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A Linear Deduction System with 
Integrated Semantic Guidance 

Abstract 
 

Guidance systems are central to the success of automated deduction systems. Semantic 
guidance systems are guidance systems that exploit semantic information when guiding 
the search of a deduction system. The general objective of this research has been to 
investigate how semantic guidance can be used to improve the performance of automated 
deduction systems. More specifically, this research has investigated how semantic 
guidance can be used to improve the performance of linear deduction systems. As 
semantic guidance has, until now, been considered unsuitable for use in linear deduction 
systems, the results presented in this thesis are noteworthy in automated deduction 
research. 
 
A new chain format linear deduction system, called Guided Linear Deduction (GLD), has 
been developed as part of this work. GLD improves upon existing linear deduction 
systems in several aspects. In the context of this research, an important feature in GLD is 
the provision of an explicit entry point for the incorporation of guidance systems. This 
entry point has been used to incorporate a semantic guidance system into GLD, to form the 
Semantically Guided Linear Deduction (SGLD) system. SGLD's semantic guidance 
system builds upon four separate developments, as follows. (i) Linear-input subset 
analysis, which is a method of determining some of the structure in GLD deductions. (ii) A 
truth value semantic deletion system for (chain format) linear deduction systems. This 
system uses linear-input subset analysis to determine when it can be applied. (iii) A sort 
value semantic deletion system that has the same format as the truth value deletion system. 
(iv) A heuristic function that uses semantic information to evaluate the quality of clauses 
in a deduction. The combination of the latter three of these developments forms the 
semantic guidance system used in SGLD. For any semantic guidance system to operate, an 
interpretive structure is required to store the semantic information used. It is desirable that 
the interpretive structure be representationally powerful, space efficient, effective in 
supplying semantic information and also user friendly. A new form of interpretive 
structure which fulfils these criteria has been developed. The new structures are called 
designations. 
 
SGLD has been implemented in Prolog. Each component of SGLD is of individual interest 
and their combination is unique in the field of automated deduction. The performance of 
SGLD has been investigated. 
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Chapter One 

Introduction and Technical Preliminaries 

 

Guidance systems are central to the success of automated deduction systems. Semantic 
guidance systems are guidance systems that use semantic information to determine search 
direction for their host deduction systems. Relative to their potential for improving the 
performance of deduction systems, it seems that semantic guidance systems have been 
badly neglected. All guidance systems are necessarily formulated to be compatible with 
their host deduction systems. Beyond this constraint, it is desirable to abstract the issues of 
syntax, application and implementation, as far as possible. This chapter introduces these 
issues and presents the notation and terminology used in this thesis. 
 
This chapter contains : 
1. A brief background to automated deduction systems. 
2. Motivation for semantic guidance of automated deduction systems. 
3. The objectives of this research. 
4. Definitions of the language and notation used in this thesis. 
5. An abstract discussion of the nature and imposition of restrictions in deductions. 
6. A preview of the contributions made by this thesis. 
7. An overview of the content of the thesis. 

1.1 Background 

Although automated deduction has yet to prove itself as a commercially viable technique 
for solving real-world problems, there is no doubt that the time will come when it will play 
a major and day-to-day role in society. Application areas of automated deduction systems 
include "expert systems, planning, common sense reasoning, proof checking, instruction 
and aids to human mathematicians" [Plaisted, 1990a, p. 270]. The impact of transferring 
the general task of problem solving from man to machine is significant, and research 
efforts to this end are easily justified on both economic and social grounds. This thesis 
documents research into the use of semantic information (i.e., information that is specific 
to the problem domain) in guiding automated deduction systems. 
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There is no point in including a survey of the general topic of automated deduction in this 
thesis, as this task has been performed by many authors. The surveys of Bledsoe and 
Hodges [1988], Stickel [1986a] and Plaisted [1990a] are recommended. These surveys 
also provide references to introductory and advanced texts. Familiarity with the 
terminology of resolution based automated deduction is henceforth assumed. 
 
It is clear that the basic resolution procedure [Robinson J.A., 1965a] is inadequate for 
solving anything but the most trivial problems. The combinatorial growth of the resolution 
procedure's search space soon swamps available computing power, regardless of the 
efficiency of implementation. Deduction systems that refine the basic procedure are thus 
of interest. The basic resolution procedure is refined by imposing restrictions on the 
deductions that are built, e.g., unit resolution imposes the restriction that one parent of 
each resolution operation must be a unit clause. Although refined deduction systems may 
be categorised according to the nature of the restrictions used (see section 1.5 for 
example), upon abstraction it is evident that they all have the same essential feature. That 
is, they impose restrictions that assist in deciding which deduction operation and which of 
the available clauses will be used at each step of a deduction. In this manner the 
restrictions guide the search of the deduction system. 
 
A broad spectrum of restrictions have been used to refine the basic resolution procedure. 
At one extreme of the spectrum are restrictions that require a certain deduction operation 
or clause to be used in certain circumstances. At the other extreme are restrictions that 
exclude a deduction operation or clause from use. Both these extreme forms are called 
absolute restrictions. Absolute restrictions guide the search of a deduction system by 
reducing its search space. An example of an absolute restriction, that requires a certain 
deduction operation to be used, is compulsory reduction in chain format linear deduction 
systems (see chapter 2). Examples of absolute restrictions, that prevent certain clauses 
from being used, are subsumption [Robinson J.A., 1965a], admissibility restrictions (see 
chapter 2) and semantic deletion (see chapter 3). In between the two absolute extremes are 
preferential restrictions. Preferential restrictions do not reduce the search space of a 
deduction system, but rather guide a deduction system by indicating a preference for the 
use of certain deduction operations and/or clauses. Examples of preferential restrictions are 
the unit preference strategy [Wos, Carson, & Robinson G.A., 1964] and restrictions that 
use a heuristic function to guide the search of the deduction system, e.g., those described 
by Overbeek, McCharen and Wos [1976].  
 
When discussing deduction systems, it is useful to separate the restrictions used from the 
underlying deduction mechanism. The restrictions are considered to form a guidance 
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system, which is used by the host deduction system. Restrictions and guidance systems are 
categorised as either syntactic or semantic, depending on the type of information used. 

1.2 The Necessity for Semantic Guidance 

One accepted description of intelligent action is, as expounded by Newell and Simon in 
their Turing award lecture [1976], the ability to solve problems via state space search. For 
some problems, algorithms have been devised so that no search is necessary. These are the 
algorithms of traditional computer science; the so-called strong methods. The balance of 
intelligent action is necessarily to be achieved by genuine state space search. Methods 
which employ search (including automated deduction) constitute the weak methods of 
computing. The strong methods depend on semantic information which is encoded directly 
into the algorithms' steps. It is reasonable to hypothesize (but no attempt is made to prove) 
that no strong methods of computing can be domain independent. The weak methods of 
computing can be divided into two groups; those that use semantic information to guide 
their search and those do not. It is also reasonable to hypothesize that weak methods that 
do not use semantic information will never be able to conquer the exponentially growing 
search spaces of hard problems. This view is supported by Newell and Simon, who claim 
that physical symbol systems "exercise intelligence by extracting information from a 
problem domain and using that information to guide their search ..." [Newell & 
Simon, 1976, p. 126] Semantic information thus appears to be prerequisite to intelligent 
action1. 
 
In the area of automated deduction, the need to use semantic information is translated into 
a need to use semantic guidance systems. The need for semantic guidance has been noted 
in the literature, e.g. "An emphasis on semantics rather than on syntax has far greater 
potential for producing a dramatic impact on the power of automated reasoning programs" 
[Wos, 1988, p. 257] (research towards a "semantically orientated strategy" is Problem 5 in 
[Wos, 1988]) and "... if searches in symbolic computation are not to fall prey to 
combinatorial explosion, they must incorporate domain-specific knowledge in such a way 
so as to give direction to the search." [McRobbie, Meyer, & Thistlewaite, 1988, p. 198]. 
Despite the acknowledged need for semantic guidance, the overwhelming majority of 
guidance systems that have been developed to date are syntactic. The lack of attention paid 
to semantic guidance has been noted by leading researchers. Bledsoe and Henschen, in 
their contribution to the first issue of the Journal of Automated Reasoning [1985, p. 27], 
                                                
1 For readers who do not subscribe to this mechanistic view of intelligent action, it is suggested that "Since 

humans use semantics (models) extensively in proving theorems, it seems natural that computer theorem 

provers should also." [Plaisted, 1990a, p. 308] 
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prophesy that "It seems likely that such approaches [to guiding deduction systems] will 
have to rely on the semantics of problems to a much larger degree than in the past.". Alan 
Bundy has stated [1987] that "There has not been nearly as much work on semantic 
checking as I think it deserves ...". It should be noted that the dearth of semantic guidance 
systems is not due to their importance being acknowledged only recently. In 1973 it was 
claimed that "Virtually everyone is now agreed that knowledge about the problem domain 
must be used in the logic." [Reiter, 1973, p. 41]. Rather, the probable reason for the 
imbalance is the ease with which syntactic guidance systems can be designed and 
implemented, compared to the complexity of semantic guidance systems. 
 
In light of the above, research into the semantic guidance of automated deduction systems 
is well justified. 

1.3 Research Objectives 

The overall objective of this research has been to investigate how semantic guidance can 
be used to improve the performance of automated deduction systems. This overall 
objective has been broken down into four subobjectives. (i) To develop a host deduction 
system. (ii) To develop a semantic guidance system for the host deduction system. (iii) To 
develop an interpretive structure for storing the semantic information used by the semantic 
guidance system. (iv) To combine the deduction system, semantic guidance system and 
interpretive structure, into a coherent whole. 
 
In fulfilling the first subobjective, to develop a host deduction system, a requirement has 
been that the host deduction system be effective in its own right. This ensures that any 
favourable effects of incorporating semantic guidance into the deduction system are not 
attributable to the inadequacy of the deduction system. If the host deduction system is 
weak, then the addition of any guidance will improve its performance. On the other hand, 
if the performance of an effective deduction system is improved through the addition of a 
guidance system (here a semantic guidance system), then the effectiveness of the guidance 
system is clearly demonstrated. A preliminary step in this task has been to select a basic 
deduction format. In the context of this research, it has been necessary that the deduction 
format produce deductions with a relatively uncomplicated structure, as this eases the 
design of an appropriate semantic guidance system. The choice has been the linear format 
(see section 2.1.1), and the subobjective of developing the host deduction system has 
proceeded from that starting point.  
 
The choice of the linear format for the host deduction system was made independently of 
known compatibility with semantic guidance. The (now more specific) subobjective of 
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developing a semantic guidance system for a linear deduction system is interesting, as 
linear deduction is known to be incompatible with truth value (semantic2) deletion (see 
section 3.2.1). The use of semantic guidance in linear deduction systems has, however, 
been suggested : 
• "Another interesting question ... is whether there exists a decision procedure ... for 

recognising ... whether there is a proof tree ... satisfying R~  1 ∩ R~  3 [model 
resolution ∩ ancestry-filter format resolution]." [Luckham, 1970, p. 173] 

• "As a heuristic, combining the two strategies [the ancestry-filter and model strategies] 
may often yield efficient searches for refutations." [Nilsson, 1971, p. 227] 

As no other semantically guided linear deduction system appears to have been developed 
and implemented, the fulfilment of this subobjective has been a step towards extending the 
use of semantic information in automated deduction systems. 
 
The third subobjective, to develop an interpretive structure for storing the semantic 
information used by the semantic guidance system, is pragmatically motivated; the 
efficacy of a semantic guidance system is limited by the supply of semantic information. 
To meet this subobjective, two criteria have had to be met. Firstly, the interpretive 
structure has to be computationally efficient. If this criteria is not met then the client 
semantic guidance system is unlikely to be of utility. In order to fulfil this criteria, only 
bodies of semantic informtion with finite domains have been targeted. Secondly, as the 
original source of semantic information is typically human, it has been required that it be 
reasonably easy to specify the required semantic information. 
 
The final subobjective, to combine the outcomes of the first three subobjectives, is aimed 
at developing a coherent semantically guided deduction system, i.e. one in which the three 
components fit together in a natural manner. This subobjective has necessarily had to have 
an influence on the first three. It has, therefore, been a rider throughout that the host 
deduction system, the semantic guidance system and the interpretive structure should be 
cognisant of each others features. It has also been an objective to produce a full 
implementation of the combined system. The implementation has aimed to be portable and 
easily updated. 
 

                                                
2 Throughout this thesis, words such as "semantics", "semantic guidance", "interpretation", etc. are meant in 

a generic sense, rather than the common usage which associates them with truth values. Wherever a specific 

type of semantic information needs to be associated with such terms, the association is made explicit. Thus 

"truth value deletion" refers explicitly to rejection of clauses based upon their truth value interpretation. 
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In light of the above, the thesis of this research is summarised as : 
 

Semantic guidance can be used to improve the performance of a linear 
deduction system. 

 
The thesis has been verified through the development of the Semantically Guided Linear 
Deduction (SGLD) system. SGLD is a chain format linear deduction system with 
integrated semantic guidance. The host deduction system of SGLD is a new chain format 
linear deduction system called Guided Linear Deduction (GLD). SGLD's semantic 
guidance system uses a new form of interpretive structures, called designations, to store 
the semantic information that it uses. 

1.4 Languages and Notation 

This section defines the language and notation used in this thesis. 
 
Definition 1.1 - 1st order languages 
A 1st order language consists of variables, functors and predicate symbols (constants are 
viewed as functors of arity 0). The terms of the language are built from the variables and 
functors, the universe is built from the functors, the atoms are built from the terms and the 
predicate symbols and the base is built from the universe and the predicate symbols. (See, 
for example, [Lloyd, 1984] for details.) Literals are atoms and their negations, and clauses 
are disjunctions of literals (not sets of literals). Variables in terms, atoms, literals and 
clauses are (implicitly) universally quantified. As the interpretive structure presented in 
this thesis treats universe and base elements in the same way, the union of these two sets is 
called, for convenience, the unibase. 
Notation : • Variables are written with the first letter in uppercase. • Functors are written 
in lower case. • Predicate symbols are written in lower case. • Disjunction is represented 
by "v". • Negation is represented by "~". 

Example 
An example of a 1st order language, named L, is : 
 VariablesL  Anything beginning with uppercase alphabetic, e.g. Person. 
 FunctorsL  {homer/0, spouse_of/1} 
 PredicatesL {heart_ok/1, lungs_ok/1, alive/1, person/1} 
The value following the /, after each functor and predicate symbol, is the symbol's 
arity. Examples of the various language elements are : 
 TermsL   homer, spouse_of(Person) 
 UniverseL  homer, spouse_of(homer) 
 AtomsL   lungs_ok(homer), alive(spouse_of(Person)) 
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 BaseL   lungs_ok(homer), alive(spouse_of(homer)) 
 LiteralsL  ~lungs_ok(homer), alive(spouse_of(Person)) 
 ClausesL  ~lungs_ok(homer) v 
alive(spouse_of(Person)) 
 UnibaseL   homer, spouse_of(homer), lungs_ok(homer), 
    alive(spouse_of(homer)) 

 
The truth value semantics3 of a 1st order language is typically specified via a Tarskian 
style semantics. Such a semantics consists of a domain D, whose elements are constants; a 
functor-mapping F, from Dn to D, for each functor of arity n; and a predicate-mapping P, 
from Dn to {TRUE, FALSE}, for each predicate symbol of arity n. (See, for example, 
[Lloyd, 1984] for details.) A 1st order language may be extended using the domain of such 
an interpretive structure, to form an extended 1st order language.  
 
Definition 1.2 - Extended 1st order languages 
An extended 1st order language, formed by extending a 1st order language by the domain 
of an interpretation, has : the variables of the original language; the union of the domain 
and the original functors, as functors; the predicate symbols of the original language. The 
extended-terms, extended-universe, extended-atoms, extended-base and extended-unibase 
are built in the usual way. Collectively they are called extended-expressions. The domain 
and the original universe are both subsets of the extended-universe. 
Notation : • Domain elements are written in lower case. 

Example 
The extended 1st order language L+D, formed by extending L by the domain 
D = {mr_s, mrs_s, person}, is : 
 VariablesL+D Anything beginning with uppercase alphabetic, e.g. Person. 
 FunctorsL+D {homer/0, mr_s/0, mrs_s/0, person/0, spouse_of/1} 
 PredicatesL+D {heart_ok/1, lungs_ok/1, alive/1, person/1} 
Examples of the various extended language elements include the corresponding 
elements in L, and also : 
 TermsL+D  mr_s 
 UniverseL+D  mr_s, spouse_of(mrs_s) 
 AtomsL+D  lungs_ok(mr_s) 
 BaseL+D  lungs_ok(mr_s), alive(spouse_of(mrs_s)) 
 UnibaseL+D mr_s, spouse_of(mrs_s), lungs_ok(mr_s), 
    alive(spouse_of(mrs_s)) 

                                                
3 Here the standard truth value semantics of a 1st order language is described. In chapter 4 this is generalised 

to a generic form, and discussed further. 
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Definition 1.3 - d-expressions 
For a given domain, expressions of the form r(d1, ... ,dn), where each di is a domain 
element, are called d-expressions. If r is a functor then the expression is a d-function and if 
r is a predicate symbol then the expression is a d-predicate. 

Example 
Examples of d-expressions are : 
 d-functionsL+D homer, spouse_of(mr_s), spouse_of(person) 
 d-predicatesL+D lungs_ok(mr_s), person(mrs_s) 

 
Definition 1.4 - Substitution 
Given a set S, an S substitution is a finite set of the form {X1/d1, ... ,Xn/dn}, where each Xi 
is a distinct variable and each di is an element of S not containing Xi. If θ is an S 
substitution then Tθ is an S instance of T obtained from T by simultaneously replacing 
each occurrence of each variable Xi in T by di. If Tθ contains no variables then Tθ is a 
ground S instance of T. (Term and universe substitutions are the standard substitutions of 
1st order logic. Application of a domain substitution forms an extended-expression.) 

Example 
Examples of substitutions are : 
 A TermsL substitution, θ, is 
    {Man/homer, Person/spouse_of(Father)} 
 The TermsL instance, alive(Person)θ, is 
    alive(spouse_of(Father)) 
 A ground TermsL instance of alive(Person) is 
    alive(spouse_of(homer)) 
 A D substitution, σ, is  
    {Man/mr_s, Person/mrs_s} 
 The ground D instance, alive(Person)σ, is 
    alive(mrs_s) 

 
Definition 1.5 - Sort-expressions 
In defining sort value interpretations, predicate symbols of arity 1 that determine sort also 
appear as domain elements. Expressions whose principal symbols are also domain 
elements, have their names prefixed by sort-, e.g sort-literals, sort-d-predicates and 
sort-expressions. 
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Example 
Examples of sort-expressions are : 
 Sort-atomsL person(homer), person(Person) 
 Sort-baseL  person(homer) 
 Sort-atomsL+D person(mr_s) 
 Sort-baseL+D person(mr_s), person(person) 

 
Definition 1.6 - Structures 
The structure of a function is the double consisting of its functor and arity. The structure 
of an atom is the double consisting of its predicate symbol and arity. The structure of a 
literal is the triple consisting of its sign, predicate symbol and arity. 

Example 
Examples of structures are : 
 FunctionsL homer ⇒ homer/0, 
    spouse_of(Person) ⇒ spouse_of/1 
 AtomsL   lungs_ok(homer) ⇒ lungs_ok/1 
 LiteralsL  ~lungs_ok(homer) ⇒ ~lungs_ok/1 
    alive(spouse_of(Person)) ⇒ alive/1 

1.4.1 Input Sets 

A problem is presented to a deduction system as a set of input clauses written in a 1st order 
language. In chain format linear deduction systems (introduced in section 1.4.2) clauses 
are represented in the chain format. 
 
Definition 1.7 - The chain format 
A chain is an ordered sequence of literals. Each literal in a chain is classified as either an 
A-, B- or C-literal. The disjunction of the B-literals in a chain makes up the clause that is 
represented by the chain. An uninterrupted sequence of B-literals in a chain is called a cell. 
Input clauses are used to form input chains which consist entirely of B-literals. Chains that 
contain a single B-literal is called unit chains. Centre clauses of linear deductions (see 
definition 1.9) are represented by centre chains. Centre chains may contain A-, B- and 
C-literals. Various items of information may be associated with the literals in a chain. 
Notation : • A-literals are placed in rectangles. • B-literals stand free. • C-literals are 
placed in ellipses. Literals in a chain are simply separated by spaces. 
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Example 
An example of a chain format input set, written in L and called S, is : 
 S = {~heart_ok(P) lungs_ok(P), 
   heart_ok(P) ~lungs_ok(P),  
   heart_ok(P) lungs_ok(P) ~alive(spouse_of(P)), 
  ~heart_ok(P) ~lungs_ok(P), 
   alive(spouse_of(homer))} 
An example of a centre chain is : 
 ~heart_ok(P) ~lungs_ok(P)  0 (~heart_ok(P)  )  
  ~alive(spouse_of(P)) 

 The superscript 0 on the A-literal is a piece of associated information. 
 
There is a 1st order language implicit in every input set. The implicit language consists of 
the variables (with multiple distinct copies available), functors and predicate symbols that 
appear in the input set. The sets of variables, functors and predicate symbols in the implicit 
language are subsets of their counterparts in the 1st order language in use. The universe 
and base of the implicit language are the Herbrand universe and the Herbrand base of the 
input set. 

Example 
The 1st order language L[S] implicit in S is : 
 VariablesL[S] Anything beginning with uppercase alphabetic, e.g., P. 
 FunctorsL[S] {homer/0, spouse_of/1} 
 PredicatesL[S] {heart_ok/1, lungs_ok/1, alive/1} 

1.4.2 Deductions 

The basic building blocks of deductions are deduction operations. Deduction operations 
are divided into two categories; inference operations, e.g., resolution, factoring, 
paramodulation, and bookkeeping operations, e.g., reordering of literals, truncation. 
Unification in all inference operations includes an occurs check. It is always understood 
that any substitutions resulting from unification are applied to the appropriate expressions. 
Each time an input clause is used in a deduction operation, a new set of variables is 
substituted for those in the input clause, thus avoiding variable clashes.  
 
The deduced clause of a deduction operation contains literals inherited from the parent 
clauses and new literals introduced in the deduction operation. Some literals of the parent 
clauses do not appear, in any form, in the deduced clause. 
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Definition 1.8 - Discarded literals 
Any parent clause literals that are not inherited by the deduced clause of an deduction 
operation are called discarded literals. 

Linear Deduction 
A refinement of the basic resolution procedure, that is of specific interest in this research, 
is the linear format. In particular, GLD and SGLD are chain format linear deduction 
systems. Due to the importance of (chain format) linear deduction in this research, a brief 
review is provided here. 
 
Definition 1.9 - Linear deduction 
Given an input set of clauses and a clause C1 chosen from the input set, a linear deduction 
of Cn from the input set, with top clause C1, is a sequence of centre clauses C1, ... ,Cn. 
Each deduced clause Ci+1, i = 1..n-1, is deduced from the centre clause Ci and side 
clauses. The side clauses are chosen from the input set and C1, ... ,Ci-1. For any Ci, the 
centre clauses C1 to Ci-1 are the ancestor clauses of Ci. A deduction operation that uses an 
ancestor clause is called an ancestor deduction operation. A linear deduction of the empty 
clause is called a linear refutation. These terms are used equivalently for chain format 
linear deduction systems, with reference to chains rather than clauses. 
 
All chain format linear deduction systems have a common core of deduction operations. 
There are two inference operations based on binary resolution and one bookkeeping 
operation. The inference operations are extension and reduction. 
1. Extension resolves a B-literal in the rightmost cell of a centre chain against a B-literal 

in an input chain. The deduced chain is formed by (i) placing the resolved upon centre 
chain B-literal at the right-hand end of the centre chain and reclassifying it as an A-
literal and (ii) adding the non-resolved upon input chain B-literals to the right of the 
new A-literal. 

Example 
An example of an extension operation is : 
 ~heart_ok(P) ~lungs_ok(P)  0 ~alive(spouse_of(P))  

  heart_ok(P) 
 • Extends with ~heart_ok(P) lungs_ok(P) to produce : 
 ~heart_ok(P) ~lungs_ok(P)  0 ~alive(spouse_of(P))  

  heart_ok(P)  0 lungs_ok(P) 

2. Reduction unifies a B-literal in a centre chain with a complementary A-literal to its 
left. The deduced chain is formed by removing the B-literal from the centre chain. 
Reduction implements ancestor resolution, followed by a sequence of factoring 
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operations. The implemented ancestor resolution is restricted so that all the ancestor 
B-literals added to the centre chain are identical to B-literals still existing in the centre 
chain. These identical instances are automatically factored by the reduction. The 
reduction of a B-literal against the A-literal immediately to its left may also be viewed 
as factoring of the corresponding input chain. 

Example 
An example of a reduction operation is : 
 ~heart_ok(P) ~lungs_ok(P)  0 ~alive(spouse_of(P))  

  heart_ok(P)  0 lungs_ok(P) 

 • Reduces to produce : 
 ~heart_ok(P) ~lungs_ok(P)  1 ~alive(spouse_of(P))  

  heart_ok(P)  0 

The bookkeeping operation is truncation (also called contraction ). 
3. Truncation  removes an A- or C-literal from the right-hand end of a centre chain. In 

some deduction systems, the truncation of an A-literal may cause the insertion of 
another A- or C-literal. 

Example 
An example of a truncation operation is : 
 ~heart_ok(P) ~lungs_ok(P)  1 ~alive(spouse_of(P))  

  heart_ok(P)  0 

 • Truncates to produce : 
 ~heart_ok(P) ~lungs_ok(P)  0 (~heart_ok(P)  )  
  ~alive(spouse_of(P)) 

 
In GLD and SGLD, deductions are built from deduction chunks, each of which may 
contain multiple deduction operations. 
 
Below is an example of a chain format linear refutation of the input set S given in section 
1.4.1. The example uses a very simple form of chain format linear deduction, and therefore 
does not illustrate all aspects of chain format linear deduction. Rather it serves to confirm 
the fundamental ideas. 
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Example 
An example of a chain format linear refutation of S is : 
~heart_ok(P) ~lungs_ok(P) 
• Extends with heart_ok(P) lungs_ok(P) ~alive(spouse_of(P)) 

to produce : 
~heart_ok(P) ~lungs_ok(P)   ~alive(spouse_of(P))  

 heart_ok(P) 

• Extends with ~heart_ok(P) lungs_ok(P) to produce : 
~heart_ok(P) ~lungs_ok(P)   ~alive(spouse_of(P))  

 heart_ok(P)   lungs_ok(P) 

• Reduces to produce : 
~heart_ok(P) ~lungs_ok(P)   ~alive(spouse_of(P))  

 heart_ok(P)   

• Truncates to produce : 
~heart_ok(P) ~lungs_ok(P)   ~alive(spouse_of(P))  

• Extends with alive(spouse_of(homer)) to produce : 
~heart_ok(homer) ~lungs_ok(homer)    

 ~alive(spouse_of(homer))    

• Truncates twice to produce : 
~heart_ok(homer) 
• Extends with heart_ok(P) ~lungs_ok(P) to produce : 
~heart_ok(homer)   ~lungs_ok(homer) 

• Extends with heart_ok(P) lungs_ok(P) ~alive(spouse_of(P)) 
to produce : 

~heart_ok(homer)   ~lungs_ok(homer)    

 ~alive(spouse_of(homer)) heart_ok(homer) 
• Reduces to produce : 
~heart_ok(homer)   ~lungs_ok(homer)    

 ~alive(spouse_of(homer)) 
• Extends with alive(spouse_of(homer)) to produce : 
~heart_ok(homer)   ~lungs_ok(homer)    

 ~alive(spouse_of(homer))    

• Truncates thrice to complete the refutation. 

Linear-input Deduction 
Linear-input deduction is a refinement of linear deduction which does not permit any form 
of ancestor resolution, i.e., (chain format) linear deduction using only the extension and 
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truncation operations. Linear-input deduction is complete for input sets of Horn clauses, 
but is not complete for input sets that contain non-Horn clauses. Linear-input deduction is 
of interest in this thesis because truth value deletion in linear-input deduction underlies 
many of the semantic guidance systems developed in chapter 3. 
 
Definition 1.10 - Linear-input deduction 
Given an input set of clauses and a clause C1 chosen from the input set, a linear-input 
deduction of Cn from the input set, with top clause C1, is a sequence of centre clauses 
C1, ... ,Cn. Each deduced clause Ci+1, i = 1..n-1, is deduced from the centre clause Ci and 
side clauses. The side clauses are chosen from the input set. For any Ci, the centre clauses 
C1 to Ci-1 are the ancestor clauses of Ci. A linear-input deduction of the empty clause is 
called a linear-input refutation. 
 
Ringwood [1988] provides an interesting synopsis and references for the history of 
linear-input deduction systems.  

1.5 Deduction Faithfulness 

The restrictions of a guidance system are imposed when a deduction operation is 
performed in the host deduction system. The restrictions are expressed in terms of the 
clauses involved in the deduction thus far. Restrictions can be divided into three 
categories, in increasing order of the extent of their effect. (i) Operation restrictions, 
which must hold at each deduction operation when it is performed. The restrictions are 
allowed to become violated as the deduction progresses. (ii) Independent deduction 
restrictions, which must hold independently at each deduction operation in a completed 
deduction. (iii) Simultaneous deduction restrictions, which must hold simultaneously at 
each deduction operation in a completed deduction. Independent deduction restrictions 
whose satisfaction is established without instantiating any variables, e.g., admissibility 
restrictions, have the same effect as simultaneous deduction restrictions. Operation 
restrictions that once satisfied always remain satisfied, are equivalent to deduction 
restrictions. 
 
There are two principal approaches to establishing the satisfaction of restrictions. The first 
approach is to examine the clauses involved directly. The second approach, called the 
ground approach, is to find a ground universe instance of the clauses involved, that 
satisfies the restrictions. The ground approach can sometimes be used to check restrictions 
expressed in terms of the direct approach, e.g., an atom is FALSE if a FALSE ground 
universe instance of that atom can be found. The ground approach is typically suitable for 
use in semantic guidance systems. For semantic restrictions, the ground approach also 
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alleviates the problem that "if the domain of the interpretation contains more than a few 
elements the computation required to fully evaluate a non-ground clause may be too time 
consuming." [Henschen, 1976, p. 816]. In the ground approach only one suitable ground 
instance need be found at each check point. 
 
For deduction restrictions, establishing that a restriction is satisfied when a particular 
deduction operation is performed, does not establish that the restriction will be satisfied in 
the completed deduction. The instantiation of variables later in the deduction may cause 
the restriction to become violated. Thus, after any instantiation of variables when building 
a deduction, it is necessary to recheck deduction restrictions at every deduction operation 
that has been performed thus far. This repeated rechecking entails a large amount of effort 
which may be prohibitive, or at least of negative utility. An alternative approach is to use 
deduction restrictions as operation restrictions, i.e., without rechecking at previous 
deduction operations, and to supply supplementary mechanisms to detect violations caused 
by the instantiation of variables. With the use of supplementary mechanisms, the 
operational imposition of deduction restrictions can be formulated to have the same or 
very nearly the same effect as full imposition. The extent to which operational imposition 
achieves the effects of full imposition is measured in terms of deduction faithfulness. 
Operationally imposed deduction restrictions are deduction faithful if they ensure that 
completed deductions conform to the deduction restrictions. Deduction faithfulness is a 
generalisation of "ground faithfulness" [Sandford, 1980, p. 209]. 
 
Two methods have been used to make operationally imposed deduction restrictions 
deduction faithful. (i) The deduction restrictions are formulated so that they have 
retrospective effect, i.e., so that their operational imposition at one deduction operation 
also has the effect of imposing restrictions at previous deduction operations. This is 
achieved by examining expressions that are available at the current deduction operation. 
For example, the admissibility restrictions on A- and C-literals in the Graph Construction 
procedure [Shostak, 1976] impose restrictions on B-literals in earlier deduction operations. 
This retrospective detection of deduction restriction violations also has a converse. 
Deduction restrictions can be formulated so that they prospectively detect inevitable 
violations. Such restrictions are designed by analysing possible sequences of deduction 
operations from a given point in a deduction. (ii) Auxiliary data structures are maintained 
specifically to enforce deduction faithfulness, e.g., the False Substitution Lists used in 
Hierarchical Lock Resolution [Sandford, 1980]. The auxiliary data structures need keep 
only sufficient information to detect violations and do not need to store a complete history 
of the deduction.  
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A factor which affects the extent to which operationally imposed deduction restrictions are 
deduction faithful is the timing of their use. Delaying the imposition of such restrictions, 
until after the instantiation of variables, increases the level of deduction faithfulness. This 
is because violations caused by the instantiation will be detected. On the other hand, 
delaying the imposition of the restriction may delay the detection of a violation. The effort 
expended from the point where the violation arose to the point of detection, is wasted. 
When determining the timing of the operational imposition of deduction restrictions, 
careful examination of the restrictions in terms of the host deduction system is therefore 
necessary. In linear deduction systems the timing decision is somewhat simplified. The 
deduction restrictions in linear deduction systems are, almost exclusively, based on the 
nature of the centre clauses. By operationally imposing deduction restrictions between 
deduction operations, both a delayed check on the preceding operation and a preemptive 
check on the next operation are performed . 

1.6. Contributions of this Thesis 

Section 1.3. describes the objectives of this research. In fulfilling the objectives, the 
research described in this thesis has contributed to the area of automated deduction. The 
major contributions are as follows. 
1. The chain format linear deduction system, GLD, has been developed. GLD improves 

upon existing chain format linear deduction systems in various aspects. The notable 
improvements are (i) the provision of an explicit entry point for the incorporation of 
search guidance systems, (ii) the use of coarse grain deduction steps, (iii) a combined 
lemma/C-literal mechanism and (iv) an extended suite of admissibility restrictions. 
GLD is described in sections 2.3 and 2.4. 

2. Three original methods of analysing input sets, that partially predict the structure of 
chain format linear deductions, have been developed. These methods are collectively 
called linear-input subset analysis. Linear-input subset analysis is described in section 
2.5. 

3. The implementational issues associated with truth value semantic deletion in 
linear-input deduction have been clarified, thus broadening the field of applicability. 
This work is described in section 3.3. 

4. Semantic guidance systems have been developed for linear deduction systems. These 
include (i) a truth value deletion system (this is especially significant, as truth value 
deletion has previously been considered incompatible with linear deduction), (ii) a truth 
value preference strategy and (iii) combinations of sort value deletion with (i) and (ii). 
The semantic guidance systems are described in sections 3.4, 3.5, 3.6 and 3.7. 

5. Designations (the new interpretive structures) have been developed for storing semantic 
information. The domains of designations are limited to be finite. Designations improve 
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upon existing structures by incorporating a generalised form of property inheritance. 
An efficient way of extracting the semantic information, stored in designations, has 
been formalized. Designations are described in section 4.4 and the extraction procedure 
is given in section 4.5. 

6. The semantically guided linear deduction system, SGLD, has been developed. The 
combination of features integrated in SGLD is new. In particular, the semantic 
guidance in SGLD is original. SGLD is described in sections 5.1 and 5.2. 

7. Testing of SGLD (described in section 5.4) has highlighted its strengths and 
weaknesses, thus giving direction for future research. These directions are noted in 
chapter 6, as part of the thesis' conclusion. 

1.7. Thesis Structure 

The chapters of this thesis are divided to cover the modular development of SGLD. There 
are two streams of development. Chapter two covers the first stream, describing the 
development of GLD. Chapters three and four cover the second stream. Chapter three 
investigates semantic guidance and chapter four describes designations. Each of these 
chapters is, to a large extent, self contained and has only this introductory chapter as 
prerequisite reading. Each chapter contains its own literature survey of related work. The 
two streams join in chapter five with the description of SGLD, merging the work of the 
preceding three chapters. The thesis is concluded in chapter six. At the end of the thesis are 
the reference list and two appendices. The first appendix contains examples that are too 
bulky to be retained in the main text. The second appendix contains the statements of the 
problems used to test SGLD and descriptions of the designations used in testing SGLD's 
semantic guidance system. Each chapter of the thesis starts with a brief introduction. These 
introductions have been duplicated below to give an overview of the thesis. 

Chapter One - Introduction and Technical Preliminaries 
Guidance systems are central to the success of automated deduction systems. Semantic 
guidance systems are guidance systems that use semantic information to determine search 
direction for their host deduction systems. Relative to their potential for improving the 
performance of deduction systems, it seems that semantic guidance systems have been 
badly neglected. All guidance systems are necessarily formulated to be compatible with 
their host deduction systems. Beyond this constraint, it is desirable to abstract the issues of 
syntax, application and implementation, as far as possible. This chapter introduces these 
issues and presents the notation and terminology used in this thesis. 
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Chapter Two - Guided Linear Deduction 
This chapter introduces a new linear deduction system, called Guided Linear Deduction 
(GLD). GLD has been developed as a linear deduction system in which semantic guidance 
can be used and tested. To fulfil its role successfully, GLD must be an effective deduction 
system in its own right. This ensures that any favourable effects of incorporating semantic 
guidance are not attributable to the inadequacy of GLD. GLD must also have an 
appropriate entry point through which semantic guidance can be incorporated. GLD has 
been designed after an examination of existing linear deduction systems. GLD improves 
upon existing systems. 

Chapter Three - Semantic Guidance 
This chapter investigates and describes ways of using semantic guidance in deduction 
systems, particularly in linear deduction systems. As a first step, the underlying structure 
of truth value (semantic) deletion in linear-input deduction systems has been investigated. 
Understanding this structure has facilitated the development of (i) effective 
implementations of truth value deletion for linear-input deduction systems, (ii) a truth 
value deletion system for linear deduction systems and (iii) a truth value guidance strategy 
that can be used in a wide range of deduction systems. Sort value (semantic) deletion has 
also been seen to be effective in guiding deduction systems. This observation has 
motivated a reformulation of sort value deletion so that it has the same format as truth 
value deletion. In turn, this reformulation has facilitated the development of combined sort 
and truth value guidance systems. 

Chapter Four - Designations 
This chapter describes a new interpretive structure suitable for storing and supplying the 
semantic information used by semantic guidance systems. The new structures are called 
designations. The difficulty of storing and supplying semantic information is one of the 
factors that has discouraged the use of semantic guidance systems. There is a need for an 
interpretive structure that is expressive, space efficient, effective in supplying semantic 
information and also user friendly. A common approach is to store the semantic 
information as semantic functions. Interpretation of ground expressions is then performed 
using recursive descent. Designations generalise this approach, inheriting its good 
properties and remedying some of its faults. The domains of designations are limited to be 
finite. 

Chapter Five - Semantically Guided Linear Deduction 
This chapter describes the Semantically Guided Linear Deduction system (SGLD). SGLD 
is a semantically guided implementation of GLD. The implementation, in Prolog, 
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combines GLD with a semantic guidance system. Designations are used to store the 
semantic information used. SGLD has some features that are not specified in GLD. These 
features improve the real time performance of the implemented system without changing 
the structure of the deductions or the search space. The performance of SGLD has been 
investigated. 

Chapter Six - Conclusion 
This chapter reviews the outcomes of this research. SGLD has combined GLD, a semantic 
guidance system and designations, to form a unique deduction system. The components of 
SGLD are individually of interest and their combination into SGLD has confirmed the 
thesis of this research. Areas worthy of further investigation have also been noted. 
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Chapter Two 

Guided Linear Deduction 

 

This chapter introduces a new linear deduction system, called Guided Linear Deduction 
(GLD). GLD has been developed as a linear deduction system in which semantic guidance 
can be used and tested. To fulfil its role successfully, GLD must be an effective deduction 
system in its own right. This ensures that any favourable effects of incorporating semantic 
guidance are not attributable to the inadequacy of GLD. GLD must also have an 
appropriate entry point through which semantic guidance can be incorporated. GLD has 
been designed after an examination of existing linear deduction systems. GLD improves 
upon existing systems. 
 
This chapter contains : 
1. A historical survey of linear deduction systems. 
2. The design criteria for GLD. 
3. The formal definition of GLD. 
4. Discussion of the deduction operations, deduction chunks and search strategy in GLD. 
5. The description of three methods of analysing input sets, that partially predict the 

structure of GLD deductions. 
6. A brief description of how equality may be embedded into GLD. 
7. Concluding comments. 

2.1. Linear Deduction Systems 

Background 
The linear refinements of the basic resolution procedure combine a range of restrictions, 
resulting in a deduction format that has some fundamentally desirable properties : 
• Linear refutations are based on a sequence of modus ponens and contradiction 

arguments. This is a simple and natural structure for a proof. The structure makes it 
possible to extract an 'answer' from a refutation, thus making linear deduction systems 
suitable for question-answer systems. 
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• Linear deduction systems have "relatively uncomplicated" [Kowalski & 
Kuehner, 1971, pg 230] search spaces, thus making it easy to impose search guidance. 

• The chain format linear deduction systems use a stack style data structure, thus 
permitting efficient implementation. 

These, and other lesser, considerations have focused attention onto linear deduction 
systems. Most of the development of linear deduction systems appears to have taken place 
in the years (approximately) 1968 to 1974. After 1974, there has been little reported 
development. 
 
Although different in presentation, the connection graph proof methods [Bibel, 1987] have 
parallels in linear deduction systems. The tableau format [Letz, Schumann, Bayerl, & 
Bibel, 1992] in particular is very similar to Selective Linear Model deduction 
[Brown, 1974] and LUST-resolution [Minker & Zanon, 1982]. The connection graph 
methods are, however, distinct enough to place them beyond the scope of this discussion. 

Ancient History 
The earliest linear deduction systems were the R~  3 refinement [Luckham, 1970], s-linear 
resolution [Loveland, 1970] and the strategy of preference of a 'new' conjunction [Zamov 
& Sharonov, 1969]. These three systems were devised independently by their respective 
authors. The R~  3 refinement is the simplest of these early systems, and proves the 

completeness of the linear format using full resolution. The R~  3 refinement is also referred 
to as ancestry filter form resolution [Nilsson, 1971]. As well as proving the completeness 
of the linear format, s-linear resolution (full resolution is used) describes an important 
restriction for linear deduction systems. That is, the resolvant of an ancestor resolution 
operation must, possibly after factoring, subsume an instance of the parent centre clause. 
This restriction introduced the idea that ancestor resolution need be performed only if all 
the non-resolved upon literals in the ancestor clause can factor against non-resolved upon 
literals in the parent centre clause. The strategy of preference of a 'new' conjunction 
parallels s-linear resolution, but is expressed for input sets in prenex disjunctive normal 
form. The strategy uses the equivalent of full resolution. The equivalent of s-linear 
resolution's subsumption requirement is introduced in terms of "absorption" [Zamov & 
Sharanov, 1969, p. 9]. Because the development of deduction systems has been almost 
exclusively for input sets in conjunctive normal form, this latter system has been largely 
ignored. As an early work on linear deduction it is, however, equally as noteworthy as 
s-linear resolution. 
 
Each of the first three systems is compatible with the Set of Support (SoS) strategy [Wos, 
Robinson G.A., & Carson, 1965]. Although not mentioned explicitly in some 
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presentations, the SoS strategy can be used with each of the linear deduction systems 
described in this section.  
 
After the three initial systems, two streams of development emerged. One stream 
developed refinements based on resolution with merging [Andrews, 1968], while the other 
developed the chain format systems. Two significant common features emerged in the two 
streams of development. (i) The incorporation of the subsumption restriction of s-linear 
resolution. (ii) A mechanism for selecting the ancestor literal to resolve upon in an 
ancestor resolution. GLD is a chain format linear deduction system, and hence greater 
emphasis will be placed on such systems. 

2.1.1. Resolution with Merging 

Resolution with merging [Andrews, 1968] (where full resolution is used) was reported 
prior to the introduction of linear deduction systems. Resolution with merging imposes a 
restriction on the non-resolved upon literals of a resolution operation. A resolvant is a 
merge if, after factoring, it contains a literal that is descended from both of the parent 
clauses. This literal is called a merge literal. Andrews showed that it is never necessary to 
resolve two non-merges, and that this restriction is compatible with the SoS strategy. 
 
