critical pairs. Each of these choices is given a weight, and the lowest 
weighted choice is made. The weight depends on the size of the involved equations/rules and on how 
"old" they are. Some tuning may occur at this point by choosing the ratio between the coefficients for 
the size and the age. During the competition, this ratio will be fixed. 

7.2.4. Expected Competition Performance 
This will be the first participation of CiME 2 in CASC, in the UEQ division. 
 
Acknowledgments: Claude Marché and Xavier Urbain contributed to the development of CiME 2. 
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7.3. DCTP 1.2 and DCTP 10.1p 
G. Stenz 
Technische Universität München, Germany 
stenz@informatik.tu-muenchen.de 

7.3.1. Architecture 
DCTP 1.2 [Ste02] is an automated theorem prover for first order clause logic. It is an implementation of 
the disconnection calculus described in [Bil96] and [LS01c]. The disconnection calculus is a proof 
confluent and inherently cut-free tableau calculus with a weak connectedness condition. The inherently 
depth-first proof search is guided by a literal selection based on literal instantiatedness or literal 
complexity and a heavily parameterised link selection. The pruning mechanisms mostly rely on different 
forms of variant deletion and unit based strategies. Additionally the calculus has been augmented by full 
tableau pruning.  
The new DCTP 1.2 features several methods of builtin equality treatment [LS02], based on ordered 
paramodulation and on a variant of lazy root paramodulation that is also featured in the current version of 
SETHEO. Also, a formula preprocessor has been integrated making use of clause factoring, full 
subsumption, demodulation and a number of other techniques.  
DCTP 10.1p is a strategy parallel version using the technology of E-SETHEO [SW99] to combine several 
different strategies based on DCTP 1.2. 

7.3.2. Implementation 
DCTP 1.2 has been implemented as a monolithic system in the Bigloo dialect of the Scheme language. 
The most important data structures are perfect discrimination trees, of which heavy use is made. DCTP 
10.1p has been derived from the Perl implementation of E-SETHEO and includes DCTP 1.2 as well as 
additional components written in Prolog and Shell tools. Both versions run under Solaris and Linux. 

7.3.3. Strategies 
DCTP 1.2 is a single strategy prover. Individual strategies are started by DCTP 10.1p using the schedule 
based resource allocation scheme known from the E-SETHEO system. Of course, different schedules have 
been precomputed for the syntactic problem classes. The problem classes are more or less identical with 
the sub-classes of the competition organisers. We have no idea whether or not this conflicts with the 
organisers' tuning restrictions. 

7.3.4. Expected Competition Performance 
We expect both DCTP 1.2 and DCTP 10.1p to perform reasonably well, in particular in the SAT and EPR 
categories. 

7.4. E 0.7 and EP 0.7 
S. Schulz 
Technische Universität München, Germany, and Safelogic A.B., Sweden 
schulz@informatik.tu-muenchen.de  

7.4.1. Architecture 
E 0.7 [Sch01,Sch02b] is a purely equational theorem prover. The calculus used by E combines 
superposition (with selection of negative literals) and rewriting. No special rules for non-equational 
literals have been implemented, i.e. resolution is simulated via paramodulation and equality resolution. E 
also implements AC redundancy elimination and AC simplification for dynamically recognized 
associative and commutative equational theories, as well as pseudo-splitting for clauses.  
E is based on the DISCOUNT-loop variant of the given-clause algorithm, i.e., a strict separation of active 
and passive facts. Proof search in E is primarily controlled by a literal selection strategy, a clause 
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evaluation heuristic, and a simplification ordering. The prover supports a large number of preprogrammed 
literal selection strategies, many of which are only experimental. Clause evaluation heuristics can be 
constructed on the fly by combining various parameterized primitive evaluation functions, or can be 
selected from a set of predefined heuristics. Supported term orderings are several parameterized instances 
of Knuth-Bendix Ordering (KBO) and Lexicographic Path Ordering (LPO).  
An automatic mode can select literal selection strategy, term ordering (different versions of KBO and 
LPO), and search heuristic based on simple problem characteristics.  
EP 0.7 is just a combination of E 0.7 in verbose mode and a proof analysis tool extracting the used 
inference steps.  

7.4.2. Implementation 
E is implemented in ANSI C, using the GNU C compiler. The most outstanding feature is the global 
sharing of rewrite steps. Contrary to earlier versions of E, which destructively changed all shared 
instances of a term, the latest version adds only a rewrite link from the rewritten to the new term. In effect, 
E is caching rewrite operations as long as sufficient memory is available. A second important feature is 
the use of perfect discrimination trees with age and size constraints for rewriting and unit-subsumption.  
The program has been successfully installed under SunOS 4.3.x, Solaris 2.x, HP-UX B 10.20, and various 
versions of Linux. Sources of the latest released version and a current snapshot are available freely from:  
    http://wwwjessen.informatik.tu–muenchen.de/~schulz/WORK/eprover.html 

EP 0.7 is a simple Bourne shell script calling E and the postprocessor in a pipeline.  

7.4.3. Strategies 
E's automatic mode is optimized for performance on TPTP 2.4.0. The optimization is based on a fairly 
large number of test runs and consists of the selection of one of about 50 different strategies for each 
problem. All test runs have been performed on SUN Ultra 60/300 machines with a time limit of 300 
second (or roughly equivalent configurations).  
E distinguishes four primary problem classes: Problems where all non-negative clauses are unit clauses, 
where all non-negative clauses are Horn clauses (and at least one is not a unit), and non-Horn problems 
without and with equality. For each of these classes a separate set of candidate heuristics is created and 
run over all problems in this class. To generate the automatic mode for any of the four primary classes, the 
class is partitioned into subclasses defined by (some) of the following nine features:  
• Are all negative clauses unit clauses?  
• Are all literals equality literals, are some literas equality literals, or is the problem non-equational?  
• Are there only a few, some, or many positive non-ground unit clauses among the axioms?  
• Are all goals (negative clauses) ground?  
• Are there a few, some, or many clauses in the problem?  
• Are there a few, some, or many literals?  
• Are there a few, some, or many (sub)terms?  
• Are there a few, some or many positive ground unit clauses among the axioms?  
• Is the maximum arity of any function symbol 0, 1, 2, or greater?  
Wherever there is a selection of few, some, and many of a certain entity, the limits are selected 
automatically with the aim of splitting the set of clauses into three sets of approximately equal size based 
on this one feature.  
For each non-empty class, we assign the most general candidate heuristic that solves the same number of 
problems on this class as the best heuristic on this class does. Typically, most selected heuristics are 
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assigned to more than one class. As an example, the current intermediate version uses a total of eight 
heuristics to cover all 532 problems with unit axioms.  

7.4.4. Expected Competition Performance 
Last year E performed well in the MIX category of CASC and came in third in the UEQ division. We 
believe that E will again be among the strongest provers in the MIX category, in particular due to its good 
performance for Horn problems. In UEQ, E will probably be beaten by only Waldmeister.  
EP 0.7 will be hampered by the fact that it has to analyse the inference step listing, an operation that 
typically is about as expensive as the proof search itself. Nevertheless, it should be competitive among the 
MIX* systems. 

7.5. E-SETHEO csp01 
R. Letz, S. Schulz, G. Stenz 
Technische Universität München, Germany 
{letz,schulz,stenz}@informatik.tu-muenchen.de  

7.5.1. Architecture 
E-SETHEO is a compositional theorem prover for formulae in first order clause logic, combining the 
systems E [Sch99] and SETHEO [MI+97]. It incorporates different calculi and proof procedures like 
superposition, model elimination and semantic trees (the DPLL procedure). Furthermore, the system 
contains transformation techniques which may split the formula into independent subparts or which may 
perform a ground instantiation. Finally, advanced methods for controlling and optimizing the combination 
of the subsystems are applied. E-SETHEO additionally includes the program Flotter [WGR96] as a 
preprocessing module for transforming non-clausal formulae to clausal form.  
Since version 99csp of E-SETHEO, the different strategies are run sequentially, one after the other, 
depending on the allocation of resources to the different strategies, so-called schedules, which have been 
computed from experimental data using machine learning techniques as described in [SW99]. Schedule 
selection depends on syntactic characteristics of the input formula. E-SETHEO csp01 incorporates the 
disconnection prover DCTP [LS01a] as a new strategy as well as a new version of the E prover.  

7.5.2. Implementation 
According to the diversity of the contained systems, the modules of E-SETHEO are implemented in 
different programming languages like C, Prolog, Scheme, and Shell tools.  
The program runs under Solaris 2.6. Sources are available freely.  