A connection between resolution with merging and the subsumption restriction of s-linear 
resolution was noted by Loveland [1970], and several researchers have developed linear 
deduction systems that take advantage of resolution with merging. The first developed was 
the merge fishtail restriction, informally presented by Raphael [1969] and later formalized 
by Yates, Raphael and Hart [1970]. The merge fishtail restriction demonstrates the 
compatibility of linear deduction (using full resolution), resolution with merging and the 
SoS strategy. It also shows that, in an ancestor resolution, it is only necessary to resolve 
against a merge literal of the ancestor clause. 
 
Anderson and Bledsoe [1970] extended the work of Raphael, to include the subsumption 
restriction of s-linear resolution and also added a no tautologies restriction. The 
completeness of this system was also independently reported by Yates et al. [1970]. This 
system is significant within this stream of development. It defines a linear deduction 
system which incorporates the subsumption restriction and provides a mechanism for 
selecting the ancestor literal to resolve against in an ancestor resolution. 
 
Reiter [1971] imposed ordering strategies on a merging/linear/SoS type deduction system. 
An unfortunate side effect of the addition of ordering is that it is necessary to omit the 
subsumption restriction on ancestor resolution operations. The merge tight ordered s-linear 
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deduction with subsumption rule (MTOSS) system [Loveland, 1978] overcomes this 
problem by allowing descendants of merge literals to be resolved upon in ancestor 
resolution operations. The MTOSS system appears to be the last system in this stream of 
development. 

2.1.2. Chain Format Linear Deduction Systems 

All the chain format linear deduction systems use the chain format for clauses and the 
three core deduction operations, described in section 1.4.2. The reduction operation of 
chain format systems incorporates the subsumption restriction of s-linear resolution and 
the selection of a literal in an ancestor resolution is made using A-literals. These features 
provide commonality with the systems based on resolution with merging. 
 
Besides the common data structure and deduction operations, all the chain format systems 
also use admissibility restrictions. These are restrictions on the extent to which atoms in a 
centre chain may be identical. The general effects of admissibility restrictions are to 
prevent loops in deductions, to prevent the use of tautologies in deductions and to make 
the use of certain deduction operations compulsory in certain circumstances. Each 
individual system provides its own specific admissibility restrictions to obtain the desired 
effects. In some systems the admissibility restrictions are defined as operation restrictions, 
while in other systems the admissibility restrictions are deduction restrictions. 
 
The first chain format system developed was the Model Elimination (ME) procedure 
[Loveland, 1969a]. The first presentation of the ME procedure [Loveland, 1968] did not 
resemble a linear deduction system, but subsequent presentations 
[Loveland, 1969a, 1969b, 1972] set the standard for all the chain format systems that 
followed. Interesting features in the ME procedure are listed below. 
• The ME procedure's extension operation always extends against the rightmost B-literal 

of the centre chain, while the reduction operation may use any B-literal in the centre 
chain. (In [Loveland, 1972] this flexibility is removed and only the rightmost B-literal 
of a centre chain may be used in a reduction operation.) 

• The contraction operation of the ME procedure includes a mechanism by which lemma 
chains are produced and added to the input set. The lemma mechanism is a significant 
feature of the ME procedure, but has often been found to be of low utility. The 
persistent nature of lemma chains often increases the size of the search space 
unacceptably. As the ME procedure is complete without the lemma mechanism, 
restrictions can be used to reduce this problem. This approach has been taken by 
Fleisig, Loveland, Smiley and Yarmush [1974], whose implementation of the lemma 
mechanism includes a simplified subsumption test. 
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• The admissibility restrictions used in the ME procedure are operation restrictions. They 
restrict which centre chains can be used in deduction operations. 

 
Developed independently of the ME procedure, Linear resolution with Selection function 
(SL-resolution) [Kowalski & Kuehner, 1971] was the second major chain format system 
presented. Interesting features in SL-resolution are listed below. 
• The major contribution of SL-resolution was the introduction of a selection function. 

The selection function selects a B-literal in the rightmost cell of the centre chain for use 
in an extension operation. The use of a selection function facilitates some search 
guidance. A selection function or a selection rule has been used in all 
post-SL-resolution chain format systems. (A selection function is distinct from a 
selection rule, in that a selection rule "may depend on the history of the derivation" 
[Ringwood, 1988, p. 6]. A selection function provides an independent selection 
mechanism.) Note that no selection function is used in SL-resolution's reduction 
operation. 

• As well as the three core deduction operations, SL-resolution incorporates m-factoring 
[Kowalski, 1970]. Although the added operation makes shorter refutations possible, it 
also increases the size of the search space. The necessity of selecting a B-literal from 
the rightmost cell of the centre chain in extension operations also prevents the 
m-factoring from having maximum effect. As was noted by Plaisted [1982, p. 235], 
"... the failure to economise on repeated subgoals seems to be a serious problem with 
SL-resolution ...".  

• The admissibility restrictions in SL-resolution are deduction restrictions. Of the chain 
format systems described, SL-resolution is the only one in which the admissibility 
restrictions reject all tautologous centre chains. This is possible due to the inclusion of 
m-factoring. 

 
Ordered Linear (OL)-deduction [Chang & Lee, 1973] combines features of the ME 
procedure and SL-resolution. Interesting features in OL-deduction are listed below. 
• As in the ME procedure, the rightmost B-literal of a centre chain is always used in 

OL-deduction extension and reduction operations. The input chains of OL-deduction 
are ordered, thereby implementing a selection rule for extension and reduction 
operations. 

• From SL-resolution, OL-deduction has adopted factoring (general factoring, not 
m-factoring) and a no tautologies deduction restriction. 

• No admissibility restrictions beyond the no tautologies restriction are specified for 
OL-deduction. 
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The Graph Construction (GC) procedure [Shostak, 1976] introduced the use of C-literals 
in chain format systems. The C-literal mechanism overcomes SL-resolution's "failure to 
economise on repeated subgoals" to a large extent. Interesting features in the GC 
procedure are listed below. 
• C-literals are inserted into the deduced centre chain whenever an A-literal is truncated. 

B-literals may reduce against C-literals as well as A-literals. Reduction against a 
C-literal recalls a portion of the deduction for reuse and effects a retrospective form of 
factoring. There is an equivalence (discussed further in section 2.4.4) between the 
lemma mechanism of the ME procedure and the C-literal mechanism. 

• As in SL-resolution, the admissibility restrictions of the GC procedure are deduction 
restrictions. In comparison with the admissibility restrictions of other chain format 
systems, those of the GC procedure are slow to achieve the desired effects. 

 
Selective Linear Model (SLM) deduction [Brown, 1974] was the last of the chain format 
systems developed in the prolific period up to 1974. Interesting features in SLM are listed 
below. 
• SLM chains have a tree structure. A-literals are internal to the trees and B-literals are 

leaves of the trees. The tree structure of centre chains is brought about by a new 
deduction operation called spreading. Spreading, under certain conditions, spreads 
B-literals in a rightmost cell of a centre chain (each branch has such a cell) onto new 
branches of the centre chain.  

• Any B-literal in any rightmost cell of a centre chain may be selected for use in an 
extension operation, thus providing more flexibility in the system.  

• SLM provides a partial C-literal mechanism. 
• A notable feature of SLM is the use of semantic information. Semantic information is 

used to control the use of the spreading and reduction operations and to determine 
admissibility. 

• The admissibility restrictions of SLM are deduction restrictions. They are less strict 
than those of other chain format systems. 

 
Linear resolution with Unrestricted Selection based on Trees (LUST)-resolution [Minker 
& Zanon, 1982] is based on SL-resolution, but (apparently unknown to its authors) 
incorporates features found in SLM deduction. Interesting features in LUST-resolution are 
listed below. 
• LUST-resolution, like SLM deduction, uses a tree structure for its chains. 
• LUST-resolution always spreads the B-literals in the rightmost cell of a centre chain. 
• General factoring is used. 
• LUST-resolution has deduction admissibility restrictions similar to those of 

SL-resolution. 
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There have been many implementations of chain format systems, e.g., [Fleisig et al., 1974; 
Stickel, 1986b; Tarver, 1990], which have incorporated various combinations of features, 
including some beyond those mentioned above. Of interest is the Prolog Technology 
Theorem Prover (PTTP) [Stickel, 1986b], which  made minimal changes to the ME 
procedure (upon which it is based), but instead focused on a highly optimised 
implementation. It has been noted that "Although PTTP is one of the fastest theorem 
provers in existence when evaluated by its inference rate ... its high inference rate can be 
overwhelmed by its exponential search space ..." [Stickel, 1990, p. 674]. The failure of 
'brute force' to produce a completely successful linear deduction system is an indicator of 
the necessity for search guidance. 

2.2. The Design of GLD 

The basic structure and core of deduction operations of chain format linear deduction 
systems provide a suitable foundation upon which to build powerful deduction systems. 
Other non-core features, found in chain format systems developed to date, provide a rich 
selection that can be used in such systems. Beyond the core deduction operations, notable 
features of the chain format systems discussed above, are (i) the use of a selection 
function/rule in extension operations, (ii) the compulsory use of certain operations in 
certain circumstances (not explicitly mentioned above, but enforced via admissibility 
restrictions), (iii) the incorporation of a factoring operation, (iv) the addition of lemma 
chains to the input set, (v) the use of the C-literal mechanism, (vi) the incorporation of a 
spreading operation and (vii) the imposition of admissibility restrictions. Notable by the 
their absence from the systems discussed are (i) more extensive use of a selection 
function/rule, (ii) explicit methods for ordering alternative successor centre chains, 
(iii) coarse grain deduction steps, (iv) specification of an overall search strategy. 
 
The use of a selection function/rule in extension operations is the dominant search 
guidance mechanism used in existing chain format deduction systems. OL-deduction is the 
only chain format system that extends selection to its reduction operation, in the form of a 
selection rule. More general search guidance mechanisms are needed. Firstly, a selection 
rule should be used in all inference operations. It is important that a selection rule rather 
than a selection function be used, as this permits more flexibility in the choice of B-literal. 
Secondly, alternative successor centre chains should be evaluated and ordered for use. 
 
The compulsory use of certain deduction operations (with a specific input chain in some 
cases) plays an important role in pruning the search space of chain format deduction 
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systems. Further emphasis on detecting situations in which the use of a certain operation 
can be compulsory, would result in an improved deduction system. 
 
The incorporation of a separate factoring operation in linear deduction systems has both 
advantages and disadvantages. Factoring makes shorter refutations possible, but also 
increases the size of the search space. The reduction operation, lemma mechanism and 
C-literal mechanism, each implement some factoring. Reduction of a B-literal against the 
A-literal immediately to its left, implements factoring of input chains. The C-literal 
mechanism and, to a lesser extent, the lemma mechanism implement a retrospective form 
of factoring. A separate factoring operation thus seems to be redundant. 
 
In addition to their factoring effects, the lemma and C-literal mechanisms implement reuse 
of previously deduced information. This has evident advantages. The lemma mechanism is 
more powerful than the C-literal mechanism, but often increases the size of the search 
space unacceptably. A mechanism for reusing deduced information, but which avoids 
increasing the size of the search space, would be of significant benefit. 
 
Empirical evidence indicates that the spreading operation used in SLM deduction and 
LUST-resolution has some benefits [Tabada & Sutcliffe, 1990]. A drawback of the 
spreading operation is that it destroys the stack like nature of the centre chains, thus 
complicating implementation. There is insufficient firm evidence available to make a 
statement about the desirability of incorporating the spreading operation. 
 
The deduction operations used in existing chain format systems are very fine grained. 
Several authors, e.g., Wos [1988], Bledsoe & Hodges [1988], have noted the importance 
of taking deduction steps of an appropriate size. If the deduction steps are too small, an 
excessive amount of intermediate information may be generated and stored. On the other 
hand, taking too large deduction steps may by-pass a path to a refutation. Optimally, 
deduction steps that are as large as possible should be taken so long as completeness is 
maintained. Coarser grain operations, such as hyper-resolution [Robinson J.A., 1965b] and 
linked-UR-resolution [Wos, Verhoff, Smith, & McCune, 1984], have proved to be 
successful in other deduction systems. The use of coarse grain deduction steps would 
enhance a chain format linear deduction system. 
 
Many of the deduction admissibility restrictions defined for the chain format systems 
would have retrospective effect if imposed operationally. There is thus some redundancy 
in the restrictions. An admissibility checking system that uses deduction faithful, 
operationally imposed, admissibility restrictions would be desirable. The restrictions 
should retrospectively and prospectively detect admissibility violations. 
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None of the chain format systems discussed explicitly specifies an overall search strategy. 
A chain format linear deduction system (like all deduction systems) must have a fair 
[Lloyd, 1984, p. 52] search strategy, i.e., one that does not ignore any part of the search 
space that may contain a solution. It is desirable that the search strategy be specified as 
part of the deduction system. 
 
Based on the above comments, an improved chain format linear deduction system would 
have the following features : 
• No deduction operations beyond the core three. 
• Use of a selection rule wherever possible. 
• A method of ordering alternative successor centre chains. 
• Maximised detection of situations in which the use of a certain deduction operation is 

compulsory. 
• Coarse grain deduction steps. 
• A mechanism for reusing deduced information. The mechanism must not increase the 

size of the search space dramatically. 
• Operationally imposed deduction restrictions, formulated to have retrospective and 

prospective effect. 
• An appropriate overall search strategy. 
GLD is a chain format linear deduction system, designed to satisfy these goals. GLD is 
based broadly on the GC procedure. Many of the GC procedure's features have been 
enhanced and new features have been added. The following features make GLD an 
improvement over existing chain format linear deduction systems : 
• A selection rule can be used in GLD's extension and reduction operations, and 

alternative successor chains can be ordered for use. Both the selection rule and ordering 
are controlled by a heuristic function. The heuristic function thus supplies an explicit 
entry point for the incorporation of guidance systems. There are many possible heuristic 
functions that could be used, some of which are listed by Chang and Lee [1973, p. 154]. 
A semantically based heuristic function is presented in chapter 3. 

• Coarse grain deduction steps, called deduction chunks, are formed. 
• A combined lemma/C-literal mechanism has been developed. The mechanism limits the 

increase in the size of the search space. 
• An extended suite of operationally imposed admissibility restrictions is specified. 
 
In designing specific details of GLD features, four basic maxims were adopted, as follows. 
1. GLD would be 'tuned' to find deductions that end with the empty chain, i.e., refutations. 
2. Unit input chains would be given preferential treatment. This idea is not new and 

underlies several refinements to the resolution procedure, e.g., the unit preference 
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strategy [Wos et al., 1964], unit resolution [Henschen & Wos, 1974] and UR resolution 
[Overbeek et al., 1976]. In GLD, several features have been structured to exploit the 
advantages of using unit input chains. For all chains in GLD, this maxim was 
extrapolated to a "fewest-literals preference strategy". Such a generalisation was 
originally proposed by Slagle [1965], as cited in [Chang & Lee, 1973, p. 153] and is 
based on the idea that shorter chains are closer to a refutation than longer ones. 

3. 'A stitch of pruning is worth nine of search.' Any overhead introduced by a mechanism 
that could prune the search space, would be considered justified. This maxim is well 
motivated by Wos [1988]. 

4. The various components of the system should integrate smoothly. Given alternative 
ways of incorporating a feature, the method that is least disruptive to the overall 
structure of the system would be chosen. 

 
The formal definition of GLD is given in a dynamic style, in the manner of [Schumann, 
Letz, & Kurfess, 1990]. This is in contrast to the static style used in some other system 
definitions. Thus, as well as specifying the nature of a GLD deduction, the definition also 
specifies how such a deduction is to be obtained. 

2.3. The Formal Definition of GLD 

2.3.1. Input and centre chain representation 

GLD chains may contain A-, B- and C-literals, as defined in section 1.4.1. Extra items of 
information are associated with A- and C- literals, as follows. 
• A-literals have an integer scope value. For a given A-literal with scope value N, the N 

A-literals to the right of the given A-literal are within the scope of the given A-literal. 
• C-literals have a list of (references to) scope A-literals. The scope A-literals of a 

C-literal are to the left of the C-literal. 
 
The input chains to a GLD deduction are created by assigning any convenient ordering to 
the literals in each input clause and classifying the literals as B-literals. Lemma chains that 
are created in the course of a deduction may be added to the input set. 

2.3.2. Subsumption 

Subsumption is used by GLD's admissibility checking and reuse of deduced information 
features. The principal use is in the addition (or non-addition) of lemma chains to the input 
set. GLD's preference for shorter chains and considerations concerning linear-input subset 
analysis (see section 2.5), have led to a subsumption algorithm that requires that a 
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subsumed chain has at least as many literals as the subsuming chain. This is a common 
modification to subsumption, and is called θ-subsumption by Loveland [1968, p. 97]. 
Thus, a chain C subsumes a chain D if : 
1. The number of B-literals in C is less than or equal to the number in D. 
2. There exists a substitution θ such that each B-literal in Cθ is a B-literal in D. 

2.3.3. The Structure of GLD Deductions4 

The building of GLD deductions is driven by several parameters. They are : 
1. An input set of clauses. GLD converts the input clauses to input chains. 
2. Definition of a support set, from which the top chain is chosen. 
3. A search bound for the first iteration of GLD's consecutively bounded search. (An 

iteration of the consecutively bounded search is a complete search within one bound.) 
4. A heuristic function. The heuristic function returns a value indicating the perceived 

quality of a centre chain. 
5. A search style, one of literal-selected, literal-ordered, cell-selected or cell-ordered. 
 
For a given input set, support set, initial search bound, heuristic function and search style, 
a GLD deduction of Cn is a sequence of centre chains C*1,C1, ... ,C*n,Cn built such that : 
1. Each C*i+1, i=1..n-1, is deduced from Ci by one of extension, A-reduction or 

C-reduction.  
2. Each Ci+1, i=0..n-1, is deduced from C*i+1 by a (there is only one) maximal sequence 

of Unit subsumed extensions, Identical A-reductions, Identical C-reductions, 
A-truncations and C-truncations (descibed below). 

3. Only the Ci are stored. 
4. C*1 is chosen from the support set. The order in which support set elements are used 

as top chains is : 
1. The order in which they appear in the input set, for the literal-selected and 

cell-selected search styles. 
2. An order such that the alternative C1s are used in order of worsening heuristic 

value, for the literal-ordered and cell-ordered search styles. 
5. For each Ci, the selected B-literal from the rightmost cell of Ci is : 

1. The rightmost B-literal, for the literal-selected and literal-ordered search styles. 
2. The B-literal that leads to the set of Ci+1s with the worst heuristic value, for the 

cell-selected and cell-ordered search styles. The heuristic value of a set of 
chains is the best of its elements' heuristic values, or the worst possible 
heuristic value if the set is empty. 

                                                
4Explanatory comments on aspects of this formal definition are to be found in section 2.4. 
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6. For each Ci, given the selected B-literal, the order in which the possible Ci+1s are 
considered is : 

1. A default order (see section 2.4.3), for the literal-selected and cell-selected 
search styles. 

2. Worsening order of their heuristic values, for the literal-ordered and 
cell-ordered search styles. 

7. In every C*i, when it is deduced : 
1. No two non-B-literals have identical atoms. 
2. No A- or C-literal is to the left of an identical B-literal. 
3. No B-literal is complementarily5 identical to another B-literal in the same cell, 

or to the A-literal immediately to the right of its cell. 
4. No A-literal is complementarily subsumed by a unit input chain, unless the 

A-literal is the rightmost literal in C*i. 
 These are GLD's admissibility restrictions. They are operation restrictions. 
8. No Ci has more A- and B-literals than the search bound. Any Ci created with an 

excess of A- and B-literals is rejected. If Cn cannot be deduced using a given search 
bound, then the deduction may be restarted from C1, as follows. If any lemma chains 
have been added to the input set in the iteration, then the search is restarted from C1 
with the search bound increased by one. If no lemma chains have been added to the 
input set in the iteration and the search bound has been exceeded, then the search is 
restarted from C1 with the search bound increased by the minimum amount by which 
it was exceeded. 

 
Cdeduced is deduced from Ccentre by extension against an input chain Cinput if : 
1. The selected B-literal in Ccentre is complementarily unifiable with a B-literal in Cinput. 
2. C'centre is Ccentre with the selected B-literal moved to the rightmost end, C'input is 

Cinput with the used B-literal removed and Cdeduced is the juxtaposition of C'centre and 
C'input. The selected B-literal is reclassified as an A-literal, with scope 0. 

3. If C'input is a unit input chain then the extension is called a unit extension. 
 
Cdeduced is deduced from Ccentre by A-reduction if : 
1. The selected B-literal in Ccentre is complementarily unifiable with an A-literal to its 

left. 
2. Cdeduced is Ccentre with the selected B-literal removed. The scope of the A-literal is 

reset to the number of A-literals to its right. 

                                                
5The term complimentarily is used to specify a literal of opposite sign. Thus, for example, a complementarily 

identical literal is a literal of opposite sign with an identical atom, and a complementarily unifiable literal is a 

literal of opposite sign whose atom unifies with the atom of the literal in question. 
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Cdeduced is deduced from Ccentre by C-reduction if : 
1. The selected B-literal in Ccentre is complementarily unifiable with a C-literal to its left. 
2. Cdeduced is Ccentre with the selected B-literal removed. The scope of each scope 

A-literal (of the C-literal) is reset to the number of A-literals to its right. 
 
Cdeduced is deduced from Ccentre by Unit subsumed extension against a unit input chain 
Cinput if : 
1. The rightmost literal of Ccentre is a B-literal. 
2. There is a target B-literal in Ccentre which is complementarily subsumed by Cinput. 
3. No identical A-reduction or identical C-reduction is possible against a B-literal to the 

right of the target B-literal. 
4. Cdeduced is Ccentre with the target B-literal removed. 
 
Cdeduced is deduced from Ccentre by Identical A-reduction if : 
1. The rightmost literal of Ccentre is a B-literal. 
2. There is a target B-literal in Ccentre which is complementarily identical to an A-literal 

to its left. 
3. No unit subsumed extension, identical A-reduction or identical C-reduction against a 

B-literal to the right of the target B-literal is possible; unit subsumed extension against 
the target B-literal is not possible; identical A-reduction of the target B-literal against 
an A-literal to the left of this A-literal is not possible; identical C-reduction of the 
target B-literal against a C-literal to the left of this A-literal is not possible. 

4. Cdeduced is Ccentre with the target B-literal removed. The scope of the A-literal is reset 
to the greater of its current scope and the number of A-literals between itself and the 
position of the (removed) target B-literal. 

 
Cdeduced is deduced from Ccentre by Identical C-reduction if : 
1. The rightmost literal of Ccentre is a B-literal. 
2. There is a target B-literal in Ccentre which is complementarily identical to a C-literal to 

its left; 
3. No unit subsumed extension, identical A-reduction or identical C-reduction against a 

B-literal to the right of the target B-literal is possible; unit subsumed extension against 
the target B-literal is not possible; identical C-reduction of the target B-literal against a 
C-literal to the left of this C-literal is not possible; identical A-reduction of the target 
B-literal against an A-literal to the left of this C-literal is not possible. 

4. Cdeduced is Ccentre with the target B-literal removed. The scope of each scope A-literal 
(of the C-literal) is reset to the greater of its current scope and the number of A-literals 
between itself and the position of the (removed) the target B-literal. 
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Cdeduced is deduced from Ccentre by A-truncation if : 
1. The rightmost literal of Ccentre is an A-literal. 
2. An A-literal is a lemma A-literal of the truncation if its scope is equal to the number of 

A-literals to its right. The scope A-literals of the truncation are the lemma A-literals 
other than the rightmost A-literal. The C-point of the truncation is immediately to the 
right of the rightmost scope A-literal, or at the leftmost end of Ccentre if there are no 
scope A-literals. A lemma chain of B-literals is formed from the negations of the 
lemma A-literals. 

3. C'centre is Ccentre with the rightmost A-literal removed and with the scope of each 
scope A-literal decremented by 1. 

4. If the lemma chain is subsumed by an input chain then : 
1. Cdeduced is C'centre. 

 If the lemma chain is a unit chain that is not subsumed by an input chain then : 
1. All input chains that are subsumed by the lemma chain are removed from the 

input set. 
2. The lemma chain is added to the input set. 
3. Cdeduced is C'centre. 

 If the lemma chain is a non-unit chain that is not subsumed by an input chain and the 
lemma chain subsumes at least one input chain then : 

1. All input chains that are subsumed by the lemma chain are removed from the 
input set. 

2. The lemma chain is added to the input set. 
3. Cdeduced is C'centre. 

 If the lemma chain is a non-unit lemma chain that is not subsumed by an input chain 
and the lemma chain does not subsume any input chains then : 

1. Cdeduced is C'centre with a C-literal inserted at the C-point. The C-literal is the 
complement of the removed A-literal, with scope A-literals as above. 

 
Cdeduced is deduced from Ccentre by C-truncation if : 
1. The rightmost literal of Ccentre is a C-literal. 
2. Cdeduced is Ccentre with the C-literal removed. 
 

Below is a GLD refutation of the input set S given in section 1.4.1. The refutation should 
be contrasted with that given in section 1.4.2. 
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Example 
An example of a GLD refutation of S is : 
~heart_ok(P) ~lungs_ok(P) 
• Extends with heart_ok(P) lungs_ok(P) ~alive(spouse_of(P)) 

to produce : 
~heart_ok(P) ~lungs_ok(P)  0 ~alive(spouse_of(P))  

 heart_ok(P) 

• Extends with ~heart_ok(P) lungs_ok(P) to produce : 
~heart_ok(P) ~lungs_ok(P)  0 ~alive(spouse_of(P))  

 heart_ok(P)  0 lungs_ok(P) 

• Reduces to produce : 
~heart_ok(P) ~lungs_ok(P)  1 ~alive(spouse_of(P))  

 heart_ok(P)  0 

• Truncates to produce : 
~heart_ok(P) ~lungs_ok(P)  0 ~alive(spouse_of(P)) 

• The lemma ~heart_ok(P) lungs_ok(P) is produced and subsumed. 
The C-point of the truncation is immediately to the right 
of ~lungs_ok(P)  . If a C-literal were to be inserted, it would be 

(~heart_ok(P)  ) at that location. It would have ~lungs_ok(P)   as its 

single scope A-literal. 
• Extends with alive(spouse_of(homer)) to produce : 
~heart_ok(homer) ~lungs_ok(homer)  0  

 ~alive(spouse_of(homer))  0 

• Truncates twice to produce : 
~heart_ok(homer) 

• The lemma alive(spouse_of(homer)) is produced and subsumed. 
• The lemma lungs_ok(homer) is added to the input set. 

• Extends with heart_ok(P) ~lungs_ok(P) to produce : 
~heart_ok(homer)  0 ~lungs_ok(homer) 

• Unit subsumed extends with lungs_ok(homer) to produce : 
~heart_ok(homer)  0 ~lungs_ok(homer)  0  

• Truncates twice to complete the refutation. 
• The lemma lungs_ok(homer) is produced and subsumed. 
• The lemma heart_ok(homer) is added to the input set. 
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2.4. The Deduction Operations and Search Strategies in GLD 

2.4.1. The Deduction Operations 

GLD's eight deduction operations are comprised of six inference operations and two 
bookkeeping operations. The inference operations are the extension and reduction 
operations and the bookkeeping operations are the truncation operations. Orthogonal to the 
operational divisions, the deduction operations may be split into two groups dependent on 
whether or not alternative successor centre chains need to be considered once the operation 
has been completed. If alternatives do not need to be considered the operation is called a 
compulsory operation. The following table summarises the divisions : 
 

Operation Mode 
 Compulsory Non-compulsory 
Extension  Extension 
 Unit subsumed 

extension 
 

Reduction  A-reduction 
  C-reduction 
 Identical A-reduction  
 Identical C-reduction  
Truncation A-truncation  
 C-truncation  

Table 2.1 - The GLD deduction operations 

An important difference between the non-compulsory and compulsory inference 
operations is that the non-compulsory inference operations operate on a selected B-literal 
in the rightmost cell of a centre chain, while the compulsory inference operations may use 
any B-literal in a centre chain. The truncation operations can and must be used when the 
rightmost literal in the centre chain is an A- or C-literal. 
 
The extension group of operations are, in combination, equivalent to the extension 
operations of other chain format systems. If a B-literal can be removed from a centre chain 
without any instantiation of variables in the centre chain, it is unnecessary to consider 
alternative ways of removing the B-literal. Thus unit subsumed extension is a compulsory 
operation. Stickel [1986b] used 'unit subsumed extensions' in the PTTP. Unit subsumed 
extension in GLD is an efficient operation, in that no A-literal is created. The creation of 
an A-literal would be redundant as it would immediately be A-truncated and the unit 
lemma chain created would necessarily be subsumed by the unit input chain used. 
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GLD's reduction operations combine features from the ME procedure's and the GC 
procedure's reduction operations. A significant feature in GLD's non-compulsory reduction 
operation is the use of a selection rule. This provides a search guidance point that is not 
available in most other chain format systems. As the identical reduction operations do not 
instantiate any variables in the centre chain, they, like unit subsumed extension, are 
compulsory operations. Making identical reduction a compulsory operation is a common 
feature of linear deduction systems. The lack of clarity in the literature over this issue has 
been discussed by Sutcliffe and Tabada [1991]. The reduction operations work in tandem 
with A-truncation to implement reuse of deduced information. 
 
GLD's A-truncation operation combines features of the ME procedure's and the GC 
procedure's truncation operations, providing facilities to add lemma chains to the input set 
as well as to insert C-literals. This reuse of deduced information is discussed fully in 
section 2.4.4. The C-truncation operation is directly that of the GC procedure. 
 
Although it would be possible to include a factoring operation in GLD, this has not been 
done. Both general factoring and factoring of identical B-literals were tested in GLD. The 
positive effects of using either of these operations were outweighed by a detrimental effect 
on the lemma/C-literal mechanism of GLD and an expanded search space. The absence of 
a separate factoring operation is compensated for by the combined effects of the 
lemma/C-literal mechanism and A-reduction. 

2.4.2. Chunking 

GLD is the first chain format system to explicitly build coarse grain deduction steps. In 
GLD multiple deduction operations are combined into indivisible deduction chunks. The 
philosophy underlying GLD's operation chunking is that no centre chain is stored while it 
contains a literal that can be removed by a compulsory operation. This approach does not 
destroy the deduction completeness of the system. Thus, after each non-compulsory 
operation, a maximal sequence of compulsory operations is performed before the resulting 
centre chain is stored. The intermediate chains deduced are discarded. The initial 
non-compulsory operation and the sequence of compulsory operations form a deduction 
chunk. The chunk is based on the non-compulsory operation. A side effect of chunking is 
that every stored centre chain necessarily has a cell at its right-hand end, and can therefore 
have a non-compulsory inference operation performed on it. 
 
The building of the maximal sequence is arranged so as to avoid changing scope values 
when possible. If this is not possible then the scope values of A-literals which are as far to 
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the left as possible, are increased. To this end, unit subsumed extension is performed in 
preference to identical reduction, and reduction is performed against A- and C-literals 
which are as far to the left as possible (no distinction is made between A- and C-literals). 
This latter preference, also used in st-linear resolution [Shostak, 1976], has two effects. 
Firstly, shorter lemmas are created. Secondly, subsequently inserted C-literals exist longer 
and are more effective. To maximise the use of unit extension, any unit lemma chains 
created and added to the input set within the sequence, are created as soon as possible. 
This is achieved by examining the centre chain literals from right to left. 

2.4.3. B-literal Selection and Successor Ordering 

In each chunk of a GLD deduction, two choices have to be made. The first is to select a 
B-literal for the base operation and the second is to choose an order in which alternative 
successor centre chains are to be considered. GLD uses two methods for selecting a 
B-literal and two methods for ordering alternative successors. These, in combination, 
provide four possible search styles, as summarised in the following table. 
 

Successor Order Literal Selection 
 Rightmost literal Most likely to fail 
Default Literal-selected Cell-selected 
Decreasing quality Literal-ordered Cell-ordered 

Table 2.2 - Search styles 

The determination of which B-literal is most likely to fail and the order of decreasing 
quality, are done in terms of the heuristic function supplied. The heuristic function 
provides an explicit entry point for search guidance. Such an entry point is absent in 
existing chain format systems. This feature is crucial in GLD, as it is via this entry point 
that semantic guidance is incorporated into GLD. 
 
The names of the search styles are derived from how the B-literal is selected and how 
alternative successor chains are ordered. These issues are described below. 

B-literal Selection 
The literal-selected and literal-ordered search styles use a trivial B-literal selection method, 
as in the ME procedure, simply taking the rightmost B-literal. This provides no search 
guidance. 
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In the cell-selected and cell-ordered styles, the B-literal is selected from the rightmost cell. 
The selection aims to make that which is most likely to lead to failure. This selection 
criteria is motivated by noting that each B-literal in a cell must be used eventually. There 
is no point in selecting a B-literal that is easily dealt with, only to fail later on another. This 
approach has been motivated by various authors, e.g. Naish [1986], Plaisted [1990b]. To 
make the selection that is most likely to lead to failure, the set of successor centre chains is 
deduced for each B-literal in the rightmost cell. For each successor set, the heuristic value 
of each successor in the set is calculated. The best of the successors' values is assigned as 
the heuristic value of the set. If there are no successors then the set is assigned the worst 
possible heuristic value. The B-literal whose successor set has the worst value, is selected. 
This technique of looking ahead is better than making a selection based on the nature of 
the B-literals themselves. 

Successor Ordering 
The literal-selected and cell-selected search styles use a default ordering of alternative 
successor centre chains. The default ordering is guided by (i) the fewest-literals maxim and 
(ii) by avoiding changing scope values if possible, or if not possible increasing the scope 
values of A-literals which are as far to the left as possible (as in the maximal sequences of 
compulsory operations). Unit extension and reduction operations always deduce shorter 
centre chains and extension operations do not change scope values. Therefore preference is 
given first to unit extension based chunks, second to reduction based chunks and third to 
non-unit extension based chunks. Within reduction based chunks, preference is given to 
reductions against A- and C-literals which are as far to the left as possible (no distinction is 
made between A- and C-literals). 
 
The literal-ordered and cell-ordered search styles use the alternative successor centre 
chains in order of worsening heuristic value. 
 

The four search styles produce different search trees, due to their different methods of 
B-literal selection and of ordering alternative successor centre chains. The computational 
effort required to select a B-literal and order the alternative successors differs over the four 
styles. Effort is expended in two areas, firstly in deducing alternative successors and 
secondly in evaluating of the heuristic function for the alternative successors. 
• The literal-selected search style incurs the least overhead, as no heuristic values are 

used and only one successor is deduced at a time. Correspondingly, no search guidance 
other than the default ordering of alternative successors is provided by the 
literal-selected search style. 
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• The literal-ordered search style deduces all successors for a trivially selected B-literal 
and calculates the heuristic value for each. The calculated values are used to provide 
search guidance (by ordering the successors). Each successor may be used if those with 
better heuristic values lead to failure. Thus the effort required to deduce all the 
successors may be justified. 

• The cell-ordered search style deduces every successor for every B-literal in the 
rightmost cell of the centre chain and calculates a heuristic value for each. These 
heuristic values are used to select a B-literal and then to sort the successors for the 
selected B-literal. Each of the successors for the selected B-literal may be used, as in 
the literal-ordered search style. However, the successors for the non-selected B-literals 
are discarded. 

• The cell-selected search style is a downgraded version of the cell-ordered search style, 
in that the successors for the selected B-literal are left unsorted. 

 
It is evident that the literal-ordered and cell-ordered search styles use heuristic values most 
effectively. The literal-ordered search style is called a hill climbing search by 
Winston [1984, p. 93] and a modified depth-first method by Chang and Lee [1973, p. 151]. 
 
An issue closely related to ordering of alternative successor chains is the order in which 
support set elements are used as top chains. In GLD the elements of the support set may be 
viewed as alternative intermediate chains deduced by alternative base operations of initial 
deduction chunks. The order in which they are used as top chains is similar to the ordering 
of alternative successor centre chains. A default order (their order in the input set) is used 
for the literal-selected and cell-selected search styles. In the literal-ordered and 
cell-ordered search styles the elements are used in an order such that the centre chains 
deduced by the 'alternative chunks' are deduced in order of worsening heuristic value. 

2.4.4. Reuse of Deduced Information 

Three mechanisms for reusing deduced information have been developed in existing chain 
format linear deduction systems. They are the lemma mechanism in the ME procedure, the 
C-literal mechanism in the GC procedure, and the caching mechanism used by Astrachan 
and Stickel [1992]. Caching is appropriate only in purely linear-input deductions, and is 
thus not considered further here. The lemma mechanism adds lemma chains to the input 
set and these may be used in extension operations. The C-literal mechanism inserts 
C-literals into the centre chain and the C-literals may be reduced against. Using a lemma 
chain is equivalent to duplicating the sequence of deduction operations that lead to the 
creation of the lemma. The same is true for C-literals. Using a lemma or a C-literal 
produces a shorter deduction. Caching is a generalised variant of the lemma mechanism. 
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Lemmas and C-literals hold very similar information, as may be observed from an 
examination of the two mechanisms. In the ME procedure, lemma chains are formed from 
the negations of the A-literal being truncated and certain other A-literals to its left. The 
other A-literals are, in GLD parlance, the scope A-literals. An A-literal is a scope A-literal 
by virtue of its participation in a prior reduction against a B-literal which was to the right 
of the A-literal now being truncated. In the GC procedure such a prior reduction would 
have ensured that the C-point (of the A-literal now being truncated) is to the right of all 
such reduced against (scope) A-literals. Thus the C-point is immediately to the right of the 
rightmost such (scope) A-literal. The A-literals that contribute to a lemma chain in the ME 
procedure thus also determine the C-point in the GC procedure. Each C-literal inserted in a 
GC procedure deduction corresponds to a lemma chain created in an ME procedure 
deduction. C-reduction is equivalent to extension against the corresponding lemma chain 
followed by A-reduction of the remaining lemma chain B-literals against the scope 
A-literals. 
 
The lemma mechanism has two distinct advantages over the C-literal mechanism. The first 
is that lemma chains remain in the input set even if the branch of the search which creates 
the lemma chain leads to failure. The lemma chain may be used in another branch of the 
search, or, in the environment of a consecutively bounded search, it may be used in the 
next iteration of the search. In contrast, a C-literal is available only until it is truncated 
from the centre chain. The second advantage is that each time a lemma chain is used in an 
extension, a fresh set of variables is created. Thus one use of a lemma chain does not affect 
the next use. When a C-literal is used its variables may be instantiated, thus making it 
unsuitable for further use. An associated effect is that after an extension against a lemma 
chain, the variables in the lemma chain B-literals are not necessarily unified with other 
variables in the centre chain. The effects of subsequently instantiating the lemma chain 
variables are thus less widely felt. Variables in a C-literal typically share with other 
variables in the centre chain and their instantiation has effects elsewhere in the centre 
chain.  
 
The C-literal mechanism has one distinct and critical advantage over the lemma 
mechanism. The persistent nature of lemmas (which, as discussed above, is an advantage 
in some situations) typically leads to a debilitating increase in the size of the search space. 
The detrimental effect of this has been noted in various places, the principal problem being 
cited that "lemmas tend to be highly redundant - they are often subsumed by other lemmas 
and input chains" [Shostak, 1976, p. 63]. The C-literal mechanism does not suffer from 
this problem. A second advantage of the C-literal mechanism is that C-reduction combines 
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the multiple operations that would have to be done separately if the equivalent extension 
against a lemma chain and following A-reductions, were to be performed. 
 
GLD introduces a combination of the lemma and C-literal mechanisms, retaining the best 
features of each. The GLD lemma/C-literal mechanism can add lemma chains to the input 
set and can also insert C-literals. Because of the evident advantages of the lemma 
mechanism over the C-literal mechanism, preference is given to the creation of lemmas. 
However, safeguards are provided against the proliferation of non-unit lemma chains. To 
implement the combined mechanism, A-literals maintain a scope value as in the ME 
procedure. The C-point of an A-truncation is determined from the scope values. Because a 
C-reduction implements several A-reductions, it is necessary to update scope values in 
C-reductions as well as in A-reductions. The A-literals whose scope values need updating 
in a C-reduction are those which determined the insertion point of the C-literal, i.e., the 
scope A-literals of the C-literal. In a C-reduction, each such scope A-literal is updated as if 
it had A-reduced against the B-literal involved. 
 
GLD's lemma/C-literal mechanism gives preferential treatment to unit lemmas. If a unit 
lemma is not forward subsumed it is always added to the input set. The alternative of 
inserting a C-literal is never taken. A redundancy in the GC procedure, of inserting 
C-literals immediately after a unit extension (such C-literals are subsumed by the unit 
input chain used), is eliminated here. In GLD no C-literal is inserted and the lemma chain 
created will necessarily be subsumed by the unit input chain used in the extension. 
Although the unit lemma chain strategy permits the number of unit input chains to grow, 
this is in line with the 'preferential treatment of unit chains' maxim of GLD. As well as 
their use in GLD's unit orientated extension operations, unit lemma chains are also used by 
one of GLD's admissibility restrictions. 
 
A non-unit lemma chain is added to the input set only if it is not forward subsumed and it 
backward subsumes at least one existing input chain. The latter restriction prevents the 
number of non-unit input chains from increasing. Further, because a subsuming chain has 
no more literals than the subsumed chain, the total number of B-literals in non-unit input 
chains never increases. This simplifies the set of input chains. The use of C-literals rather 
than adding 'new' non-unit lemma chains maintains the advantages of reusing deduced 
information, but does not have the deleterious effect of proliferating non-unit input chains. 
It is, in some circumstances, possible for an inserted C-literal to be redundant. This occurs 
if the corresponding lemma chain would be subsumed by an existing input chain. 
However, the C-literal is still inserted so as to take advantage of the efficiency of the 
C-reduction operation. Overall, this non-unit lemma chain strategy maintains the 
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advantages of adding lemma chains to the input set wherever it is possible to do so without 
increasing the size of the input set. 
 
There are several possible variations of the lemma/C-literal mechanism, such as inserting a 
C-literal only if the corresponding lemma chain is not subsumed by any existing input 
chain. The chosen variation combines well with other aspects of GLD and empirical 
evidence suggests that the choice is a good one. The lemma/C-literal mechanism achieves 
its design aims of reusing deduced information, without dramatically increasing the size of 
the search space. The manipulation of scope values in GLD has also tightened up the 
rather loose specifications given in the ME procedure. Overall, the combined 
C-literal/lemma mechanism improves upon existing approaches to reusing deduced 
information in chain format linear deduction systems. 

2.4.5. The Admissibility Restrictions 

The admissibility restrictions in GLD are based on those of the GC procedure. The GC 
procedure specifies the deduction restriction that no two non-B-literals in any centre chain 
may have identical atoms. GLD imposes those and five new restrictions, in an operational 
manner. The new restrictions are : 
1. No A-literal may be to the left of an identical B-literal. This is a prospective version of 

the existing GC restriction. An extension against the B-literal would create two 
identical A-literals and a reduction against the B-literal would create two 
complementarily identical A-literals or complementarily identical A- and C-literals. 
This restriction prevents loops in deductions and, in the case of an A-literal 
immediately to the left of the cell containing the B-literal, prevents the use of 
tautologous instances of input chains (this is never necessary). This restriction is also 
used in the ME procedure and the PTTP. 

2. No C-literal may be to the left of an identical B-literal. As in item 1, this is a 
prospective version of the existing GC restriction. An extension against the B-literal 
would create identical A- and C-literals and a reduction against the B-literal would 
create two complementarily identical C-literals or complementarily identical A- and 
C-literals. 

3. No B-literal may be in the same cell as a complementarily identical B-literal. This 
situation indicates that a tautologous instance of an input chain has been used. This 
restriction is also used in the ME procedure. 

4. No B-literal may be in the cell immediately to the left of a complementarily identical 
A-literal. This also indicates that a tautologous instance of an input chain has been 
used. 
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5. No A-literal may be complementarily subsumed by a unit input chain, unless the 
A-literal is the rightmost literal of the centre chain (i.e., it was formed in a unit 
extension, in which case the unit input chain used would complementarily subsume 
it.). This restriction is also used in the PTTP. It maximises the use of unit subsumed 
extensions in the completed deduction. 