7.6. E-SETHEO csp02 
R. Letz, S. Schulz, G. Stenz 
Technische Universität München, Germany 
{letz,schulz,stenz}@informatik.tu-muenchen.de  

7.6.1. Architecture 
E-SETHEO is a compositional theorem prover for formulae in first order clause logic, combining the 
systems E [Sch01], DCTP [Ste02] and SETHEO [MI+97]. It incorporates different calculi and proof 
procedures like superposition, model elimination and semantic trees (the DPLL procedure). Furthermore, 
the system contains transformation techniques which may split the formula into independent subparts or 
which may perform a ground instantiation. Finally, advanced methods for controlling and optimizing the 
combination of the subsystems are applied. The first-order variant of E-SETHEO no longer uses Flotter 
[WGR96] as a preprocessing module for transforming non-clausal formulae to clausal form. Instead, a 
more primitive normal form transformation is employed.  
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Since version 99csp of E-SETHEO, the different strategies are run sequentially, one after the other. E-
SETHEO csp02 incorporates the new version of the disconnection prover DCTP with integrated equality 
handling as a new strategy as well as a new version of the E prover. The new Scheme version of SETHEO 
that is in use features local unit failure caching [LS01b] and lazy root paramodulation, an optimisation of 
lazy paramodulation which is complete in the Horn case [LS02]. 

7.6.2. Implementation 
According to the diversity of the contained systems, the modules of E-SETHEO are implemented in 
different programming languages like C, Prolog, Scheme, and Shell tools.  
The program runs under Solaris and, with a little luck, under Linux, too. Sources are available from the 
authors. 

7.6.3. Strategies 
Individual strategies are started be E-SETHEO depending on the allocation of resources to the different 
strategies, so-called schedules, which have been computed from experimental data using machine learning 
techniques as described in [SW99]. Schedule selection depends on syntactic characteristics of the input 
formula such as the Horn-ness of formulae, whether a problem contains equality literals or whether the 
formula is in the Bernays-Schönfinkel class. The problem classes are more or less identical with the sub-
classes of the competition. We have no idea whether or not this conflicts with the organisers' tuning 
restrictions. 

7.6.4. Expected Competition Performance 
We expect E-SETHEO to perform well in all categories it participates in. 

7.7. EXLOG 2 
I. Kossey 
Uzhgorod State University, Ukraine 
Ivan.Kossey@t-online.de  

7.7.1. Architecture 
EXLOG, developed since 1999, is a theorem prover in first order logic. The basic features are binary 
resolution with factors [Kos82], forward and backward subsumption, unit preference, a weak variant of set 
of support, and exclusion of predicates with satisfiable propositional abstraction. Features for equality are 
rewrite rules (created from unit equality clauses with ordering of terms on length/alphabetical), and 
commutative unification. A somewhat modified Knuth-Bendix algorithm is used for equations with 
commutative unification for symmetric predicates and commutative functions. Paramodulation and AC-
unification are not implemented. EXLOG accepts FOF, clausal TPTP format and his own input format.  

7.7.2. Implementation 
Assembler (TASM32) under Windows32. EXLOG runs on PC under Win95, Win98, WinNT, WinME, 
Win2000, WinXP. Developed and tested under Win2000. The subsumption algorithm [Kos84] and its 
implementation seems to be fast.  

7.7.3. Strategies 
Different strategies are implemented: some heuristic techniques for simplifying, unit preference, a weak 
variant of set of support (the conjecture clauses and their decsendants have preference). Many "small" 
heuristics are implemented, e.g., clause sorting on literal number/length. The program is self-tuning and 
has no run parameters.  
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7.7.4. Expected Competition Performance 
Top half for problems with equality, bottom half for problems without equality.  

7.8. Gandalf c-2.5 
T. Tammet 
Tallinn Technical University, Estonia, and Safelogic AB, Sweden 
tammet@cc.ttu.ee  

7.8.1. Architecture 
Gandalf [Tam97,Tam98] is a family of automated theorem provers, including classical, type theory, 
intuitionistic and linear logic provers, plus finite a model builder. The version c-2.5 contains the classical 
logic prover for clause form input and the finite model builder. One distinguishing feature of Gandalf is 
that it contains a large number of different search strategies and is capable of automatically selecting 
suitable strategies and experimenting with these strategies.  
Gandalf is available under GPL. There exists a separate commercial version of Gandalf, called G, 
developed and distributed by Safelogic AB (www.safelogic.se), which contains numerous additions, 
strategies, and optimisations, aimed specifically at verification of large systems.  
The finite model building component of Gandalf uses the Zchaff propositional logic solver by L.Zhang 
[MM+01] as an external program called by Gandalf. Zchaff is not free, although it can be used freely for 
research purposes. Gandalf is not optimised for Zchaff or linked together with it: Zchaff can be freely 
replaced by other satisfiability checkers.  

7.8.2. Implementation 
Gandalf is implemented in Scheme and compiled to C using the Hobbit Scheme-to-C compiler. Version 
scm5d6 of the Scheme interpreter scm by A.Jaffer is used as the underlying Scheme system.  
Gandalf has been tested on Linux, Solaris and MS Windows under Cygwin.  
The propositional satisifiability checker Zchaff used by Gandalf during finite model building is 
implemented by L.Zhang in C++.  
Gandalf should be publicly available at:  
    http://www.ttu.ee/it/gandalf 

7.8.3. Strategies 
One of the basic ideas used in Gandalf is time-slicing: Gandalf typically runs a number of searches with 
different strategies one after another, until either the proof is found or time runs out. Also, during each 
specific run Gandalf typically modifies its strategy as the time limit for this run starts coming closer. 
Selected clauses from unsuccessful runs are sometimes used in later runs.  
In the normal mode Gandalf attempts to find only unsatisfiability. It has to be called with a -sat flag to 
find satisfiability. Gandalf selects the strategy list according to the following criteria:  
• Unsatisfiability checking. Gandalf selects the basic strategies from the following list: hyperresolution, 

binary sos resolution, unit resolution, ordered resolution (term-depth based, literal size based and 
polarity plus literal size and structure based).  
Each strategy may be iterated over a limit on term depth. For clause sets containing equality, some 
strategies are tried with both the Knuth-Bendix ordering and recursive path ordering, as well as with 
several different ordering principles of function symbols for these orderings.  
Typically Gandalf selects one or two strategies to iterate over the term depth limit and one or two 
strategies to iterate over the selection of equality orderings. At the second half of each strategy run 
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Gandalf imposes additional restrictions, like introducing unit restriction and switching over to strict 
best-first clause selection.  
The strategy list selection criteria for a particular problem is based on following:  
• Problem class from TPTP: UEQ, PEQ, HNE, HEQ, NEQ, NNE. This strictly determines the list of 

basic strategies. The following criteria determine relative amount of time given to each strategy.  
• Problem size. A problem is classified either as small, medium, or big, according to the number of 

clauses in the problem. For bigger problems, the set of support strategy gets relatively more time 
than other strategies.  

• Percentage of clauses which can be ordered by term depth: small, medium, or all. For bigger 
percentages, the term depth ordering gets relatively more time than other strategies.  

• Satisfiability checking. The following strategies are run:  
• Finite model building by incremental search through function symbol interpretations.  
• Ordered binary resolution (term depth): only for problems not containing equality.  
• Finite model building using MACE-style flattening and external propositional prover.  

• Satisfiability/unsatisfiability checking for essentially propositional problems. The following 
strategies are run:  
• Unsatisfiability search by resolution.  
• Satisfiability/unsatisfiability search by propositonal saturation.  
• Satisfiability search for small models by propositonal saturation.  

7.8.4. Expected Competition Performance 
In the MIX and UEQ divisions, Gandalf will probably be among the better contestants but is not likely to 
win, except for (possibly) some categories of MIX.  
In the SAT division, Gandalf version 2.5 should perform significantly better than older versions of 
Gandalf or any other satisfiability checker that participated at CASC during 2001. However, no prediction 
can be made about the relative performance at 2002.  
In the EPR division, Gandalf now uses suitable strategies, differently from Gandalf in 2001, and is 
expected to be among the better provers in this class.  

7.9. GandalfSat 1.0 
T. Tammet 
Tallinn Technical University, Estonia 
tammet@cc.ttu.ee  

7.9.1. Architecture 
GandalfSat is a special version of the Gandalf theorem prover, optimised for satisifiability checking. 
Essentially it contains the same code as Gandalf, but uses different default search strategies to Gandalf.  
Ordinary Gandalf is a resolution prover which implements a number of different basic strategies: binary 
ordered resolution for several orderings, versions of set-of-support resolution, binary unit resolution, 
hyperresolution. Enhancements are used for cutting off literals and combining different strategies, in 
particular forward and backward reasoning, into one run. Equality is handled by ordered paramodulation 
and demodulation.  
GandalfSat uses time-slicing similarly to ordinary Gandalf. It attempts hyperresolution, ordered resolution 
based on [FL+93] results, and two kinds of finite model building algorithms (Falcon-like and MACE-like) 
for attempting to show satisfiability.  
Some relevant publications are: [FL+93, Tam97, TS98].  
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7.9.2. Implementation 
Gandalf is implemented in Scheme, using the scm interpreter developed by A. Jaffer and the Scheme-to-C 
compiler Hobbit developed by T. Tammet for the scm system.  