 
GLD's operationally imposed restrictions detect many deduction restriction violations 
retrospectively and prospectively. It is worth highlighting those restrictions, inherited from 
the GC procedure, that have retrospective effect when imposed operationally. It is these 
retrospective effects that make it possible to impose the restrictions operationally, with a 
high level of deduction faithfulness. (The notation XY means an X-literal to the left of an 
identical Y-literal) : 
1. AC retrospectively checks A~A. 
2. CA retrospectively checks A~A. 
3. C~A retrospectively checks AA. 
4. CC retrospectively checks C~A. 
5. C~C retrospectively checks CA. 
 
If a chain is admissible, no compulsory operation will deduce a chain that is inadmissible. 
Thus GLD imposes the admissibility restrictions on the chains deduced by the base 
operations in deduction chunks. This prevents GLD from unnecessarily performing 
compulsory operations, while still ensuring that all stored centre chains are admissible. 

2.4.6. The Consecutively Bounded Search 

The overall search strategy of GLD is a modified consecutively bounded search. 
Stickel [1986b] gives the arguments for the use of a consecutively bounded depth first 
search in a linear deduction system. A standard consecutively bounded depth first search 
[Stickel & Tyson, 1985; Korf, 1985] truncates any long deduction sequence, whereas GLD 
improves on this by truncating only long deduction sequences that are not making progress 
towards a refutation. This is achieved by placing a bound on the number of centre chain A- 
and B-literals. Variations of this bounding scheme have been used in other deduction 
systems, e.g., the C(2) and C(3) variants of the ME procedure, which place a bound on the 
number of extensions. 
 
As well as providing a complete search strategy, the consecutively bounded search is also 
used to counteract a side effect of GLD's lemma/C-literal mechanism. The removal and 
addition of chains to the input set within the lemma/C-literal mechanism can cause an 
iteration of the GLD search to fail, even if a refutation can be built within the search 
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bound. Such failure can occur when the input set is modified after successor centre chains 
have been deduced, in the literal-ordered, cell-selected and cell-ordered search styles. 
 
Thus an iteration of GLD's search may fail either because centre chains that exceed the 
search bound are needed to build the desired deduction, or because the lemma/C-literal 
mechanism has interfered with the search. In both cases another iteration of the search is 
necessary. In the former case the search bound is increased by the minimum amount by 
which it was exceeded. This increment is also used in the PTTP. In the second case the 
search is reiterated with the search bound incremented by one. It is necessary to minimally 
increase the search bound in the second case to prevent GLD simply generating a sequence 
of lemmas which differ only in their literals' arguments. The strategy of permitting a 
deduction system to be incomplete within one iteration of a search, but complete over 
successive iterations, is a general one. If the advantage of imposing stringent restrictions 
outweighs the overhead of repeating the search, then the strategy is justified. Empirical 
evidence indicates that this is the case in GLD. 
 
Although the lemma/C-literal mechanism can interfere with GLD's search, the 
lemma/C-literal mechanism also acquires added power within the consecutively bounded 
search. Because of their persistent nature, lemma chains added to the input set in one 
iteration of the search are carried over to, and may be used in, the next iteration. 

2.5. Linear-Input Subset Analysis 

The use of A-reduction in linear deduction systems makes them complete for sets of 
non-Horn clauses. There are, however, syntactically identifiable situations in which A- and 
C-reduction do not occur in GLD (and other linear deduction systems), i.e., situations in 
which linear-input deduction is performed. Three methods of analysing sets of input chains 
have been developed for detecting these situations. The first method focuses on Horn input 
chains while the second and third are successive generalisations of the first method. The 
detection of situations in which reduction does not occur is a new idea in linear deduction 
systems. It is useful for (and was largely motivated by) the imposition of truth value 
deletion (see section 3.4). Wakayama and Payne [1990] have also noted that ancestor 
resolution and factoring are not always necessary for obtaining a refutation when the input 
set is non-Horn. Their analysis is, however, restricted to entire input sets and the greater 
flexibility of linear-input subset analysis is desirable.  



Page 46 Guided Linear Deduction 

2.5.1 Horn Subsets 

It has been noted that "... in many proofs, most of the input clauses are Horn clauses ..." 
[Plaisted, 1982, p. 231]. In linear refutations of some such input sets, once the positive 
B-literal of a Horn input chain has been extended against, no reductions are performed 
until that B-literal (in the guise of an A-literal) is truncated. Horn subset analysis detects 
such subdeductions in GLD deductions. Intuitively, Horn subset analysis detects those 
negative literals in the input set that can only resolve against Horn clauses in the input set, 
such that the negative literals in those Horn clauses also conform to this restriction. Then 
extension against such a negative literal can only lead to further extensions against Horn 
input clauses. This notion is now formalized. 
 
The Horn subset , of an input set, contains atom structures that appear in the input set. To 
detect situations in which reduction does not occur in a GLD deduction from a negative 
top chain, the Horn subset of the input set is extracted. An atom's structure is in the Horn 
subset iff (i) it does not occur positively in a non-Horn input chain and (ii) for every Horn 
input chain in which the predicate structure occurs positively, every predicate structure in 
the chain is in the Horn subset. 

Example 
The Horn subset of {~r~p~q, ~pq, p~q, pq, r~t~s, t~u, u, s}, with 
~r~p~q as the top chain, is {r/0, t/0, u/0, s/0}. 

 
The Horn subset divides the input chains into two groups, dependent on whether or not all 
literals in the chain have predicate structures that are in the Horn subset. Any predicate 
structures, literals, or input chains which contain only predicate structures that are in the 
Horn subset, are called Horn subset objects, e.g. ~r is a Horn subset literal, and r~t~s is 
a Horn subset clause. 
 
Horn subset analysis reveals three structural properties of GLD deductions from a negative 
top chain. Firstly, no A- or C-reductions against Horn subset literals are performed. 
Secondly, only the positive B-literal of a Horn subset input chain is ever resolved against 
in an extension operation. Finally, once a Horn subset B-literal has been selected, no 
reductions against literals rightwards from the selected B-literal are performed until that 
B-literal (in the guise of an A-literal) is truncated. These properties are now proved. 
(Concepts similar to those used here were informally introduced in [Sutcliffe, 1989].) 
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Lemma 2.3 
In a GLD deduction from a negative top chain (i) no positive Horn subset A- or B-literal 
occurs in a centre chain, (ii) negative B-literals in Horn subset input chains are never 
resolved against in extension operations, and (iii) no A-reductions against Horn subset A- 
or B-literals are performed.  
 
The proof of part (i) is by contradiction. If a positive Horn subset A- or B-literal occurs in 
a centre chain then the A-literal immediately to its left must be a Horn subset A-literal, as 
its complement originates from the same input chain as the first literal. Further, the Horn 
subset A-literal to the left must be positive, for otherwise the first literal occurs positively 
in a non-Horn input chain. Iteratively, all the A-literals to the left of a positive Horn subset 
A- or B-literal must be positive. However, the leftmost A-literal in the centre chain must 
be negative as the top chain is negative. Contradiction. Hence (i) no positive Horn subset 
A- or B-literal occurs in a centre chain, (ii) as there can be only negative Horn subset 
B-literals in a centre chain, negative B-literals in Horn subset input chains can never be 
resolved against in extension operations, and (iii) as complementary Horn subset A- and 
B-literals cannot occur in any centre chain, no A-reductions against such literals are 
performed. QED 
 
Lemma 2.4 
In a GLD deduction from a negative top chain (i) every A- and B-literal to the right of a 
Horn subset A-literal in a centre chain, is also a Horn subset literal, (ii) no A-reductions 
against A- and B-literals rightwards from a Horn subset A-literal are performed, and 
(iii) once a Horn subset B-literal has been selected, no A-reductions against literals 
rightwards from the selected B-literal are performed until that B-literal (in the guise of an 
A-literal) is truncated. 
 
By lemma 2.3, once a Horn subset B-literal in a centre chain has been selected, it is 
necessarily extended against. From the definition of the Horn subset, the B-literals added 
to the centre chain in the extension are Horn subset B-literals. Therefore (i) iteratively, 
every A- and B-literal to the right of the original Horn subset B-literal (now an A-literal) is 
a Horn subset literal, (ii) by lemma 2.3, no reductions against A- and B-literals rightwards 
from a Horn subset A-literal are performed, and (iii) the structure of GLD deductions and 
(ii) ensure that no A-reductions against literals rightwards from the selected B-literal are 
performed until that B-literal (in the guise of an A-literal) is truncated. QED 
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Lemma 2.5 
In a GLD deduction from a negative top chain (i) no Horn subset C-literal ever occurs in a 
centre chain, and (ii) no C-reductions against Horn subset literals are performed. 
 
Whenever a (Horn subset) A-literal is created, it is not within the scope of any A-literal to 
its left. By lemma 2.4 no A-reduction can occur against a B-literal to the right of any Horn 
subset A-literal. Thus no Horn subset A-literal can ever come to be within the scope of 
another A-literal. The A-truncation of a Horn subset A-literal therefore leads to the 
creation of a unit lemma and not to the insertion of a C-literal. Hence (i) no Horn subset 
C-literal ever occurs in a centre chain, and (ii) no C-reductions against Horn subset literals 
are performed. QED 
 
Theorem 2.6 - Horn Subset Analysis 
In an GLD deduction from a negative top chain (i) no reductions against Horn subset 
literals are performed, and (ii) once a Horn subset B-literal has been selected, no 
reductions against literals rightwards from the selected B-literal are performed until that 
B-literal (in the guise of an A-literal) is truncated. 
 
Directly from lemmas 2.3, 2.4 and 2.5. QED 

2.5.2 Linear-Input Subsets for literal Structures 

Horn subset analysis focuses on Horn input chains. It does not provide adequate analysis 
for input chains which are non-Horn but are Horn in a renaming of the input set. Many 
results based on the polarity of literals can be generalised to be based on a division of the 
literal structures that appear in the input set, e.g., P1 resolution [Robinson J.A., 1965b] 
generalises to PP resolution [Meltzer, 1966], hyper-resolution [Robinson J.A., 1965b] 
generalises to AM-clashes [Slagle, 1967]. Similarly, Horn subset analysis generalises to 
results for non-Horn chains, in the form of Linear-Input Subset for literal Structures (LISS) 
analysis. The generalisation from Horn subsets to LISSs comes at the cost of a more 
complex analysis. Rather than a direct examination of the input set, LISS analysis requires 
examination of an abstraction of GLD's search tree. Intuitively, LISS analysis determines a 
superset of the possible sequences of A- and B-literals that can appear in a centre chain. It 
then extracts those literals that cannot be involved in a reduction operation, and also 
cannot appear to the right of a literal that can be involved in a reduction operation. Then 
extension against such a literal can only lead to further extension operations. This notion is 
now formalized. 
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For an input chain, the corresponding chain structure set  contains the literal structures that 
occur in the input chain. To detect situations in which reduction does not occur in a 
deduction from a chosen top chain, the linear-input subset  of the literal structures that 
occur in the input set is extracted. This is done by building an extension tree whose nodes 
are literal structures. The extension tree has a mythical root whose offspring are the 
elements of the chain structure set corresponding to the top chain. A literal structure in an 
extension tree has no offspring if it has itself as an ancestor in the extension tree unless, 
between itself and the ancestor, there exists a literal structure which does not have itself as 
an ancestor above the first ancestor. If a literal structure does have offspring then its 
offspring are those literal structures that (i) are in chain structure sets that contain a literal 
structure complementary to the parent literal structure, and (ii) are not the complementary 
literal structure. A literal structure is in the LISS iff for every occurrence in the extension 
tree (i) it is not complementary to an ancestor and (ii) all of its descendants are in the 
LISS. 

Example 
The first few levels of the LISS tree for {r~p~q, ~pq, p~q, pq, 
~r~t~s, tu, ~u, s}, with r~p~q as the top chain, are : 
 

r/0 ~p/0 ~q/0

~q/0

~q/0 ~q/0

~q/0 ~q/0r/0r/0

~p/0~p/0

~p/0

q/0 q/0

q/0q/0

p/0p/0

p/0

~t/0

~t/0~t/0

~s/0

~s/0 ~s/0

u/0

u/0

u/0

~p/0q/0

~p/0 p/0

p/0

 
Circled nodes are those that have no offspring due to the identical ancestor 
restriction. Boxes nodes are complementary to an ancestor. The lower levels of the 
tree reveal no new information. The LISS is thus {r/0, ~t/0, u/0, ~s/0}. No 
Horn subset exists for this top chain, as it is non-negative. With ~r~t~s as the top 
chain, the Horn subset is {s/0} and the LISS is {~t/0, u/0, ~s/0}. Note that this 
input set is simply a renaming of that given in the example in section 2.5.1, with r 
renamed to ~r and u renamed to ~u. The LISS obtained here is a corresponding 
renaming of the Horn subset in that example, given that negation signs implicitly 
prefix elements of a Horn subset. This illustrates the generalisation from Horn subset 
analysis to LISS analysis. 

 
Any literal structures or literals which contain only literal structures that are in the LISS, 
are called LISS objects, e.g., r is a LISS literal. 
 



Page 50 Guided Linear Deduction 

LISS analysis reveals two structural properties of GLD deductions from a chosen top 
chain. Firstly, no A- or C-reductions against LISS B-literals are performed. Secondly, once 
a LISS B-literal has been selected, no reductions against literals rightwards from the 
selected B-literal are performed until that literal (in the guise of an A-literal) is truncated. 
These properties are now proved. 
 
Lemma 2.7 
In a GLD deduction from a chosen top chain, no A-reductions against LISS A- or 
B-literals are performed. 
 
The root to tip sequence of literal structures in a branch of the extension tree corresponds 
to possible left to right sequences of A- and B-literal structures in centre chains of a 
deduction from the chosen top chain. Each node corresponds to a possible A-literal in a 
centre chain and literal structures further down the branch correspond to possible B-literals 
to the left of that A-literal in the centre chain. (Lemma 2.9 shows that no C-reductions 
against LISS literals are performed, but at this point nodes corresponding to LISS 
B-literals removed by C-reduction can simply be ignored.) Therefore (i) no LISS B-literal 
in a centre chain has a structure complementary to an A-literal to its left (LISS definition 
part (i)) and no A-reductions against LISS B-literals are performed, and (ii) no LISS 
A-literal has a B-literal with a complementary structure to its right (LISS definition part 
(ii)) and no A-reductions against LISS A-literals are performed. QED 
 
Lemma 2.8 
In a GLD deduction from a chosen top chain (i) every A- and B-literal to the right of a 
LISS A-literal in a centre chain is also a LISS literal, (ii) no A-reductions against A- or 
B-literals which are to the right of a LISS A-literal are performed, and (iii) once a LISS 
B-literal has been selected, no A-reductions against A- and B-literals rightwards from the 
selected B-literal are performed until that B-literal (in the guise of an A-literal) is 
truncated. 
 
The proof is analogous to that of lemma 2.4. 
 
Lemma 2.9 
In a GLD deduction from a chosen top chain (i) no LISS C-literal ever occurs in a centre 
chain, and (ii) no C-reductions against LISS literals are performed. 
 
The proof is analogous to that of lemma 2.5. 
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Theorem 2.10 - LISS Analysis 
In a GLD deduction from a chosen top chain (i) no reductions against LISS literals are 
performed, and (ii) once a LISS B-literal has been selected, no reductions against literals 
rightwards from the selected B-literal are performed until that B-literal (in the guise of an 
A-literal) is truncated. 
 
Directly from lemmas 2.7, 2.8 and 2.9. QED 

LISS Extraction 
LISS analysis has been employed in the implementation of SGLD, as described in chapter 
5. Algorithm 2.11, below, has been used to extract the LISS from input sets. The algorithm 
implements a traversal of the LISS extension tree, for the given TopChain. The offspring 
of the root node are determined at line M4, and the offspring of other nodes are determined 
at line L2. For each literal structure in the tree (referred to as Applicants in the 
algorithm, because they "apply" to be in the LISS), a check is first made to determine if it 
has previously been added to the LISS, by virtue of its occurrence in another branch of the 
tree (line C2). If this is so, then it rechecked (lines C3-C4). This is necessary because the 
current occurrence may violate the conditions of membership, even if other occurrences do 
not. If the literal structure has previously been noted as not in the LISS, then this is 
acknowledged (lines C5-C6). The subtree rooted at such a node need not be re-examined. 
If a literal structure is complementary to an ancestor (line C7), then it is not in the LISS 
(line C9). However, its offspring are still created and checked, so as to determine their 
status (line C8). If a node meets the identical ancestor restriction (lines C10, R1-R6), then 
no offspring are created, and the repetition in the tree is noted (line C11). If none of the 
above conditions hold, then the literal structure is a potential LISS object. The offspring of 
the structure are created and checked (line C12). Provided that each offspring may be in 
the LISS (an offspring that is repeated may still be in the LISS - the determination is made 
at the identical ancestor node), then the current literal structure is in the LISS (line C14). If 
any offspring is not in the LISS then the current literal structure is not in the LISS, and this 
is noted (line C13). 
 
Algorithm 2.11 - LISS Extraction 
M1 Procedure Main(TopChain) 
M2 LISS:={} 
M3 NonLISS:={} 
M4 Applicants:=The set of literal structures in TopChain 
M5 CheckEachApplicant(Applicants,[]) 
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E1 Function CheckEachApplicant(Applicants,HigherInTree) 
E2 If there exists AnApplicant ∈ Applicants then 
E3  Status = CheckAnApplicant(AnApplicant,HigherInTree) 
E4  UpdateSets(AnApplicant,Status) 
E5  Return({Status} ∪ CheckEachApplicant( 
 Applicants - {AnApplicant},HigherInTree)) 
E6 Else Return({}) 
 
C1 Function CheckAnApplicant(TheApplicant,HigherInTree) 
C2 If TheApplicant ∈ LISS then 
C3  LISS:=LISS - {TheApplicant} 
C4  Return(CheckAnApplicant(TheApplicant,HigherInTree)) 
C5 Else If TheApplicant ∈ NonLISS then 
C6  Return(failed) 
C7 Else If ~TheApplicant ∈ HigherInTree then 
C8  CheckLowerApplicants([TheApplicant|HigherIntTree]) 
C9  Return(failed) 
C10 Else If Repeated(TheApplicant,HigherInTree) then 
C11  Return(repeated) 
C12 Else If failed ∈ CheckLowerApplicants( 
 [TheApplicant|HigherIntTree]) then 
C13  Return(failed) 
C14 Else Return(succeeded) 
 
L1 Function CheckLowerApplicants([Parent|HigherInTree]) 
L2 Return(CheckEachApplicant({Applicant | Applicant ∈ a 

chain structure set containing ~Parent & 
Applicant ≠ ~Parent}, [Parent|HigherInTree])) 

 
U1 Procedure UpdateSets(Applicant,Status) 
U2 If Status = succeeded then 
U3  LISS:=LISS ∪ {Applicant} 
U4 If Status = failed then 
U5  LISS:=LISS - {Applicant} 
U6  NonLISS:=NonLISS ∪ {Applicant} 
 
R1 Function Repeated(Applicant,[Parent|HigherInTree]) 
R2 If Applicant = Parent then 
R3  Return(TRUE) 
R4 Else If Parent ∈ HigherInTree then 
R5  Return(Repeated(Applicant,HigherInTree)) 
R6 Else Return(FALSE) 
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2.5.3 Linear-Input Subsets for Literals 

In building the extension tree, LISS analysis makes the assumption that every pair of 
literals with complementary literal structures can unify. A more accurate analysis is 
possible by working directly with the literals in the input set. Linear-Input Subset for 
Literals (LISL) analysis does this. Intuitively, LISL (like LISS) analysis determines a 
superset of the possible sequences of A- and B-literals that can appear in a centre chain. 
However, LISL analysis does not assume that every pair of literals with complementary 
literal structures can unify. Rather, when building the extension tree, LISL analysis tests 
whether or not the parent node can unify with a literal in an input chain. This notion is now 
formalised. 
 
To detect situations in which reduction does not occur in a deduction from a chosen top 
chain, the linear-input subset of the literals in the input set is extracted. This is done by 
building an extension tree whose nodes are literals from the input set. The method used is 
similar to that for LISS analysis. The extension tree has a mythical root whose offspring 
are the literals of the top chain. A literal in a LISL extension tree has no offspring if it has 
itself as an ancestor in the extension tree unless, between itself and the ancestor, there 
exists a literal which does not have itself as an ancestor above the first ancestor. If a literal 
does have offspring then its offspring are those literals that (i) are in chains that contain a 
literal complementarily unifiable with the parent literal, and (ii) are not the 
complementarily unifiable literal. A literal structure is in the LISL iff for every occurrence 
in the extension tree (i) it is not complementarily unifiable with an ancestor and (ii) all of 
its descendants are in the LISL. Note that although the extension tree uses unifiability, 
unification is never consummated. 

Example 
The first few levels of the LISL tree for {r~p(a)~q, ~p(a)q, p(a)~q, 
p(a)q, ~r~t~s, tu, ~u, s~p(b), p(b)}, with r~p(a)~q as the top 
chain, are : 

r ~p(a) ~q

~q

~q ~q

~q ~qrr

~p(a)~p(a)

~p(a)

q q

qq

p(a)p(a)

p(a)

~t

~t~t

~s

~s ~s

u

u

u

~p(a)q

~p(a

)

p(a)

p

~p(b)

~p(b) ~p(b)  
Circled literal structures are leaves of the tree, as dictated by item (iii) in the 
definition of these trees. Boxes literal structures are complementarily unifiable with 
an ancestor. The lower levels of the tree produce no new information. The LISL is 
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thus {r1, ~t5, u6, ~s5, ~p(b)8} (where the superscripts indicate the chain 
number that the literal is in). The LISS is {~t/0, u/0}. 

 
The results and theorem proofs for LISL analysis are analogous to those for LISS analysis. 
The results are simply stated here. 
 
Lemma 2.12 
In a GLD deduction from a chosen top chain no A-reductions against LISL A- or B-literals 
are performed. 
 
Lemma 2.13 
In a GLD deduction from a chosen top chain (i) every A- and B-literal to the right of a 
LISL A-literal in a centre chain is also a LISL literal, (ii) no A-reductions against A- or 
B-literals rightwards from a LISL A-literal are performed, and (iii) once a LISL B-literal 
has been selected, no A-reductions against A- and B-literals rightwards from the selected 
B-literal are performed until that B-literal (in the guise of an A-literal) is truncated. 
 
Lemma 2.14 
In a GLD deduction from a chosen top chain (i) no LISL C-literal ever occurs in a centre 
chain, and (ii) no C-reductions against LISL literals are performed. 
 
Theorem 2.15 - LISL Analysis 
In a GLD deduction from a chosen top chain (i) no A- or C-reductions against LISL 
literals are performed, and (ii) once a LISL B-literal has been selected, no reductions 
against literals rightwards from the selected B-literal are performed until that B-literal (in 
the guise of an A-literal) is truncated. 

2.5.4 Discussion 

The above results show that once a Horn subset/LISS/LISL B-literal (henceforth, Horn 
subset/LISS/LISL objects will be referred to generically as linear-input objects) has been 
selected, a linear deduction system goes into a linear-input configuration. The deduction 
system remains in linear-input configuration until that B-literal (in the guise of an 
A-literal) is truncated. 
 
Definition 2.16 - Linear-input subdeductions 
In a linear deduction, a subdeduction from the point when a linear-input B-literal is 
selected up to the point when it (in the guise of an A-literal) is truncated, is called a 
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linear-input subdeduction. The selected B-literal is called the top literal of the 
subdeduction. 
 
In linear-input subdeductions the reduction operations can be explicitly ignored, so that no 
effort is spent trying to find A- and C-literals to reduce against. If Horn subset analysis is 
used then only the positive literals of Horn subset input chains need ever be considered 
when searching for suitable input chains in extension operations. A more significant 
benefit that may be derived from linear-input subset analysis is the completeness of a truth 
value deletion strategy in linear-input subdeductions. This strategy is described in section 
3.4. In summary : In a linear-input subdeduction, every subchain consisting of the top 
literal and all literals to its right, must be FALSE in certain truth value interpretations. 
 
The initial generation of the Horn subset/LISS/LISL is a simple iterative task, and may be 
done before deductions are built. In the course of a GLD deduction, existing input chains 
may be removed and lemma chains may be added to the input set. The effect of this on the 
linear-input subsets needs to be considered. The addition of unit lemma chains to the input 
set has no effect on the subsets. In the case of non-unit lemma chains, the subsumption 
requirement of the lemma/C-literal mechanism ensures that the set of literal structures in a 
non-unit lemma chain is a subset of that of a previously existing input chain. Thus the 
addition of new non-unit lemma chains to the input set neither reduces nor expands Horn 
subsets or LISSs. LISsL may, however, be reduced by the addition of non-unit lemma 
chains to the input set. This is because the added chains may cause the LISL extension tree 
to grow. In this situation the LISL must be updated immediately. The removal of chains 
from the input set could expand any of the subsets, as the removed chains may have 
caused the exclusion of potential linear-input objects. In this situation the subsets can be 
updated when it is convenient. 
 
This presentation of linear-input subset analysis relates directly to GLD. These results are 
readily transferred to other linear deduction systems [Sutcliffe, 1992]. If the deduction 
system does not employ a lemma or C-literal mechanism, the transfer is trivial. If a lemma 
or C-literal mechanism is used, then the results of lemmas 2.5, 2.9 and 2.14 need to be 
re-established for the particular mechanism used. 

2.6. Embedding Equality into GLD 

As defined, GLD has no specific provisions for implementing deductions involving the 
axioms of equality. Many problems use include these axioms, so consideration has been 
given to embedding (the axioms of) equality into GLD's inference system. Although not 
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central to this research, the proposed embedding warrants mention, as the effects of 
semantic guidance on this form of embedding are of interest. 
 
Probably the most well known method of embedding equality into a deduction system is 
the use of the paramodulation operation [Robinson G.A. & Wos, 1969]. Many other 
methods have been proposed, e.g., E-resolution [Morris, 1969], the Knuth-Bendix method 
[Knuth & Bendix, 1970], equational unification [Plotkin, 1972], narrowing [Slagle, 1974], 
the Resolution by Unification and Equality (RUE) and Negative Reflexive Function (NRF) 
inference operations [Digricoli, 1979], Prolog-with-Equality [Kornfield, 1983], lazy 
paramodulation [Gallier & Snyder, 1989] and relaxed paramodulation [Dougherty & 
Johann, 1990]. The method proposed for embedding equality into GLD is based on the 
RUE and NRF inference operations. The original RUE and NRF have been restructured to 
facilitate smooth integration with GLD. 
 
The core of the embedding is a modified form of unification called ED-unification . Given 
a pair of expressions that need to be unified as part of a deduction operation, 
ED-unification may instantiate some variables (in a similar manner to standard unification) 
and also returns an equality-demand chain. An equality-demand chain contains negative 
equality B-literals called equality-demand literals. The arguments of equality-demand 
literals are pairs of non-identical, equivalently positioned, subexpressions of the 
expressions being ED-unified. The equality-demand literals are included in the deduced 
chain of the deduction operation. 

Example 
In extending the centre chain q(Y) ~p(Y,c,f(e,g)) against the input chain 
p(b,d,f(X,h)) ~r(X), the equality-demand chain created is 
~equal(c,d) ~equal(f(e,g),f(X,h)) and the deduced chain is 
q(b) ~p(b,c,f(e,g))   ~r(X) ~equal(c,d) 

     ~equal(f(e,g), f(X,h)) 
ED-unification also permits the arguments of equality literals to be used reversibly, so that 
ED-unification embeds the equality axioms of symmetry, transitivity and predicate 
substitutivity. 
 
To complete the embedding of equality, a modified version of Digricoli's NRF operation is 
used. NRF is applied to a negative equality B-literal (possibly created as an 
equality-demand literal) in a centre chain and removes it from the centre chain. If either of 
the equality literal's arguments is a variable then the variable is instantiated to the other 
argument. Otherwise the two arguments must have the same principal symbol and the 
arguments' arguments are passed pairwise to ED-unification. Any equality-demand literals 
created are included in the deduced chain. 
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Example 
An NRF operation applied to the last literal of 
q(b), ~p(b,c,f(e,g))  ,~r(X),~equal(c,d), 

     ~equal(f(e,g),f(X,h)) 
produces 
q(b), ~p(b,c,f(e,g))  ,~r(e),~equal(c,d), 

     ~equal(f(e,g),f(e,h))  ,~equal(g,h). 

NRF embeds the equality axioms of reflexivity, and functional substitutivity. Within NRF, 
ED-unification is refined to implement standard unification whenever the functors of the 
terms being unified are Skolem functors. The motivation for this refinement is given in 
[McCune, 1990]. 
 

The extent to which this method of embedding equality instantiates variables and 
dismantles atoms is necessarily controlled. ED-unification instantiates variables and 
dismantles atoms to a minimal extent, with further instantiation and dismantling occurring 
in and controlled by the overall deduction structure. This contrasts with Digricoli's 
formulation, in which the RUE and NRF operations are controlled by a suite of 
restrictions. 
 
ED-unification and NRF could be used to embed equality into GLD. ED-unification would 
be used in extension and reduction operations and NRF would be added as a 
non-compulsory operation. This embedding of equality is especially appropriate in GLD, 
as any equality-demand literals created will influence the search guidance. If this 
embedding is viewed as a demand driven implementation of paramodulation, the effects 
that the equality-demand literals have on the search provide a partial solution to problem 3 
in [Wos, 1988]. The implicit existence of equality axiom input chains in such an 
embedding of equality would also affect subsumption and the generation of linear-input 
subsets. 

2.7. Conclusion 

GLD is a chain format linear deduction system that incorporates features of existing chain 
format systems. It also adds new features that were perceived to be missing from previous 
systems. The most important development associated with GLD is linear-input subset 
analysis. Linear-input subset analysis provides important information about the structure 
of GLD deductions. The information provided is used to gain some efficiency in GLD, but 



Page 58 Guided Linear Deduction 

more importantly to admit a semantic deletion system in (the linear-input) parts of GLD 
deductions. 
 
Within GLD, there are some interesting features. The main points are listed below. 
• GLD has explicit mechanisms for guiding its search, at both ordering and choice points. 

The ordering guidance is implemented via a selection rule on all non-compulsory 
inference operations. The choice guidance is implemented via ordering of alternative 
successor centre chains. Both mechanisms look ahead in the deduction to make the 
required decisions, using a heuristic function to evaluate alternative successor centre 
chains. The heuristic function provides an explicit entry point for the incorporation of 
guidance systems. 

• GLD's reuse of deduced information, via the combined lemma/C-literal mechanism, 
improves on previous mechanisms. The lemma/C-literal mechanism interacts 
productively with GLD's unit orientated deduction operations, admissibility restrictions 
and overall search strategy.  

• GLD is the first linear deduction system that explicitly exploits deduction chunking. 
The deduction chunking is possible due to five deduction operations for which 
alternative successor centre chains need not be considered, once the operation is 
completed. These compulsory operations are performed within deduction chunks. The 
deduction chunks are of maximal size and form coarse grain deduction steps. Choice 
points arise only between deduction chunks.  

• GLD's operationally imposed admissibility restrictions have a high level of deduction 
faithfulness, due their retrospective and prospective effects. 

The amalgamation of the features in GLD was guided by sound design maxims. Deciding 
on and adhering to the design maxims facilitated the development of a coherent system. As 
a result the various features of GLD complement, rather than conflict with, each other. 
 
The definition of GLD has been given in a dynamic style, thus defining not only the nature 
of GLD deductions, but also the manner in which they are built. This approach is arguably 
more appropriate than the static approach used in some previous systems, as it permits 
GLD deduction systems to be implemented in a reproducible fashion. This kind of rigour 
in artificial intelligence research, automated deduction in particular, has been argued for by 
Pollack in her Computers and Thought award lecture [1991, pp. 22-23]. 
 
The design criteria of GLD have been successfully fulfilled. The dominant contributions to 
the research area of chain format linear deduction systems are linear-input subset analysis, 
the search guidance facilities and the lemma/C-literal mechanism. In the context of this 
research, linear-input subset analysis and the search guidance facilities are of paramount 
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importance, in that semantic information can now be used to directly guide GLD's search. 
The semantic guidance systems are developed in the next chapter. 
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Chapter Three 

Semantic Guidance 

 

This chapter investigates and describes ways of using semantic guidance in deduction 
systems, particularly in linear deduction systems. As a first step, the underlying structure 
of truth value (semantic) deletion in linear-input deduction systems has been investigated. 
Understanding this structure has facilitated the development of (i) effective 
implementations of truth value deletion for linear-input deduction systems, (ii) a truth 
value deletion system for linear deduction systems and (iii) a truth value guidance strategy 
that can be used in a wide range of deduction systems. Sort value (semantic) deletion has 
also been seen to be effective in guiding deduction systems. This observation has 
motivated a reformulation of sort value deletion so that it has the same format as truth 
value deletion. In turn, this reformulation has facilitated the development of combined sort 
and truth value guidance systems. 
 
This chapter contains : 
1. A generic description of the semantic information required for semantic guidance. 
2. A survey of semantic guidance in automated deduction systems. 
3. An exposé  of truth value deletion in linear-input deduction systems. 
4. The description of a truth value deletion system for linear deduction systems. 
5. The description of a broadly applicable truth value guidance strategy. 
6. A useful reformulation of sort value deletion. 
7. The description of combined semantic guidance systems. 
8 A brief investigation of the relationship between semantic guidance and theory 

resolution. 
9. Concluding comments. 

3.1. Basic Semantic Information 

The semantic guidance systems described in this chapter make use of truth value and sort 
value information. There are many ways that such information can be stored (see chapter 
4), but for present purposes it is necessary to define only the nature of the information. It is 
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noteworthy that the information is described here in a generic form and that specific types 
of semantic information (e.g., truth value information) are presented as specialisations of 
the generic form. It is for this reason that words such as "semantic guidance" and 
"interpretation" have been used in a generic manner. 
 
Definition 3.1 - Basic semantic information 
An interpretation of a 1st order language is a system that supplies : 
• A domain, whose elements are constants. 
• A set of truth values, whose elements are constants. 
• A universe-relation from the universe to the domain6. 
• A base-relation from the base to the set of truth values. 
 
If a unibase element is related to a certain domain element/truth value, the unibase element 
is interpreted as that domain element/truth value. The domain element/truth value is (one 
of) the unibase element's interpretation value(s). Interpretations are categorised according 
to the type of semantic information supplied. Membership of a category is indicated by 
using the type of semantic information as a prefix; e.g., truth value interpretation. 
 
Because the universe- and base-relations are relations (as opposed to mappings) it is 
possible that some unibase elements may not be interpretable. If a specific interpretation 
requires that all universe and/or base elements be interpretable, this must be specified 
explicitly for that interpretation. 
 
A truth value interpretation is an interpretation in which the set of truth values is 
{TRUE, FALSE} and both relations are total functions. Truth value interpretation is the 
standard way of interpreting 1st order languages. Three simple truth value interpretations 
are : 
• The positive interpretation, which maps all base elements to TRUE. 
• The negative interpretation, which maps all base elements to FALSE. 
• A predicate partition, which divides the predicate symbols of the 1st order language 

into two partitions P1 and P2. Base elements whose predicate symbols are in P1, are 
mapped to TRUE. Base elements whose predicate symbols are in P2, are mapped to 
FALSE. 

 
A sort value interpretation is an interpretation where the domain contains the sorts 
required and the set of truth values is {TRUE, FALSE, UNKNOWN_TRUTH_VALUE}. 

                                                
6For the semantic guidance systems described in this chapter, the domain and the universe-relation are 

surplus to requirement. However, in chapter 4 these components are used. 
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The relations may be partial, but the base-relation must be a partial function. A unibase 
element can relate to a domain element/truth value only if all its arguments relate to 
domain elements (Cohn [1987, p. 129] calls this restriction "strictness".) Sort-base 
elements, if they do map to any truth value, are restricted to map to one of TRUE or 
FALSE. A universe element that is related to a given domain element is said to be of the 
sort of the domain element. Sort value interpretations provide the notion of sort legality, 
which requires expressions to be of certain sorts (see section 3.2.3). 

3.2. Semantically Guided Deduction Systems 

Definition 3.2 - Semantic guidance and Semantic deletion 
Semantic guidance  is the use of semantic information to guide the search of a deduction 
system. Semantic deletion is the form of semantic guidance that guides the search by 
preventing certain chains from existing or being used. Semantic guidance and deletion are 
categorised according to the type of semantic information used. Membership of a category 
is indicated by using the type of semantic information as a prefix; e.g., truth value 
guidance and sort value deletion. 

Background 
The importance of taking advantage of semantic information in deduction systems has 
been expounded in chapter 1. The use of semantic information has the potential to improve 
the performance of deduction systems, as has been illustrated by existing deduction 
systems that use semantic information. The earliest work done in this area 
[Gelerneter, 1963; Gelerneter, Hansen, & Loveland, 1963] used semantic information to 
guide deductions in the domain of elementary geometry. Since then several (but as a 
proportion of deduction systems developed, relatively few) deduction systems that employ 
semantic guidance have been developed. There are three main approaches to using 
semantic information in deduction systems, as follows. (i) Performing reasoning in the 
problem domain and then reasoning analogously with the deduction system. (ii) Using 
semantic information directly within deduction operations. (iii) Using semantic 
information to direct and prune the search of the deduction system, i.e., semantic guidance. 
The linear deduction system described in this thesis is semantically guided and this 
background information will concentrate on that area. However, it is instructive to 
examine briefly the other two approaches. 
• Reasoning analogously to reasoning in the problem domain is an under utilised 

technique in deduction systems. Only a few deduction systems (e.g., 
[Plaisted, 1981, 1984]) have used it. The principle is to transform the input set by 
replacing terms in the input set by their interpretation values, and to then build 
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deductions using the transformed input set. Deductions built using the transformed 
input set are then used to guide the building of analogous deductions using the original 
input set. If semantic guidance can be used in the deduction system, then it may often 
be used while building the deduction using the transformed input set. 

• The use of semantic information directly within the deduction operations of a deduction 
system is a highly restrictive but effective way of solving problems in the associated 
problem domain. Deduction systems that utilise this approach are necessarily restricted 
in application to the associated problem domain. There is also some evidence that this 
kind of direct use of semantic information is unnecessary. See, for example, [Ginsberg 
& Geddis, 1991] for further discussion of this issue. Examples of problem domains that 
have been tackled using this approach are topology [Ballantyne, 1973], plane geometry 
[Nevins, 1975], set theory [Pastre, 1978; Ballantyne & Bledsoe 1982] and Boolean 
algebra [Winker, 1982]. As well as being of use in their own right, such systems could 
also find use within a more general deduction system, being used to implement and 
manipulate the interpretations required for semantic guidance in the general system. 

 
An issue closely associated with the use of semantic information in deduction systems is 
the automatic generation of the required interpretations. Some work has been done in this 
area, as follows. 
• The process of generating truth value interpretations to be used in Hierarchical 

Deduction [Wang, 1985] can be, at least in part, automated. 
• The EGS system [Kim, 1986] automatically generates truth value interpretations for 

problems expressed in Boyer-Moore theory. 
• Model generation systems, such as SATCHMO [Manthey & Bry, 1988] may be useful 

for this task. 
• Some deduction systems that use semantic information directly in their deduction 

operations, e.g., [Winker, 1982; Ballantyne & Bledsoe, 1982], do so by generating 
counter examples for the input set, i.e., they generate truth value interpretations. 

• The automatic augmentation of existing sort interpretations has been addressed by 
Schmidt-Schauss [1988]. Irani and Shin [1985] have done related work. 

• The automatic generation of type information for Prolog style clauses has been 
addressed by, e.g., Mycroft and O'Keefe [1984] and Fruhwirth [1989]. 

The automatic generation of interpretations will inevitably become more important when 
techniques of using the interpretations become sufficiently developed. The topic is, 
however, sufficiently divorced from the focus of this research for it to be placed beyond 
the scope of this discussion. 
 
Attention is now turned to semantic guidance in deduction systems. By far the most 
common form of semantic guidance is truth value deletion of parent chains in deduction 
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operations. Truth value deletion has been developed in a variety of formats. One format, 
which is of particular interest in this research, is truth value deletion in back chaining 
deduction systems. Other forms of truth value guidance, less common than truth value 
deletion, are : suggesting universe instances of parent chains to be used in a deduction 
operation; helping to choose a deduction operation to perform; and guiding a 
transformation of the input set. Semantic guidance using sort value information is limited 
to sort value deletion. 

3.2.1. Truth Value Deletion 

Truth value deletion requires that one or more parent clauses7 of each deduction operation 
be interpreted as FALSE (or at least, not necessarily TRUE) in some given truth value 
interpretation. Many refinements of the basic resolution procedure which appear to be 
based on syntactic considerations, and at the time of development were not regarded as 
being semantically guided, are in fact guided by truth value deletion. The ground approach 
is appropriate for imposing truth value deletion (because establishing that a clause has a 
FALSE ground universe instance also establishes that the clause itself is FALSE). 
 
The first exploitation of truth value deletion was the Set of Support (SoS) strategy 
[Wos et al., 1965]. The SoS strategy can be used in many deduction systems. (The 
compatibility of SoS with linear deduction systems was noted in chapter 2.) In the SoS 
strategy a subset of the input set, called the support set, is chosen so that the difference 
between the input set and the support set is a satisfiable set. This SoS strategy requires that 
at least one parent clause of each deduction operation is in the support set, i.e., ensuring 
that at least one parent is not necessarily interpreted as TRUE in models of the difference 
set. Deduced clauses are added to the support set. Some possible support sets are : the set 
of all positive clauses - the model of the difference set is the negative interpretation; the set 
of all negative clauses - the model is the positive interpretation; and the set of clauses 
deduced from the negation of the theorem to be proved - this choice assumes that there 
exists a model of the difference set. 
 
The SoS strategy shows no preference amongst deduced clauses as parent clauses, thus it 
rapidly loses its effectiveness as deductions proceed. However, as the addition of a 

                                                
7 As GLD and SGLD use the chain format for their input sets, chain format terminology has been used in the 

sections of this chapter that describe the development of semantic guidance systems for linear deduction 

systems. However, the descriptions of existing semantic guidance systems have been expressed in terms 

consistent with their original presentations (typically clausal). With a few obvious exceptions, the semantic 

guidance systems developed in terms of chains are equally applicable to clausal systems, and vice versa. 
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deduced clause to an input set does not change the satisfiability of the set, the SoS strategy 
may be reapplied after each deduction operation. Such repeated use of the SoS strategy 
gives rise to several refinements of the basic resolution procedure, each of which employs 
truth value deletion. All of these refinements are variants of model resolution 
[Luckham, 1968, 1970]. Model resolution requires that at least one parent of each 
resolution operation is interpreted as FALSE, in a given truth value interpretation. Two 
simple forms of model resolution are P1 [Robinson, 1965b] and N1 resolution, which use 
the negative and positive interpretations respectively. Pp resolution [Meltzer, 1966] is a 
generalisation of P1 and N1 resolution, being based on a predicate partition. 
 
Closely related to P1 resolution is hyper-resolution [Robinson, 1965b]. Hyper-resolution is 
an efficient implementation of P1 resolution. It requires that the electron parent clauses and 
the hyper-resolvant are positive clauses, and that the nucleus parent clause contains at least 
one negative literal. These restrictions ensure that the electron parent clauses and the 
hyper-resolvant are interpreted as FALSE, and that the nucleus parent clause has a ground 
universe instance that is interpreted as TRUE, in the negative interpretation. Similarly, 
negative hyper-resolution, AM-clash resolution [Slagle, 1967] and semantic clash 
resolution [Slagle, 1967] are efficient implementations of N1, Pp and model resolution, 
based on the positive interpretation, a predicate partition, and some given interpretation, 
respectively. (Semantic clash resolution has also been called OM-resolution 
[Loveland, 1978] and PI-resolution [Chang & Lee, 1973]. An extension incorporating 
subsumption is LI-rc resolution [Slagle, 1972].) 
 