7.10. GrAnDe 1.1 
G. Sutcliffe1, S. Schulz2 
1University of Miami, USA, 2Technische Universität München, Germany 
geoff@cs.miami.edu, schulz@informatik.tu-muenchen.de  

7.10.1. Architecture 
GrAnDe (Ground And Decide) [SS02] is a decision procedure for CNF problems with a finite Herbrand 
universe. GrAnDe uses the grounding procedure eground [Sch02a] to generate ground instances of such 
a problem, and the propositional decision system ZChaff [MM+01] to determine the satisfiability of the 
resulting propositional problem. The set of all ground instances of a set of clauses is often too large to 
compute with reasonable resources. Therefore eground tries to find a smaller set of ground instances 
that is still equiconsistent with the original set of clauses. Three techniques are combined: clause splitting, 
structural constraints on variable instantiation, and propositional simplification. Clause splitting separates 
a clause into variable disjoint parts, and replaces the orginal clause by new clauses formed from the parts 
and link literals. Structural constraints are used to prohibit variable instantiations that would lead to the 
generation of pure literals in the resulting ground clauses. Propositional simplification removes clauses 
and literals from the generated ground clause set, while maintaining satisfiability.  
For details about ZChaff, see [MM+01].  
Despite the optimizations in eground, there are problems where eground runs out of time or memory. 
In these cases eground outputs an incomplete ground clause set. If eground has output an incomplete 
clause set and ZChaff reports that it is satisfiable, then no result is reported by GrAnDe. If eground has 
generated an incomplete clause set and ZChaff reports that it is unsatisfiable, or if eground has 
generated a complete clause set, then ZChaff's result is reported by GrAnDe as the overall result.  

7.10.2. Implementation 
eground is implemented in ANSI-C and based on the E [Sch01] libraries. It uses the basic infrastructure 
up to the shared term representation, and adds a new, compact clause data type for the generated 
propositional clauses. Propositional unit-clauses, used for simplification, are represented by a simple array 
entry, making unit subsumption and unit simplification into O(1) operations (in the number of unit 
clauses). Clause splitting is implemented naively, using a flood-fill algorithm to find connected sub-
clauses. Finally, variable constraints are directly computed in conjunctive normal form, and are used to 
directly construct possible instantiations.  
For details about ZChaff, see [MM+01].  
A perl script called And is used to combine eground and ZChaff. The script invokes eground on the 
EPR problem, allowing it maximally 66% of the CPU time limit. The propositional clauses written by 
eground are captured into a temporary file, which is used as the input for ZChaff. ZChaff is allowed 
whatever CPU time has not been used by eground.  
GrAnDe, including the separate components, is available from:  
    http://www.cs.miami.edu/~tptp/ATPSystems/GrAnDe/ 

It should be widely portable between recent UNIX variants.  
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7.10.3. Strategies 
GrAnDe has only one mode of operation, i.e., there are no different strategies for different types of 
problems. The overhead for the different techniques in eground is small enough that all optimizations can 
be applied in all cases without serious degradation of performance.  

7.10.4. Expected Competition Performance 
GrAnDe is expected to outperform all systems that use only first-order techniques.  

7.11. ICGNS 2002 
W. McCune 
Argonne National Laboratory, USA 
mccune@mcs.anl.gov  

7.11.1. Architecture 
ICGNS 2002 [McC02b] searches for finite models of first-order (unsorted, with equality) statements. 
Given input clauses, it generates ground instances over a finite domain, then uses a decision procedure try 
to determine satisfiability. If there is no model of that size, it increments the domain size and tries again.  
The ICGNS method is SEM-like [ZZ95] rather than MACE-like [McC01]; that is, the ground problem is 
propositional/equality rather than flattened and purely propositional. The two main parts of the ICGNS 
method are (1) selecting the next empty cell in the tables of functions being constructed and deciding 
which values need to be considered for that cell, and (2) propagating assignments. ICGNS uses the basic 
least number heuristic (LNH) to reduce isomorphism. The LNH was introduced in Falcon [Zha96] and is 
also used in SEM. Effective use of the LNH requires careful cell selection. Propagation is by ground 
rewriting and inference rules to derive negated equalities.  

7.11.2. Implementation 
ICGNS 2002 is a new program, started in the winter of 2002. It uses some pre-existing code from various 
sources for some of the low level operations such as parsing and term structure. ICGNS is coded in ANSI 
C and should be easily portable to recent variants of UNIX. The source code and test problems are 
available from:  
    http://www.mcs.anl.gov/home/mccune/icgns/ 

7.11.3. Strategies 
Several strategies are available for cell selection and for applying the negative inference rules. A single 
strategy is used for CASC-18: (1) the LNH, selecting cells with the fewest number of possible values, and 
(2) applying all negative propagation inference rules. The strategy was derived by experimenting on 
problems that arose in mathematics practice, mostly in abstract algebra. No tuning to the TPTP set has 
been done.  

7.11.4. Expected Competition Performance 
ICGNS seems to do well on equational problems, especially if the input set contains some simple 
equations. Satisfiable problems without reasonably sized finite models (including problems without finite 
models) are out of reach of ICGNS. Some of those problems can be done by satisfiability methods that 
work by saturation with a complete inference system. It is doubtful that ICGNS will do as well, overall, as 
programs that try various methods and various strategies. 
 
Acknowledgments: Olga Shumsky Matlin and Michael Rose assisted in the development of ICNGS 2002.  
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7.12. Otter 3.2 
W. McCune 
Argonne National Laboratory, USA 
mccune@mcs.anl.gov  

7.12.1. Architecture 
Otter 3.2 [McC94] is an ATP system for statements in first-order (unsorted) logic with equality. Otter is 
based on resolution and paramodulation applied to clauses. An Otter search uses the "given clause 
algorithm", and typically involves a large database of clauses; subsumption and demodulation play an 
important role.  

7.12.2. Implementation 
Otter is written in C. Otter uses shared data structures for clauses and terms, and it uses indexing for 
resolution, paramodulation, forward and backward subsumption, forward and backward demodulation, 
and unit conflict.  

7.12.3. Strategies 
Otter's original automatic mode, which reflects no tuning to the TPTP problems, will be used. 

7.12.4. Expected Competition Performance 
Otter has been entered into CASC-18 as a stable benchmark against which progress can be judged (there 
have been only minor changes to Otter since 1996 [MW97], nothing that really affects its performace in 
CASC). This is not an ordinary entry, and we do not hope for Otter to do well in the competition.  

7.13. SCOTT 6.1 
J. Slaney 
Australian National University, Australia 
John.Slaney@anu.edu.au  

7.13.1. Architecture 
SCOTT [HS01, HS02] consists of two main components: a saturation-based theorem prover (Otter 
[McC02a] in fact) and a finite domain constraint solver (FINDER [Sla94]) that generates models for 
subsets of the clauses deduced. The models are used to guide selection of given clauses, clauses which are 
false in the guiding models being given preference. Because model generation is computationally 
expensive, the critical issue for performance is the tradeoff between search quality due to semantic 
guidance and the time used in securing and refining it.  
Successive versions of SCOTT have competed regularly in CASC. Version 6.1 is little changed from 
version 6.0 which competed in 2001, except for some amendments aimed at reducing the number of times 
a useless model is generated, deleted and re-generated, and slight tuning of the default values for 
parameters.  

7.13.2. Implementation 
The system is written in C, and consists of three main modules: the theorem prover is Otter, the model 
generator is FINDER, and there is a relatively small module linking the two into the combined system. 
The sources are available from  
    http://arp.anu.edu.au/software/scott/ 

7.13.3. Strategies 
The proof techniques are taken over directly from Otter, along with that system's weight reduction 
strategies, pick-given ratio and the like. The characteristic feature of SCOTT is semantic guidance, 
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applied as a heuristic for selection of given clauses. This improves the quality of the choices overall, 
though the effect is far from uniform across problems and the overheads incurred are severe. Many 
problems from TPTP have been used in the development of the semantic guidance strategy, but there has 
been little attempt to tune it more specifically than that.  

7.13.4. Expected Competition Performance 
SCOTT 6.0 competed in 2001, and version 6.1 is essentially similar, so we expect similar performance. 
Much depends on the time limit, as there are over 1000 problems in TPTP that the system proves in more 
than one minute and less than ten minutes (taking timings on a Sun E250 UltraSPARC II, for instance) so 
it will perform significantly better with a 600 second limit than with a 300 second one. In the past it has 
done moderately well on UEQ problems and on essentially propositional ones. In the MIX division, 
however, it is hampered by the lack of a sufficiently adaptive autonomous mode and will not threaten the 
leading provers. We shall be interested to discover what it finds easy and what it finds hard, in comparison 
with other systems.  