AM- and semantic clash resolution, as well as being more general than the 
hyper-resolutions, use an ordering strategy in their deduction operations. A more 
restrictive ordering strategy is imposed by lock resolution [Boyer, 1971]. Variants of lock 
resolution that impose truth value deletion have been developed. The first of these, 
OIM-resolution [Loveland, 1978], combines semantic clash resolution with a variant of 
lock resolution. OIM-resolution places lock numbers only on those literals that are 
interpreted as FALSE in a given truth value interpretation. Similar to OIM-resolution is 
Lock Resolution ∩ The Model Strategy (LR∩TMS) [Sandford, 1980], which combines 
lock resolution with model resolution. LR∩TMS places lock numbers on all literals in a 
restricted fashion, and is complete only for ground input sets. The completeness proof for 
LR∩TMS shows that, at the ground level, a variant of lock resolution is in fact a 
refinement of model resolution. LR∩TMS paves the way to Hereditary Lock Resolution 
(HLR) [Sandford, 1980] which combines model resolution with an extended form of lock 
resolution, in which literals are assigned a TRUE and a FALSE lock number. 
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On a distinct development path from the systems described above are Semantic Resolution 
for Horn Sets [Henschen, 1976] and Semantic Paramodulation for Horn Sets [McCune & 
Henschen, 1983]. Semantic Resolution for Horn Sets is a refinement of model resolution, 
tuned for Horn input sets. The system requires that, in every resolution operation, either 
one parent clause is a FALSE unit clause or that one parent clause and the resolvant are 
interpreted as FALSE, in a given truth value interpretation. Semantic Paramodulation for 
Horn Sets adds paramodulation to the Semantic Resolution for Horn Sets deduction 
system. It requires that, in each paramodulation operation, either both parents are FALSE 
unit clauses or that one parent clause and the paramodulant are interpreted as FALSE, in a 
given truth value interpretation. 
 
The semantically guided deduction systems described thus far are forward chaining 
deduction systems. In such systems there is typically a large number of potential parent 
clauses for each deduction operation, and truth value deletion helps to choose which to 
use. In back chaining deduction systems the choice of 'sub-goal' parent clauses is limited, 
in some cases to a single clause. For example, in linear-input and linear deduction systems 
the centre parent clause must be used. This limited choice makes truth value deletion of 
sub-goal parent clauses particularly effective. The first semantically guided deduction 
system [Gelerneter, 1963; Gelerneter et al., 1963], in effect, used this format of truth value 
deletion.  
 
The most direct use of truth value deletion in back chaining deduction systems is in 
linear-input deduction systems. Here truth value deletion requires that every centre clause 
is interpreted as FALSE in all models of the side clauses of the deduction. The first 
explicit description of truth value deletion in a resolution based linear-input deduction 
system appears to be that by Brown [1973]. Brown describes a general form of truth value 
deletion for linear-input deductions using input sets that are, or are renamable to, Horn 
sets. Truth value deletion was, however, also implicitly present in earlier work 
[Kuehner, 1972], based on the positive truth value interpretation. The applicability and 
implementation of truth value deletion in linear-input deduction systems are discussed in 
section 3.3. 
 
As linear-input deduction is incomplete for non-Horn input sets and truth value deletion is 
incomplete for linear deduction systems, truth value deletion has been rejected as 
unsuitable for linear deduction systems. One way of circumventing these problems is to 
employ splitting [Chang, 1972] to decompose a non-Horn input set into multiple Horn 
input sets, thus making linear-input deduction applicable. This technique is used in the 
Simplified Problem Reduction Format [Plaisted, 1982] and the Semantic Proof System 
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[Nie & Plaisted, 1990]. (Note that these systems are natural, as opposed to resolution 
based, deduction systems.) An alternative approach is introduced in section 3.4. 
There are also some less main stream uses of truth value deletion in back chaining 
deduction systems. They are as follows. 
• The Semantically Guided Deductive System [Reiter, 1973] is an incomplete natural 

deduction system which, being a validation system, requires sub-goals to be interpreted 
as TRUE in a given truth value interpretation. 

• The MECHO system for for solving mechanics problems [Bundy, Byrd, Luger, 
Mellish, Milne and Palmer, 1979] uses the interval package INT [Bundy, 1984] to 
reject "nonsensical solutions" [Bundy, 1984, p. 398] that are generated by the algebraic 
manipulation program PRESS. 

• An unsuccessful attempt has been made to use truth value deletion in Boyer-Moore 
theory [Kim, 1986]. 

• Hierarchical Deduction [Wang & Bledsoe, 1987] is a deduction system for non-Horn 
input sets, for which a truth value deletion system has been designed. The deletion 
system is, however, complete only in limited situations. More general application of the 
deletion system relies on specially designed truth value interpretations [Wang, 1985]. 

• Truth value deletion has been used successfully in deduction systems for non-standard 
logics [McRobbie et al., 1988]. 

3.2.2. Other Forms of Truth Value Semantic Guidance 

Instance Suggestion 
Truth value information can be used to suggest universe instances of parent clauses to be 
used in deduction operations. The Semantically Guided Deductive System [Reiter, 1973] 
exploits this approach for arbitrary problem domains, and Bledsoe [1983] used this 
approach in the domain of set theory. The centre chain instance and compile time systems, 
described in section 3.3, use this approach. 

Determining the Deduction Operation 
The choice of which deduction operation to use at each step in a deduction can be 
influenced by the use of truth value information. SLM [Brown, 1974] uses truth value 
information to control the use of its reduction rule. A simpler version of this control 
mechanism can be used in the Sequent-Style Model Elimination Strategy 
[Plaisted, 1990b]. 
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Transforming the Input Set 
The Semantic Proof System [Nie & Plaisted, 1990] requires that, before a deduction starts, 
the input set be extended by the addition of contrapositives. Truth value information is 
used to help determine which contrapositives of input clauses to use. 

3.2.3. Sort Value Deletion 

Definition 3.3 - Sort legalityAn atom is sort legal in a given sort value interpretation iff it 
has a ground universe instance that is interpreted as at least one truth value. In addition, the 
atom of a positive sort literal is sort legal only if it has a ground instance that is interpreted 
as TRUE, and the atom of a negative sort literal is sort legal only if it has a ground 
instance that is interpreted as FALSE. Literals and clauses are sort legal iff their 
constituent atoms are simultaneously sort legal. Note that if an atom is sort legal, its 
subterms are necessarily sort legal. 
 
Sort value deletion prevents a deduction from containing sort illegal clauses. Sort value 
deletion thus imposes a simultaneous deduction restriction. The definition of sort legality 
indicates that the ground approach must be used to establish that an expression is sort 
legal. Imposing the requirement of sort legality onto a deduction from an input set is 
equivalent to ensuring that there is a corresponding deduction of the "relativisation" 
[Walther, 1983, p. 885] of the input set. In such a corresponding deduction, sort legality is 
ensured via the sort literals which are added to the original input set chains in the 
relativisation process. Primary examples of deduction systems that use sort value deletion 
are described here. A notable feature of these systems is that they redefine satisfiability in 
terms of the sort value interpretation in use. Thus the systems are not necessarily complete 
in the conventional sense. 
 
The Many-Sorted Calculus [Walther, 1983] brought sort value deletion into the spotlight 
by finding an automatic solution to Schubert's Steamroller problem [Walther, 1984]. The 
Many-Sorted Calculus uses a sort value interpretation with a monomorphic interpretation 
of functors. The domain of sorts used is partially ordered and a variable may be substituted 
only by a term of equal or lesser sort. This restriction is effected by the use of many-sorted 
unification in the resolution and paramodulation operations. An extra deduction operation, 
called weakening, is used to permit the unification of variables which are of unrelated sorts 
but whose sorts have a common lesser sort. 
 
The limiting feature of the Many-Sorted Calculus is its monomorphic interpretation of 
functors. The Many-Sorted Calculus with Polymorphic Functions 
[Schmidt-Schauss, 1985] extends the Many-Sorted Calculus to use a sort value 
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interpretation with a polymorphic interpretation of functors whose arity is greater than 0. 
The polymorphism is achieved by associating multiple sort signatures with each such 
functor. 
 
The Many-Sorted Resolution system [Irani & Shin, 1985] also extends the Many-Sorted 
Calculus, by introducing the notion of aggregate variables. This permits the dynamic 
alteration of the sort value interpretation by adding new sorts formed from the intersection 
of existing sorts. 
 
A more expressive 'sort legal' system is the LLAMA many sorted logic [Cohn, 1987]. 
Variables are non-sorted in this system, but the range of terms to which a variable can be 
instantiated is restricted by the argument position that the variable holds8. LLAMA 
introduced the notion of having three meaningful truth values (there called TT, FF and 
UU, corresponding to the TRUE, FALSE and UNKNOWN_TRUTH_VALUE truth values 
mentioned in section 3.1) in a sort value interpretation. As well as implementing sort value 
deletion, LLAMA also uses sort value information directly in new deduction operations 
which manipulate sort literals in clauses. For example, the evaluation operation 'resolves' 
sort literals against sort value information. 
 
Sort value information has also been used in logical systems other than 1st order deduction 
systems, e.g., a Logic of Actions [Hayes, 1971], higher order reasoning 
[Robinson J.A., 1969; Henschen, 1972] and knowledge representation [Shin & 
Irani, 1984]. 

3.3. Truth Value Deletion in Linear-Input Deduction Systems 

As is indicated in section 3.2.1, truth value deletion is a known semantic guidance system 
for resolution based linear-input deduction systems. However, the details of implementing 
this system are often ignored. It is also possible to generalise this system to be used with 
other deduction operations. In this section various properties of deduction operations and 
deduction systems are defined, and truth value deletion for linear-input deduction systems 
is developed in terms of these properties. This clarifies the implementational issues and 
broadens the field of applicability. 
 
                                                
8 The version of sort legality defined in definition 3.3 is actually more restrictive than that that implemented 

by the sort arrays in the LLAMA logic. The sort array approach may find an expression to be sort legal by 

virtue of the existence of an appropriate sort with which to instantiate a variable, even if there are no 

universe elements of that sort. In definition 3.3 the existence of an appropriate universe element is required. 
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Definition 3.4 - Truth value soundness 
A deduction operation is truth value sound if it can deduce a chain that is interpreted as 
FALSE only if one of the parent chains of the operation is interpreted as FALSE, in a 
given truth value interpretation. 
 
Resolution (i.e., including extension and reduction in chain format deduction systems), 
paramodulation and factoring are examples of truth value sound deduction operations. The 
semantic guidance systems developed in this chapter are designed for deduction systems 
that use only truth value sound deduction operations. 
 
Definition 3.5 - Side chain models 
A side chain model of a linear or linear-input deduction is a truth value interpretation that 
is a model of the side chains of the deduction. 
 
Bundy [1983, p. 147] proves the completeness of an independent deduction restriction on 
linear-input deductions, that requires all centre chains to be interpreted as FALSE in all 
side chain models of the deduction. This restriction may be refined to a simultaneous 
deduction restriction, as is shown in theorem 3.6. The proof of theorem 3.6 is analogous to 
that of Bundy's theorem. 
 
Theorem 3.6 - Truth Values in Linear-Input Deductions 
In a linear-input refutation, all centre chains are simultaneously interpreted as FALSE in 
all side chain models of the refutation. 
 
If the deduced centre chain of a deduction operation is interpreted as FALSE in a given 
truth value interpretation, then one of its parent chains is necessarily interpreted as FALSE 
in the truth value interpretation. If a deduced centre chain in a linear-input refutation is 
interpreted as FALSE in a side chain model of the refutation, then it must be that its centre 
parent chain is interpreted as FALSE in the side chain model. Let D be such a deduced 
chain and let its centre parent chain be C. If D is interpreted as FALSE in a side chain 
model, then it has a FALSE ground universe instance Dθ. Then Cθ must be FALSE in the 
side chain model and hence C has a FALSE ground universe instance Cθσ. The last centre 
chain in a linear-input refutation, the empty chain, is ground and is interpreted as FALSE 
in all truth value interpretations. Inductively, in a linear-input refutation, all centre chains 
simultaneously have ground universe instances that are interpreted as FALSE in all side 
chain models of the refutation. Therefore, in a linear-input refutation, all centre chains are 
simultaneously interpreted as FALSE in all side chain models of the refutation. QED 
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Theorem 3.6 establishes the completeness of a truth value deletion system for linear-input 
deduction systems. The deletion system requires all centre chains to simultaneously be 
interpreted as FALSE in all side chain models of the refutation. This system is called the 
simultaneous centre chain truth value deletion system. The ground approach is evidently 
appropriate for establishing the satisfaction of the restriction imposed by this system. 
 
In order to use the simultaneous centre chain system in a deduction system, it is necessary 
to be able to determine in advance which input chains can be used as side chains. This is 
so that side chain models can be supplied. An extremely common solution to this proviso 
is to adopt the system only for deductions from Horn input sets, and to use a negative input 
chain as the top chain. In this environment only the non-negative input chains can be used 
as side chains, and a model of these chains is supplied. It is, however, unnecessary to so 
limit the use of these systems. In general, to use this system it is necessary merely to be 
able to determine which input chains may be needed as side chains in order to obtain a 
refutation. Having determined which are the potential side chains of a deduction, the side 
chain models can be constructed. 
 
Definition 3.7 - Side chain predictability 
A linear or linear-input deduction system is side chain predictable if it is possible to 
determine in advance which input chains may be needed as side chains in a refutation. 

Example 
A linear-input deduction system that builds deductions from sets of Horn chains, 
using a negative chain as the top chain, is side chain predictable because it can be 
determined that the non-negative input chains may be needed as side chains in a 
refutation. 

 
A side chain predictable linear-input deduction system can employ the simultaneous centre 
chain system. In the deductions built, the top chain is subject to the truth value check like 
all other centre chains; i.e., the top chain must be interpreted as FALSE in all side chain 
models of the deduction. 

3.3.1. Maintaining deduction faithfulness 

The problems of imposing deduction restrictions, highlighted in section 1.5, apply to the 
restriction of the simultaneous centre chain system. If the restriction is imposed 
operationally, then the techniques of ensuring deduction faithfulness suggested in section 
1.5 can be used. The proof of theorem 3.6 also suggests a deduction faithful operational 
version of the restriction. 
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Theorem 3.6 shows that every centre chain in a refutation has a ground universe instance 
that is interpreted as FALSE in all side chain models of the refutation. If, at deduction 
time, those instances are used instead of the centre chains themselves, a refutation 
isomorphic to the original would be found. By using the FALSE ground universe instances 
it is assured that the centre chains will remain FALSE throughout the deduction. Thus the 
simultaneous centre chain system may be implemented by using, at each deduction 
operation, a ground universe instance of the centre parent chain that is interpreted as 
FALSE, in all side chain models of the deduction. This is called the centre chain instance 
truth value deletion system. The restriction of the centre chain instance system is a 
deduction faithful operational implementation of that of the simultaneous centre chain 
system. Two benefits are gained. Firstly, the FALSE interpretation value of each centre 
chain is established only once, at the point of instantiation. Secondly, redundant deduction 
operations do not occur and any associated overheads are avoided. This contrasts with the 
simultaneous centre chain system which may detect the redundancy of a deduction 
operation only long after it is performed. The use of truth value information to suggest 
instances of parent clauses has been used in other deduction systems; e.g., the 
Semantically Guided Deductive System [Reiter, 1973]. As noted by Reiter [1973, p. 43], 
"the first [instantiated] goal will, in general, be much easier to prove than the second 
[uninstantiated]". The disadvantage of this type of system is the enlargement of the host 
deduction system's search space. 
 
Although the centre chain instance system is effective, truth values still have to be 
established at deduction time. It is possible to reformulate the centre chain instance system 
so that the work required to maintain deduction faithfulness is performed prior to the start 
of the deduction, i.e., at compile time. The principle of the reformulation is to identify and 
reject at compile time those ground universe instances of input chains that, if used as side 
chains, would cause the deduced centre chain to be rejected. This is possible if one can 
determine a priori which literals of an input chain will be discarded when the input chain is 
used as a side chain. 
 
Definition 3.8 - Discard predictability 
A deduction system is discard predictable if it is possible to determine which literals of an 
input chain will be discarded when that input chain is used as a parent chain in a deduction 
operation. Deduction systems that are both side chain predictable and discard predictable 
are side chain discard predictable. 
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Example 
A linear-input deduction system that builds deductions from sets of Horn chains, 
using a negative chain as the top chain, discards the positive literal of the side chain 
used in each resolution operation. 

 
The centre chain instance system uses only ground universe instance of centre chains that 
are interpreted as FALSE in all side chain models of the deduction. The literals of such 
ground universe instances are inherited from either the top chain of the deduction or from 
non-discarded literals of side chains of the deduction. Thus, to obtain a refutation, it is 
necessary to use only (i) ground universe instances of the top chain that are interpreted as 
FALSE in all side chain models of the deduction and (ii) ground universe instances of side 
chains in which literals that will not be discarded in a deduction operation, are interpreted 
as FALSE in all side chain models of the deduction. Thus the centre chain instance system 
may be implemented by using only certain ground universe instances of input chains. The 
generation of the ground universe instances may be done before a deduction begins. This 
system is called the compile time truth value deletion system. As indicated, this system 
requires that the deduction system be discard predictable. If the choice of literals to be 
discarded depends on the deduction operation used or other contextual information, then 
ground universe instances of input chains need to be generated for each possible scenario. 
 
The compile time system has the same advantages and disadvantages as the centre chain 
instance system. That is, its restriction is a deduction faithful version of that of the 
simultaneous centre chain system, but the host deduction system's search space is 
enlarged. The compile time system does, however, have the advantage that the work 
required to impose truth value deletion is done prior to the start of the search for a 
refutation. Further, the FALSE interpretation value of non-discarded literals is established 
only once, at compile time. This is of benefit if a ground universe instance of a chain is 
used multiple times in a deduction. In the centre chain instance system the FALSE 
interpretation value must be established at each usage. 

Discussion 
The centre chain instance and compile time systems both enlarge the host deduction 
system's search space. In general there are infinitely many ground universe instances of 
centre and input chains to be considered. The centre chain instance system can sequentially 
create and use FALSE ground universe instances of each centre chain. This may, however, 
seriously degrade the performance of the deduction system, depending on how its search is 
arranged. The compile time system will not be able to generate the required instances of 
the input set if the universe in infinite. The root of these difficulties is that the prime 



Semantic Guidance Page 75 

benefit of resolution, that instantiation is delayed for as long as possible, is revoked by 
these two systems. 
 
For most of the truth value guidance systems described in this chapter, an added demand 
on the supply of semantic information is that it must be possible to check that the truth 
value interpretation in use is a side chain model of the deduction. With semantic 
information supplied in the format described in section 3.1, this is typically an undecidable 
problem. However, the task is vastly simplified if an appropriate interpretive structure is 
provided to store the semantic information. This issue is addressed in chapter 4. 
 
The utility of the centre chain instance and compile time systems has not been established, 
and is not a focus of this research. The simultaneous centre chain system is, however, of 
more interest and in fact leads to a more general formulation which can be used in GLD 
(and other linear deduction systems). 

3.4. Truth Value Deletion in GLD 

 (and Other Linear Deduction Systems) 

In section 2.5 linear-input subset analysis was introduced as a method for detecting 
situations in which GLD builds linear-input subdeductions. The truth value deletion 
systems for linear-input deduction systems, described in section 3.3, can be transferred to 
GLD linear-input subdeductions. This is a significant new idea, as truth value deletion has 
previously been considered incompatible with linear deduction. 
 
Definition 3.9 - Rightwards subchains 
The rightwards subchain of a literal in a centre chain is the subchain that consists of the 
literal and all literals to its right. 
 
A truth value deletion system that requires all rightwards subchains of the top literal in a 
GLD linear-input subdeduction to be interpreted as FALSE, in all side chain models of the 
subdeduction, is complete. The system arises from the following results. 
 
Lemma 3.10 
In a GLD refutation in which only extension and truncation operations are performed, all 
centre chains are simultaneously interpreted as FALSE in all side chain models of the 
refutation. (In determining the interpretation value of a centre chain, only B-literals are 
considered.) 
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In this situation a GLD refutation is reduced to a linear-input refutation. The lemma then 
follows directly from theorem 3.6. QED 
 
Lemma 3.11 
In a linear-input subdeduction of a GLD deduction, all rightwards subchains of the top 
literal are simultaneously interpreted as FALSE in all side chain models of the 
subdeduction. (In determining the interpretation value of a rightwards subchain, only 
B-literals are considered.) 
 
Let C1R1, ... ,Cn-1Rn-1,Cn be the centre chains of a linear-input subdeduction, so that R1 is 
the top literal, each Ri is a rightwards subchain of the top literal and Rn-1 is the top literal 
in the guise of an A-literal. Theorems 2.6, 2.10 and 2.15 show that no reductions against 
literals in any Ri are performed, so no literal in any Ci is used in deduction operations that 
affect the Ri. Therefore there is a refutation from the top chain R1 using only extension 
and truncation operations. By lemma 3.10, all the Ri are simultaneously interpreted as 
FALSE in all side chain models of that refutation. Thus in the linear-input subdeduction all 
the Ri are simultaneously interpreted as FALSE in all side chain models of the 
subdeduction. QED 
 
Theorem 3.12 - Truth Values in Linear Deductions 
In a linear-input subdeduction of a GLD deduction, all rightwards subchains of the top 
literal are simultaneously interpreted as FALSE in all side chain models of the 
subdeduction. (In determining the interpretation value of a rightwards subchain, all literals, 
including A-literals, are considered.) 
 
In a linear-input subdeduction, A-literals in rightwards subchains of the top literal also 
occur as B-literals in ancestor rightwards subchains. By lemma 3.11 the ancestor 
rightwards subchains are simultaneously subject to the truth value restriction. Therefore 
the A-literals can be included when determining the interpretation value of a rightwards 
subchain. QED 
 
Theorem 3.12 establishes the completeness of a truth value deletion system for GLD when 
in linear-input configuration. The system is analogous to the simultaneous centre chain 
system and is called the rightwards subchain truth value deletion system. The restriction of 
the rightwards subchain system is a special case of the simultaneous deduction restriction, 
in that it is imposed only at some deduction operations. Again, the ground approach to 
establishing the satisfaction of the restriction is appropriate. If the restriction of the 
rightwards subchain system is imposed operationally, the checking of A-literals effects a 
retrospective check of B-literals. This helps to (locally) maintain deduction faithfulness of 
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the restriction. The maintenance of deduction faithfulness is local in the sense that it is 
maintained only within each linear-input subdeduction. 

Example 
An example, illustrating the effects of the rightwards subchain system, is to be found 
in appendix 1, section A1.3. See section 5.4.3 for further details. 

 
As with truth value deletion in linear-input deduction systems, the imposition of the 
rightwards subchain system relies on side chain predictability. Here side chain 
predictability is required in each linear-input subdeduction. If Horn subset analysis is used 
to detect the linear-input subdeductions then GLD is trivially side chain predictable in each 
linear-input subdeduction. Only non-negative Horn subset input chains are used as side 
chains. For LISS analysis, side chain predictability is obtained by inspection of the 
extension tree. The input chains that may be used as side chains in a linear-input 
subdeduction are those that were used in building extension subtrees rooted at the LISS 
element corresponding to the top literal. Thus a set of possible side chains is associated 
with each LISS element. There are then two options for building side chain models, as 
follows. 
• Different side chain models may be built for each LISS element, based upon the 

associated input chains. Although this may require significant effort, there may be some 
benefit in constructing models that are local to each possible linear-input subdeduction, 
as the models need reflect only truth value information relevant to the subdeduction. As 
is noted by Plaisted [1982, p. 238], "This is interesting because it corresponds to the 
fact that in the human theorem proving process attention is given to various specialised 
models at various stages of the proof." 

• Side chain models of the union of the sets associated with the LISS elements may be 
built. This approach is possible only if the union is a proper subset of the input set. If all 
input chains are possible side chains, the LISS may be made smaller by adding a third 
condition for membership of the LISS - (iii) the top chain of the deduction is not used 
in forming any descendant of the literal structure. If this condition is added, then the top 
chain of the deduction cannot be a side chain in any linear-input subdeduction and 
models of the union are possible. If this latter approach excludes only the top chain 
from being a side chain then an additional truth value restriction, that requires the top 
chain of the deduction to be interpreted as FALSE in the side chain models, may be 
imposed. This restriction may be added because at least one input chain in a refutation 
must be interpreted as FALSE, in every truth value interpretation. 

Side chain predictability for LISL analysis is analogous to that for LISS analysis. 
 
As with linear-input subset analysis, the rightwards subchain system is readily transferred 
to linear deduction systems other than GLD. A noteworthy instance is that it is transferable 
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to chain format systems that use the GC procedure's C-literal mechanism. In these systems 
C-reduction can occur in, what would otherwise be, linear-input subdeductions. This added 
possibility does not affect the rightwards subchain system : All linear-input C-literals are 
inserted at the left most end of centre chains, indicating that they are logical consequences 
of the side chains that participated in their production. Therefore the C-literals are TRUE 
in all models of such side chains. Lemma 3.10 is easily extended to cover reduction 
against such C-literals, and the rightwards subchain system remains complete. 
 
Truth value deletion systems analogous to the centre chain instance and compile time 
systems have not been formalized for GLD, although there do not appear to be any 
immediate difficulties with such systems. As is described in chapter 5, the rightwards 
subchain system has been employed in SGLD. The success of the rightwards subchain 
system is analogous to that achieved in the Simplified Problem Reduction Format in which 
the success of truth value deletion "seems to have something to do with the fact that Horn 
clauses are common in typical problems." [Plaisted, 1982, p. 238] However, the rightwards 
subchain system has a potential for greater success as a more general notion than 
Horn-ness is used to determine when truth value deletion can be used. 

3.5. The FALSE-Preference Strategy 

The imposition of any form of truth value deletion is limited by the requirement of 
completeness; i.e., a host deduction system must remain complete under the restrictions 
imposed by its deletion system. If a variant of such a host deduction system is designed, it 
may be necessary to drop its truth value deletion system in order to maintain completeness. 
For example, truth value deletion may be imposed on pure resolution but must be dropped 
when lock numbering is added. In other deduction systems, e.g., hierarchical deduction 
[Wang & Bledsoe, 1987], the imposition of truth value deletion destroys completeness in 
only some circumstances. A truth value guidance strategy that can never destroy 
completeness is described here. This is a new approach to semantic guidance and it 
broadens the range of deduction systems in which truth value guidance can be used 
fruitfully. 
 
Truth value deletion systems rigidly expect one or more parent chains to be interpreted as 
FALSE, in a given truth value interpretation. By softening this expectation to a preference 
for FALSE parent chains, a new truth value guidance strategy is formed. The new strategy 
is called the FALSE-preference strategy. The FALSE-preference strategy guides a 
deduction system's search by showing a preference for parent chains that are interpreted as 
FALSE, in a given truth value interpretation. Clearly the use of the FALSE-preference 
strategy cannot destroy completeness. The FALSE-preference strategy can also be used in 
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conjunction with a truth value deletion system. In this scenario truth value deletion is 
imposed where ever it does not destroy completeness, and the FALSE-preference strategy 
is used where truth value deletion is 'appropriate' but cannot be imposed because 
completeness would be lost. 
 
A FALSE-preference strategy that simply compares the interpretation values of chains 
does not differentiate between chains which are interpreted as the same truth value. To 
make a finer distinction between chains, and hence differentiate amongst chains with the 
same interpretation value, a FALSEness level can be assigned to each chain. The 
FALSEness of a chain is determined by looking at ground instances of the chain's literals, 
as follows. 
• The FALSEness of a chain, in a given truth value interpretation, is a function of the 

FALSEness levels of its ground universe instances. The function must be optimistic, in 
the sense that it may return a poor FALSEness level only if all of its arguments are poor 
FALSEness levels. 

• The FALSEness of a ground chain is a function of the FALSEness levels of its literals. 
The function must return a value roughly proportional to its arguments, i.e., so that if 
the arguments are mostly good FALSEness levels then the function value is a good 
FALSEness level, and vice versa. 

• The FALSEness of a ground literal is GoodScore if the literal is interpreted as FALSE 
and BadScore otherwise. GoodScore and BadScore are parameters to the 
FALSE-preference system, with GoodScore being a better FALSEness than BadScore. 

FALSEness thus measures the numbers of literals that are interpreted as FALSE in ground 
instances of a chain. A deduction system is guided by giving preference to parent chains 
with a better FALSEness level. 
 
In chain format linear deduction systems the FALSE-preference strategy guides the search 
away from refutations that require reduction operations, as follows. If a centre chain 
B-literal is interpreted as TRUE in a model of all the forthcoming side chains in the 
deduction, then that B-literal, or some descendant through extension operations, must be 
reduced against. By guiding the search away from centre chains that contain TRUE 
literals, the FALSE-preference strategy guides the search away from refutations that 
contain reduction operations. In general, however, it is not possible to determine that a 
truth value interpretation is a model of "all the forthcoming side chains in a deduction". 
This is because linear deduction systems are not, in general, side chain predictable. The 
most that can be achieved is to use a truth value interpretation that is a model of as many 
input chains as possible. If the input set is minimally unsatisfiable, then a truth value 
interpretation that is a model of all but one of the input chains can be found. If a centre 
chain literal is interpreted as TRUE in such a truth value interpretation then it, or some 
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descendant through extension operations, must either be reduced against or extend against 
the input chain which is FALSE in the truth value interpretation. 
 
There are other possible ways of determining a FALSEness level for a chain, besides that 
described here. This method corresponds directly to the ground approach of establishing 
that a chain is interpreted as FALSE, as is typically used by truth value deletion systems. 
The method is thus suitable for use in a truth value guidance system that combines truth 
value deletion with the FALSE-preference strategy. 

3.6. Reformulating Sort Value Deletion 

A common feature of the 'sort legal' deduction systems described in section 3.2.3 is that 
their deduction operations never deduce sort illegal clauses. This is in contrast to a 
deduction system which employs truth value deletion, in which the deduction operations 
independently deduce clauses and the truth value deletion system later rejects those which 
are unacceptable. It is evident from section 3.1 that truth value interpretations and sort 
value interpretations supply analogous information. This observation prompts a different 
formulation of sort value deletion, that is similar to truth value deletion. In this 
formulation, sort illegal chains may be deduced. Each deduced chain is subsequently 
checked, and rejected if not sort legal. This formulation parallels the approach taken in 
truth value deletion systems. The usual considerations concerning deduction faithfulness 
apply and the previously discussed techniques are again applicable. This approach to sort 
value deletion is extremely flexible as it does not affect the deduction operations of the 
host deduction system. It is therefore not tied to a specific deduction system. 
 
The proposed use of this formulation of sort value deletion is to impose the sort legality 
restriction in deduction systems which are designed independently of the deletion system. 
As a consequence, any deduction built subject to this sort legality restriction can also be 
built if the restriction is dropped. The imposition of this formulation of sort value deletion 
is thus sound. It is, however, possible for the imposition of this formulation of sort value 
deletion to prune refutations from the search space of the host deduction system. This is 
evident from the fact that a deduction constructed subject to sort value deletion 
corresponds to a deduction from the relativisation of the input set. This means that a 
refutation of the input set, subject to sort value deletion, can be found only if there is a 
corresponding refutation of the relativised input set. In existing deduction systems that 
employ sort deletion this problem has been overcome by redefining satisfiability to be in 
terms of the sort value interpretation in use. The completeness of such deduction systems 
is then relative to the sort value interpretation in use. Here, where the deletion system is 
independent of the host deduction system, such redefinition is not appropriate. Thus this 
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formulation of sort value deletion is used under the cloud of possibly introducing 
incompleteness into the host deduction system. However, experiences using this deletion 
system have been positive and loss of completeness has not been a problem. 

Finer Granularity 
Every atom structure in a deduction necessarily appears at least twice in the input set. In 
some problems it is appropriate to provide a different sort value interpretation for each 
distinct occurrence of an atom structure. One way of implementing this is to rename the 
predicate symbols of the atoms to unique names, and to add clauses which specify the 
equivalence of the atoms. The specification of a sort value interpretation can then proceed 
as normal. An alternative, and more direct, approach is to specify the base-relation 
separately for each occurrence of an atom structure. The interpretation values of ground 
instances of an atom are then defined in terms of the base-relation for that particular 
occurrence. 

3.7. Combined Truth Value and Sort Value Guidance 

3.7.1. Sort&Truth Value Deletion Systems 

The formulation of sort value deletion in section 3.6 parallels the approach taken in truth 
value deletion systems. As a result, the combination of these two systems becomes quite 
natural. Although it is known that truth value deletion and sort value deletion can be used 
in parallel, the novelty of the approach described here is that the two are combined into a 
single system. This makes the incorporation of the two into a deduction system much 
easier. The combined systems, called sort&truth value deletion systems, use a sort value 
interpretation. Specific sort&truth value deletion systems are formed by selecting a truth 
value deletion system to combine with sort value deletion. For a seamless combination it is 
necessary for the selected truth value deletion system to, like sort value deletion, impose a 
simultaneous deduction restriction. The rightwards subchain system is, for example, 
suitable. Given an appropriate truth value deletion system, the resultant sort&truth value 
deletion system simultaneously expects (i) all atoms in a deduction to be sort legal, i.e., all 
atoms must have ground universe instances that are interpreted as some truth value (any 
one of TRUE, FALSE or UNKNOWN_TRUTH_VALUE), (ii) the restrictions of the truth 
value deletion component to be met, i.e. some parent chains are expected to be interpreted 
as FALSE and (iii) the sort legality restrictions on sort literals to be met, i.e. sort literals 
are expected to have ground universe instances that are interpreted as TRUE or FALSE, as 
described in section 3.6. (The possibility of a conflict between the latter two requirements 
is discussed below.) 
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The sort value deletion component of a sort&truth value deletion system dictates that the 
ground approach must be used to establish the satisfaction of the system's restrictions. This 
is completely convenient in terms of the truth value deletion component. Issues of 
deduction faithfulness are addressed as before. 
 
The use of a sort value interpretation in a sort&truth value deletion system has some 
pragmatic advantages. When building a truth value interpretation it is realistic that the 
interpretation value of a given base element may not be known independently of its actual 
truth value in the domain of discourse [Delgrande & Mylopolous, 1986, p. 10]. 
Nevertheless it is necessary to make a commitment to one of the truth values TRUE or 
FALSE. In contrast, if a sort value interpretation is used then such base elements can be 
mapped to UNKNOWN_TRUTH_VALUE. An atom that is expected to have a ground 
universe instance that is interpreted as one of TRUE or FALSE, can be accepted if it has a 
ground universe instance that is interpreted as UNKNOWN_TRUTH_VALUE. This 
approach can also be used in truth value deletion systems. 
 
As mentioned above, it is possible for the expectations of the truth value component of a 
sort&truth value deletion system to conflict with those of the sort value component. This 
situation occurs when a positive sort literal is expected to be interpreted as FALSE by the 
truth value component. If the sort value interpretation in use correctly reflects the intended 
interpretation of the input set, then the expectation of the truth value deletion component is 
unlikely to be met in a refutation. However, no formal results in this area have been 
established. As with sort value deletion systems, experiences using sort&truth value 
deletion systems have been positive. 

3.7.2. Combined Semantic Guidance Systems 

Section 3.5 introduced the softening of truth value deletion to the FALSE-preference 
strategy. The notion of combining truth value deletion and the FALSE-preference strategy 
into a single semantic guidance system was also suggested. An analogous combination of 
sort&truth value deletion with the FALSE-preference strategy is equally desirable. These 
combined semantic guidance systems encompass a rich spectrum of semantic guidance 
ideas. A combined semantic guidance system uses a sort value interpretation. The 
restrictions of sort&truth value deletion are imposed and, in addition, the 
FALSE-preference strategy is used to guide the search of the host deduction system. As in 
sort&truth value deletion systems, the ground approach is used to establish the satisfaction 
of the deletion system's restrictions. 
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In a combined semantic guidance system, the sort&truth value deletion system expects 
every literal in a deduction to simultaneously have a ground universe instance that is 
interpreted as some truth value. There are three possible expected truth values, TRUE, 
FALSE or 'any truth value' (any one of TRUE, FALSE or 
UNKNOWN_TRUTH_VALUE). A sort value interpretation may interpret a literal as one 
of TRUE, FALSE or UNKNOWN_TRUTH_VALUE, or may not interpret the literal as 
any value. Thus there are twelve possible scenarios. Given that the expectations of the 
sort&truth value deletion system are met, the FALSE-preference strategy must indicate its 
preference. These requirements are embodied in a quality measure called 
expected-truth-value-compatibility (ETV-compatibility). 
 
The ETV-compatibility of a chain measures two things. Firstly it checks that the chain has 
a ground universe instance in which the interpretation values of the literals are acceptable 
to the sort&truth value deletion system. Secondly it biases the first measure in favour of 
chains whose literals are interpreted as FALSE. The measure is calculated as follows. 
• The ETV-compatibility of a chain, in a given sort value interpretation, is a function of 

the ETV-compatibilities of its ground universe instances.  The function must be 
optimistic, in the sense that it may return a poor ETV-compatibility only if all of its 
arguments are poor ETV-compatibilities. For a chain to be acceptable (to the sort&truth 
value deletion system) it must have at least one ground instance whose 
ETV-compatibility is not "deletion". 

• The ETV-compatibility of a ground chain is a function of the ETV-compatibilities of its 
literals. The function must return a value roughly proportional to its arguments, i.e., so 
that if the arguments are mostly good ETV-compatibilities then the function value is a 
good ETV-compatibility, and vice versa. If the ETV-compatibility of any literal is 
"deletion", then the ETV-compatibility of the ground chain is also "deletion". 

• The ETV-compatibility of a ground literal is is based on its expected and actual 
interpretation values, according to Table 3.13. 

 

Actual Value Expected Truth Value 
 FALSE Any truth value TRUE 
FALSE CorrectScore GoodScore deletion 
UNKNOWN OKScore OKScore OKScore 
TRUE deletion BadScore CorrectScore 
No interp'n deletion deletion deletion 

Table 3.13 - ETV-compatibility 
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 CorrectScore, GoodScore, OKScore and BadScore are parameters to the system. 
CorrectScore indicates better ETV-compatibility than GoodScore, which indicates a 
better ETV-compatibility than OKScore, which indicates better ETV-compatibility than 
BadScore. The "deletion" value is a special value, worse than any of the others. 

 
The decreasing ETV-compatibility going down the first two columns of Table 3.13 
implements the FALSE-preference strategy. Here it is extended to support the third 
possible interpretation value for a literal. The "FALSE" and "TRUE" columns in 
Table 3.13 deal with sort&truth value deletion. In the case where the truth value deletion 
component expects a FALSE interpretation value, an extension to the third possible 
interpretation value is supported. 
 
The ETV-compatibility levels given above can clearly be split into finer groupings. The 
benefits of finer grouping have not been investigated. 

3.8. Theory Resolution 

Theory resolution [Stickel, 1985] provides a method of removing literals from clauses by 
virtue of their inconsistency with a given theory. This is in contrast to using deduction 
operations to prove their inconsistency with the input set. The manner in which the theory 
is specified is open. Theory resolution is total if no new literals are added to the theory 
resolvant. 
 
An interpretation may be used to specify the theory to be used in total theory resolution 
operations which have a single parent chain. If a group of literals in the parent chain have 
an instance that is interpreted as FALSE in the interpretation, then those literals may be 
theory resolved away. The substitution that is used to form the instance is adopted by the 
theory resolution operation. The use of semantic information in theory resolution was also 
briefly mentioned by Plaisted [1982, p. 259]. The evaluation operation of the LLAMA 
logic is an instance of this form of theory resolution. 
 
Theory resolution may be viewed as an extreme case of suggesting instances of parent 
chains to use in deduction operations, as described in section 3.2.2. The instance 
suggestion is made extreme by removing literals directly rather than using deduction 
operations. 
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3.9. Conclusion 

The semantic guidance systems developed in this chapter contribute to the field of 
semantic guidance. They provide new ways of using semantic information to guide the 
searches of deduction systems. Of particular significance are : 
• The non-specific manner in which the truth value deletion systems have been 

formulated. 
• Implementational issues have been considered and addressed. This means that the 

systems developed can be implemented and used without further inquiry being 
necessary. 

• The rightwards subchain system, which breaks the deadlock between truth value 
deletion and linear deduction systems. 

• The FALSE-preference strategy, which open a whole new range of possibilities for 
using truth value guidance in deduction systems. 

• The smooth integration of sort value deletion, truth value deletion and the 
FALSE-preference strategy. 

 
For an efficient implementation of a semantic guidance system it is necessary to provide 
an efficient interpretive structure for storing and supplying the required semantic 
information. This is the focus of the next chapter. 
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Chapter Four 

Designations 

 

This chapter describes a new interpretive structure suitable for storing and supplying the 
semantic information used by semantic guidance systems. The new structures are called 
designations. The difficulty of storing and supplying semantic information is one of the 
factors that has discouraged the use of semantic guidance systems. There is a need for an 
interpretive structure that is expressive, space efficient, effective in supplying semantic 
information and also user friendly. A common approach is to store the semantic 
information as semantic functions. Interpretation of ground expressions is then performed 
using recursive descent. Designations generalise this approach, inheriting its good 
properties and remedying some of its faults. The domains of designations are limited to be 
finite. 
 
This chapter contains : 
1. A survey of existing interpretive structures. 
2. An investigation of the inherent properties of the semantic relation + recursive descent 

approach. 
3. Discussion of the underlying design ideas of designations. 
4. The formal definition of designations. 
5. A description of how 1st order languages are interpreted using designations. 
6. Discussion of the use of designations in semantic guidance systems. 
7. An algorithm for building designations. 
8. Concluding comments. 

4.1. Interpretive Structures 

"It appears to be quite challenging both to represent and access the large variety of 
examples the human has available". [Bledsoe & Hodges, 1988, p. 517]. 
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Introduction 
In section 3.1 a generic form of the semantic information that is used by semantic guidance 
systems was given. An interpretive structure is a data structure which stores such semantic 
information. The primary requirement of an interpretive structure is that it must be 
expressive enough to store the semantic information. Given unlimited storage capacity, 
such a structure can always be constructed. However, from a pragmatic view point, an 
interpretive structure must also be reasonably space efficient. Besides these expressiveness 
and space requirements, two further criteria can be used to measure the quality of an 
interpretive structure, as follows. (i) For semantic guidance systems that use the ground 
approach to establishing the satisfaction of their restrictions (i.e., the majority semantic 
guidance systems, including almost all those described in chapter 3), the semantic 
information is used to determine if an atom has a ground universe instance that is 
interpreted as a given truth value. Thus a fundamental requirement for an interpretive 
structure is that it should be possible to make this determination in effective manner. This 
is referred to as the structure's semantic checking capability. Several researchers have 
commented on this point - "... deduction in a model M must be able to be performed 
extremely efficiently ..." [Brown, 1974, p. 31], "... determining whether or not a clause 
containing variables is falsified may be a formidable job." [Henschen, 1976, p. 820] and 
"... testing if a clause is false in I can be expensive or impossible if I is 
non-trivial" [Plaisted, 1990a, p. 296]. (ii) The original source of the semantic information 
stored in an interpretive structure is typically human. The task of specifying the semantic 
information must be sufficiently easy for the user, so that real benefits are obtained from 
using the information in a semantic guidance system. It is unfortunate that, for many 
interpretive structures, the specification of the semantic information is prohibitively 
complex and/or time consuming. 
 
Thus, in summary, there are four axes along which the quality of an interpretive structure 
will be measured : 
• Is the structure expressive enough to store the semantic information? 
• Does the structure store semantic information in a space efficient manner? 
• Does the structure provide an effective semantic checking mechanism?  
• Is the specification of the semantic information an acceptably easy task from a user's 

point of view? 
Finding an interpretive structure which satisfies these criteria is important if semantic 
guidance systems are to be of utility. 
 