7.14. Vampire 2.0-CASC 
A. Riazanov, A. Voronkov 
University of Manchester, England 
{riazanoa,voronkov}@cs.man.ac.uk  

7.14.1. Architecture 
Vampire 2.0 is an automatic theorem prover for first-order classical logic. It implements the calculi of 
ordered binary resolution, hyperresolution, and superposition for handling equality. The splitting rule is 
simulated by introducing new predicate symbols. A number of standard redundancy criteria and 
simplification techniques are used for pruning the search space: subsumption, tautology deletion, 
subsumption resolution and rewriting by ordered unit equalities. The only term ordering used in Vampire 
at the moment is a special version of the Knuth-Bendix ordering which allows efficient approximation 
algorithms for solving ordering constraints. A number of efficient indexing techniques are used to 
implement all major operations on sets of terms and clauses, such as an improved version [RV00] of code 
trees [Vor95] for forward subsumption, and a combination of path indexing [Sti89] and database joins for 
backward subsumption.  
Compared to Vampire 1.0 that participated in the previous competition, this version has many more literal 
selection functions, more flexible splitting without backtracking and improved memory management. The 
automatic mode of Vampire 2.0 is primitive, it recognises only very simple syntactic properties of the 
input problem, like the presence of equality or non-Horn clauses. In the preprocessing stage it exploits a 
number of primitive techniques, such as elimination of simple predicate and function definitions.  
Vampire 2.0-CASC is a version based on Vampire 2.0, specialised to win the competition. To adjust the 
strategy it estimates the problem by checking some syntactic properties, such as presence of multiliteral, 
non-Horn and ground clauses, equations and nonequational literals. Additionally we consider such 
quantitative characteristics as the number of axioms, literals, small and large terms.  

7.14.2. Implementation 
Vampire 2.0 is implemented in C++ and can be compiled by 2.91 or newer versions of gcc. The binaries 
for Solaris and Linux are available from the authors, for details see:  
    http://www.cs.man.ac.uk/~riazanoa/Vampire 
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7.15. Vampire 5.0 and Vampire 5.0-CASC 
A. Riazanov, A. Voronkov 
University of Manchester, England 
{riazanoa,voronkov}@cs.man.ac.uk  

7.15.1. Architecture 
Vampire [RV01, RV02] 5.0 is an automatic theorem prover for first-order classical logic. Its kernel 
implements the calculi of ordered binary resolution and superposition for handling equality. The splitting 
rule is simulated by introducing new predicate symbols. A number of standard redundancy criteria and 
simplification techniques are used for pruning the search space: subsumption, tautology deletion, 
subsumption resolution and rewriting by ordered unit equalities. The only term ordering used in Vampire 
at the moment is a special non-recursive version of the Knuth-Bendix ordering which allows efficient 
approximation algorithms for solving ordering constraints. By the system installation deadline we may 
implement the standard Knuth-Bendix ordering. A number of efficient indexing techniques are used to 
implement all major operations on sets of terms and clauses. Although the kernel of the system works only 
with clausal normal forms, the preprocessor component accepts a problem in the full first-order logic 
syntax, clausifies them and performs a number of useful transformations before passing the result to the 
kernel.  

7.15.2. Implementation 
Vampire 5.0 is implemented in C++. The main supported compiler version is gcc 2.95.3, although in the 
nearest future we are going to move to gcc 3.x. The system has been successfully compiled for Linux and 
Solaris. It is available from:  
    http://www.cs.man.ac.uk/~riazanoa/Vampire/ 

7.15.3. Strategies 
The Vampire kernel provides a fairly large number of features for strategy selection. The most important 
ones are:  
• Choice of the main saturation procedure : (i) OTTER loop, with or without the Limited Resource 

Strategy, (ii) DISCOUNT loop.  
• A variety of optional simplifications.  
• Parameterised simplification ordering.  
• A number of built-in literal selection functions and different modes of comparing literals.  
• Age-weight ratio that specifies how strongly lighter clauses are preferred for inference selection.  
The standalone executables for Vampire 5.0 and Vampire 5.0-CASC use very simple time slicing to make 
sure that several kernel strategies are tried on a given problem.  
The automatic mode of Vampire 5.0 is primitive. Seven problem classes are distinguished corresponding 
to the competition divisions HNE, HEQ, NNE, NEQ, PEQ, UEQ and EPR. Every class is assigned a fixed 
schedule consisting of a number of kernel strategies called one by one with different time limits. The 
automatic mode of Vampire 5.0-CASC is better tuned towards TPTP 2.4.0. It uses the same problem 
characteristics as E 0.7 to divide the problems into a large number of classes and may potentially assign a 
separate strategy to every such class.  