Existing interpretive structures have been designed to supply either truth value or sort 
value information. A wide variety of interpretive structures have been proposed and used, 
with varying levels of success along each of the four criterion axes. A common approach is 
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to store the semantic information as semantic functions and to interpret ground expressions 
using recursive descent. See, for example, the truth value interpretations in [Lloyd, 1984]. 
Designations, as described in this chapter, generalise on this format by using semantic 
relations rather than semantic functions. As well as those based on a semantic functions, 
other formats of interpretive structures have been used for storing truth value semantic 
information (to date, interpretive structures used for storing sort value semantic 
information appear to be exclusively semantic function based). Before defining and 
examining the properties of the semantic relation format, it is instructive to examine 
briefly the other formats.  

Existing Interpretive Structures 
The simplest interpretive structures for fully supplying semantic information are those that 
explicitly store the universe- and base-relations. A common approach is to partition the 
universe and base according to their images. If, as in many applications of truth value 
interpretation, only a base-relation to {TRUE, FALSE} is required, a simplification of the 
explicit storage approach is to store explicitly only the base-relation mappings to 
TRUE/FALSE and to use a closed/open world assumption to implicitly store the mappings 
to FALSE/TRUE. Latent models [Slagle, 1967] take this approach. This approach is 
workable if the set of base elements that map to TRUE/FALSE is finite. However, the 
partitioning approach is almost always impractical, due to the infinite sizes of the 
partitions. 
 
Examination of the syntax of expressions can be used to implement the universe- and 
base-relations of an interpretation. For example, the positive and negative truth value 
interpretations examine the sign of a literal, and the predicate partition interpretation 
determines the interpretation values of base elements and atoms from their predicate 
symbols. Syntactic approaches such as these have the advantage of being able to directly 
interpret non-ground expressions. Their weakness is not taking into account the arguments 
of the expressions being interpreted. A syntactic approach to implementing a base-relation 
for truth value interpretation, which takes expression arguments into account, is provided 
by partition settings [Loveland, 1978]. The interpretive structure of partition settings is (in 
essence) a set of special literals called generators. If a literal is specified as a generator 
then it and all its universe instances, are mapped to TRUE. A closed world assumption is 
then taken to store implicitly the mappings to FALSE. 
 
Syntactic approaches to implementing interpretations, although readily implemented, are 
non-intuitive and are incapable of representing non-trivial semantic information. 
Interpretive structures that associate more directly with the problem domain are easier for 
a user to work with, and higher level concepts may be used in the implementation. The 
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interpretive structure that appears to be closest associated with problem domains is that 
suggested by the examples in [Brown, 1974, p. 30]. In the examples, a truth value 
interpretation is stored as a set of clauses. Some of the interpretive clauses are taken from 
the input set and some are specific to an instance of the problem domain. A feature of this 
approach is that it allows the image of Skolem constants to range across multiple domain 
elements, as suggested by Reiter [1973]. Details of how the interpretive clause sets should 
be specified are not, however, given. A more common format of interpretive structure, 
which is also closely associated with a problem domain, is that which uses some data 
structure to represent an instance of the problem domain. The data structure is then 
interrogated. Examples of this approach are the diagrams used in the geometry proving 
machine [Gelerneter, 1963; Gelerneter et al., 1963], the piecewise continuous functions 
used by Bledsoe [1983] and the intervals used in the INT package [Bundy et al., 1984]. 
 
At the opposite end of the 'problem association' scale, is the approach of mapping the 1st 
order language in use to an "amicable" [Sandford, 1980, p. 120] interpretation language. 
The interpretation of an expression is achieved by interpreting the image expression in the 
amicable language. The amicable language may express concepts in a domain completely 
divorced from that of the original 1st order language, but in which interpretation is an 
extremely efficient process. One possible amicable language is that of simultaneous linear 
equations [Sandford, 1977]. 
 
Interpretive structures that closely associate with the problem domain have the advantage 
of being easily able to represent subtle features of the problem domain. Their disadvantage 
is that their applicability is limited to the problem domain. There is a compromise between 
the degree to which an interpretive structure associates with the problem domain and the 
generality of the interpretive structure. An intermediate form of interpretive structure, 
which is not entirely syntactic, but is also flexible enough to be used in a wide range of 
domains, is preferred. Further, the interpretive structures described above are all dedicated 
to one of truth value or sort value interpretation. Semantic guidance systems that combine 
sort value deletion and truth value guidance were presented in section 3.7. Thus there is a 
demand for an interpretive structure that can be used to store multiple types of semantic 
information, at a minimum both truth value and sort value information. 

Excursus 
Two problems that arise when storing semantic information are that (i) the amount of data 
that needs to be stored may be large and (ii) the universe- or base-relation for a given 
universe/base element may not be known independently of its actual value in the problem 
domain (see section 3.7.1). Two existing results that respectively tackle these difficulties 
have been presented, as follows. 
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• For truth value interpretation of Horn clauses, a complex interpretation may be formed 
by taking the cross product of two simpler interpretations [Henschen, 1976]. This 
approach has the potential for considerable savings in space and computational effort. 

• Many semantically guided deduction systems are "false permissive complete" 
[Sandford, 1980, p. 83]. In the environment of a false permissive complete system, the 
interpretive structure can use a default that causes literals, which should be interpreted 
as TRUE, to be interpreted as FALSE. The translation of model schemes to sound 
semantic functions, described in by Sandford [1980], uses this approach. Note that sort 
checking is not false permissive complete because literals can be expected to be 
interpreted as TRUE. Thus this approach cannot be taken in the systems described in 
section 3.7. 

4.2. Semantic Relation based Interpretive Structures 

As has been noted, a common form of interpretive structure is that which stores semantic 
information as semantic functions, and interprets ground expressions using recursive 
descent. This section introduces a generalisation of this format. Semantic relations, rather 
than semantic functions, are used. 
 
Definition 4.1 - Semantic relation based interpretive structures 
A semantic relation based interpretive structure is a structure that consists of : 
• A finite domain9, the elements of which are constants. 
• A set of truth values, the elements of which are constants. 
• A functor-relation from d-functions to the domain. 
• A predicate-relation from d-predicates to the set of truth values. 
 
Definition 4.2 - SRI structures 
A survey of mathematical logic literature indicates that there is no existing name that 
specifically identifies the form of interpretive structure defined above. Thus, in this thesis, 
semantic relation based interpretive structures are called SRI structures. 
 
An SRI structure can supply the semantic information required by semantic guidance 
systems, as described in section 3.1. 
 

                                                
9At this point only unordered domains (i.e. those in which there is no relationship between elements) are 

considered. Domains which support relationships between elements, as often used in interpretive structures 

for sort value interpretation, are considered in section 4.2.4. 
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Definition 4.3 - Interpretation using SRI Structures 
For an SRI structure, consisting of domain D, set of truth values T, functor-relation F and 
predicate-relation P, the semantic information supplied is : 
• The domain of the interpretive structure. 
• The set of truth values of the interpretive structure. 
• A universe-relation, which for a universe element f(t1, ... ,tn), produces all possible 

interpretation values F(f(d1, ... ,dn)), where each di is an interpretation value of ti. 
• A base-relation, which for a base element p(t1, ... ,tn), produces all possible 

interpretation values P(p(d1, ... ,dn)), where each di is an interpretation value of ti. 
The universe- and base-relations extend naturally to extended-universe- and 
extended-base-relations, for the language being considered extended by the domain of the 
SRI structure : 
• An extended-universe-relation which, for an extended-universe element f(t1, ... ,tn), 

produces the interpretation value f if f is a domain element, otherwise all the 
interpretation values F(f(d1, ... ,dn)), where each di is an interpretation value of ti. 

• The extended-base-relation, for an extended-base element p(t1, ... ,tn), produces all the 
interpretation values P(p(d1, ... ,dn)), where each di is an interpretation value of ti. 

If a universe/base element has been partially interpreted using the universe- and 
base-relations, then the interpretation process may be completed using the 
extended-universe-  and extended-base-relations, with the same result as if the universe- 
and base-relations themselves had been used. 
 
Interpretation using an SRI structure is thus a process of recursive descent. 
 
Many existing interpretive structures are based on semantic relations. Standard truth value 
interpretations (see [Lloyd, 1984], for example) are based on semantic relations : 
• The set of truth values is {TRUE, FALSE}. 
• The functor- and predicate-relations are complete functions. 
Semantic relations are also a common basis for sort value interpretations, either 
monomorphic (e.g., [Enderton, 1972]) or polymorphic (e.g., [Hayes, 1971]) : 
• A typical set of truth values is {TRUE, FALSE, UNKNOWN_TRUTH_VALUE}. 
• The functor- and predicate-relations are typically partial functions. 
• For sort-d-predicates, the predicate-relation is to {TRUE, FALSE}. 

4.2.1. Expressiveness and Space Efficiency 

SRI structures store semantic information in a very fine grained manner, thus enabling 
them to capture the nuances of domain specific information. They thus satisfy the first 
criterion for measuring the quality of interpretive structures. That is, they are expressive 
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enough to represent semantic information. Unfortunately, the direct representation of the 
finely grained information is inefficient in terms of the information content. SRI structures 
have no immediate mechanisms for employing concepts such as property inheritance to 
reduce storage requirements. Each element of the semantic relation has to be stored 
separately and explicitly. Thus, in an unmodified format, SRI structures do not satisfy the 
second criterion for measuring the quality of interpretive structures. That is, they do not 
store semantic information in a space efficient manner 

4.2.2. The Interpretation Process using SRI Structures 

One approach to semantic checking (using any form of interpretive structure), is to 
generate and interpret ground universe instances of the atom under consideration. 
However, if the universe is infinite this approach is undecidable, as it is impossible to 
create all the ground universe instances. Semantic guidance systems which need to 
consider all the ground universe instances of an atom (e.g., systems that need to establish 
that an atom is interpreted as TRUE) are rendered completely inoperable in this situation. 
The universe is infinite whenever the 1st order language in use contains functors of arity 
greater than 0, which is the rule rather than the exception. Thus any semantic guidance 
system that generates and interprets ground universe instances of atoms, is incomplete for 
practical purposes. 
 
When using an SRI structure to interpret a ground universe instance of an atom (a base 
element), the universe elements used to instantiate the variables in the atom are, in the 
interpretation process, replaced by their interpretation values (domain elements). The 
ground domain instance of the atom thus formed (an extended-base element), has the same 
interpretation values as the original base element. The extended-base element represents 
the base element in terms of interpretation. The instantiation and interpretation process can 
therefore be short circuited by directly instantiating variables in the atom with domain 
elements, and interpreting the resultant extended-base element using the 
extended-base-relation. From the point of view of a semantic guidance system, if an atom 
has a ground domain instance that is interpreted as a given truth value, then the atom has at 
least one (possibly infinitely many) ground universe instances that are interpreted as that 
truth value. This approach to semantic checking is called the domain based approach. The 
domain based approach has been used in existing semantic guidance systems [Kowalski & 
Hayes, 1969; Reiter, 1973; Wang, 1985], and could certainly be used in other semantic 
guidance systems which currently take other approaches, e.g., the False Substitution List 
system [Sandford, 1980]. 
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The domain based approach has two advantages over instantiating with universe elements. 
(i) The process is finite whenever the domain is finite. (ii) Some computation is saved. The 
approach is sound provided that every domain element is the interpretation value of at least 
one universe element (an important proviso not made explicit in other systems that use this 
approach). 

Single Level Expansion 
If the domain in use is finite, the domain based approach solves the undecidability problem 
in the 'generate ground instance and interpret' approach to semantic checking. However, 
the effort of searching for a ground domain instance that is interpreted as the required truth 
value is still, as Kowalski and Hayes [1969, p. 97] noted, "likely to be prohibitive". It is, 
however, possible to refine the domain based approach to avoid the interpretation process. 
Rather than generating ground domain instances of an atom and then interpreting them, the 
inverses of the predicate- and functor-relations are used to expand first the required 
interpretation value and then recursively the resulting d-expressions' arguments, to find the 
required domain instance of the atom. This process is described below. 
 
Definition 4.4 - Single level expansion 
A single level expansion of a truth value/domain element is a d-expression which is related 
to the truth value/domain element by the predicate-relation/functor-relation of the SRI 
structure in use. 
 
Definition 4.5 - The SLE Process 
The single level expansion (SLE) process is a process that converts truth values/domain 
elements to extended-base/extended-universe elements by : 
(i) single level expanding the truth value/domain element to a d-expression. 
(ii) applying the SLE process to the arguments of the d-expression. 
 
Given an initial truth value/domain element, applying the SLE process, until no domain 
elements remain, generates base/universe elements (possibly infinitely many) which are 
interpreted as the truth value/domain element. More usefully, the SLE process may be 
restricted to determine if an atom has a ground domain instance that is interpreted as a 
given truth value. In each step of the restricted SLE process, either (i) the domain element 
under consideration is identical to the corresponding subexpression in the atom (the 
subexpression is the same domain element), in which case that branch of the expansion is 
stopped, (ii) the domain element under consideration single level expands to a 
d-expression whose principal symbol and arity match those of the corresponding 
subexpression in the atom, or (iii) the subexpression in the atom is an uninstantiated 
variable, in which case the variable is instantiated to the domain element under 
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consideration, and that  branch of the expansion is stopped. Option (ii) may have several 
possibilities, each of which needs to be considered. If all branches of the process stop, then 
the resultant ground domain instance of the atom is interpreted as the given truth value. 
The ground domain instance represents ground universe instances of the atom, that are also 
interpreted as the given truth value. 
 
This approach to finding appropriate ground domain instance of atoms is more direct than 
generating ground instances. The SLE process allows SRI structures to satisfy the third 
criterion for measuring the quality of interpretive structures. That is, they can provide an 
effective semantic checking mechanism. 

4.2.3. Specifying SRI Structures 

In [Sutcliffe, 1987] a truth value semantic guidance system, employing an SRI structure, is 
presented. Experience using this system highlighted the difficulties of supplying the 
required truth value semantic information correctly. It is difficult to ensure that all the 
necessary mappings have been supplied and stored. Once stored, the large number of 
mappings makes the result difficult to comprehend. As a result, it is also difficult to make 
consistent modifications to such a truth value interpretation. Attempts to expand this 
system to take advantage of sort value information, which can be more complex than truth 
value information, further indicated the difficulties of supplying semantic information 
correctly. These difficulties would be exacerbated when storing semantic information in 
which a d-expression may be related to multiple values. These experiences are not unique - 
"... to design a suitable example for helping prove a hard theorem is not an easy matter." 
[Wang, 1985, p. 1201]. Thus, SRI structures do not satisfy the fourth criterion for 
measuring the quality of interpretive structures. That is, the specification of semantic 
information is not an acceptably easy task from a user's point of view. 

4.2.4. SRI Structures and Ordered Domains 

SRI structures, with unordered domains, are suitable for storing both truth value and sort 
value information. However, the inherent hierarchical nature of sort value information has 
suggested the use of ordered domains in SRI structures. This modification allows many 
functor-relation elements to be stored implicitly rather than explicitly. A d-function that is 
explicitly related to a given domain element, is also implicitly related to all domain 
elements higher in the order. 
 
Ordering is imposed on a domain by structuring the domain in some fashion. Various 
structures have been used to date, e.g., unconstrained partial ordering [Walther, 1983; 
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Schmidt-Schauss, 1985], tree structures [Walther, 1985] and boolean lattices 
[Cohn, 1987]. It is desirable that the structuring imposed on a domain should support two 
important features, as follows. (i) If U1, ... ,Un are the sets of universe elements that are 
interpreted as the domain elements d1, ... ,dn respectively, then it must be possible to have 
a domain element d∪ such that the union of U1, ... ,Un is the set of universe elements that 
are interpreted as d∪. (ii) Similarly, it must be possible to have a domain element d∩ such 
that the intersection of U1, ... ,Un is the set of universe elements that are interpreted as d∩. 
If these two features are supported, then it is possible to express compactly that a 
universe/base element is related to multiple domain elements/truth values and that a 
universe/base element is not related to a given domain element/truth value 
[Cohn, 1987, p. 119]. 
 
The use of ordered domains in SRI structures has two advantages. (i) It allows the natural 
structure of sort value information to be encoded into the interpretation. (ii) It is more 
space efficient than using an unordered domain. Designations use ordered domains and 
comply with the union and intersection requirements. 

4.3. The Design of Designations 

Designations10 are SRI structures, designed to retain the expressiveness and semantic 
checking capability (via the SLE process), but using ordered domains to make them more 
space efficient and easier to specify. Designations are thus a new form of SRI structure 
that improve upon existing SRI structures. The important new feature in designations is a 
relation between domain elements. This feature enables the notion of property inheritance 
to be utilised. 
 
Designations are designed to be extremely flexible interpretive structures, which can be 
used to store a large range of types of semantic information. To this end designations make 
no distinction between d-functions and d-predicates, nor between domain elements and 
truth values. This generality may be undesirable for some applications, e.g., it violates the 
standard truth value semantics of 1st order languages. Where necessary, restrictions are 
imposed so that the semantic information stored in a designation conforms to necessary 
restrictions on the nature of that semantic information. A result of this homogeneity is that 
the basic semantic information supplied by a designation differs from that described in 
section 3.1. 
 
                                                
10 The name "designation" has been adopted from Newell and Simon's Turing award lecture [Newell & 

Simon, 1976, p 116]. 
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Definition 4.6 - Basic semantic information in designations 
A designation of a 1st order language is an interpretive structure that supplies : 
• A domain, the elements of which are constants. 
• A unibase-relation from the unibase to the domain. 
 
A corner stone of SRI structures is the use of relations from d-expressions to truth values 
and domain elements. It has been noted previously that it is the fine grained nature of these 
relations that causes SRI structures to be space inefficient and hard to specify. To solve 
these problems, designations represent the individual relationships in a new way. The 
approach taken extrapolates from a feature inherent in the semantic relation approach, that 
multiple d-expressions can relate to the same truth value/domain element. In particular, 
d-functions that relate to the same domain element form an equivalence class in terms of 
interpretation. They are interpretationally equivalent when they appear in arguments of 
other d-expressions. In designations this feature is extended to form equivalence classes of 
domain elements that are interpretationally equivalent when they appear as arguments of 
d-expressions. The equivalence classes are associated with individual argument positions 
of principal symbols, so that a domain element may belong to different equivalence classes 
in different situations. This association with argument positions provides more finely 
grained equivalence classes than those of d-functions, which are global to the interpretive 
structure. 
 
Designations' equivalence classes of domain elements are represented by relating all the 
domain elements in a class to a single 'class' domain element. Domain elements that 
belong to multiple equivalence classes are related to multiple 'class' domain elements. Any 
d-expression with a given principal symbol and with equivalence class elements in 
appropriate argument positions (i.e., positions associated with the corresponding 
equivalence classes), is not explicitly related to a domain element. Rather, the d-expression 
formed by replacing the equivalence class elements by their 'class' domain elements, is 
related to the desired domain element. The former d-expressions inherit their image in the 
relation from the latter. Equivalence classes of 'class' domain elements can also be formed, 
with the inheritance of images being transitive. In this manner designations can be 
significantly more space efficient than standard SRI structures. 
 
If the feature of relating domain elements to multiple domain elements is used in an 
unrestricted fashion then semantic inconsistencies can arise, as follows. Two domain 
elements are semantically disjoint if neither is in the 'class' of the other and there is no 
other domain element which is in both their 'classes'. If an argument of a unibase element 
is interpreted as multiple domain elements, then the unibase element may be interpreted as 
multiple, semantically disjoint, domain elements. This is undesirable, as it contradicts the 
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nature of functions and predicates. This semantic inconsistency also arises if d-expressions 
are related to multiple, semantically disjoint, domain elements. To avoid these problems, 
restrictions are imposed to ensure that all d-expressions relate to at most one domain 
element, i.e., their relationship to the domain is a partial function. As part of these 
restrictions, property inheritance in designations is constrained so that a relation element 
may be defined only if the relationship cannot be inherited, and vice versa. That is, defined 
and inherited relationships are mutually exclusive. This is different from standard property 
inheritance in which a property may be defined even if it can be inherited, and the possible 
inheritance is over-ridden. 

4.4. The Formal Definition of Designations 

Definition 4.7 - Designations 
A designation  of a 1st order language is an interpretive structure that consists of : 
• A finite domain, the elements of which are of arity 0. 
• An expression-relation  which 

(i) maps d-expressions to domain elements (i.e. the expression-relation is a partial 
function in this case);  

(ii) relates, in an acyclic manner, domain elements to domain elements. 
Example 
A designation of the 1st order language L described in section 1.4, consisting of 
domain D and expression-relation R, is : 
 D = {mr_s, mrs_s, person, FALSE, TRUE} 
 R = {homer R∅ mr_s,heart_ok(person) R∅ TRUE,  
  spouse_of(mr_s) R∅ mrs_s,lungs_ok(mr_s) R∅ TRUE,  
  spouse_of(mrs_s) R∅ mr_s,lungs_ok(mrs_s) R∅ FALSE,  
  mr_s R∅ person,alive(person) R∅ TRUE,  
  mrs_s R∅ person,person(person) R∅ TRUE}  

 
An expression-relation determines a partial order on the extended-unibase of the 1st order 
language extended by the domain. 
 
Definition 4.8 - The partial order <For a designation with expression-relation R, the 
partial order <R is the transitive closure of the immediate ordering <'R between 
d-expressions : 
• E1 <'R E2 if E2 ∈ expression-relation(E1) 
• r(t1, ... ,tn) <'R r(s1, ... ,sn) if there exists j such that tj <'R sj, and for all i ≠ j si = ti. 
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The partial order is used to determine that one d-expression is larger or smaller than 
another. 

Example 
In the example designation above : 
 alive(spouse_of(homer)) <'R  
  alive(spouse_of(mr_s)) <'R  
   alive(mrs_s) <'R  
    alive(person) <'R  
     TRUE 
Thus alive(spouse_of(homer)) < R TRUE. 

 
A domain element is maximal if there is no domain element larger than it and minimal if 
there is no domain element smaller than it. Similarly, an extended-unibase element is 
maximal if all the domain elements in it are maximal and minimal if all the domain 
elements in it are minimal. 

Example 
In the designation above : 
 mr_s is a minimal domain element, 
 person is a maximal domain element, 
 alive(spouse_of(mr_s)) is a minimal extended-unibase element, and 
 alive(spouse_of(person)) is a maximal extended-unibase element. 

 
Two properties of an expression-relation are also defined so that appropriate restrictions on 
the nature of a designation can be enforced. 
 
Definition 4.9 - Redundancy 
An expression-relation R is non-redundant if for every extended-unibase element E1 there 
exists at most one d-expression E2 such that E1 ≤R E2 and expression-relation(E2) is 
defined. 
 
Definition 4.10 - Consistency 
A redundant expression-relation R is consistent if for each extended-unibase element E1 
and every d-expression E2 such that E1 ≤R E2, every E2 is mapped to the same domain 
element. 
 
A non-redundant expression-relation is always consistent and an inconsistent 
expression-relation is necessarily redundant. A redundant but consistent 
expression-relation wastes space and computational effort. An inconsistent 
expression-relation leads to semantic inconsistencies. Consistency, in conjunction with the 
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mapping (as opposed to the more general relation between domain elements) of 
d-expressions to the domain, ensures that no unibase element is interpreted as multiple, 
semantically disjoint, domain elements. Henceforth, unless otherwise noted, all 
expression-relations are non-redundant. 
 
A designation with a non-redundant expression-relation supplies semantic information. As 
the basic semantic information supplied by designations is different from that supplied by 
standard SRI structures, interpretation using designations is equally different. 
 
Definition 4.11 - Interpretation using designations 
For a designation consisting of domain D and expression-relation R, the semantic 
information supplied is : 
• The domain of the designation. 
• A unibase-relation, which for a unibase-element U produces all possible interpretation 

values d: U <R d, d ∈ D. 
The unibase-relation extends naturally to an extended-unibase-relation, for the language 
being considered extended by the domain of the designation : 
• The extended-unibase-relation, which for an extended-unibase-element E produces all 

the interpretation values d: E <R d, d ∈ D. 
 
In a designation with a non-redundant expression-relation, a unibase element may be 
interpreted as multiple domain elements. The set of interpretation values contains totally 
ordered sequences of domain elements. Some domain elements may appear in more than 
one sequence. If the designation is specified in an appropriate manner (see section 4.7.2), it 
is semantically acceptable for a unibase element to be related to multiple domain elements 
in this manner. If the expression-relation is inconsistent, however, the total ordering may 
be lost as a result of an argument of a unibase element being interpreted as multiple, 
semantically disjoint, domain elements. 

4.4.1. Expressiveness and Space Efficiency 

As designations are SRI structures, they inherit the representational adequacy of such 
interpretive structures. Designations are more space efficient than standard SRI structures, 
due to the use of property inheritance. Although the domain of a designation is typically 
larger than an unordered domain, the typical number of relation elements that have to be 
stored is significantly smaller. 
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The union and intersection properties required of interpretive structures with ordered 
domains, described in section 4.2.4, hold for designations. Here the requirement is 
extended to be in terms of unibase elements, rather than universe elements. 
 
Theorem 4.12 - The Union and Intersection Properties for Designations 
For a given designation, let U1, ... ,Un be the sets of unibase elements that are interpreted 
as the domain elements d1, ... ,dn respectively. Then it is possible to have a domain 
element d∪ such that the the union of U1, ... ,Un is the set of unibase elements that are 
interpreted as d∪. Similarly, it is possible to have a domain element d∩ such that the 
intersection of U1, ... ,Un is the set of unibase elements that are interpreted as d∩. 
 
• Add d∪ as a new domain element. Define expression-relation to relate each of d1, ... ,dn 

to d∪. The set of unibase elements interpreted as d∪ is the union of U1, ... ,Un. As d∪ 
relates to no domain elements, expression-relation remains acyclic. As no 
expression-relations for d-expressions containing d∪ are defined, non-redundancy is 
maintained. 

• For a unibase element that is interpreted as at least one domain element, there is a 
single smallest domain element that is an interpretation value of the unibase element. 
The unibase element can only be interpreted as more than one domain element by 
virtue of that smallest domain element being smaller than other domain elements. Thus 
if the intersection of U1, ... ,Un is non-empty, there exists a smallest domain element 
d∩, smaller than each of d1, ... ,dn, that is the interpretation value of the intersection of 
U1, ... ,Un. 

QED 

4.5. The Interpretation Process using Designations 

Definition 4.11 does not immediately indicate that interpretation using designations is a 
recursive descent process. An alternative definition of the unibase-relation, that makes this 
aspect more clear and facilitates algorithmic implementation, is as follows. Here 
expression-relation+ denotes one or more applications of expression-relation. 
• A unibase-relation, which for a unibase-element p(e1, ... ,en) produces all possible 

interpretation values expression-relation+(p(d1, ... ,dn)), where each di is an 
interpretation value of ei. Note that because the expression-relation is non-redundant, 
there will be at most one combination of dis such that expression-relation(p(d1, ... ,dn)) 
is defined. 

This definition of the unibase-relation also extends naturally to an 
extended-unibase-relation, exactly the same as the unibase-relation. If a unibase element 
has been partially interpreted using the unibase-relation, then the interpretation process 
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may be completed using the extended-unibase-relation, with the same result as if the 
unibase-relation itself had been used. 

Example 
An example of interpreting a unibase element using the designation in section 4.4, 
but following this definition, is as follows. This process should be compared with the 
example illustrating the partial order <R. 
To interpret alive(spouse_of(homer)), 
 Interpret spouse_of(homer). To do this, 
  Interpret homer. 
   homer R∅ mr_s, and mr_s R∅ person, so  

  homer is interpreted as mr_s and person. 
  spouse_of(mr_s)) R∅ mrs_s, and mrs_s R∅ person, so  

 spouse_of(homer) is interpreted as mrs_s and person. 
 alive(person) R∅ TRUE, so  

alive(spouse_of(homer)) is interpreted as TRUE. 
Note that R, being non-redundant, is not defined for spouse_of(person) or 
alive(mrs_s). 

The Domain Based Approach and Single Level Expansion 
The domain based approach to semantic checking generalises naturally to the designation 
scenario. Here the aim is to determine if an expression has a ground universe instance that 
is interpreted as a given domain element. When using a designation to interpret a ground 
universe instance of an expression (a unibase element), the universe elements used to 
instantiate the variables in the expression are recursively replaced by one or more of their 
interpretation values (domain elements), to form ground domain instances of the 
expression (extended-unibase elements). The replacement has two phases. Firstly each 
universe element is replaced by its smallest interpretation value (a domain element) and 
then, in the process of relating the encompassing d-expression to its smallest interpretation 
value, the domain element may be replaced by a larger domain element. The 
extended-unibase elements thus formed all have the same interpretation values as the 
original unibase element. The extended-unibase elements represent the unibase element in 
terms of interpretation.  The instantiation and interpretation process can be short circuited 
by directly instantiating variables in the expression with domain elements, and interpreting 
the resultant extended-unibase element using the extended-unibase-relation. From the 
point of view of a semantic guidance system, if an expression has a ground domain 
instance that is interpreted as a given domain element, then the expression has at least one 
(possibly infinitely many) ground universe instances that are interpreted as that domain 
element. Soundness is again predicated on every domain element being the interpretation 
value of at least one universe element. 
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The restricted SLE process for semantic checking can also be transferred to the 
designation scenario. Here the SLE process is restricted so as to determine if an expression 
has a ground domain instance that is interpreted as a given domain element. To deal with 
the totally ordered sequences of interpretation values, the restricted SLE process is slightly 
modified. In each step, either (i) the domain element under consideration is identical to the 
corresponding subexpression in the unibase element (the subexpression is the same 
domain element), in which case that branch of the expansion is stopped, (ii) the 
non-minimal domain element under consideration single level expands to another smaller 
domain element, (iii) the domain element under consideration expands to a d-expression 
whose principal symbol and arity match those of the corresponding subexpression in the 
original expression, or (iv) the domain element under consideration is minimal and the 
subexpression in the original expression is an uninstantiated variable, in which case the 
variable is instantiated to the domain element and that branch of the expansion is stopped. 
Options (ii) and (iii) may have several possibilities, each of which needs to be considered. 
If each branch of the process stops, then the resultant ground domain instance of the 
expression is interpreted as the given domain element. The ground domain instance 
represents ground universe instances of the expression, that are also interpreted as the 
given domain element. 
 
Restrictions (ii) and (iv) of this restricted SLE process prevent a variable from being 
instantiated to a non-minimal domain element. This restriction is necessary only if the 
variable occurs more than once in the expression. If a variable that occurs more than once 
is instantiated to a non-minimal domain element, the instantiation may prevent a match 
between another occurrence of the variable (now instantiated to the non-minimal domain 
element) and a smaller domain element. For this reason non-minimal domain elements 
may not generally be used to instantiate variables. (Walther [1983, p. 886] handles this 
situation by the use of a "weakening" rule, which is also discussed by Cohn [1987, p. 135], 
but is there unnamed.) 

4.6. Using Designations 

4.6.1 Implementing Interpretations 

Designations provide an extremely flexible interpretive structure in which to store 
semantic information. As previously noted, the nature of designations may be restricted so 
that the stored semantic information conforms to predetermined standards. This is the case 
when designations are used for truth value or sort value interpretations. 
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Truth Value Interpretations 
A designation with domain D and expression-relation R may be used for truth value 
interpretation : 
• TRUE, FALSE ∈ D 
• R(P) ∈ {TRUE,FALSE} if P is a d-predicate 
• R(F) ∉ {TRUE,FALSE} if F is a d-function 
• R(r(d1, ... ,dn)) is undefined if any di ∈ {TRUE,FALSE} 

• R must be defined so that every unibase element is interpreted as exactly one domain 
element. 

Sort Value Interpretation 
A designation with domain D and expression-relation R may be used for polymorphic sort 
value interpretation : 
• TRUE, FALSE, UNKNOWN_TRUTH_VALUE ∈ D 
• R(P) ∈ {TRUE,FALSE,UNKNOWN_TRUTH_VALUE} or is undefined, if P is a 

d-predicate 
• R(F) ∉ {TRUE,FALSE,UNKNOWN_TRUTH_VALUE} if F is a d-function 
• R(r(d1, ... ,dn)) is undefined if any di ∈ {TRUE, FALSE, 

UNKNOWN_TRUTH_VALUE} 

4.6.2. Semantic Guidance 

Given a designation, the SLE process may be used for any semantic checking required. 
Thus almost all of the semantic guidance systems described in chapter 3 can use 
designations. 
 
The two semantic guidance systems that cannot use designations directly are the centre 
chain instance and compile time systems. This is because the SLE process does not 
immediately generate ground universe instances of atoms, but rather indicates their 
existence. There are two possible solutions to this problem (but both complicate 
implementation), as follows. (i) Modify the SLE process so that domain elements, which 
are in a position to instantiate variables, are expanded to universe elements before 
instantiation takes place. All possible expansions to universe elements would have to be 
considered. (ii) Permit the instantiation of variables with domain elements and modify the 
unification algorithm used by the host deduction system so that the domain elements are 
further expanded in unification [Sutcliffe, 1987]. In the latter approach special care must 
be taken to ensure that common occurrences of domain elements, which arise from the 
instantiation of a variable that has multiple occurrences in a clause, are expanded 
equivalently in unification. Expanding common occurrences of a domain element 
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differently corresponds to one or more equality deduction operations, which must be 
justified later. Such variations may prove to be useful, similar to relation-matching [Manna 
& Waldinger, 1986] and the loose matching ideas of Bledsoe [1986]. This final 
complication does not arise if no variables have multiple occurrences, e.g., if clauses are 
linearised. As domain elements may represent infinite universe elements, a stronger form 
of 1st order reasoning is implemented by instantiating variables with domain elements. 

4.6.3. Theory Resolution 

The form of theory resolution described in section 3.8 may be implemented using a 
designation to express the theory. To obtain appropriate ground universe instances of the 
literals being theory resolved upon, the SLE process has to be modified as described in 
section 4.6.2. The alternative of instantiating variables with domain elements and further 
expanding in unification can also be adopted in theory resolution. Again both approaches 
lead to complications in implementation. However, in theory resolution there is a third 
option - (iii) Consider the domain elements to be functors of the 1st order language in use 
and allow them to remain in theory resolvants. This approach has been adopted in other 
theory resolution based systems, e.g., CLP(R) [Jaffar & Lassez, 1987], in which new 
numeric functors are introduced as required. Literals containing domain elements (from 
the instantiation of variables in literals that have previously been theory resolved upon) 
can only be resolved upon in a normal manner if they match with a variable in unification. 
Otherwise such literals can only be theory resolved upon. 

4.7. Building Designations 

The correct specification and maintenance of semantic information stored in SRI structures 
has been noted to be a hard task. The smaller size of designations makes completed 
designations easier to comprehend and consistently modify, but the difficulty of ensuring 
that all the necessary relation elements have been supplied and stored, remains. In this 
research, this difficulty has been overcome by providing the user with a mechanical 
specification interface. This interface examines the 1st order language which is to be 
interpreted, and queries the user for semantic information as required. The consideration of 
this pragmatic aspect of semantic guidance is useful. 
 
When building a designation for the semantic guidance of a deduction from an input set, it 
is the language implicit in the input set that needs to be interpreted. If the designation is 
built for the implicit language then each domain element is the interpretation value of 
elements of the Herbrand universe or Herbrand base of the clauses. A designation based on 
the implicit language is usually appropriate for semantic guidance. 
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Algorithm 4.13, below, builds a designation with domain D and expression-relation R, for 
a given 1st order language. The general approach of the algorithm is to generate maximal 
d-expressions (line M4) and to obtain the images for such d-expressions (line B9). It is 
important that the d-expressions generated at line M4 remain maximal, even in the 
completed designation. This permits the expression-relation to be defined for such 
d-expressions without fear of a larger d-expression coming into existence. If the 
expression-relation is defined for a given d-expression and it is subsequently also defined 
for a larger d-expression, then the designation will be redundant. To ensure that the 
d-expressions generated remain maximal, the expression-relation is defined for new 
domain elements immediately after their addition to the domain (lines B12 to B14). This 
makes it impossible for non-maximal d-expressions to be generated at line M4, at any 
iteration of the repeat loop. The expression-relation is also not defined for d-expressions 
that can inherit their expression-relationships (line B3). The implementation of 
GetValuesFromUser, called at line B9, must ensure that (i) d-expressions map to a 
single value and (ii) the expression-relation image values obtained for a domain element 
do not cause the expression-relation to be cyclic. 
 
The expression-relation may be undefined for a given d-expression. A d-expression may 
also be expanded to a set of smaller d-expressions so that the expression-relation can be 
defined for these smaller d-expressions. The choice of smaller d-expressions is such that 
every d-expression that would have inherited its expression-relationship from the first 
larger d-expression, now is one of, or inherits from one of, the smaller d-expressions. To 
implement the expansion of a d-expression into a set of smaller d-expressions, the larger 
d-expression is mapped to the special value expand(p1, ... ,pn). The arguments 
p1, ... ,pn are integers which indicate which arguments of the larger d-expression 
should be replaced by smaller domain elements. The arguments in the specified positions 
are single level expanded in all possible ways (line C3), to form the set of smaller 
d-expressions. The expression-relation is then defined for these smaller d-expressions 
(line C3). The expression-relation is not defined for the larger d-expression and hence 
none of the smaller d-expressions is in danger of inheriting another expression-relationship 
from it. Whenever smaller d-expressions are generated by the expansion process, it is 
possible that one or more of them may inherit an expression-relationship. The 
expression-relation is not redefined for such d-expressions (line B3). 
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Algorithm 4.13 - Building Designations 
M1 Procedure Main 
M2 D:={} 
M3 Repeat 
M4  Build({r(e1, ... ,en) | r is a functor or predicate 

symbol and each ei is a maximal domain element}) 
M5  Until no new domain elements are found 
M6 Remove expression-relation elements to 'expand' values 
 
B1 Procedure Build(Instances) : 
B2 For each r(e1, ... ,en) ∈ Instances do 
B3  If there is no d-expression larger than 

r(e1, ... ,en) for which R is defined then 
B4   If R(r(e1, ... ,en)) is known then 
B5    CheckExpand(r(e1, ... ,en),R(r(e1, ... ,en))) 
B6   Else If there exists a d-expression smaller than 

r(e1, ... ,en) for which either (i) R is defined or (ii) 
there exists a d-expression larger than it for which R 
is defined then 

B7    
 Store(r(e1, ... ,en) R∅ expand(GetPositionsFromUser))  

B8     CheckExpand(r(e1, ... ,en), 
 R(r(e1, ... ,en))) 

B9    Else V:=GetValuesFromUser(r(e1, ... ,en)) 
B10     For each d ∈ V 
B11      Store(r(e1, ... ,en) R∅ d)  

B12      If d is a new domain element then 
B13       D := D ∪ {d} 
B14       Build({d}) 
B15      Else CheckExpand(r(e1, ... ,en),d) 
 
C1 Procedure CheckExpand(r(e1, ... ,en),Mapping) 
C2 If Mapping = expand(Expansion_positions) then 
C3  Build({r(d1, ... ,dn) | if i ∈ Expansion_positions 

and ei is not minimal then di is a single level expansion 
of ei, else di is ei}) 

 
Notes 
• GetPositionsFromUser gets a non-empty set of integers from the user. 
• GetValuesFromUser gets a set (possibly empty) of domain elements from the user.  
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There are two situations in which a d-expression may be expanded. Firstly, the user may 
decide to do this (line B9). Secondly, expansion may be necessary to maintain the 
non-redundancy of the designation. The latter situation arises when there exists a 
d-expression, smaller than the current target d-expression (selected at line B2), which 
already has or inherits an expression-relationship (line B6). If such a smaller d-expression 
exists it is necessary to expand the target d-expression (line B7) to prevent the smaller 
d-expression having or inheriting multiple expression-relationships. In this situation the 
GetPositionsFromUser routine prompts the user for argument positions to be 
expanded. GetPositionsFromUser uses the target d-expression to suggest to the user 
which argument positions need to be single level expanded. To do this, all d-expressions 
that are smaller than the target d-expression, and which have or inherit an 
expression-relationship, are examined. If the Nth argument in any such smaller 
d-expression is smaller than the corresponding argument in the target d-expression, then 
the Nth position is suggested for expansion. The rationale for this recommendation is that 
if none of those positions are single level expanded, only d-expressions that must be 
further expanded will be produced. 
 
In each iteration of the repeat loop new domain elements, smaller than existing ones, may 
be added to the domain. Depending on the point at which they are added it is possible for 
d-expressions, that have such domain elements as arguments, to neither have nor inherit an 
expression-relationship. Thus the repeat loop continues until no new domain elements are 
added (line M5). At each iteration of the repeat loop it is necessary to restart the 
examination of d-expressions from maximal ones so that existing expression-relation 
elements, in particular those for which the image value is expand( ... ), are accounted 
for. 
 

Example 
A trace of algorithm 4.13, building a designation of the 1st order language L[S] 
described in section 1.4.1, is listed in appendix 1, section A1.1. The line numbers 
from algorithm 4.13 are shown and the trace is indented to the recursion level. 

4.7.1. Non-redundancy, Soundness and Completeness 

It is important that the designations built using algorithm 4.13 should be suitable for use in 
a semantic guidance system, using the SLE process for semantic checking. The properties 
required are as follows. (i) The designation must be non-redundant. (ii) Every domain 
element must be an interpretation value of at least one universe element. (iii) No unibase 
element should be precluded from having interpretation values. These properties are 
assured by the following theorems. 
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Theorem 4.14 - Building Non-Redundant Designations 
Designations built by algorithm 4.13 are non-redundant. 
 
The proof is covered in the discussion above, the critical points being : 
• All d-expressions generated at line M4 remain maximal. 
• The expression-relation is not defined for d-expressions that already have or inherit an 

expression-relationship (line B3). 
• Target d-expressions are broken down whenever a smaller d-expression already has or 

inherits an expression-relationship (line B6). 
QED 
 
Theorem 4.15 - Building Sound DesignationsEvery element of a domain built by 
algorithm 4.13 is an interpretation value of at least one unibase element. 
 
The proof is by induction on the size of the domain. If the domain contains the single 
element d, it must have been obtained at line B9 as the image of a 0 arity functor r. Then 
d is an interpretation value of r. This establishes a base case. Assume that if the size of the 
domain is less than n then every domain element is the interpretation value at least one 
unibase element. Then if the size of the domain is n, let c be the latest element added to 
the domain. The element c could have been obtained in one of three ways. (i) c was 
obtained as in the base case and the same argument applies. (ii) c was obtained at line B9 
as the image of a d-expression r(e1, ... ,en). Each ei is an element of the domain 
as it existed at the time of the creation of r(e1, ... ,en) at line M4. At that time the 
size of the domain was less than n. So by the induction hypothesis each ei is an 
interpretation value at least one universe element, say ti. Then c is an interpretation value 
of r(t1, ... ,tn). (iii) c was obtained at line B9 as an image element of a domain 
element d. The element d was added to the domain at line B13. At the time when d was 
added to the domain, the size of the domain was less than n. By the induction hypothesis d 
is an interpretation value of at least one universe element, say t. Then c is an 
interpretation value of t. QED 
 
Theorem 4.16 - Building Complete Designations 
No unibase element is precluded from having interpretation values in a designation built 
using algorithm 4.13. 
 
To show that no unibase element is precluded from having interpretation values, it is 
necessary to show that for every unibase element, a d-expression equal to or larger than it 
is at some point an element of the argument to Build. The d-expression represents the 
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unibase element in terms of interpretation. The proof is by induction on the depth of 
principal symbol nesting in unibase elements. 
 
At the first iteration of the repeat loop, constants and propositional symbols, which are 
unibase elements (and also d-expressions) of depth 0, are elements of the argument to 
Build. This establishes a base case. Assume that for unibase elements of depth less than 
n, d-expressions equal to or larger than them have have been elements of the argument to 
Build. Let r(t1, ... ,tn) be a unibase element of depth n. Each ti is of depth less 
than n, so by the induction hypothesis a d-expression equal to or larger than each ti has 
been an element of the argument to Build. Let d1, ... ,dn be the maximal 
interpretation values of the ti, if they exist. If any di does not exist then 
r(t1, ... ,tn) is necessarily not interpreted and the theorem is complete. Otherwise, 
in the iteration of the repeat loop after the last di is added to the domain, the d-expression 
r(d1, ... ,dn) is an element of the argument to Build. The d-expression 
r(d1, ... ,dn) is equal to or larger than r(t1, ... ,tn). Thus for every unibase 
element, a d-expression equal to or larger than it is at some point an element of the 
argument to Build. Therefore no unibase element is precluded from having interpretation 
values in a designation built using algorithm 4.13. QED 

4.7.2. Pragmatics of building designations 

The specification of SRI structures has been seen to be a complex and for the user, 
tiresome task. The interactive algorithm given above significantly simplifies the task, 
absolving the user of the responsibility of keeping track of domain elements and 
expression-relation elements. Experience using an implementation of the algorithm has 
lead to some refinements which further simplify the task of building designations. 

General Issues 
There are a few general observations relevant to the task of building a designation, as 
follows. 
1. Mapping a d-expression to a non-minimal domain element, i.e., one that represents an 

equivalence class, may prevent its effective use. It will probably be necessary to 
define or inherit expression-relationships for d-expressions containing such a 
non-minimal domain element. (These expression-relationships are required for 
interpreting unibase elements that contain subexpressions whose smallest 
interpretation value is the non-minimal domain element.) Then the 
expression-relationships for smaller d-expressions, formed by replacing the 
non-minimal domain element by smaller domain elements, must be inherited. 
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Therefore d-expressions that map to the smaller domain elements could map directly 
to the non-minimal domain element and have the same effect. 

2. In truth value and sort value interpretations, the range of the expression-relation for 
d-predicates is disjoint from that for d-functions. Further, the expression-relation is 
undefined for d-expressions with truth value arguments. It is therefore possible to 
phase the building of a designation for truth value or sort value interpretation. The first 
phase defines the expression-relation for d-functions, at the same time creating 
non-truth value domain elements. The second phase defines the expression-relation for 
d-predicates, creating truth value domain elements. This phased building process 
allows the user to deal with the two issues separately. 

3. It has been noted that algorithm 4.13 builds non-redundant expression-relations, hence 
preventing a unibase element from being interpreted as multiple, semantically disjoint, 
domain elements. This does not, however, prevent the user from relating a domain 
element to multiple domain elements which are unrelated in the 'real world' semantics 
modelled by the designation. If this is done then unibase elements that are interpreted 
as the first domain element are also interpreted as those multiple, semantically 
unrelated, domain elements. This is undesirable. It is the user's responsibility to ensure 
that a domain element relates only to other domain elements which, in a semantic 
sense, encompass it. 

Standard Domain Elements and Automatic Expression-relation Definition 
In the building of designations for truth value or sort value interpretation, several domain 
elements regularly arise, either out of necessity or convenience. These standard domain 
elements have standard uses. It is possible to tune the designation building process to take 
this into account. From the users point of view, a particularly useful modification is the 
possibility of automatically defining the expression-relation. Automatic definition is also 
possible in cases besides those relating to standard domain elements. 
 
Three standard domain elements are the truth values TRUE, FALSE and 
UNKNOWN_TRUTH_VALUE, typically mapped to by d-predicates. 
UNKNOWN_TRUTH_VALUE is a truth value that means one of TRUE or FALSE (but 
not both). UNKNOWN_TRUTH_VALUE should not be confused with the equivalence 
class of truth values, which would be represented by a 'class' domain element, such as 
TRUTH_VALUES, to which all of TRUE, FALSE and UNKNOWN_TRUTH_VALUE 
would be related. In both truth value and sort value interpretations, the expression-relation 
is not defined for d-expressions which have any of these domain elements as arguments. 
Such domain elements can therefore be ignored when building the maximal d-expressions 
in line M4 of  algorithm 4.13. 
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As well as the UNKNOWN_TRUTH_VALUE, it is sometimes necessary to define an 
UNKNOWN_DOMAIN_ELEMENT that is mapped to by d-functions. The 
UNKNOWN_DOMAIN_ELEMENT represents a domain element whose exact identity is 
not known. The definition of an expression-relation may be automated for d-expressions 
which have the UNKNOWN_DOMAIN_ELEMENT as an argument. Any d-functions 
containing UNKNOWN_DOMAIN_ELEMENT map to 
UNKNOWN_DOMAIN_ELEMENT and d-predicates containing 
UNKNOWN_DOMAIN_ELEMENT map to UNKNOWN_TRUTH_VALUE. 
 
Equality is often used in the 1st order formulation of problems. The definition of an 
expression-relation for equality d-predicates may be automated, under the assumption that 
all universe elements that are interpreted as the same minimal domain element are equal. 
To achieve this (i) equality d-predicates with the same non-minimal domain element in 
both argument positions are automatically mapped to the value expand(1,2). This 
causes the domain-element to expand to smaller, and eventually minimal, domain 
elements, (ii) equality d-predicates with the same minimal domain element in both 
argument positions are automatically mapped to TRUE, (iii) all other equality d-predicates 
are automatically mapped to FALSE. 
 
As indicated in section 3.1, sort-base elements are interpreted as one of TRUE or FALSE. 
The definition of an expression-relation may be automated for sort-d-predicates. If the 
predicate symbol and argument of a sort-d-predicate are the same domain element, then 
the sort-d-predicate is mapped to TRUE. If the the predicate symbol is smaller than the 
argument, or there is a domain element which is smaller than both the predicate symbol 
and the argument, then the sort-d-predicate is mapped to expand(1). All other 
sort-d-predicates are mapped to FALSE. Note that the case where the argument is smaller 
than the predicate symbol does not arise. 
 
In some interpretive structures, e.g., the truth value interpretations defined by 
Wang [1985], a standard domain element is the 'meaningless' domain element/truth value 
("unknown" in [Wang, 1985, p. 1203]). Such a domain element/truth value is used as the 
image of d-expressions which are semantically meaningless. It is necessary to have such a 
domain element in some interpretive structures because the universe- and base-relations 
have to be complete functions. In designations there is no need for such a domain 
element/truth value. Rather the expression-relation is simply undefined for meaningless 
d-expressions. If such a domain element were to be used, then the definition of the 
expression-relation could be automated for d-expressions that have the 'meaningless' value 
as an argument. Such d-expressions would be automatically be mapped to the 
'meaningless' domain element.  



Designations Page 113 

Rules of Thumb 
This last section relates some handy rules of thumb which have been found to be effective 
when using algorithm 4.13. 
• If a d-expression requires multiple argument positions to be expanded, then the 

positions should be expanded one at a time. If all the positions are expanded together, 
then all the d-expressions formed by using all combinations of expanded arguments 
must be considered. If the argument positions are expanded one at a time, this gives the 
opportunity to map larger d-expressions to domain elements. 

• To obtain the maximum effect from a semantic guidance system, the designation being 
used should store as much semantic information as possible. This is achieved by 
specifying finely grained equivalence classes and by defining the expression-relation 
for smaller rather than larger d-expressions. This leads to a larger designation.  

• In a truth value deletion system, a model that maximises the number of TRUE ground 
instances of non-discarded literals in input clauses, will be the most effective. This 
conclusion is also reached for HLR : "the best models for a given clause set are those 
which make as many clauses true as possible" [Sandford, 1980, p. 203]. 

• To obtain maximum space saving from using a designation, coarsely grained 
equivalence classes should be specified and the expression-relation should be defined 
for larger rather than smaller d-expressions. 

• If the 1st order language in use has no constants, dummy domain elements have to be 
introduced to be used in the SLE process. 

4.7.3. Flattening Designations 

A designation, in which no d-expression maps to a non-minimal domain element, may be 
mechanically converted to designation with an unordered domain. The domain of the 
flattened designation has the minimal domain elements of the original designation as its 
domain elements. Its expression-relation is obtained by (i) selecting from the original 
designation those expression-relation elements that map d-expressions to (minimal) 
domain elements and then (ii) replacing the d-expressions by minimal d-expressions, that 
are smaller or equal in <R, in all possible ways. The relationships between unibase 
elements and minimal domain elements are preserved by this process. 
 
Theorem 4.17 - The Soundness and Completeness of Flattening 
A minimal domain element is the interpretation value of a unibase element in a flattened 
designation iff it is an interpretation value of the unibase element in the original 
designation (in which no d-expression maps to a non-minimal domain element). 
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Each unibase element is interpreted as a minimal domain element in the original 
designation. There are three possible cases. (i) The unibase element is a functor of arity 0, 
in which case the expression-relation maps the unibase element to the minimal domain 
element. In the flattened designation this expression-relation element is retained. (ii) The 
unibase element is interpreted as the minimal domain element because it is smaller than a 
minimal d-expression that maps to the minimal domain element. In the flattened 
designation this expression-relation element is also retained. (iii) The unibase element is 
interpreted as the minimal domain element because it is smaller than a non-minimal 
d-expression that maps to the minimal domain element. In this case there exists a minimal 
d-expression that is larger than the unibase element and smaller than the non-minimal 
d-expression. In the flattening process an expression-relation element, mapping the 
minimal d-expression to the minimal domain element, forms part of the replacement for 
the expression-relation element mapping the non-minimal d-expression to the minimal 
domain element. Then the unibase element is still interpreted as the minimal domain 
element, now because the unibase element is smaller than the minimal d-expression. QED 
 
The SLE process does semantic checking slightly faster in designations with unordered 
domains, as an ordered domain sometimes requires the expansion of a domain element to 
smaller domain elements. Flattening, however, negates two of the basic advantages of 
designations. (i) Space efficiency is lost. Although a flattened designation may have a 
smaller domain than the original, it typically will have many more expression-relation 
elements. (ii) The flattened designation is more complex than the original, thus making it 
more difficult to comprehend and consistently modify. There is thus a compromise 
between computational efficiency on one hand and space efficiency and comprehensibility 
on the other. Experience with using designations indicates that the increased computational 
efficiency does not warrant the losses incurred. 

4.8. Conclusion 

Designations are an improved SRI structure for interpreting 1st order languages. They 
provide a pragmatic solution to problems which are often finessed in the context of 
semantic guidance systems. Designations are specific to neither problem domain nor 
semantic information type. Designations thus have a broad range of applicability. In 
particular, designations may be used to store both truth value and sort value information 
for any problem domain. The supply of semantic information from designations is well 
suited to use by semantic guidance systems, and may also be used in a form of theory 
resolution. 
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Along the four criterion axes for measuring the quality of interpretive structures, 
designations provide the following results. 
• Expressiveness : As designations are SRI structures, they inherit the expressiveness of 

such structures. Semantic information is stored precisely in designations, with no 
defaults taken (as, for example, in partition settings) or loss of information in the 
interpretation process (e.g., use of false permissiveness). The use of a relation between 
domain elements enhances the expressiveness of designations. It permits unibase 
elements to be interpreted as multiple, totally ordered sequences of, domain elements. 
This in turn allows direct specification of interpretations whose domains are naturally 
ordered. The domain ordering imposed on the domains of designations has the desirable 
union and intersection properties. 

 
 Like most implementable interpretive structures, designations can store semantic 

information only for interpretations with finite domains. Both Plaisted [1984] and 
Wang [1985] have noted the advantages of an interpretive structure with a finite 
domain, and both have proposed mechanisms for dealing with infinite domains. No 
mechanism for dealing with infinite domains has been specifically designed for 
designations, but both Plaisted's and Wang's mechanisms could be used . 

• Space efficiency : Designations store semantic information in a space efficient manner. 
This is achieved by the use of property inheritance. Designations thus overcome the 
major weakness of SRI structures with unordered domains. The smaller size of 
designations makes them easy to comprehend and consistently modify. 

• Semantic checking capability : The SLE process, which can be used with designations, 
is a computationally effective semantic checking mechanism. Its formalisation in this 
thesis is beneficial. The SLE process avoids the search required by instantiation and 
interpretation approaches, the size of which is proportional to both the number of 
distinct variables in the unibase element being interpreted and the size of the set of 
instantiating elements (typically infinite when instantiating from the universe). 
Increased computational effectiveness may be obtained from the SLE process, at the 
expense of increased space requirements and complexity, by flattening designations. 

• Specifiability : The specification of semantic information to be stored in a designation 
has been made into a mechanical process by supplying an interactive algorithm. The 
well organised 'question and answer' format of the algorithm is very effective for 
obtaining the required semantic information from users. Some semantic information 
can be specified automatically in the algorithm. The algorithm ensures that the 
designation built is sound and complete. It appears that this is the first time that this 
pragmatic aspect of specifying semantic information has been this thoroughly 
considered. 

 



Page 116 Designations 

The work reported in this chapter means that an appropriate interpretive structure is now 
available for use in a semantic guidance system, used to guide a host deduction system. 
The next chapter describes such a combination. 
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Chapter Five 

Semantically Guided Linear Deduction 

 

This chapter describes the Semantically Guided Linear Deduction system (SGLD). SGLD 
is a semantically guided implementation of GLD. The implementation, in Prolog, 
combines GLD with a semantic guidance system. Designations are used to store the 
semantic information used. SGLD has some features that are not specified in GLD. These 
features improve the real time performance of the implemented system without changing 
the structure of the deductions or the search space. The performance of SGLD has been 
investigated. 
 
This chapter contains : 
1. A description of the overall structure of SGLD. 
2. A description of SGLD's semantic guidance system and related features. 
3. A table illustrating the effects of using different combinations of search strategy and 

designation in SGLD. 
4. Performance results for a range of test problems and discussion thereof. 
5. Concluding comments. 

5.1. The Overall Structure 

SGLD is a semantically guided implementation of GLD. Its semantic guidance system is a 
combined system, incorporating the rightwards subchain system, sort value deletion and a 
FALSE-preference strategy for centre chains. Designations are used to store the semantic 
information used. The significance of SGLD is that it is (apparently) the first implemented 
linear deduction system to employ semantic guidance. The only other linear system that 
can use semantic information is SLM [Brown, 1974]. The only known implementation of 
SLM [Tabada, 1992] does not exploit that facility. 
 
SGLD has been implemented in Prolog. The implementation avoids the use of language 
features that are specific to a particular Prolog interpreter, thus making it readily portable. 
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The original implementation in Arity Prolog [Arity, 1988] has been easily ported to both 
muProlog [Naish, 1985] and SICStus Prolog [Carlsson & Widen, 1990]. 

5.1.1. Deduction Data Structures & Code 

A central issue in the implementation of SGLD is its representation of input and centre 
chains. The representation is a list of Prolog terms, each of which has a, b or c as its 
functor. Each such term is called a link of the chain and, depending on its functor, is called 
an A-, B- or C-link. The first argument of each link is a literal of the chain, and the functor 
of the link indicates the class of the literal. A literal is represented by a unary Prolog term 
whose argument is the atom of the literal. The functor of such a term is either ++ or --, 
indicating the sign of the literal. These two functors are defined as prefix Prolog operators. 
Atoms are simply Prolog terms. Information associated with each literal is stored in its 
link. A-links contain an expected truth value and a scope value. B-links contain an 
expected truth value. C-links contain an expected truth value and a list of scope A-literals. 
This encapsulation of information in links permits easy manipulation of a literal and its 
associated information. 

Example 
The literal ~lungs_ok(P) is represented by the Prolog term --lungs_ok(P). 
An example of an A-link is a(--lungs_ok(P),any,0). 

 
A problem is presented to SGLD as set of input clauses. The input clauses are supplied as 
Prolog facts in a text file. The arguments of an input clause fact are (i) the clause's name, 
(ii) its status, one of theorem, axiom, or hypothesis and (iii) a list of the constituent 
literals. SGLD converts input clauses into input chains, which are stored as facts in the 
Prolog database. The arguments of an input chain fact are (i) the number of links in the 
chain (this improves the performance of unit extension and subsumption checking), (ii) the 
chain's name, (iii) a list of the constituent links, (iv) the chain's status, one of theorem, 
axiom, hypothesis, or lemma and (v) the origin of the chain. If an input chain is 
converted from an input clause then the origin is input_clause. If an input chain is 
formed in an A-truncation then its origin is a list of the deduction steps that led to its 
formation, and its status is lemma. To convert an input clause to an input chain, each 
literal of the input clause is placed into a B-link. The expected truth value in each such 
B-link is FALSE if the B-literal is a negative sort-literal, TRUE if the B-literal is a positive 
sort-literal, otherwise "any". The any value means any one of TRUE, FALSE or 
UNKNOWN_TRUTH_VALUE. These expected truth values are updated after 
linear-input subset analysis. The chain name and status are copied to the input chain from 
the corresponding fields in the input clause. No reordering of literals or clauses is 
performed in the conversion from input clauses to input chains. 
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Example 
The input clause : 
 input_clause(life,hypothesis, 

  [++heart_ok(P), 

   ++lungs_ok(P), 

   --alive(spouse_of(P))]). 

is used to build the input chain : 
 input_chain__(3,life, 

  [b(++heart_ok(P),any), 

   b(++lungs_ok(P),any), 

   b(--alive(spouse_of(P)),any)], 

  hypothesis,input_clause). 

 
Centre chains in SGLD deductions are stored with the rightmost literal first in the chain. 
This ordering provides easy access to the rightmost cell, to select a B-literal for the base 
deduction operation of a deduction chunk. 

Example 
The centre chain : 
 ~heart_ok(P) ~lungs_ok(P)  0 (~heart_ok(P)  )  
  ~alive(spouse_of(P)) 

in which the A-literal is the only scope literal of the C-literal, is represented by the 
Prolog list : 
 [b(--alive(spouse_of(P)),false), 

  c(--heart_ok(P),any,[--lungs_ok(P)]), 

  a(--lungs_ok(P),any,0), 

  b(--heart_ok(P),any)] 

5.1.2. Designation Data Structures & Code 

SGLD uses a named designation to store a sort value interpretation of the set of input 
chains. SGLD's semantic checking mechanism uses the restricted SLE process to 
interrogate the designation. Designations can be represented in one of two ways. The first 
way is direct, consisting of the domain and the expression-relation elements of the 
designation. This information is stored as facts in the Prolog database. These facts are used 
as input data to an implementation of the restricted SLE process. 
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Example 
The name of the example designation in section 4.4 (now named simpsons) is 
stored as the fact : 
 designation(simpsons). 
The domain of simpsons is stored as the facts : 
 domain_element(mr_s,simpsons). 
 domain_element(mrs_s,simpsons). 
 domain_element(person,simpsons). 
 domain_element(false,simpsons). 
 domain_element(true,simpsons). 

The expression-relation of simpsons is stored as the single level expansion facts : 
 sle(mr_s,homer,simpsons). 
 sle(mrs_s,spouse_of(mr_s),simpsons). 
 sle(mr_s,spouse_of(mrs_s),simpsons). 
 sle(person,mr_s,simpsons). 
 sle(person,mrs_s,simpsons). 
 sle(true,heart_ok(person)). 
 sle(true,lungs_ok(mr_s)). 
 sle(false,lungs_ok(mrs_s)). 
 sle(true,alive(person),simpsons). 
 sle(true,person(person),simpsons). 

 
The second representation compiles the domain and expression-relation elements into 
Prolog code that implements the restricted SLE process directly. Expansions from 
non-minimal domain elements to minimal domain elements are explicitly recorded, thus 
immediately supplying the minimal domain elements which instantiate variables 
(restricted SLE process, item (iv)). The compiled representation is significantly more 
efficient than the direct representation. 

Example 
The designation simpsons compiles to the Prolog program listed in appendix 1, 
section A1.2. This program implements the restricted SLE process for simpsons. 
The entry point is expand_compiled__/3. 

5.1.3. Starting an SGLD Deduction 

Search Style 
The search style is user specified. The user selects one of the following search styles : 
literal-selected, literal-ordered, cell-selected or cell-ordered, as specified in section 2.3.3. 
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Choice of Top Chain 
SGLD uses the entire input set as the support set. The order in which the input chains are 
used as top chains is thus, in general, determined by the search style of the deduction, as 
specified in section 2.3.3. In SGLD, however, any input chains with the status theorem 
are used before others. This allows the user to focus attention on certain input chains, e.g., 
input chains formed from the negation of the theorem to be proved. In the literal-ordered 
and cell-ordered search styles, heuristic values of deduced chains are calculated to 
determine the order in which input chains are used as top chains (see section 2.3.3). The 
heuristic value of a chain is dependent on the expected truth values in its links (see section 
5.2.1), which in turn are dependent on the linear-input subset analysis. Linear-input subset 
analysis cannot take place until after the top chain is chosen. Therefore the heuristic values 
calculated here are necessarily unaware of the expected truth values determined by 
linear-input subset analysis. 

Linear-Input Subset Analysis 
SGLD employs LISS analysis to detect linear-input subdeductions. After a top chain has 
been chosen the LISS of the input chains is extracted using an implementation of 
algorithm 2.11. The LISS is recorded so as to be available throughout the deduction. As 
well as its contribution to the truth value deletion system described below, the LISS is also 
used to determine when reductions cannot be performed. 

Initial Search Bound 
SGLD supports two methods for setting the initial bound of its consecutively bounded 
search. The default method is to use the length of the top chain. This is the minimum value 
within which a refutation can be obtained - via a sequence of unit extension operations. 
The user may override the default by explicitly specifying an initial bound. 

5.2. Semantic Guidance 

5.2.1. The Semantic Guidance System 

The three components of SGLD's combined semantic guidance system (the rightwards 
subchain system, sort value deletion and the FALSE-preference strategy) are implemented 
directly within the GLD search guidance mechanisms. The expected truth values stored in 
input chain links reflect the requirements of the deletion systems. The heuristic function 
used in SGLD determines ETV-compatibility, as described in section 3.7.2. Integers are 
used to represent ETV-compatibilities, a smaller value meaning a better 
ETV-compatibility. Thus CorrectScore < GoodScore <OKScore <BadScore. Calculating 
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the ETV-compatibility of a centre chain requires finding the ground instances of the chain 
in which no literal's interpretation value is incompatible with its expected truth value. For 
literals, links and chains, such ground instances are called acceptable instances. If a centre 
chain does not have an acceptable instance then the heuristic function fails to return an 
ETV-compatibility value. The centre chain under consideration is then (naturally within 
the Prolog implementation) rejected. The possibility of imposing the restrictions of the 
deletion systems after the base operation of a deduction chunk, as well as at the end of 
each chunk, has been tested. This option sometimes reduces the number of derivation 
operations performed, but it is consistently of negative utility. A noteworthy feature of 
SGLD's semantic guidance system is the way in which the three components have been 
integrated into a coherent whole. 

Sort Value Deletion 
The sort value deletion system rejects centre chains that are not sort legal, as described in 
section 3.6. The expected truth values for sort-literals are stored in their links when the 
input chains are created. Sort value deletion occurs only when the designation supplied 
contains sort value information. This is detected automatically. 

Truth Value Deletion 
The rightwards subchain system requires all rightwards subchains of the top literal in a 
linear-input subdeduction to be interpreted as FALSE in all side chain models of the 
subdeduction. This is as described in section 3.4. In SGLD a single side chain model is 
used to interpret all rightwards subchains. 
 
To implement the restriction of the rightwards subchain system, the expected truth values 
in input chains' B-links are updated after the LISS analysis. Input chain B-links that 
contain linear-input literals (linear-input B-links) have their expected truth values changed 
to FALSE. This is as expected by the rightwards subchain system. If a linear-input literal 
is also a positive sort-literal, then a conflict arises. The rightwards subchain system expects 
the literal to be interpreted as FALSE and the sort value deletion system expects the literal 
to be interpreted as TRUE. In this situation a warning is issued and the expected truth 
value is set to FALSE. 

The FALSE-Preference Strategy 
In SGLD, the ETV-compatibility of a chain is found by estimating the minimum of the 
chain's ground instances' ETV-compatibilities (see section 5.2.4). The function for 
calculating the ETV-compatibility of a ground chain sums the ETV-compatibilities of the 
A- and B-literals in the chain. The sum of the B-literals' ETV-compatibilities is a measure 
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of the quality of the clause represented by the chain. The addition of the A-literals' 
ETV-compatibilities moderates the sequence of extension operations performed. This 
function also gives preference to shorter chains, in line with GLD's fewest-literals maxim. 

5.2.2. Checking the Designation 

It is important to ensure that the designation used in an SGLD deduction is a side chain 
model of all possible linear-input subdeductions. Further, the effect of the 
FALSE-preference strategy should be stronger if the designation is a side chain model of 
the entire deduction. Thus, before any deduction operations are performed, the designation 
is examined in these terms. Firstly, no input chain that may be a side chain in a linear-input 
subdeduction may be interpreted as definitely FALSE in the designation (ground instances 
that are interpreted as UNKNOWN_TRUTH_VALUE are considered acceptable). 
Secondly, a warning is issued for every other input chain which is interpreted as definitely 
FALSE in the designation. Such warnings are useful pointers to parts of the designation 
that could be modified to improve the semantic guidance. 

Example 
In the input set S given in section 1.4.1, the input chain : 
 ~heart_ok(P) lungs_ok(P) 
is interpreted as FALSE by the designation simpsons. By changing the 
expression-relation element : 
 lungs_ok(mrs_s) R∅ FALSE  

to : 
 lungs_ok(mrs_s) R∅ TRUE  

the input chain is interpreted as TRUE. 

5.2.3. Semantic Chains 

The deletion systems used in SGLD impose simultaneous deduction restrictions. In the 
SGLD implementation the restrictions are operationally imposed and extra mechanisms 
are employed to maintain deduction faithfulness. The difficulties of maintaining deduction 
faithfulness in semantically guided deduction systems, and the failure of many 
semantically guided deduction systems to support a satisfactory solution, are discussed by 
Sandford [1980, p. 41]. SGLD employs two mechanisms for maintaining deduction 
faithfulness in this context. Both mechanisms keep track of literals in ancestor centre 
chains. 
 
The first mechanism makes use of the A- and C-literals in centre chains. Every A- or 
C-literal in a centre chain is (the complement of) a B-literal in an ancestor centre chain. 



Page 124 Semantically Guided Linear Deduction 

The A- and C-literals in a centre chain can therefore be used to retrospectively check the 
expected truth values of their ancestor B-literals. This idea is built into the rightwards 
subchain system which, by definition, checks A-literals when checking rightwards 
subchains in linear-input subdeductions. In the SGLD implementation C-literals are also 
given an expected truth value, opposite to that of their parent A-literals, and the C-literals 
are also checked. Similarly, the sort value deletion system requires all A- and C-literals to 
be sort legal. The examination of the A- and C-literals in a centre chain comes at no extra 
cost, in the sense that those literals have to be maintained in the centre chain anyway. This 
mechanism is effective while the A- and C-links remain in the centre chain. However, 
upon their truncation the effect could be lost. 
 
To prevent loss of deduction faithfulness when A- and C-links are truncated from a centre 
chain, SGLD maintains a semantic chain in parallel with the centre chain. A- and C-links 
which have been completely removed from the centre chain, i.e. truncated A-links that do 
not lead to the insertion of a C-link and all truncated C-links, are placed into the semantic 
chain. The semantic chain must remain acceptable throughout a deduction. If it becomes 
unacceptable, then the corresponding centre chain is rejected. The semantic chain is an 
auxiliary data structure maintained specifically to enforce deduction faithfulness. As is 
stated in section 1.5, "The auxiliary data structures need keep only sufficient information 
to detect violations and do not need to store a complete history of the deduction". In fact, 
maintaining redundant information in such an auxiliary data structure decreases its utility. 
This view is noted in the context of False Substitution Lists (FSLs) - "some mechanism for 
reducing the size of FSL sets must be employed." [Sandford, 1980, p. 216]. The size of 
SGLD's semantic chain is controlled by removing those links that contain acceptable 
ground literals. Such literals will always remain acceptable. This principle could be 
extended to remove links whose literals have an acceptable ground instance and also have 
no variables in common with the centre chain. This extension has not been implemented 
due to the high cost of determining if Prolog variables in the semantic chain also appear in 
the centre chain. Semantic chains are more general than Sandford's False Substitution 
Lists, in that they allow any truth value as an expected interpretation value for a stored 
literal, not just FALSE. 

5.2.4. Calculating ETV-compatibility 

An acceptable instance of a chain is found by sequentially considering the links of the 
chain and using the restricted SLE process to find an acceptable instance of each link's 
literal. If at any stage there is no acceptable instance of the literal under consideration, the 
system backtracks to find alternative acceptable instances of previous literals. All the 
acceptable instances of a centre chain can be found by backtracking over all the acceptable 



Semantically Guided Linear Deduction Page 125 

instances of the literals in the chain. The ETV-compatibility of the chain itself can then be 
calculated. 

Example 
The centre chain (in the SGLD representation) : 
 [b(--alive(spouse_of(P)),false), 

  c(--heart_ok(P),any,[--lungs_ok(P)]), 

  a(--lungs_ok(P),any,0), 

  b(--heart_ok(P),any)] 

has an acceptable instance when interpreted using simpsons. It is : 
 [b(--alive(spouse_of(mr_s)),false), 

  c(--heart_ok(mr_s),any,[--lungs_ok(mr_s)]), 

  a(--lungs_ok(mr_s),any,0), 

  b(--heart_ok(mr_s),any)] 

The ETV-compatibility value of this ground instance is  
 CorrectScore + GoodScore + GoodScore 
This value is obtained by summing the ETV-compatibilities of the A- and B-literals 
in the instance. For example, the A-literal --lungs_ok(mr_s) in the instance has 
an expected truth value of any. Examining the designation in section 4.4, it is seen 
that lungs_ok(mr_s) is interpreted as TRUE. Thus --lungs_ok(mr_s) is 
interpreted as FALSE. From TABLE 3.13 the literal is assigned the 
ETV-compatibility value GoodScore. Similarly, the ETV-compatibilities of the two 
B-literals in the acceptable instance are CorrectScore and GoodScore, respectively. 

 
When designing SGLD, minimisation was chosen for calculating the ETV-compatibility of 
a centre chain from its ground instances' ETV-compatibilities. In implementing SGLD, 
however, it was decided that a search through all the acceptable instances of a centre chain 
would make the semantic guidance system of negative utility. Thus instead of searching 
for the minimum ETV-compatibility value, an estimate is obtained, as follows. Depending 
on its expected truth value, a literal can be assigned up to three different 
ETV-compatibility values as the system backtracks through alternative acceptable 
instances. In the SGLD implementation the restricted SLE process is controlled so as to 
look for acceptable instances of literals that are highly ETV-compatible, before less 
ETV-compatible instances are considered. Once an acceptable instance of a centre chain 
has been found, the ETV-compatibility value obtained is accepted and no further instances 
of the centre chain are considered. As the links in the centre chain are considered from 
right to left, this means that literals to the left in the centre chain may be assigned a 
non-optimum ETV-compatibility value. Therefore the centre chain may be assigned a 
non-optimum ETV-compatibility value. This inaccuracy has been considered to be 
justified by the reduced effort required. 
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Example 
The centre chain in the example above has a second acceptable instance : 
 [b(--alive(spouse_of(mrs_s)),false), 

  c(--heart_ok(mrs_s),any,[--lungs_ok(mrs_s)]), 

  a(--lungs_ok(mrs_s),any,0), 

  b(--heart_ok(mrs_s),any)] 

with an ETV-compatibility value CorrectScore + BadScore + GoodScore. Thus the 
ETV-compatibility of the original centre chain is 
CorrectScore + GoodScore + GoodScore.  However, if the second acceptable 
instance is found before the first, then the non-optimum ETV-compatibility value 
CorrectScore + BadScore + GoodScore would be assigned to the centre chain. 

 
The possible ETV-compatibility values of a particular literal in a centre chain may change 
as a deduction progresses, due to the instantiation of variables. For ground literals, 
however, their ETV-compatibilities are constant. SGLD takes advantage of this by storing 
the constant ETV-compatibility values within such literals' links. The heuristic function 
then uses the stored values directly, rather than recalculating them. 

5.2.5. Semantic Guidance of Equality Reasoning 

In section 2.6 a method of embedding equality into GLD has been presented. The method 
is based on the generation of equality-demand literals, which form part of the deduced 
centre chains. If this embedding were to be incorporated into SGLD then the 
equality-demand literals would contribute to the ETV-compatibility of centre chains. If an 
equality-demand literal whose arguments are interpreted as unequal were generated, then a 
bad ETV-compatibility value would be assigned to that literal. The quality of the centre 
chain would therefore be reduced. Further, equality literals have the potential to be 
linear-input objects, in which case equality-demand literals would have a FALSE expected 
truth value. The rightwards subchain system would then reject centre chains containing 
equality-demand literals whose arguments are interpreted differently. 

5.3. The Effects of the Semantic Guidance System 

Table 5.1, below, describes the general effects of the semantic guidance system in SGLD, 
for various combinations of designation and search style. The designations considered are 
(i) the null designation, which interprets every base element as every truth value, (ii) the 
positive designation, which interprets all base elements as TRUE and (iii) domain specific 
designations. The negative designation, which interprets all base elements as FALSE, is 
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Desig'n Effects 
Literal-selected Search Style 

Null No effects 
Positive Ensures that the rightwards subchains of top literals in linear-input 

subdeductions are negative. 
Domain 
specific 

Ensures that centre chains are sort legal and that the rightwards subchains of 
top literals in linear-input subdeductions are FALSE. 

Literal-ordered Search Style 
Null Deduced chains are reordered by length. 
Positive The effects of the positive designation in the literal-selected search style and 

deduced chains are reordered with a preference for shorter chains with more 
negative literals. 

Domain 
specific 

The effects of a domain specific designation in the literal-selected search style 
and deduced chains are reordered with a preference for chains which are more 
ETV-compatible. 

Cell-selected Search Style 
Null A selection rule is used in non-compulsory extension and reduction operations. 

The selection rule selects the B-literal whose successor set's shortest element is 
the longest amongst all the successor sets. 

Positive The effects of the positive designation in the literal-selected search style and a 
selection rule is used in non-compulsory extension and reduction operations. 
The selection rule selects the B-literal whose successor set's shortest and most 
negative element is longest and least negative amongst all the successor sets. 

Domain 
specific 

The effects of a domain specific designation in the literal-selected search style 
and a selection rule is used in non-compulsory extension and reduction 
operations. The selection rule selects the B-literal whose successor set's most 
ETV-compatible element is the least ETV-compatible amongst all the 
successor sets. 

Cell-ordered Search Style 
Null The combined effects of the null designation in the literal-ordered search style 

and the null designation in the cell-selected search style. 
Positive The combined effects of the positive designation in the literal-ordered search 

style and the positive designation in the cell-selected search style. 
Domain 
specific 

The combined effects of a domain specific designation in the literal-ordered 
search style and the domain specific designation in the cell-selected search 
style. 
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Table 5.1 - The Effects of Search Styles and Designationsnot considered in the table. The 
effects of the negative designation correspond to those of the positive designation, but with 
truth values and the signs of literals inverted. 
 
The positive, negative and null designations have been used in SGLD's semantic guidance 
system, to obtain performance figures for SGLD (see section 5.4.1). Table 5.1 shows that 
the use of any of these designations forms, to all intents and purposes, a syntactic guidance 
strategy. That is, SGLD runs without semantic guidance. The positive and negative 
designations produce better results than the null designation. At the same time both the 
positive and the negative designations can be implemented syntactically, thus very little 
effort is required to calculate the ETV-compatibility of a centre chain. Therefore, in the 
performance testing described in section 5.4.1, either the positive or negative designation 
has been used provided that it is a side chain model of all possible linear-input 
subdeductions. In the majority of cases the positive designation is acceptable. If the LISS 
contains both positive and negative elements then neither the positive nor the negative 
designation is a side chain model of all possible linear-input subdeductions. In these cases 
the null designation is used. An alternative to using the null designation would be to build 
a syntactically implementable model which is aware of the linear-input subset. Such a 
model is possible if the LISS does not contain complementary elements. In such a model 
LISS atoms are interpreted such that all LISS literals are interpreted as FALSE. All other 
atoms may be given any interpretation. The implementation can be syntactic because all 
literals with the same structure are treated equivalently by LISS analysis. The 
interpretation value of an atom may therefore be specified in terms of its structure. 

5.4. Performance 

SGLD has been tested on 40 problems. The problems were selected such that they 
represent a range of problem domains, such that semantic information can be specified for 
as many problems as possible and such that performance figures from other deduction 
systems are available for comparison purposes. Many of the problems chosen are from the 
Wilson and Minker study [1976]. (The problem names used in the Wilson and Minker 
study are noted in () brackets after the local problem names in Table 5.2.) Appendix 2 
supplies statements of the problems and descriptions of the designations used with each. 
All testing has been performed using the top chain length as the initial bound for the 
consecutively bounded search. 
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5.4.1. SGLD Without Semantic Guidance 

The first phase of testing illustrates SGLD's performance without the benefit of semantic 
guidance. A syntactic guidance system is implemented by using the positive, negative or 
null designation with SGLD's semantic guidance system, as discussed in section 5.3. For 
most of the problems the positive interpretation has been used so that shorter centre chains 
with negative literals are preferred. For those problems where the positive designation is 
not a side chain model of all possible linear-input subdeductions, either the null or 
negative designation has been used. These cases are indicated with the designation name in 
{} braces after the problem name. The results of these tests are given in Table 5.2. 
 
Of the 40 test problems, 19 have been solved by SGLD using less than 100 deduction 
operations (small problems), 11 using between 100 and 1000 deduction operations 
(medium sized problems) and seven problems have required more than 1000 deduction 
operations (large problems). There are three problems for which no refutation has been 
found within the time limit imposed. 
 
The results show that the literal-selected search style is the most effective. This search 
style produces the best result in 16 small problems, six medium sized problems and three 
large problems, i.e. it produces the best result in 25 of the 37 solved problems. The 
literal-ordered search style performs more consistently across problem sizes, producing the 
best result in three small problems, three medium sized problems and two large problems. 
The cell-selected and cell-ordered search styles are the poorest performers. They produce 
the best results in only a few problems. The cell-selected style produces the best result in a 
single large problem, while the cell-ordered style produces the best result once in each of 
the medium sized and large categories. 
 
The literal-ordered search style is the most consistent performer. It produces the worst 
result in only two problems, both of them large. The literal-selected search style produces 
the worst result in three problems, one small and two medium sized. The cell-selected 
search style produces the worst results in six small, three medium sized, and three large 
problems. The cell-ordered search style produces the worst result most often, the 
distribution being 12 small, six medium sized, and three large problems. It is noteworthy 
that in most of the problems where the cell-ordered search style produces the worst result, 
the cell-selected search style uses the same number of deduction operations. However, the 
cell-ordered search style takes longer to perform those deduction operations. The extra 
overhead comes from the ordering of alternative successor chains. 
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Problem S. H. LS LO CS CO Extremes 
   Size Tm Size Tm Size Tm Size Tm Best W'st 

ALGEBRA 
Additive 01 (L&S 28) 13 H 664 23.9 687 26.9 998 36.8 998 37.2 LS CS 
Additive 02 (L&S 29) 13 H 299 10.1 315 11.4 495 16.6 495 16.7 LS CO 
Group 03 (Ch&Lee 3) 5 H 54 1.86 65 2.33 202 6.08 202 6.14 LS CO 
Group 06 (Ch&Lee 6) 9 H 0 0 256 8.10 393 11.9 393 12.0 LO LS 
Group 11 (Wos 8) 18 H 401 10.9 467 13.1 744 20.8 878 25.2 LS CO 
Monoids 01 (Ch&Lee 2) 7 H 2263 73.2 2268 76.2 4554 157 4554 160 LS CO 
Semi-group 01 (Ch&L 1) 4 H 7 0.26 11 0.41 20 0.65 20 0.67 LS CO 
Semi-group 04 (Wos 5) 16 H 0 0 0 0 0 0 0 0 -- -- 
Sub-group 01 (Wos 12) 21 H 48 1.32 52 1.45 91 2.37 91 2.42 LS CS 
Sub-group 02 (Wos 13) 22 H 88 2.35 101 2.75 206 5.15 206 5.26 LS CS 
Sub-group 03 (Wos 14) 21 H 0 0 0 0 0 0 0 0 -- -- 
Sub-group 10 (L&S 26) 9 H 544 16.8 417 13.3 728 23.2 728 23.8 LO CO 

ANALYSIS 
IMV Theorem 18 N 2180 72.3 2178 76.0 1024 31.5 750 22.9 CO LS 

NUMBER THEORY 
Primes 01 (Ch&Lee 7) 7 N 27 0.57 35 0.72 44 0.90 44 0.93 LS CO 
Primes 02 (Ch&Lee 8) 9 N 210 5.41 156 4.11 299 7.98 398 11.8 LO CO 
Primes 03 (Ch&Lee 9) 8 N 28 0.91 33 1.02 56 1.44 56 1.45 LS CO 
Primes 04 (L&S 17) 11 N 43 1.35 48 1.49 89 2.22 89 2.24 LS CO 
Rec. func. 01 (L&S 41) 11 H 24 0.56 21 0.48 27 0.55 27 0.58 LO CO 
Rec. func. 05 (L&S 68) 15 H 5 0.17 9 0.22 9 0.22 9 0.23 LS CO 
Rec. func. 10 (L&S 76.1) 16 N 14 0.38 32 0.79 32 0.64 41 0.93 LS CO 

SET THEORY 
Naive Sets 02 (L&S 103) 14 N 66 1.97 81 2.24 136 3.75 135 3.83 LS CS 
Naive Sets 03 (L&S 105) 14 N 31 0.81 45 1.10 52 1.32 56 1.40 LS CO 
Naive Sets 04 (L&S 106) 14 N 31 0.81 45 1.10 52 1.31 56 1.40 LS CO 
Naive Sets 06 (L&S 111) 14 N 35 0.92 45 1.13 69 1.59 65 1.51 LS CS 
Naive Sets 08 (L&S 115) 21 N 82 2.05 91 2.14 200 4.38 170 3.50 LS CS 

Legend 
• S. - Number of input clauses in the problem. 
• H. - Horn status, either H = Horn or N = non-Horn. 
• LS - Literal-selected search style LO - Literal-ordered search style 

 CS - Cell-selected search style CO - Cell-ordered search style 
• Size - The number of deduction operations performed to find the refutation. 
• Tm - The time taken in seconds, to at least three significant digits, to find the refutation. A pair of 0s 

in the Size and Tm columns means that the system failed to find a refutation within an imposed time limit 
of 2500 seconds. 

• Extremes - Indicates the search styles that produce the best and worst results. The judgement is based 

firstly on the number of deduction operations performed and secondly on the time taken. 

Table 5.2a - SGLD Performance without Semantic Guidance - Maths Problems 



Semantically Guided Linear Deduction Page 131 

Problem S. H. LS LO CS CO Extremes 
   Size Tm Size Tm Size Tm Size Tm Best W'st 

PLANNING 
Getting Bread 16 H 5453 1590 0 0 2562 932 0 0 CS ?O 
Going 01 17 N 1383 58.5 1401 61.7 1093 44.4 1085 46.2 CO LO 
Monkey & Banana 11 H 655 19.4 664 20.5 664 20.9 664 21.8 LO LS 

PUZZLES 
Aunt Agatha 12 N 51 1.40 53 1.43 74 1.85 74 1.91 LS CO 
Borders 27 H 36 0.87 47 0.99 170 2.92 170 2.97 LS CO 
Schubert's Steamroller 26 N 10.2k 374 10.2k 387 0 0 30.4k 1111 LS CS 
Truth tellers & Liars 10 N 2141 73.3 1484 52.7 3014 107 2060 72.6 LO CS 

MISCELLANEOUS 
Blind Hand 2 (dbabhp) 14 N 1994 66.3 2031 69.7 2097 73.0 2098 72.5 LS CO 
Blind Hand 3 10 N 0 0 0 0 0 0 0 0 -- -- 
Compute 2 (burstall) 19 H 111 3.45 133 4.07 177 5.27 177 5.46 LS CO 
Compute 3 {null} 19 N 111 3.53 133 4.09 177 5.32 177 5.45 LS CO 
Has Parts 2 8 N 106 3.32 68 2.13 141 4.84 81 2.61 LO CS 
Latin Squares {negative} 16 N 293k 18.5k 168k 10.8k 298k 18.5k 298k 18.4k LO CS 
Pigeon 4 22 N 344 11.0 348 11.1 548 17.0 518 16.1 LS CS 
XOR 7 H 80 1.39 71 1.34 77 1.45 71 1.39 LO LS 

Legend 
• A value with a k suffix is in thousands of units. 
• The limit of 2500 seconds was not imposed in the Latin Squares problem. 
• A ? in the Extremes column is a wildcard. For example, ?O means LO and CO achieved the same worst 

result. 