7.15.4. Expected Competition Performance 
We expect Vampire 5.0 to perform much better than Vampire 2.0 on problems with equality, especially on 
the unit equality problems.  
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7.16. Waldmeister 601 
T. Hillenbrand1, B. Löchner2, A. Jaeger, and A. Buch 
1Max-Planck-Institut für Informatik Saarbrücken, Germany, 2Universität Kaiserslautern, Germany 
waldmeister@informatik.uni-kl.de  

7.16.1. Architecture 
Waldmeister is a system for unit equational deduction. Its theoretical basis is unfailing completion in the 
sense of [BDP89] with refinements towards ordered completion. The prover saturates the input 
axiomatization in a repeated cycle that works on a set of active resp. passive facts. The selection of the 
reduction ordering and the heuristical guidance of the proof search are described in [HJL99].  
Since last year's version, stronger redundancy criteria have been integrated, including ground joinability 
tests with ordering constraints on variables [AHL00]. In several problem domains this technique is helpful 
especially for harder proof tasks. Some restructuring of the prover is on the way to also include an 
implementation of confluence trees with full ordering constraints [AL01]; but further work is necessary to 
have them speed up the proof search.  

7.16.2. Implementation 
The prover is coded in ANSI-C and available for SunOS, Solaris and Linux. The set of active facts is 
represented by perfect discrimination trees. Stimulated by the evaluation of indexing techniques reported 
on in [NH+01], the implementation of these has somewhat been improved. The storage of passive facts, 
and the treatment of hypotheses have remained unchanged. The Waldmeister Web page is located at:  
    http://www-avenhaus.informatik.uni-kl.de/waldmeister 

7.17. Waldmeister 702 
T. Hillenbrand1, B. Löchner2 
1Max-Planck-Institut für Informatik Saarbrücken, Germany, 2Universität Kaiserslautern, Germany 
waldmeister@informatik.uni-kl.de  

7.17.1. Architecture 
Waldmeister 702 is an implementation of unfailing Knuth-Bendix completion [BDP89] with extensions 
towards ordered completion (see [AHL00]) and basicness [BG+92, NR92]. The system saturates the input 
axiomatization, distinguishing active facts, which induce a rewrite relation, and passive facts, which are 
the one-step conclusions of the active ones up to redundancy. The saturation process is parameterized by a 
reduction ordering and a heuristic assessment of passive facts.  
Only recently, we have designed a thorough refinement of the system architecture concerning the 
representation of passive facts [HL02]. The aim of that work - the next Waldmeister loop - is, besides 
gaining more structural clarity, to cut down memory consumption especially for long-lasting proof 
attempts, and hence less relevant in the CASC setting. 

7.17.2. Implementation 
The system is implemented in ANSI-C and runs under Solaris and Linux. The central data strucures are: 
perfect discrimination trees for the active facts; element-wise compressions for the passive ones; and sets 
of rewrite successors for the conjectures. Waldmeister can be found on the Web at  
    http://www-avenhaus.informatik.uni-kl.de/waldmeister 

7.17.3. Strategies 
Our approach to control the proof search is to choose the search parameters according to the algebraic 
structure given in the problem specification [HJL99]. This is based on the observation that proof tasks 
sharing major parts of their axiomatization often behave similar. Hence, for a number of domains, the 
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influence of different reduction orderings and heuristic assessments has been analyzed experimentally; 
and in most cases it has been possible to distinguish a strategy uniformly superior on the whole domain. In 
essence, every such strategy consists of an instantiation of the first parameter to a Knuth-Bendix ordering 
or to a lexicographic path ordering, and an instantiation of the second parameter to one of the weighting 
functions addweight, gtweight, or mixweight, which, if called on an equation s = t, return |s| + |t|, 
|max>(s,t)|, or |max>(s,t)| · (|s| + |t| + 1) + |s| + |t|, respectively, where |s| denotes the number of symbols in 
s. 

7.17.4. Expected Competition Performance 
We expect Waldmeister 702 to be quite competitive. But since our current restructuring of the prover to 
implement the concepts of [HL02] may affect the inference behaviour, the outcome in comparison to last 
year's version is difficult to predict. 

8. Conclusion 
The CADE-18 ATP System Competition is the seventh large scale competition for 1st order ATP systems. 
The organizers believe that CASC fulfills its main motivations: stimulation of research, motivation for 
improving implementations, evaluation of relative capabilities of ATP systems, and providing an exciting 
event. For the entrants, their research groups, and their systems, there is substantial publicity both within 
and outside the ATP community. The significant efforts that have gone into developing the ATP systems 
receive public recognition; publications, which adequately present theoretical work, have not been able to 
expose such practical efforts appropriately. The competition provides an overview of which researchers 
and research groups have decent, running, fully automatic ATP systems. 
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