Table 5.2b - SGLD Performance without Semantic Guidance - Other Problems 

In summary, for small problems the literal-selected search style is the best, while the 
literal-ordered style may be preferred for medium sized and large problems. The 
cell-selected and cell-ordered search styles may be desirable only for (very) large 
problems. This is a surprising result, as the literal-selected search style provides default 
search guidance. The reason for its superiority has not been established, but the ordering of 
the literals in the problems' clauses must be suited to its default search strategy.  
 
In the course of testing SGLD without semantic guidance, an experiment was performed to 
test the B-literal selection method of the cell-ordered (and hence the cell-selected) search 
style. The selection method was changed to select the B-literal with the best successor set 
rather than the worst. This improved the performance in some problems. Notably, the 
change produced refutations of Semi-group 04 and Sub-group 03. On the other hand, the 
results for some problems got significantly worse, e.g. the IMV theorem took 18243 
operations in a time of 713 seconds. There is thus some potential to affect the performance 
of GLD by slightly modifying the search strategy. It is unlikely that an optimum 
configuration can be determined, as the best configuration will be different for different 
problems. A deduction system that runs several configurations in parallel may produce the 
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best results. This approach has been taken in the Random Competition system 
[Ertel, 1991]. 

5.4.2. A Comparison with Other Deduction Systems 

SGLD's results have been compared with results from the Prolog Technology Theorem 
Prover (PTTP) [Stickel, 1986b], SETHEO [Letz et al., 1992] and the Modified Problem 
Reduction Format (MPRF) deduction system [Plaisted, 1988]. The comparison is made in 
Table 5.3. As the implementation environments of the systems vary enormously, a 
comparison of the times taken by the systems would be of little significance. Thus only the 
numbers of deduction operations performed have been compared. There are, however, still 
some factors that may distort the comparison : 
• The SETHEO "without preprocessing" results have been used so that the input set sizes 

are the same as for the other systems. These results are worse than those where the 
input sets have been preprocessed. On the other hand, the best of SETHEO's six 
reported results has been used. 

• The MPRF results for the default (the better) configuration have been used. 
• In many cases, the local versions of the problems list the clauses in a order different 

from the originals. An examination of the original problems suggests that their clauses 
have been arranged to the benefit of deduction systems. This suggestion concurs with 
the comment in the previous section regarding the ordering of literals in clauses. 
Changing the order of the clauses in the local versions of the problems may have 
tainted SGLD's results. The PTTP, SETHEO and MPRF have used the original versions 
of the problems. 

• Finally, the measurements taken are in no way standardised. A more accurate 
comparison of the systems would be possible if a standardised measure were available 
and each system were run without inter-problem tuning. 

 
SGLD's performance is comparable with that of the other systems. Although SGLD is the 
best performer in only three of the 24 problems for which a result is available for all 
systems, it is also the worst performer in only seven of the problems. The three problems 
in which SGLD performs the best are all non-Horn problems. Of the seven problems in 
which SGLD performs the worst, five are Horn problems. This suggests that SGLD is, 
relative to the other three systems, more consistent in non-Horn problems. There are 11 
non-Horn problems for which a result is available for all systems. SGLD produces the best 
result in three of these and the worst in only two. Only the MPRF system performs better 
in non-Horn problems, producing five best results and only one worst. 
 



Semantically Guided Linear Deduction Page 133 

Problem S. H. Deduction System Extremes 
   SGLD PTTP Sethe

o 
MPRF Best Worst 

ALGEBRA 
Additive 01 (L&S 28) 13 H 664 1322 105 1117 Sethe

o 
PTTP 

Additive 02 (L&S 29) 13 H 299 1322 105 1117 Sethe
o 

PTTP 

Group 03 (Ch&Lee 3) 5 H 54 206 35 29 MPRF PTTP 
Group 06 (Ch&Lee 6) 9 H 256 26 36 157 PTTP SGLD 
Group 11 (Wos 8) 18 H 401 200 21 4120 Sethe

o 
MPRF 

Monoids 01 (Ch&Lee 2) 7 H 2236 1589 987 259 MPRF SGLD 
Semi-group 01 (Ch&L 1) 4 H 7 5 5 6 Sethe

o 
SGLD 

Semi-group 04 (Wos 5) 16 H 0 795 142 236   
Sub-group 01 (Wos 12) 21 H 48 6 4 36 Sethe

o 
SGLD 

Sub-group 02 (Wos 13) 22 H 88 51 53 3969 PTTP MPRF 
Sub-group 03 (Wos 14) 21 H 0 118 34 7208   
Sub-group 10 (L&S 26) 9 H 417 34 45 199 PTTP SGLD 

NUMBER THEORY 
Primes 01 (Ch&Lee 7) 7 N 27 24 8 16 Sethe

o 
SGLD 

Primes 02 (Ch&Lee 8) 9 N 156 3104 99 64 MPRF PTTP 
Primes 03 (Ch&Lee 9) 8 N 28 163 138 40 SGLD PTTP 
Primes 04 (L&S 17) 11 N 43 175 1601 76 SGLD Sethe

o 
Rec. func. 01 (L&S 41) 11 H 21 9 6 80 Sethe

o 
MPRF 

Rec. func. 05 (L&S 68) 15 H 5 2 13 291 PTTP MPRF 
Rec. func. 10 (L&S 76.1) 16 N 14 8 4    

SET THEORY 
Naive Sets 02 (L&S 103) 14 N 66 1826 70 131 SGLD PTTP 
Naive Sets 03 (L&S 105) 14 N 31 34 47 5 MPRF Sethe

o 
Naive Sets 04 (L&S 106) 14 N 31 34 46 5 MPRF Sethe

o 
Naive Sets 06 (L&S 111) 14 N 35 35 48 5 MPRF Sethe

o 
Naive Sets 08 (L&S 115) 21 N 82 109 47 207 Sethe

o 
MPRF 

PUZZLES 
Schubert's Steamroller 26 N 10.2k  2524 953   

MISCELLANEOUS 
Blind Hand 2 (dbabhp) 14 N 1994 1168 168 190 Sethe

o 
SGLD 

Compute 2 (burstall) 19 H 111 690 32 63 Sethe
o 

PTTP 

Has Parts 2 8 N 68 87 171 28 MPRF Sethe
o 

Legend 
• The figures record the number of deduction operations performed. 
• Blank entries indicate that no results have been reported for that problem. 
• The best and worst performer has been noted only when all four systems have reported a result. 
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Table 5.3 - Performance Comparison : SGLD vs PTTP, SETHEO and MPRF 

5.4.3. SGLD With Semantic Guidance 

The second phase of testing demonstrates the effects of semantic guidance in SGLD. 
Domain specific semantic information has been specified for 20 of the problems listed in 
Table 5.2, using an implementation of algorithm 4.13. Note that semantic information has 
been specified separately for each problem, i.e., no designation is used for more than one 
problem. The semantic information has been used by the semantic guidance system in 
SGLD and the resultant performance figures are given in Table 5.4. No comparison has 
been made with results produced by other semantically guided deduction systems due to 
the absence of (results for) such systems. Thus the results that SGLD obtains with 
semantic guidance can only be compared against those obtained without semantic 
guidance. 
 
It is not claimed that results like those shown in Table 5.4 can be produced for all 
problems. Rather, the results illustrate what effects can be produced for problems that are 
amenable to semantic guidance. It is these results that, in pragmatic terms, establish the 
thesis of this research. 
 
The results in Table 5.4 show that the literal-selected search style dominates when 
semantic guidance is used. The literal-selected search style produces the best result in 15 
of the 20 problems. The literal-ordered, cell-selected and cell-ordered search styles 
produce the best results in only one, two and two problems, respectively. The 
literal-selected search style also performs consistently when semantic guidance is used, 
producing the worst result in only one problem. The cell selected search style benefits the 
least from the addition of semantic guidance, producing the worst result in 10 of the 20 
problems. The literal-ordered and cell-ordered style produce the worst results in three and 
six problems respectively. 
 
Of more importance than the relative performances of the search styles, Table 5.4 
demonstrates that the addition of semantic guidance significantly improves SGLD's 
performance. Comparing the best results with and without semantic guidance, there are 
only two problems in which semantic guidance does not improve SGLD's performance. 
They are Group 03 and Has Parts 2. In Has Parts 2 the literal-ordered and cell-ordered 
search styles perform better without semantic guidance. In the other two search styles the 
semantic guidance has improved performance. Finding a refutation for problem Group 03 
has not been affected by the use of semantic guidance. It is noteworthy that Group 03 tries 
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to establish a general lemma in group theory. As is noted in section 6.6, these types of 
problems often appear indifferent to the use of semantic guidance. Another problem where 
the effect of semantic guidance is marginal, is Pigeon 4. Here the literal-selected search 
style performs the best both with and without semantic guidance. However, the difference 
in performance is only in the time used. The use of semantic guidance does marginally 
reduce the number of deduction operations performed in the literal-ordered and 
cell-ordered search styles, for that problem. 
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Problem S. H. LS LO CS CO Extremes Best Non-SG 
   Size Tm SDs Size Tm SDs Size Tm SDs Size Tm SDs Best W'st Size Tm By 
Group 03 5 H 54 1.94 0 65 2.43 0 202 6.42 4 202 6.39 4 LS CS 54 1.86 LS 
Group 06 9 H 76 2.55 3 79 2.68 3 70 2.11 2 70 2.09 2 CO LO 256 8.10 LO 
Monoids 01 7 H 1264 47.5 113 1273 48.4 113 2801 107 417 2801 106 417 LS CS 2263 73.2 LS 
Rec. Func. 10 16 N 6 0.30 1 10 0.40 2 19 0.52 2 19 0.50 2 LS CS 14 0.38 LS 
Getting Bread D1 16 H 1655 112 683 1901 130 800 1391 58.5 946 1675 71.2 1162 CS LO 2562 932 CS 
Getting Bread D2 16 H 1655 110 683 1901 129 800 1391 58.2 946 1675 71.5 1162 CS LO 2562 932 CS 
Going 01 17 N 1383 80.6 0 877 47.2 0 1093 58.3 0 788 40.1 0 CO LS 1085 46.2 CO 
Monkey & Banana D1 11 H 628 18.1 38 637 19.1 38 637 19.6 38 637 19.6 38 LS C? 664 20.5 LO 
Monkey & Banana D2 11 H 115 3.09 23 124 3.45 26 124 3.50 26 124 3.53 26 LS CO 664 20.5 LO 
Borders 27 H 9 0.24 4 20 0.37 7 116 1.71 34 116 1.67 34 LS CS 36 0.87 LS 
Schubert's Steamroller 
D1 

26 N 3039 81.5 873 3087 84.4 890 8714 361 3132 8656 358 3110 LS CS 10.2k 374 LS 

Schubert's Steamroller 
D2 

26 N 3039 90.4 873 3087 94.1 890 8714 394 3002 8656 383 2981 LS CS 10.2k 374 LS 

Blind Hand 3 10 N 239 14.9 84 250 17.5 91 510 119 242 510 119 242 LS C? 0 0 -- 
Compute 2 D1 19 H 56 1.82 29 76 2.27 41 109 3.85 56 109 3.80 56 LS CS 111 3.45 LS 
Compute 2 D2 19 H 56 1.84 29 76 2.32 41 109 3.85 56 109 3.90 56 LS CO 111 3.45 LS 
Compute 3 19 N 56 1.90 29 76 2.39 41 109 4.01 56 109 4.06 56 LS CO 111 3.53 LS 
Has Parts 2 8 N 83 4.42 22 83 4.53 22 101 6.24 24 101 6.25 24 LS CO 68 2.13 LO 
Latin Squares 16 N 902k 70.5k 91k 144k 7978 10.5k 265k 14.4k 17.7k 264k 14.3k 17.6k LO CS 168k 10.8k LO 
Pigeon 4 22 N 344 10.2 0 345 10.3 0 548 16.0 0 515 14.5 0 LS CS 344 11.0 LS 
XOR 7 H 40 0.71 15 43 0.77 17 43 0.81 17 43 0.82 17 LS CO 71 1.34 LO 

Legend 
• SDs - The number of semantic deletions that occurred within the deduction. 
• Best Non-SG - SGLD's best results without semantic guidance. 

Table 5.4 - SGLD Performance with Semantic Guidance
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A direct comparison between SGLD's performance with and without semantic guidance is 
made in Table 5.5, below. For each problem the result for the best performing search style 
with semantic guidance is compared with the corresponding result without semantic 
guidance. In 15 of the 20 problems listed, the best performing search style with semantic 
guidance also performs the best without semantic guidance. Thus the comparison is fair in 
these 15 problems. The five problems that witness a change in the best search style are 
Group 06, the two versions of Monkey & Banana, Has Parts 2 and XOR. In the two 
versions of Monkey & Banana and XOR, the literal-selected search style takes over from 
the literal-ordered search style as the best performer when semantic guidance is added. In 
these three cases the results without semantic guidance for these two search styles are 
similar, and thus the comparison made in Table 5.5 is still meaningful. In Group 06 the 
literal-ordered search style performs the best without semantic guidance, about 35% better 
than the cell-ordered style. Thus the comparison for this problem is biased by that amount 
towards semantic guidance. Similarly, in Has Parts 2 the bias is about 36%. 
 

Problem S. H. Best SG Non-SG SG/N-SG 
   Size Tm By Size Tm Size Tm 
Group 03 5 H 54 1.94 LS 54 1.86 1.00 1.04 
Group 06 9 H 70 2.09 CO 393 12.0 0.18 0.17 
Monoids 01 7 H 1264 47.5 LS 2263 73.2 0.56 0.65 
Rec. Func. 10 16 N 6 0.30 LS 14 0.38 0.43 0.78 
Getting Bread D1 16 H 1391 58.5 CS 2562 932 0.54 0.06 
Getting Bread D2 16 H 1391 58.2 CS 2562 932 0.54 0.06 
Going 01 17 N 788 40.1 CO 1085 46.2 0.73 0.87 
Monkey & Banana D1 11 H 628 18.1 LS 655 19.4 0.96 0.93 
Monkey & Banana D2 11 H 115 3.09 LS 655 19.4 0.18 0.16 
Borders 27 H 9 0.24 LS 36 0.87 0.25 0.28 
Schubert's Steamroller 
D1 

26 N 3039 81.5 LS 10.2k 374 0.30 0.22 

Schubert's Steamroller 
D2 

26 N 3039 90.4 LS 10.2k 374 0.30 0.24 

Blind Hand 3 10 N 239 14.9 LS 0 0 0.00 0.00 
Compute 2 D1 19 H 56 1.82 LS 111 3.45 0.50 0.53 
Compute 2 D2 19 H 56 1.84 LS 111 3.45 0.50 0.53 
Compute 3 19 N 56 1.90 LS 111 3.53 0.50 0.54 
Has Parts 2 8 N 83 4.42 LS 106 3.32 1.22 1.33 
Latin Squares 16 N 144k 7978 LO 168k 10.8k 0.86 0.74 
Pigeon 4 22 N 344 10.2 LS 344 11.0 1.00 0.93 
XOR 7 H 40 0.71 LS 80 1.39 0.50 0.51 

Legend 
• Best SG - The best result for SGLD with semantic guidance. The search style that produced the 

result is noted in the "By" column. 
• Non-SG - The results for SGLD without semantic guidance, for the search style in the "By" 

column. 
• SG/N-SG - The ratio of the results with semantic guidance to the results without semantic 

guidance. Thus a value less than one indicates improved performance. 

Table 5.5. - Summary of the Improved Performance due to Semantic Guidance 
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The last two columns in Table 5.5 clearly indicate the utility of using semantic guidance. 
The average size ratio is 0.55 and the average time ratio is 0.53. The better time ratio is not 
what is intuitively expected. In most applications of semantic guidance the overhead of 
processing the semantic information would make the time ratio larger than the deduction 
operations ratio. The cause of the anomaly in SGLD is the relatively large number of 
lemmas that are created when semantic guidance is absent. Processing lemmas is fairly 
slow in SGLD. In particular, adding lemmas to the input set means adding them to the 
Prolog database. This is a relatively slow operation in Prolog. 

The Effects of Semantic Deletion 
An examination of the designations used in this testing reveals that there are 17 problems 
that are affected by one or both of the rightwards subchain system and sort value deletion. 
Of the 17, there are 10 problems which are affected by only the rightwards subchain 
system. They are Group 06, Monoids 01, Rec. Func. 10, Getting Bread D2, Schubert's 
Steamroller D2, Compute 2 D2, Compute 3, Has Parts 2, Latin Squares and XOR. It is 
noteworthy that five of these are non-Horn problems for which truth value semantic 
deletion has improved performance. This demonstrates the usefulness of linear-input 
subset analysis and the rightwards subchain system. 

Example 
An example, illustrating the effects of the rightwards subchain system, is to be found 
in appendix 1, section A1.3. The example traces the start of an SGLD deduction for 
the Schubert's Steamroller problem, with the rightwards subchain system using the 
second designation provided for that problem (see appendix 2). This example 
corresponds to the lines labelled "Schubert's Steamroller D2" in tables 5.4 and 5.5. 

There are six problems which are affected by both the rightwards subchain system and sort 
value deletion. They are Getting Bread D1, Monkey & Banana D1 and D2, Borders, Blind 
Hand 3 and Compute 2 D1. Schubert's Steamroller D1 is the only problem that is affected 
solely by sort value deletion. 
 
The large proportion of problems that are affected by semantic deletion is consistent with 
the dominance of the literal-selected search style in these tests. The FALSE-preference 
strategy has no effect in the literal-selected search style, so only semantic deletion can 
improve its performance. In general, the results show that both the rightwards subchain 
system and sort value deletion play an important role in improving the performance of 
SGLD. The effort of combining these two forms of semantic deletion into a sort&truth 
value deletion system is warranted. 
 
Although semantic deletion has been found to usually improve the performance of SGLD, 
some pathological cases have been found in which semantic deletion degrades 
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performance. The cause of this behaviour is the effect of lemmas within the consecutively 
bounded search. When performing a deduction without semantic deletion, SGLD searches 
portions of the search space which are not reached when semantic deletion is active. In 
such searches lemmas may be generated, even though a refutation cannot be found. Then, 
upon entering a portion of the search space that does contain a refutation, the lemmas are 
used in finding a refutation within the current search bound. In deductions guided by 
semantic deletion the lemmas are not created and the equivalent deduction must be done 
on the path to a refutation. This can cause the search bound to be exceeded, resulting in 
another iteration of the consecutively bounded search being necessary. 
 
In some problems, particularly simpler ones, semantic deletion of a centre chain only 
slightly preempts a natural termination of that branch of the search. As a semantically 
deleted centre chain cannot lead to a refutation this is not surprising. In these cases the 
search subtree under such a centre chain is small. Depending on the size of the subtree it 
may be of greater utility to allow the search to terminate naturally. In complex problems 
such search subtrees are typically large, and semantic deletion is most likely to be of 
utility. 

The Effect of the FALSE-Preference Strategy 
It is hard to accurately judge the effect of the FALSE-preference strategy in SGLD from 
the results, as the semantic deletion effects overawe those of the FALSE-preference 
strategy. There are two problems in which the effect of the FALSE-preference strategy can 
be observed. They are Going 01 and Pigeon 4. In Going 01 the FALSE-preference strategy 
makes a significant improvement. In Pigeon 4 the FALSE-preference strategy marginally 
reduces the number of derivation operations performed. Some effort has been expended 
trying to find more problems in which the FALSE-preference strategy has a distinct effect. 
These efforts have been unsuccessful. 
 
In the light of the above, the question that arises naturally is whether or not the 
FALSE-preference strategy is in fact appropriate. In an effort to answer this question, a 
TRUE-preference strategy has been investigated. Limited experimentation with the 
TRUE-preference strategy has indicated that it degrades the performance of SGLD. Thus 
the FALSE-preference strategy appears to be 'in the right direction'. However, further 
development may be necessary. The following observation suggests one possible 
development. Literals that are TRUE in side chain models of a deduction are likely to be 
reduced against. The FALSE-preference strategy avoids centre chains that contain TRUE 
literals. If all refutations of an input set contain a reduction operation (not unlikely in 
non-Horn problems), then the FALSE-preference strategy may guide the host deduction 
system away from refutations. Further analysis of the input set, in the style of linear-input 
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subset analysis, may be possible to determine for which literals a FALSE-preference 
should be shown. 

5.5. Conclusion 

This chapter has described the implementation and testing of SGLD - the combination of 
GLD, a semantic guidance system and designations. The contribution made by this chapter 
is to illustrate the effects that semantic guidance can have in a linear deduction system. 
 
The main value of implementing SGLD is that the implementation has facilitated 
evaluation of GLD, the semantic guidance system, designations and their combination. 
The following are the conclusions : 
• GLD is an effective deduction system. Without the aid of semantic guidance its 

performance is comparable with that of other well regarded deduction systems. 
• The rightwards subchain system and sort value deletion can significantly improve the 

performance of SGLD. 
• The FALSE-preference strategy may require further development. 
• Designations are well suited to the task of supplying semantic to semantic guidance 

systems. The (implementation of the) designation building algorithm has been 
particularly useful. 

• The combination of GLD, the semantic guidance system and designations, forms a 
coherently integrated deduction system. 

 
SGLD's Prolog implementation is believed to be, as Prolog implementations go, fairly 
efficient. A more efficient implementation of SGLD could be achieved by compiling the 
input set to a Prolog program which implements SGLD deductions from the input set. This 
is the approach taken in the MPRF system. An even faster implementation could be 
achieved by compiling to an executable form, as is done in the PTTP. 
 
All of the features in SGLD have been developed cognisant of each other and this has 
made their combination into a coherent whole possible. An interesting feature of the 
implementation is the use of an auxiliary data structure - the semantic chain - to maintain 
deduction faithfulness. This has facilitated an efficient implementation of the semantic 
guidance system. The admissibility restrictions in GLD are operation restrictions, so the 
issue of deduction faithfulness does not arise there. However, if those restrictions were to 
be extended to be deduction restrictions, a second auxiliary data structure - a 'syntactic 
chain' - could be used. As the current admissibility restrictions already have retrospective 
effect, the amount of information that would have to be stored in such a data structure 
would be fairly small. 
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Chapter Six 

Conclusion 

 

This chapter reviews the outcomes of this research. SGLD has combined GLD, a semantic 
guidance system and designations, to form a unique deduction system. The components of 
SGLD are individually of interest and their combination into SGLD has confirmed the 
thesis of this research. Areas worthy of further investigation have also been noted. 
 
This chapter contains : 
1. An overview of the work done. 
2. Discussion of GLD. 
3. Discussion of the semantic guidance systems developed. 
4. Discussion of designations. 
5. Discussion of SGLD. 
6. Concluding comments. 

6.1. Overview 

The research described in the preceding chapters started with the thesis given in chapter 1 : 
 

Semantic guidance can be used to improve the performance of a linear 
deduction system. 

 
It is noted there that four subobjectives would contribute to establishing this thesis. They 
are as follows. (i) To develop a host deduction system. (ii) To develop a semantic guidance 
system for the host deduction system. (iii) To develop an interpretive structure for storing 
the semantic information used by the semantic guidance system. (iv) To combine the 
deduction system, semantic guidance system and the interpretive structure into a coherent 
whole. Each of these subobjectives has been satisfied. (i) The host deduction system 
developed is GLD. (ii) Several semantics guidance systems, most notably combined 
semantic guidance, have been developed for GLD. (iii) Designations store the semantic 
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information used. (iv) GLD, a combined semantic guidance system and designations, have 
been combined into SGLD. 

6.2. GLD 

Although GLD has been designed as a platform for using and testing semantic guidance in 
linear deduction systems, it also has features that make it an interesting deduction system 
in its own right. 
 
The most significant idea associated with GLD is linear-input subset analysis. The 
important consequence of linear-input subset analysis is that a truth value deletion system - 
the rightwards subchain system - can be used in (the linear-input) parts of GLD 
deductions. A secondary payoff of the analysis is that the reduction operation can be 
explicitly ignored in linear-input subdeductions. A small number of non-Horn problems 
with non-trivial linear-input subsets have been identified in this research. It would be 
desirable to find a large number of such problems, as this would further establish the 
pragmatic importance of linear-input subset analysis. 
 
There are four noteworthy features within GLD. Firstly, GLD has explicit search guidance 
mechanisms and an explicit entry point for the incorporation of guidance systems. As a 
result, the potential for search guidance in GLD is higher than in previous comparable 
systems. Secondly, GLD employs deduction chunks. Thirdly, GLD's combined 
lemma/C-literal mechanism improves upon previous mechanisms for reusing deduced 
information. The combined lemma/C-literal mechanism can be used in chain format linear 
deduction systems other than GLD and is thus a useful, general, development. Finally, the 
extended admissibility restrictions imposed in GLD are important in terms pruning the 
search tree. The admissibility restrictions are operational ones, but have a fairly high level 
of retrospective and prospective effect. As is noted in section 5.5, the extension of the 
admissibility restrictions to a deductional nature is possible. 
 
The embedding of equality into GLD has been examined superficially. The basic approach 
appears to have potential, particularly as it is naturally controlled by GLD's search 
guidance mechanisms. Its full development, evaluation and exploitation, are areas for 
further research. 
 
The dynamic definition of GLD contrasts with the presentations of many other systems. 
This form of definition makes exact implementation possible. With an exact 
implementation, it is possible to examine closely the intrinsic properties of GLD. Such 
examination could of course lead to further improvements. 
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6.3. Semantic Guidance 

Eight semantic guidance systems have been defined in this research. Three are specifically 
for linear-input deduction systems. The remaining five have been designed with linear 
deduction systems in mind, but can also be used with other deduction formats. A useful 
feature of the definitions of these guidance systems, is that implementational issues have 
been considered. This means that they can be implemented and used without further 
inquiry being necessary. 
 
The rightwards subchain truth value deletion system is the most important of the guidance 
systems developed. The rightwards subchain system is complete for linear deduction 
systems. As truth value deletion has previously been considered incompatible with linear 
deduction, the rightwards subchain system is a significant development. Building on the 
rightwards subchain system, a coherent suite of semantic guidance systems has emerged. 
With the reformulation of sort value deletion into the same terms as truth value deletion 
and the tempering of truth value deletion into the FALSE-preference strategy, it has been 
possible to formulate new semantic guidance systems which are widely applicable. As the 
use of semantic guidance has been seen to be a neglected area, these developments are of 
interest and use. 
 
There is potential to further develop combined semantic guidance systems. At least three 
questions need to be addressed. (i) Is it possible to make the preference for FALSE literals 
more selective? (This is the most important of these three questions.) The results presented 
in chapter 5 indicate that further tuning of the FALSE-preference strategy may be 
necessary. As discussed in section 5.4.3, it may not always be appropriate to avoid centre 
chains that contain TRUE literals. (ii) How may ETV-compatibility levels should be 
available to be assigned to ground literals, and what values should be assigned to each of 
the levels? This research uses four of the eight possible levels and the integer values used 
in SGLD are based on rough empirical evidence. (iii) What ETV-compatibility functions 
are appropriate for determining the ETV-compatibility of a chain and of its ground 
instances? Minimisation and summation have been used in SGLD, but other functions may 
produce better results. 
 
Plaisted [1990b] has suggested another way of semantically guiding the reduction 
operation. The positive refinement for Model Elimination style deduction systems 
[Plaisted 1990b] shows that it is necessary to reduce only against A-literals that are 
interpreted as FALSE. The effect of imposing such a restriction is worth investigating. 
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Finally, it is known that multiple truth value interpretations can be used for truth value 
deletion in linear-input deductions [Brown, 1973]. It should be possible to extend the 
semantic guidance systems developed in this research to use multiple interpretations. This 
is also an area for further research. 

6.4. Designations 

The development of designations has been motivated by the complexity and volume of 
semantic information used by semantic guidance systems. An important feature of 
designations, that makes them superior to existing SRI structures, is their use of property 
inheritance. Designations are also capable of storing more complex semantic information 
than standard SRI structures. This added capability is due to the relationship (rather than a 
mapping) between domain elements. This latter facility has, however, been used in only a 
minority of the designations built in the course of this research. Another important feature 
of designations is their compatibility with the SLE process. 
 
The designation building algorithm is probably the unsung hero of this research. It has 
been indispensable for the specification of the designations used with SGLD. The 
algorithm makes it possible for a user to concentrate on the accurate and appropriate 
supply of semantic information, without having to be concerned about the completeness 
and soundness of the interpretations built. 
 
Two topics for further research are evident in this area. (i) This research supplies (in 
section 4.7.2) only very rough indications of what properties make an interpretation 
effective in a semantic guidance system. Accurate analysis of interpretations' properties, in 
terms of semantic guidance, is needed. (ii) Only a low level of automation has been 
achieved in the specification of designations. Further automation, using techniques such as 
those mentioned in section 3.2, would be desirable. 

6.5. SGLD 

SGLD has been developed to test the thesis of this research, and it has been successful in 
this task. The basic capability of GLD has been illustrated in performance testing without 
semantic guidance. The positive effects of the rightwards subchain system and sort value 
deletion have been demonstrated in the performance testing with semantic guidance. This 
testing also indicated the potential of the FALSE-preference strategy. Designations have 
shown themselves to be effective for storing semantic information. The prime feature of 
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SGLD is its combined semantic guidance system. The consistent use of the same semantic 
information in all of its components has resulted in coherent guidance of SGLD's search.  
 
It is worth considering the quality of SGLD as a whole. Plaisted [1990a] gives four criteria 
for evaluating deduction systems. They are (in essence) : 
1. Does the system support back chaining with reuse of deduced information? 
2. Does the system use a genuine support strategy, that concentrates on chains deduced 

from the negation of the conclusion to be proved? 
3. Does the system permit the use of semantic information to reject redundant deduced 

chains? 
4. Is the use of resolution well controlled during back chaining? 
 
To these questions, SGLD provides the following answers : 
1. For the first part, linear deduction systems are, by definition, back chaining systems. 

For the second part, the lemma/C-literal mechanism in SGLD implements the reuse of 
deduced information. 

2. SGLD's preference for input chains whose status is theorem, allows the user to 
ensure that a genuine support strategy is used. 

3. The rightwards subchain and sort value deletion systems, in SGLD's semantic guidance 
system, reject redundant deduced chains. 

4. The use of resolution is intrinsically well controlled in linear deduction systems. SGLD 
improves on this via its compulsory operations and admissibility checking. The four 
search styles provide different ways of directing SGLD's search for a refutation. 

 
These answers indicate that SGLD is (or at least should be) a high quality deduction 
system. It is hard to make any overall comparisons between SGLD and other deduction 
systems, due to the absence of other deduction systems which which make such extensive 
use of semantic guidance. Possibly the only valid comparison that can be made is with 
Sandford's Hereditary Lock Resolution (HLR) [1980] (see section 3.2.1). HLR appears to 
be the best semantically guided deduction system to date, with a strong theoretical basis 
for its semantic guidance. In terms of Plaisted's four criteria, HLR is not a back chaining 
system, nor does it use a genuine support strategy. It does use semantic deletion and, as a 
version of lock resolution, has a well controlled use of resolution. A similarity between 
SGLD and HLR is the use of an auxiliary data structure to maintain deduction faithfulness 
of the semantic guidance restrictions. 
 
Beyond the potential for faster implementation, as mentioned in section 5.5, future work 
on SGLD will certainly arise out of any changes to GLD, the semantic guidance system, or 
designations. It would also be interesting to investigate to what extent a single designation 
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can be used to guide deductions for multiple input sets. For a single designation to be used 
with multiple input sets, the semantic information stored would have to be fairly general. 
This may make the semantic guidance systems less effective. 

6.6. Conclusion 

The ideas and results presented in the preceding chapters show that the thesis of this 
research holds. Semantic guidance can be used to improve the performance of a linear 
deduction system. Only two issues remain slightly open in this regard. Firstly, it would be 
desirable to uncover a large group of non-Horn problems which have non-trivial 
linear-input subsets. This would more firmly establish the pragmatic importance of 
linear-input subset analysis and the rightwards subchain system. Secondly, the 
FALSE-preference strategy may need further tuning. 
 
The outcomes of this research have the potential to contribute to other deduction systems. 
The FALSE-preference strategy, sort&truth value deletion and combined semantic 
guidance, are generally applicable semantic guidance mechanisms. Designations (and the 
algorithm for building them) make it far easier to use these and other semantic guidance 
systems in appropriate host deduction systems. 
 
Beyond the specific areas for further research mentioned in the earlier sections of this 
chapter, two general issues have stood out as warranting further attention, as follows. 
(i) Although complete truth value deletion systems now exist for linear and linear-input 
deduction systems, use of these systems has indicated that they have effect only in some 
types of problems. For example, truth value deletion appears to be ineffective when 
proving general lemmas from the axioms of a problem domain. On the other hand, truth 
value deletion appears particularly effective in problems that have some special 
hypotheses. Some theoretical analysis should reveal generic problem types for which truth 
value deletion is (and is not) appropriate. (ii) The technique of proof by analogy to a proof 
in the semantic domain needs to be developed. Some work has been done in this area 
[Plaisted, 1981, 1984]. However, when compared to its potential, this approach to 
semantic guidance appears to have been neglected. This thought has been voiced by 
others, e.g. "Somehow intelligent machines (including reasoners) must make use of 
analogy ..." [Bledsoe & Hodges, 1988, p. 517]. The domain based approach described in 
chapter 3 could form a starting point for research in this area. 



References Page 149 

References 

Anderson R. and Bledsoe W.W. (1970), A Linear Format for Resolution with Merging and 
a New Technique for Establishing Completeness, In Journal of the ACM 17(3), 
ACM Press, New York, NY, 525-534. 

Andrews P.B. (1968), Resolution with Merging, In Journal of the ACM 15(3), ACM Press, 
New York, NY, 367-381. 

Arity Corporation (1988), The Arity/Prolog Language Reference Manual, Arity 
Corporation, Concord, MA. 

Astrachan O.L., and Stickel M.E. (1992), Caching and Lemmaizing in Model Elimination 
Theorem Provers, In Kapur, D. (Ed.), Proceedings of the 11th International 
Conference on Automated Deduction (Saratoga Springs, NY, 1992), (Lecture Notes 
in Artificial Intelligence 607), Springer-Verlag, New York, NY, 224-238. 

Ballantyne A.M. and Bennett W. (1973), Graphing Methods for Topological Proofs, 
Research Report ATP 7, Department of Computer Science, University of Texas at 
Austin, Austin, TX. 

Ballantyne A.M., and Bledsoe W.W. (1977), Automatic Proofs of Theorems in Analysis 
Using Nonstandard Techniques, In Journal of the ACM 24(3), ACM Press, New 
York, NY, 353-374. 

Ballantyne A.M. and Bledsoe W.W. (1982), On generating and using examples in proof 
discovery, In Hayes J.E., Michie D. (Ed.), Machine Intelligence 10, Ellis-Horwood, 
Chichester, England, 3-39. 

Bibel W. (1987), Automated Theorem Proving, Vieweg & Sohn, Braunschweig, Germany. 

Bledsoe W.W. (1983), Using examples to generate instantiations of set variables, In Bundy 
A. (Ed.), Proceedings of the 8th International Joint Conference on Artificial 
Intelligence (Karlsruhe, Germany, 1983), International Joint Conferences on 
Artificial Intelligence Inc, Los Altos, CA, 892-901. 

Bledsoe W.W. (1986), Some Thoughts on Proof Discovery, In Proceedings of the 3rd 
Symposium on Logic Programming (Salt Lake City, UT, 1986), IEEE Computer 
Society Press, Washington, DC, 2-10. 

Bledsoe W.W. and Henschen L.J. (1985), An Overview of Automated Reasoning : What is 
Automated Theorem Proving?, In Journal of Automated Reasoning 1(1), Kluwer 
Academic Publishers, Dordrecht, The Netherlands, 5-48. 



Page 150 References 

Bledsoe W.W. and Hodges R. (1988), A Survey of Automated Deduction, In Schrobe H.E. 
(Ed.), Exploring Artificial Intelligence : Survey Talks from the National Conferences 
on Artificial Intelligence, Morgan Kaufmann, San Mateo, CA, 483-543. 

Bledsoe W.W. (1992), Personal Correspondence. 

Boyer R.S. (1971), Locking : a restriction of resolution, PhD Thesis, University of Texas 
at Austin, Austin, TX. 

Brown F.M. (1973), The Use of Several Models as a Refinement of Resolution with sets of 
Horn Clauses, Internal Memo #63, Department of Artificial Intelligence, University 
of Edinburgh, Edinburgh, Scotland. 

Brown F.M. (1974), SLM, Internal Memo #72, Department of Artificial Intelligence, 
University of Edinburgh, Edinburgh, Scotland. 

Bundy A. (1983), The Computer Modelling of Mathematical Reasoning, Academic Press, 
London, England. 

Bundy A. (1984), A Generalized Interval Package and Its Use for Semantic Checking, In 
ACM Transactions on Mathematical Systems 10(4), ACM Press, New York, NY, 
397-409. 

Bundy A. (1987), Personal Correspondence. 

Bundy A., Byrd L., Luger G., Mellish C., Milne R. and Palmer M. (1979), Solving 
Mechanics Problems Using Meta-level Inference, In Proceedings of the 6th 
International Joint Conference on Artificial Intelligence (Tokyo, Japan, 1979), 
International Joint Conferences on Artificial Intelligence Inc, Los Altos, CA, 1017-
1027. 

Carlsson M. and Widen J. (1990), SICStus Prolog User's Manual, R88007C, Swedish 
Institute of Computer Science, Kista, Sweden. 

Chang C-L. (1970), The Unit Proof and the Input Proof in Theorem Proving, In Journal of 
the ACM 17(4), ACM Press, New York, NY, 698-707. 

Chang C-L. (1972), The Decomposition Principle for Theorem Proving Systems, In 
Proceedings of the 10th Annual Allerton Conference on Circuit and System Theory 
(Urbana, IL, 1972), The Conference, Urbana, IL, 20-28. 

Chang C-L. and Lee R.C-T. (1973), Symbolic Logic and Mechanical Theorem Proving, 
Academic Press, New York, NY. 

Cohn A.G. (1987), A More Expressive Formulation of Many Sorted Logic, In Journal of 
Automated Reasoning 3(2), Kluwer Academic Publishers, Dordrecht, The 
Netherlands, 113-200. 



References Page 151 

Delgrande J.P. and Mylopolous J. (1986), Knowledge Representation : Features of 
Knowledge, In Bibel W., Jorrand Ph (Eds.), In Fundamentals of Artificial 
Intelligence : An Advanced Course, (Lecture Notes in Computer Science 232), 
Springer-Verlag, New York, NY, 3-36. 

Digricoli V.J. (1979), Automatic Deduction and Equality, In Martin A.L. (Ed.), 
Proceedings of the Annual Conference of the ACM (Detroit, MI, 1979), ACM Press, 
New York, NY, 240-250. 

Dougherty D.J. and Johann P. (1990), An Improved General E-Unification Method, In 
Stickel M. (Ed.), Proceedings of the 10th International Conference on Automated 
Deduction (Kaiserslautern, Germany, 1990), (Lecture Notes in Artificial Intelligence 
449), Springer-Verlag, New York, NY, 261-275. 

Enderton H.B. (1972), A Mathematical Introduction to Logic, Academic Press, New York, 
NY. 

Ertel W. (1991), Random Competition: A Simple, but Efficient Method for Parallelizing 
Inference Systems, In Kanal L.N., Suttner C. B. (Eds.), Informal Proceedings of 
PPAI-91, International Workshop on Parallel Processing for Artificial Intelligence 
(Sydney, Australia, 1991), International Joint Conferences on Artificial Intelligence 
Inc, Sydney, Australia, 36-39. 

Fleisig S., Loveland D.W., Smiley A.K. and Yarmush D.L. (1974), An Implementation of 
the Model Elimination Proof Procedure, In Journal of the ACM 21(1), ACM Press, 
New York, NY, 124-139. 

Fruhwirth T.W. (1989), A Type Language for Prolog and its Application to Type 
Inference, In Martelli A., Valle G. (Eds.), Computational Intelligence 1, Elsevier 
Science Publishers, Amsterdam, The Netherlands, 29-41. 

Gallier J. and Snyder W. (1989), Complete Sets of Transformations for General E-
Unification, In Theoretical Computer Science 67(2,3), North-Holland, Amsterdam, 
The Netherlands, 203-260. 

Gelerneter H. (1963), Realisation of a Geometry-Theorem Proving Machine, In 
Feigenbaum E.A., Feldman J (Eds.), Computers and Thought, McGraw-Hill, New 
York, NY, 134-152. 

Gelerneter H., Hansen J.R. and Loveland D.W. (1963), Empirical Explorations of the 
Geometry-Theorem Proving Machine, In Feigenbaum E.A., Feldman J (Eds.), 
Computers and Thought, McGraw-Hill, New York, NY, 153-163. 



Page 152 References 

Ginsberg M.L. and Geddis D.F. (1991), Is there any Need for Domain-Dependent Control 
Information?, In Dean T., McKeown K. (Eds.), AAAI-91, Proceedings of the 9th 
National Conference on Artificial Intelligence (Asilomar, CA, 1991), AAAI 
Press/MIT Press, Menlo Park, CA, 452-457. 

Hayes P.J. (1971), A Logic of Actions, In Meltzer B., Michie D. (Eds.), Machine 
Intelligence 6, Edinburgh University Press, Edinburgh, Scotland, 495-520. 

Henschen L.J. (1972), N-Sorted Logic for Automatic Theorem-Proving in Higher Order 
Logic, In Proceedings of the Annual Conference of the ACM (Boston, MA, 1972), 
ACM Press, New York, NY, 71-81. 

Henschen L.J. (1976), Semantic Resolution for Horn Sets, In IEEE Transactions on 
Computers C-25(8), IEEE Computer Society Press, Washington, DC, 816-822. 

Henschen L.J. and Wos L. (1974), Unit Refutations and Horn Sets, In Journal of the ACM 
21(4), ACM Press, New York, NY, 590-605. 

Irani K.B. and Shin D.G. (1985), A Many-Sorted Resolution based on an Extension of a 
First-Order Language, In Joshi A. (Ed.), Proceedings of the 9th International Joint 
Conference on Artificial Intelligence (Los Angeles, CA, 1985), International Joint 
Conferences on Artificial Intelligence Inc, Los Altos, CA, 1175-1177. 

Jaffar J. and Lassez J-L. (1987), Constraint Logic Programming, In Proceedings of the 
Annual ACM Symposium on Principles of Programming Languages (Munich, 
Germany, 1987), ACM Press, Baltimore, MD, 0-15. 

Kim M.W. (1986), On Automatically Generating and Using Examples in a Computational 
Logic System, The University of Texas at Austin, Austin, TX. 

Knuth D.E. and Bendix P.B. (1970), Simple word problems in universal algebras, In Leech 
J. (Ed.), Computational Problems in Abstract Algebras, Pergamon Press, 263-297. 

Korf R.E. (1985), Depth-First Iterative Deepening: An Optimal Admissible Tree Search, 
In Artificial Intelligence 27, Elsevier Science, Amsterdam, The Netherlands, 97-109. 

Kornfield W.A. (1983), Equality for Prolog, In Joshi A. (Ed.), Proceedings of the 9th 
International Joint Conference on Artificial Intelligence (Los Angeles, CA, 1983), 
International Joint Conferences on Artificial Intelligence Inc, Los Altos, CA, 514-
519. 

Kowalski R.A. (1970), Studies in the Completeness and Efficiency of Theorem-Proving by 
Resolution, PhD Thesis, University of Edinburgh, Edinburgh, Scotland. 

Kowalski R.A. and Hayes P.J. (1969), Semantic Trees in Automatic Theorem Proving, In 
Meltzer B., Michie D. (Eds.), Machine Intelligence 4, Edinburgh University Press, 
Edinburgh, Scotland, 87-101. 



References Page 153 

Kowalski R.A. and Kuehner D. (1971), Linear Resolution with Selection Function, In 
Artificial Intelligence 2, Elsevier Science, Amsterdam, The Netherlands, 227-260. 

Kuehner D. (1972), Some Special Purpose Resolution Systems, In Meltzer B., Michie D 
(Eds.), Machine Intelligence 7, Edinburgh University Press, Edinburgh, Scotland, 
117-128. 

Lawrence J.D. and Starkey J.D. (1974), Experimental tests of resolution based theorem-
proving strategies., Technical Report, Computer Science Department, Washington 
State University, Pullman, WA. 

Letz R., Schumann J., Bayerl S. and Bibel W. (1992), SETHEO: A High-Performance 
Theorem Prover, In Journal of Automated Reasoning 8(2), Kluwer Academic 
Publishers, Dordrecht, The Netherlands, 183-212. 

Lloyd J.W. (1984), Foundations of logic programming, Springer-Verlag, New York, NY. 

Loveland D.W. (1968), Mechanical Theorem Proving by Model Elimination, In Journal of 
the ACM 15(2), ACM Press, New York, NY, 236-251. 

Loveland D.W. (1969a), A Simplified Format for the Model Elimination Theorem-Proving 
Procedure, In Journal of the ACM 16(3), ACM Press, New York, NY, 349-363. 

Loveland D.W. (1969b), Theorem-provers Combining Model Elimination and Resolution, 
In Meltzer B., Michie D. (Eds.), Machine Intelligence 4, Edinburgh University Press, 
Edinburgh, Scotland, 73-86. 

Loveland D.W. (1970), A Linear Format for Resolution, In Laudet M. et al. (Eds.), 
Proceedings of the IRIA Symposium on Automatic Demonstration (Versailles, 
France, 1968), Springer-Verlag, New York, NY, 147-162. 

Loveland D.W. (1972), A Unifying View of Some Linear Herbrand Procedures, In Journal 
of the ACM 19(2), ACM Press, New York, NY, 366-384. 

Loveland D.W. (1978), Automated Theorem Proving : a logical basis, Elsevier Science, 
Amsterdam, The Netherlands. 

Luckham D. (1968), Some Tree-paring Strategies for Theorem Proving, In Michie D. 
(Ed.), Machine Intelligence 3, Edinburgh University Press, Edinburgh, Scotland, 95-
112. 

Luckham D. (1970), Refinement Theorems in Resolution Theory, In Laudet M. et al. 
(Eds.), Proceedings of the Symposium on Automatic Demonstration (Versailles, 
France, 1968), Springer-Verlag, New York, NY, 163-190. 

Lusk E. and Overbeek R. (1985), Non-Horn Problems, In Journal of Automated Reasoning 
1(1), Kluwer Academic Publishers, Dordrecht, The Netherlands, 103-114. 



Page 154 References 

Manna Z. and Waldinger R. (1985), Special Relations in Automated Deduction, Internal 
Report STAN-CS-85-1051, Department of Computer Science, Stanford University, 
Stanford, CA. 

Manthey R. and Bry F. (1988), SATCHMO: a theorem prover implemented in Prolog, In 
Lusk E., Overbeek R. (Eds.), Proceedings of the 9th International Conference on 
Automated Deduction (Argonne, IL, 1988), (Lecture Notes in Computer Science 
310), Springer-Verlag, New York, NY, 415-434. 

McCune W.W. (1990), Skolem Functions and Equality in Automated Deduction, In 
Dietterich T., Swartout W. (Eds.), Proceedings of the 8th National Conference on 
Artificial Intelligence (Boston, MA, 1990), American Association for Artificial 
Intelligence / MIT Press, Menlo Park, CA, 246-252. 

McCune W.W. and Henschen L.J. (1983), Semantic Paramodulation for Horn Sets, In 
Bundy A. (Ed.), Proceedings of the 8th International Joint Conference on Artificial 
Intelligence (Karlsruhe, Germany, 1983), International Joint Conferences on 
Artificial Intelligence Inc., Los Altos, CA, 902-908. 

McRobbie M.A., Meyer R.K. and Thistlewaite P.B. (1988), Towards Efficient 
"Knowledge-Based" Automated Theorem Proving for Non-Standard Logics, In Lusk 
E., Overbeek R. (Eds.), Proceedings of the 9th International Conference on 
Automated Deduction (Argonne, IL, 1988), (Lecture Notes in Computer Science 
310), Springer-Verlag, New York, NY, 197-217. 

Meltzer B. (1966), Theorem-proving for computers: Some results on resolution and 
renaming, In The Computer Journal 8, The British Computer Society, London, 
England, 341-343. 

Michie D., Ross R. and Shannan G.J. (1972), G-deduction, In Meltzer B., Michie D. 
(Eds.), Machine Intelligence 7, Edinburgh University Press, Edinburgh, Scotland, 
141-165. 

Minker J. and Zanon G. (1982), An Extension to Linear Resolution with Selection 
Function, In Information Processing Letters 14(4), Elsevier Science, Amsterdam, 
The Netherlands, 191-194. 

Morris J.B. (1969), E-Resolution: Extension of Resolution to include the equality relation, 
In Walker D.E., Norton L.M. (Eds.), Proceedings of the 1st International Joint 
Conference on Artificial Intelligence (Washington, DC, 1969), Mitre Corp., Bedford, 
MA, 287-294. 

Mycroft A. and O'Keefe R.A. (1984), A Polymorphic Type System for Prolog, In Artificial 
Intelligence 23, Elsevier Science, Amsterdam, The Netherlands, 295-307. 



References Page 155 

Naish L. (1985), muProlog 3.2 Reference Manual, Technical Report 85/11, Department of 
Computer Science, University of Melbourne, Melbourne, Australia. 

Naish L. (1986), Negation and Control in Prolog, (Lecture Notes in Computer Science 
238), Springer-Verlag, New York, NY. 

Nevins A.J. (1975), Plane Geometry Theorem Proving Using Forward Chaining, In 
Artificial Intelligence 6, Elsevier Science, Amsterdam, The Netherlands, 1-23. 

Newell A. and Simon H.A. (1976), Computer Science as Empirical Inquiry : Symbols and 
Search, In Communications of the ACM 19(3), ACM Press, New York, NY, 
113-126. 

Nie X. and Plaisted D.A. (1990), A Complete Semantic Back Chaining Proof System, In 
Stickel M. (Ed.), Proceedings of the 10th International Conference on Automated 
Deduction (Kaiserslautern, Germany, 1990), (Lecture Notes in Artificial Intelligence 
449), Springer-Verlag, New York, NY, 16-27. 

Nilsson N.J. (1971), Problem-Solving Methods in Artificial Intelligence, McGraw-Hill, 
New York, NY. 

Overbeek R., McCharen J. and Wos L. (1976), Complexity and Related Enhancements for 
Automated Theorem-Proving Programs, In Computers and Mathematics with 
Applications 2, Pergamon Press, England, 1-16. 

Pastre D. (1978), Automatic Theorem Proving in Set Theory, In Artificial Intelligence 10, 
Elsevier Science, Amsterdam, The Netherlands, 1-27. 

Pelletier F.J. (1986), Seventy-five Problems for Testing Automatic Theorem Provers, In 
Journal of Automated Reasoning 2(2), Kluwer Academic Publishers, Dordrecht, The 
Netherlands, 191-216. 

Plaisted D.A. (1981), Theorem Proving with Abstraction, In Artificial Intelligence 16, 
Elsevier Science, Amsterdam, The Netherlands, 47-108. 

Plaisted D.A. (1982), A Simplified Problem Reduction Format, In Artificial Intelligence 
18, Elsevier Science, Amsterdam, The Netherlands, 227-261. 

Plaisted D.A. (1984), Using Examples, Case Analysis and Dependency Graphs in 
Theorem Proving, In Shostak R.E. (Ed.), Proceedings of the 7th International 
Conference on Automated Deduction (Napa, CA, 1984), (Lecture Notes in Computer 
Science 170), Springer-Verlag, New York, NY, 356-374. 

Plaisted D.A. (1988), Non-Horn Clause Logic Programming Without Contrapositives, In 
Journal of Automated Reasoning 4(3), Kluwer Academic Publishers, Dordrecht, The 
Netherlands, 287-325. 



Page 156 References 

Plaisted D.A. (1990a), Mechanical Theorem Proving, In Banerji R.B. (Ed.), Formal 
Techniques in Artificial Intelligence, A Sourcebook, Elsevier Science, Amsterdam, 
The Netherlands, 269-320. 

Plaisted D.A. (1990b), A Sequent-Style Model Elimination Strategy and a Positive 
Refinement, In Journal of Automated Reasoning 6(4), Kluwer Academic Publishers, 
Dordrecht, The Netherlands, 389-402. 

Plaisted D.A. (1991), Implementation of the Modified Problem Reduction Format 
Theorem Prover, Computer Program, Department of Computer Science, University 
of North Carolina, Chapel Hill, NC. 

Plotkin G.D. (1972), Building-in Equational Theories, In Meltzer B., Michie D. (Eds.), 
Machine Intelligence 7, Edinburgh University Press, Edinburgh, Scotland, 73-91. 

Pollack M.E. (1991), The Use of Plans, In Mylopolous J., Reiter R. (Eds.), Proceedings of 
the 12th International Joint Conference on Artificial Intelligence (Sydney, Australia, 
1991), International Joint Conferences on Artificial Intelligence Inc., Los Altos, CA, 
Computers and Thought Lecture. 

Popplestone R.J. (Unpublished), Freddy, things and sets. 

Raphael B. (1969), Some Results about Proof by Resolution, In SIGART 14, ACM Press, 
New York, NY, 22-25. 

Reiter R. (1971), Two Results on Ordering for Resolution with Merging and Linear 
Format, In Journal of the ACM 18(4), ACM Press, New York, NY, 630-646. 

Reiter R. (1973), A Semantically Guided Deduction System for Automatic Theorem 
Proving, In Proceedings of the 3rd International Joint Conference on Artificial 
Intelligence (Stanford, CA, 1973), Stanford Research Institute, Menlo Park, CA, 41-
46. 

Ringwood G.A. (1988), SLD: A Folk Acronym, In Moss C. (Ed.), Logic Programming 
Newsletter 2(1), Association for Logic Programming, London, England, 5-7. 

Robinson G.A. and Wos L. (1969), Completeness of Paramodulation, In Journal of 
Symbolic Logic 34, Association for Symbolic Logic Inc., Providence, RI, 159-160. 

Robinson J.A. (1963), Theorem Proving on the Computer, In J. ACM 10(2), ACM Press, 
New York, NY, 163-174. 

Robinson J.A. (1965a), A Machine-Oriented Logic Based on the Resolution Principle, In 
Journal of the ACM 12(1), ACM Press, New York, NY, 23-41. 

Robinson J.A. (1965b), Automatic Deduction with Hyper-resolution, In International 
Journal of Computer Mathematics 1, Gordon and Breach, London, England, 227-
234. 



References Page 157 

Robinson J.A. (1969), Mechanizing Higher-Order Logic, In Meltzer B., Michie D. (Eds.), 
Machine Intelligence 4, Edinburgh University Press, Edinburgh, Scotland, 151-170. 

Sandford D.M. (1977), Formal Specification of Models for Semantic Theorem Proving 
Strategies, SOSAP-TR-32, Department of Computer Science, Rutgers, The State 
University of New Jersey, New Brunswick, NJ. 

Sandford D.M. (1980), Using Sophisticated Models in Resolution Theorem Proving, 
(Lecture Notes in Computer Science 90), Springer-Verlag, New York, NY. 

Schmidt-Schauss M. (1985), A Many-Sorted Calculus with Polymorphic Functions Based 
on Resolution and Paramodulation, In Joshi A. (Ed.), Proceedings of the 9th 
International Joint Conference on Artificial Intelligence (Los Angeles, CA, 1985), 
International Joint Conferences on Artificial Intelligence Inc, Los Altos, CA, 1162-
1168. 

Schmidt-Schauss M. (1988), Computational Aspects of an Order-Sorted Logic with Term 
Declarations, Doctoral Dissertation, University of Kaiserslautern, Kaiserslautern, 
Germany. 

Schumann J., Letz R. and Kurfess F. (1990), High Performance Theorem Provers : 
Efficient Implementation and Parallelisation, In Stickel M. (Ed.), Proceedings of the 
10th International Conference on Automated Deduction (Kaiserslautern, Germany, 
1990), (Lecture Notes in Artificial Intelligence 449), Springer-Verlag, New York, 
NY, Tutorial Session. 

Shin D.G. and Irani K.B. (1984), Knowledge Representation using an extension of a 
Many-Sorted Language, In Proceedings of the 1st Conference on Artificial 
Intelligence Applications (Denver, CO, 1984), IEEE Computer Society Press, Silver 
Spring, MD, 404-409. 

Shostak R.E. (1976), Refutation Graphs, In Artificial Intelligence 7, Elsevier Science, 
Amsterdam, The Netherlands, 51-64. 

Slagle J.R. (1965), A Proposed Preference Strategy using Sufficiency Resolution for 
Answering Questions, UCRL-14361, Lawrence Radiation Laboratory, Livermore, 
CA. 

Slagle J.R. (1967), Automatic Theorem Proving with Renamable and Semantic Resolution, 
In Journal of the ACM 14(4), ACM Press, New York, NY, 687-697. 

Slagle J.R. (1972), Automatic Theorem Proving with Built-in Theories Including Equality, 
Partial Ordering and Sets., In Journal of the ACM 19(1), ACM Press, New York, 
NY, 120-135. 



Page 158 References 

Slagle J.R. (1974), Automated theorem-proving for theories with simplifiers, 
commutativity and associativity, In Journal of the ACM 21(4), ACM Press, New 
York, NY, 622-642. 

Stickel M.E. (1985), Automated Deduction by Theory Resolution, In Journal of 
Automated Reasoning 1(4), Kluwer Academic Publishers, Dordrecht, The 
Netherlands, 333-356. 

Stickel M.E. (1986a), An Introduction to Automated Reasoning, In Bibel W., Jorrand Ph. 
(Eds.), Fundamentals of Artificial Intelligence, (Lecture Notes in Computer Science 
232), Springer-Verlag, New York, NY, 75-131. 

Stickel M.E. (1986b), A Prolog Technology Theorem Prover: Implementation by an 
Extended Prolog Compiler, In Siekmann J.H. (Ed.), Proceedings of the 8th 
International Conference on Automated Deduction (Oxford, England, 1986), 
(Lecture Notes in Computer Science 230), Springer-Verlag, New York, NY, 573-
587. 

Stickel M.E. (1990), A Prolog Technology Theorem Prover, In Stickel M. (Ed.), 
Proceedings of the 10th International Conference on Automated Deduction 
(Kaiserslautern, Germany, 1990), (Lecture Notes in Artificial Intelligence 449), 
Springer-Verlag, New York, NY, 673-674. 

Stickel M.E. and Tyson W.M. (1985), An Analysis of Consecutively Bounded Depth-First 
Search with Applications in Automated Deduction, In Joshi A. (Ed.), Proceedings of 
the 9th International Joint Conference on Artificial Intelligence (Los Angeles, CA, 
1985), International Joint Conferences on Artificial Intelligence Inc., Los Altos, CA, 
1073-1075. 

Sutcliffe G. (1987), Single Interpretation, Domain Based, Semantic Checking, Research 
Report 87/9, Department of Computer Science, The University of Western Australia, 
Perth, Australia. 

Sutcliffe G. (1989), Complete Linear Derivation Systems for General Clauses, In Wos L. 
(Ed.), Association for Automated Reasoning Newsletter (13), Association for 
Automated Reasoning, Argonne, Il, 3-4. 

Sutcliffe G. (1992), Linear-Input Subset Analysis, In Kapur D. (Ed.), Proceedings of the 
11th International Conference on Automated Deduction (Saratoga Springs, NY, 
1992), Springer-Verlag, New York, NY. 

Sutcliffe G. and Tabada W. (1991), Compulsory Reduction in Linear Derivation Systems, 
In Bibel W. (Ed.), Artificial Intelligence (Letters to the Editor) 50, Elsevier Science, 
Amsterdam, The Netherlands, 131-132. 



References Page 159 

Tabada W. and Sutcliffe G. (1990), An Analysis of the Selective Linear Model Inference 
System, Research Report 90/2, Department of Computer Studies, Western Australian 
College of Advanced Education, Perth, Australia. 

Tabada W. (1992), An Analysis and Implementation of Linear Derivation Strategies, MSc 
Thesis, Department of Computer Science, Edith Cowan University, Perth, Australia. 

Tarver M. (1990), An Examination of the Prolog Technology Theorem Prover, In 
Stickel M. (Ed.), Proceedings of the 10th International Conference on Automated 
Deduction (Kaiserslautern, Germany, 1990), (Lecture Notes in Artificial Intelligence 
449), Springer-Verlag, New York, NY, 322-335. 

Wakayama T. and Payne T.H. (1990), Case-Free Programs: An Abstraction of Definite 
Horn Programs, In Stickel M. (Ed.), Proceedings of the 10th International 
Conference on Automated Deduction (Kaiserslautern, Germany, 1990), (Lecture 
Notes in Artificial Intelligence 449), Springer-Verlag, New York, NY, 87-101. 

Walther C. (1983), A Many-Sorted Calculus Based on Resolution and Paramodulation, In 
Bundy A. (Ed.), Proceedings of the 8th International Joint Conference on Artificial 
Intelligence (Karlsruhe, Germany, 1983), International Joint Conferences on 
Artificial Intelligence Inc, Los Altos, CA, 882-891. 

Walther C. (1984), A Mechanical Solution of Schubert's Steamroller by Many-Sorted 
Resolution, In Proceedings of the National Conference on Artificial Intelligence 
(Austin, TX, 1984), American Association for Artificial Intelligence, Los Altos, CA, 
330-334. 

Walther C. (1985), Unification in Many-Sorted Theories, In O'Shea T. (Ed.), Advances in 
Artificial Intelligence, Proceedings of the European Conference on Artificial 
Intelligence (Pisa, Italy, 1984), Elsevier Science, Amsterdam, The Netherlands, 383-
393. 

Wang T-C. (1985), Designing examples for semantically guided hierarchical deduction, In 
Joshi A. (Ed.), Proceedings of the 9th International Joint Conference on Artificial 
Intelligence (Los Angeles, CA, 1985), International Joint Conferences on Artificial 
Intelligence Inc, Los Altos, CA, 1201-1207. 

Wang T-C and Bledsoe W.W. (1987), Hierarchical Deduction, In Journal of Automated 
Reasoning 3(1), Kluwer Academic Publishers, Dordrecht, The Netherlands, 35-77. 

Wilson G.A. and Minker J. (1976), Resolution, Refinements and Search Strategies: A 
Comparative Study, In IEEE Transactions on Computers C-25(8), IEEE Computer 
Society Press, Washington, DC, 782-801. 



Page 160 References 

Winker S. (1982), Generation and Verification of Finite Models and Counterexamples 
Using an Automated Theorem Prover Answering Two Open Questions, In Journal of 
the ACM 29(2), ACM Press, New York, NY, 273-284. 

Winston P.H. (1984), Artificial Intelligence, Addison-Wesley, Reading, MA. 

Wos L. (~1965), Unpublished notes, Argonne National Laboratory, Argonne, IL. 

Wos L. (1988), Automated Reasoning - 33 Basic Research Problems, Prentice-Hall, 
Englewood Cliffs, New Jersey. 

Wos L., Carson D. and Robinson G.A. (1964), The Unit Preference Strategy in Theorem 
Proving, In Proceedings of the AFIPS 1964 Fall Joint Computer Conference (San 
Francisco, CA, 1964), Spartan Books, Baltimore, MD, 615-621. 

Wos L., Robinson G.A. and Carson D.F. (1965), Efficiency and Completeness of the Set 
of Support Strategy in Theorem Proving, In Journal of the ACM 12(4), ACM Press, 
New York, NY, 536-541. 

Wos L., Verhoff R., Smith B. and McCune W. (1984), The Linked Inference Principle, II: 
The User's Viewpoint, In Shostak R.E. (Ed.), Proceedings of the 7th International 
Conference on Automated Deduction (Napa, CA, 1984), (Lecture Notes in Computer 
Science 170), Springer-Verlag, New York, NY, 316-332. 

Yates R.A., Raphael B. and Hart T.P. (1970), Resolution Graphs, In Artificial Intelligence 
1, Elsevier Science, Amsterdam, The Netherlands, 247-256. 

Zamov N.K. and Sharonov V.I. (1969), On a class of strategies which can be used to prove 
theorems by the resolution principle (In Russian), In Issled, po konstruktivnoye 
matematikye i matematicheskoie logikye III(16), National Lending Library Russian 
Translating Program 5857, Boston Spa, England, 54-64. 



Examples Page 161 

Appendix One 

Examples 

 

This appendix holds examples that are too bulky to be retained in the main text. 

A1.1. Trace of Algorithm 4.13 

M2 D = {} 
M4 Build({homer}) 
B2 Instance = homer 
B9 {mr_s} = GetValuesFromUser(homer) 
B11 homer R∅  mr_s 

B13 D = {mr_s} 
B14 Build({mr_s}) 
B2  Instance = mr_s 
B9  {person} = GetValuesFromUser(mr_s) 
B11  mr_s R∅  person 

B13  D = {mr_s, person} 
B14  Build({person}) 
B2   Instance = person 
B9   {} = GetValuesFromUser(person) 
M4 Build({spouse_of(person), heart_ok(person), 

lungs_ok(person), alive(person)}) 
B2 Instance = spouse_of(person) 
B9 {expand(1)} = GetValuesFromUser(spouse_of(person)) 
B11 spouse_of(person) R∅  expand(1) 

B15 CheckExpand(spouse_of(person),expand(1)) 
C3 Build({spouse_of(mr_s)}) 
B2  Instance = spouse_of(mr_s) 
B9  {mrs_s} = GetValuesFromUser(spouse_of(mr_s)) 
B11  spouse_of(mr_s) R∅  mrs_s 

B13  D = {mr_s, person, mrs_s} 
B14  Build({mrs_s}) 
B2   Instance = mrs_s 
B9   {person} = GetValuesFromUser(mrs_s) 
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B11   mrs_s R∅ person  

B15   CheckExpand(mrs_s,person) 
B2 Instance = heart_ok(person) 
B9 {TRUE} = GetValuesFromUser(heart_ok(person)) 
B11 heart_ok(person) R∅ TRUE  

B13 D = {mr_s, person, mrs_s, TRUE} 
B14 Build({TRUE}) 
B2  Instance = TRUE 
B9  {} = GetValuesFromUser(TRUE) 
B2 Instance = lungs_ok(person) 
B9 {expand(1)} = GetValuesFromUser(lungs_ok(person)) 
B11 lungs_ok(person) R∅ expand(1)  

B15 CheckExpand(lungs_ok(person),expand(1)) 
C3 Build({lungs_ok(mr_s), lungs_ok(mrs_s)}) 
B2  Instance = lungs_ok(mr_s) 
B9  {TRUE} = GetValuesFromUser(lungs_ok(mr_s)) 
B11  lungs_ok(mr_s) R∅ TRUE  

B15  CheckExpand(lungs_ok(mr_s),TRUE) 
B2  Instance = lungs_ok(mrs_s) 
B9  {FALSE} = GetValuesFromUser(lungs_ok(mrs_s)) 
B11  lungs_ok(mrs_s) R∅ FALSE  

B13  D = {mr_s, person, mrs_s, TRUE, FALSE} 
B14  Build({FALSE}) 
B2   Instance = FALSE 
B9   {} = GetValuesFromUser(FALSE) 
B2 Instance = alive(person) 
B9 {TRUE} = GetValuesFromUser(alive(person)) 
B11 alive(person) R∅ TRUE  

B15 CheckExpand(alive(person),TRUE) 
M4 Build({spouse_of(person), spouse_of(TRUE), 

spouse_of(FALSE), heart_ok(person), heart_ok(TRUE), 
heart_ok(FALSE), lungs_ok(person), lungs_ok(TRUE), 
lungs_ok(FALSE), alive(person), alive(TRUE), 
alive(FALSE)}) 

B2 Instance = spouse_of(person) 
B5 CheckExpand(spouse_of(person),expand(1)) 
C3 Build({spouse_of(mr_s),spouse_of(mrs_s))}) 
B2  Instance = spouse_of(mr_s) 
B5  CheckExpand(spouse_of(mr_s),mrs_s) 
B2  Instance = spouse_of(mrs_s) 
B9  {mr_s} = GetValuesFromUser(spouse_of(mrs_s)) 
B11  spouse_of(mrs_s) R∅ mr_s  

B15  CheckExpand(spouse_of(mrs_s),mr_s) 
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B2 Instance = spouse_of(TRUE) 
B9 {} = GetValuesFromUser(spouse_of(TRUE)) 
B2 Instance = spouse_of(FALSE) 
B9 {} = GetValuesFromUser(spouse_of(FALSE)) 
B2 Instance = heart_ok(person) 
B5 CheckExpand(heart_ok(person),TRUE) 
B2 Instance = heart_ok(TRUE) 
B9 {} = GetValuesFromUser(heart_ok(TRUE)) 
B2 Instance = heart_ok(FALSE) 
B9 {} = GetValuesFromUser(heart_ok(FALSE)) 
B2 Instance = lungs_ok(person) 
B5 CheckExpand(heart_ok(person),expand(1)) 
C3 Build({lungs_ok(mr_s), lungs_ok(mrs_s)}) 
B2  Instance = lungs_ok(mr_s) 
B5  CheckExpand(lungs_ok(mr_s),TRUE) 
B2  Instance = lungs_ok(mrs_s) 
B5  CheckExpand(lungs_ok(mrs_s),FALSE) 
B2 Instance = lungs_ok(TRUE) 
B9 {} = GetValuesFromUser(lungs_ok(TRUE)) 
B2 Instance = lungs_ok(FALSE) 
B9 {} = GetValuesFromUser(lungs_ok(FALSE)) 
B2 Instance = alive(person) 
B5 CheckExpand(alive(person),TRUE) 
B2 Instance = alive(TRUE) 
B9 {} = GetValuesFromUser(alive(TRUE)) 
B2 Instance = alive(FALSE) 
B9 {} = GetValuesFromUser(alive(FALSE)) 
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A1.2. The Compiled Version of Designation simpsons 

/*----------------------------------------------------------
*/ 

designation(simpsons). 
compiled__(simpsons). 
/*----------------------------------------------------------

*/ 
domain_element(mr_s,simpsons). 
domain_element(mrs_s,simpsons). 
domain_element(person,simpsons). 
domain_element(false,simpsons). 
domain_element(true,simpsons). 
/*----------------------------------------------------------

*/ 
expand_in_domain__(mr_s,mr_s,simpsons). 
expand_to_minimal_in_domain__(mr_s,mr_s,simpsons). 
expand_in_domain__(mrs_s,mrs_s,simpsons). 
expand_to_minimal_in_domain__(mrs_s,mrs_s,simpsons). 
expand_in_domain__(person,person,simpsons). 
expand_in_domain__(person,mr_s,simpsons). 
expand_to_minimal_in_domain__(person,mr_s,simpsons). 
expand_in_domain__(person,mrs_s,simpsons). 
expand_to_minimal_in_domain__(person,mrs_s,simpsons). 
expand_in_domain__(false,false,simpsons). 
expand_to_minimal_in_domain__(false,false,simpsons). 
expand_in_domain__(true,true,simpsons). 
expand_to_minimal_in_domain__(true,true,simpsons). 
/*----------------------------------------------------------

*/ 
expand_to_term__(mr_s,homer,simpsons). 
 
expand_to_term__(person,mr_s,simpsons). 
 
expand_to_term__(person,mrs_s,simpsons). 
 
expand_to_term__(mrs_s,spouse_of(P),simpsons):- 
 expand_compiled__(mr_s,P,simpsons). 
expand_to_term__(mr_s,spouse_of(P),simpsons):- 
 expand_compiled__(mrs_s,P,simpsons). 
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expand_to_term__(true,heart_ok(P),simpsons):- 
 expand_compiled__(person,P,simpsons). 
 
expand_to_term__(true,lungs_ok(P),simpsons):- 
 expand_compiled__(mr_s,P,simpsons). 
expand_to_term__(false,lungs_ok(P),simpsons):- 
 expand_compiled__(mrs_s,P,simpsons). 
 
expand_to_term__(true,alive(P),simpsons):- 
 expand_compiled__(person,P,simpsons). 
 
expand_to_term__(true,person(P),simpsons):- 
 expand_compiled__(person,P,simpsons). 
/*----------------------------------------------------------

*/ 
expand_compiled__(Domain_element,Term,Designation_name):- 
 var(Term), 
 !, 
 expand_to_minimal_in_domain__(Domain_element,Term, 
Designation_name). 
 
expand_compiled__(Domain_element,Term,Designation_name):- 
 domain_element(Term,Designation_name), 
 !, 
 expand_in_domain__(Domain_element,Term,Designation_name)

. 
 
expand_compiled__(Domain_element,Term,Designation_name):- 
 expand_in_domain__(Domain_element,Expanded_domain_elemen

t, 
Designation_name), 
 expand_to_term__(Expanded_domain_element,Term, 
Designation_name). 
/*----------------------------------------------------------

*/ 
 



Page 166 Examples 

A1.3. The Effects of the Rightwards Subchain System 

To illustrate the effects of the rightwards subchain system, the first part of an SGLD 
deduction, for the Schubert's Steamroller problem (see appendix 2), is given below. The 
input chains used in this example (a subset of the input chains for Schubert's Steamroller) 
are as follows. 
 

input_chain__(2, 

 [b(++animal(Wolf),true), b(--wolf(Wolf),false)], 

 wolf_is_an_animal, axiom, input_clause). 

input_chain__(1, 

 [b(++wolf(a_wolf),true)], 

 there_is_a_wolf, axiom, input_clause). 

input_chain__(1, 

 [b(++grain(a_grain),true)], 

 there_is_a_grain, axiom, input_clause). 

input_chain__(8, 

 [b(++eats(Animal,Plant),unknown), 

  b(++eats(Animal,SmallAnimal),unknown), 

  b(--animal(Animal),false), b(--plant(Plant),false), 

  b(--animal(SmallAnimal),false), 

  b(--plant(OtherPlant),false), 

  b(--much_smaller(SmallAnimal,Animal),false), 

  b(--eats(SmallAnimal,OtherPlant),unknown)], 

 eating_habits, axiom, input_clause). 

input_chain__(5, 

 [b(--animal(Animal),false),b(--

animal(GrainEater),false), 

  b(--grain(Grain),false), b(--eats(Animal,GrainEater), 

  unknown), b(--eats(GrainEater,Grain),unknown)], 

 prove_the_animal_exists, theorem, input_clause). 

 
The chain prove_the_animal_exists is chosen as the top chain, due to its 
theorem status. The LISS of the complete input set is then extracted. It is {~bird/1, 
~caterpillar/1, ~fox/1, ~snail/1, ~wolf/1, ~animal/1, ~grain/1, ~plant/1, 
~much_smaller/2}. The trace below shows the activity of SGLD using the 
literal-selected search style, with an initial depth bound of 10. The rightwards subchain 
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system is used to guide the search, using the second designation provided for this problem 
(see appendix 2). Note that the deduction is shown in the standard chain format, rather 
than the SGLD internal representation which reverses the order of the centre chains. 
 
~eats(GrainEater,Grain) ~eats(Animal,GrainEater) ~grain(Grai

n) 

 ~animal(GrainEater) ~animal(Animal) 
• Extends with wolf_is_an_animal to produce : 
~eats(GrainEater,Grain) ~eats(Animal,GrainEater)  
 ~grain(Grain) ~animal(GrainEater) ~animal(Animal)  0  

 ~wolf(Animal) 

• Extends with there_is_a_wolf to produce : 
~eats(GrainEater,Grain) ~eats(a_wolf,GrainEater) ~grain(Grai

n) 
 ~animal(GrainEater) ~animal(a_wolf)  0 ~wolf(a_wolf)  0 

• Truncates twice to produce : 
~eats(GrainEater,Grain) ~eats(a_wolf,GrainEater) ~grain(Grai

n) 

 ~animal(GrainEater) 
• The lemma wolf(a_wolf) is produced and subsumed. 
• The lemma animal(a_wolf) is added to the input set. 

• Extends with the lemma animal(a_wolf) to produce : 
~eats(a_wolf,Grain) ~eats(a_wolf,a_wolf) ~grain(Grain)  
 ~animal(a_wolf)  0 

• Truncates to produce : 
~eats(a_wolf,Grain) ~eats(a_wolf,a_wolf) ~grain(Grain) 

• The lemma animal(a_wolf) is produced and subsumed. 
• Extends with there_is_a_grain to produce : 
~eats(a_wolf,a_grain) ~eats(a_wolf,a_wolf) ~grain(a_grain)  

0 
• Truncates to produce : 
~eats(a_wolf,a_grain) ~eats(a_wolf,a_wolf) 

• The lemma grain(a_grain) is produced and subsumed. 
• Extends with eating_habits to produce : 
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~eats(a_wolf,a_grain) ~eats(a_wolf,a_wolf)  0  

 eats(a_wolf,SmallAnimal) ~animal(a_wolf) ~plant(a_wolf)  

 ~animal(SmallAnimal) ~plant(OtherPlant)  

 ~much_smaller(SmallAnimal,a_wolf)  

 ~eats(SmallAnimal,OtherPlant) 
• Unit subsumed extends with the lemma animal(a_wolf) to produce : 
~eats(a_wolf,a_grain) ~eats(a_wolf,a_wolf)  0  

 eats(a_wolf,SmallAnimal) ~plant(a_wolf)  

 ~animal(SmallAnimal) ~plant(OtherPlant)  

 ~much_smaller(SmallAnimal,a_wolf)  

 ~eats(SmallAnimal,OtherPlant) 
• The literal ~plant(a_wolf) has an expected truth value FALSE, because it will 

become the top literal of a linear-input subdeduction (see the expected truth value field 
of the literal in the input chain eating_habits). As a result, this centre chain is 
rejected by the rightwards subchain system. Without the semantic deletion, a significant 
amount of useless deduction takes place, to remove the literals to the right of 
~plant(a_wolf). Only after this wasted effort is it discovered that 
~plant(a_wolf) cannot be removed. The alternative, of extending on the second 
literal of eating_habits, is then tried. This produces : 

~eats(a_wolf,a_grain) ~eats(a_wolf,a_wolf)  0  

 eats(a_wolf,Plant) ~animal(a_wolf) ~plant(Plant)  

 ~animal(a_wolf) ~plant(OtherPlant)  

 ~much_smaller(a_wolf,a_wolf) ~eats(a_wolf,OtherPlant) 
• The literal ~much_smaller(a_wolf,a_wolf) has an expected truth value 

FALSE. As a result, this centre chain is rejected by the rightwards subchain system. 
Without the semantic deletion, useless deduction again ensues before alternatives, at the 
fourth step of the deduction, are considered. 
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Appendix Two 

Test Problems and Designations 

 

This appendix contains the statements of the test problems used to test SGLD and 
descriptions of the designations used for testing SGLD's semantic guidance system. 
 
Additive Algebra 01 (Algebra) 
Demonstrates the associativity of addition in a form symmetric to that given in the axioms. 
Problem 28 in [Lawrence & Starkey, 1974]. Obtained from the SPRFN problem set 
[Plaisted, 1991]. 
 
Additive Algebra 02 (Algebra) 
(a-b)+c = a+(c-b). Problem 29 in [Lawrence & Starkey, 1974]. Obtained from the SPRFN 
problem set [Plaisted, 1991]. 
 
Group Theory 03 (Algebra) 
In a group the left identity is also a right identity. Problem 3 in [Chang, 1970]. 
Designation : An Abelian group with four elements (including the identity). 
 
Group Theory 06 (Algebra) 
If S is a non-empty subset of a group such that if x, y belong to S then x⋅y-1 belongs to S, 
then S contains x-1 whenever it contains x. Problem 6 in [Chang, 1970]. 
Designation : An Abelian group with four elements (including the identity). 
 
Group Theory 11 (Algebra) 
In a group, the inverse of an inverse is the original. Problem 8 in [Wos, ~1965]. Obtained 
from the SPRFN problem set [Plaisted, 1991]. 
 
Monoids 01 (Algebra) 
In an associative system with an identity element, if the square of every element is the 
identity, the system is commutative. Problem 2 in [Chang, 1970]. 
Designation : An Abelian group with four elements (including the identity). 
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Semi-Groups 01 (Algebra) 
In an associative system with left and right solutions, there is a right identity element. 
Problem 1 in [Chang, 1970]. 
 
Semi-Groups 04 (Algebra) 
In a semi-group with left inverses and left identity, every element has a right inverse. 
Problem 5 in [Wos, ~1965]. Obtained from the SPRFN problem set [Plaisted, 1991]. 
 
Subgroups 01 (Algebra) 
A sub-group has an identity. Problem 12 in [Wos, ~1965]. Obtained from the SPRFN 
problem set [Plaisted, 1991]. 
 
Subgroups 02 (Algebra) 
In a subgroup, there is an identity and its the same as for the group. Problem 13 in 
[Wos, ~1965]. Obtained from the SPRFN problem set [Plaisted, 1991]. 
 
Subgroups 03 (Algebra) 
A subgroup is closed under inverse. Problem 14 in [Wos, ~1965]. Obtained from the 
SPRFN problem set [Plaisted, 1991]. 
 
Subgroups 10 (Algebra) 
A subgroup is closed under inverse. This is a cut down version with only the required 
axioms supplied. Problem 26 in [Lawrence & Starkey, 1974]. Obtained from the SPRFN 
problem set [Plaisted, 1991]. 
 
Intermediate Value Theorem (Analysis) 
The mean value theorem in analysis. If a function f is continuous in a real closed interval 
[a,b], where f(a)≤0 and 0≤f(b), then there exists X such that f(X) = 0. Problem 2 in [Wang 
& Bledsoe, 1987]. This version of the Intermediate Value Theorem is the 1st order logic 
version. To prove the real version of the Intermediate Value Theorem, using the least 
upper bound axiom, it is necessary to instantiate a set variable. Once that variable has been 
instantiated by a particular value then one obtains this 1st order logic version. The real 
version of the theorem was proved by Ballantyne and Bledsoe [1977], by finding a suitable 
value for the set variable and then proving this resulting 1st order logic version. (This 
detail of the origin of the Intermediate Value Theorem has been provided by Bledsoe 
[1992].) 
 
Prime Numbers 01 (Number Theory) 
If a is a prime and a = b2/c2, then a divides b. Problem 7 in [Chang, 1970]. 
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Prime Numbers 02 (Number Theory) 
Any number greater than 1 has a prime divisor. Problem 8 in [Chang, 1970]. 
 
Prime Numbers 03 (Number Theory) 
There exist infinitely many primes. This a cut down version with only the required clauses 
supplied. Problem 9 in [Chang, 1970]. 
 
Prime Numbers 04 (Number Theory) 
There exist infinitely many primes. Problem 17 in [Lawrence & Starkey, 1974]. Obtained 
from the SPRFN problem set [Plaisted, 1991]. 
 
Recursive Functions 01 (Number Theory) 
Symmetry of equality can be derived. Problem 41 in [Lawrence & Starkey, 1974]. 
Obtained from the SPRFN problem set [Plaisted, 1991]. 
 
Recursive Functions 05 (Number Theory) 
Zero is less than all successor numbers. Based on problem 68 in [Lawrence & 
Starkey, 1974]. The surplus transitivity axiom has been deleted and the transitivity of less 
has been added. Original obtained from the SPRFN problem set [Plaisted, 1991]. 
 
Recursive Functions 10 (Number Theory) 
If a<b then not b<a. Based on problem 76.1 in [Lawrence & Starkey, 1974]. Original 
obtained from the SPRFN problem set [Plaisted, 1991]. 
Designation : The normal semantics of natural numbers, with a mapped to 1 and b to 2. 
 
Naive Set Theory 02 (Set Theory) 
The union of a set with itself is equal to the set itself. Problem 103 in [Lawrence & 
Starkey, 1974]. Obtained from the SPRFN problem set [Plaisted, 1991]. 
 
Naive Set Theory 03 (Set Theory) 
A set is a subset of the union of itself with itself. Problem 105 in [Lawrence & 
Starkey, 1974]. Obtained from the SPRFN problem set [Plaisted, 1991]. 
 
Naive Set Theory 04 (Set Theory) 
A set is a subset of the union of itself and another set. Problem 106 in [Lawrence & 
Starkey, 1974]. Obtained from the SPRFN problem set [Plaisted, 1991]. 
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Naive Set Theory 06 (Set Theory) 
If the intersection of two sets is the first of the two sets, then the first is a subset of the 
second. Problem 111 in [Lawrence & Starkey, 1974]. Obtained from the SPRFN problem 
set [Plaisted, 1991]. 
 
Naive Set Theory 08 (Set Theory) 
The difference of two sets contains no members of the subtracted set. Problem 115 in 
[Lawrence & Starkey, 1974]. Obtained from the SPRFN problem set [Plaisted, 1991]. 
 
Getting Bread (Planning) 
The problem is to drive from Cheyenne, Wyoming to Des Moines, Iowa, buying a loaf of 
bread on the way. A portion of the road map is expressed in clause form. The allowable 
actions are to drive from a city to a neighbouring city, to buy a loaf of bread at a city and 
to wait in a city for one unit of time. Buying a loaf of bread takes one unit of time and 
driving to a neighbouring city takes two units of time. A problem in [Plaisted, 1981]. 
Designation 1 : Knows the adjacency of towns. Knows that it is stupid to go the wrong 
way, to buy more than one loaf, or to wait anywhere. These actions are mapped to FALSE. 
Bread can be bought anywhere. The sorts of the various objects and the argument sorts of 
the predicates are also known. 
Designation 2 : Designation 1, but with no knowledge of sorts. Meaningless universe and 
base elements which are not interpreted by designation 1, are interpreted as "meaningless" 
and FALSE respectively. 
 
Getting There 1 (Planning) 
The problem is to travel from one place to another. Certain paths are passable at different 
times of the year, so a conditional plan must be generated. Either all situations are cold or 
all situations are warm. There is a river which may be crossed only in winter when it is 
covered with ice and a mountain range that may be crossed only in summer. The problem 
is to get from city F to city A. Problem 5.7 in [Plaisted, 1982]. 
Designation : It is meaningless to travel from a place if you are not there and no-one 
travels in circles (mapped to FALSE). The travel modes are limited to those in the clauses. 
 
Monkey and Banana (Planning) 
The state space representation of the Monkey and Bananas problem, as formulated in the 
SPRFN problem set [Plaisted, 1991]. 
Designation 1 : Knows the sorts of the various objects and the argument sorts of the 
predicates. Also knows that the monkey must be on the ladder to get the bananas.  
Designation 2 : Designation 1 extended to know that the ladder must be at the same 
location as the bananas.  
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Aunt Agatha (Puzzle) 
A slight variant of the version of this problem given by Manthey and Bry [1988, p. 430]. 
The problem is described in [Pelletier, 1986, p. 206] : Someone who lives in Dreadsbury 
Mansion killed Aunt Agatha. Agatha, the butler and Charles live in Dreadsbury Mansion 
and are the only people who live therein. A killer always hates his victim and is never 
richer than his victim. Charles hates no one that Aunt Agatha hates. Agatha hates everyone 
except the butler. The butler hates everyone not richer than Aunt Agatha. The butler hates 
everyone Aunt Agatha hates. No one hates everyone. Agatha is not the butler. Therefore : 
Agatha killed herself. 
 
Borders (Puzzle) 
There is a database of assertions about various countries and oceans and their 
relationships. Find which ocean borders on African and Asian countries. Problem 5.6 in 
[Plaisted, 1982] 
Designation 1 : The designation reflects the real geography of the situation. Sorts are 
known. 
 
Schubert's Steamroller (Puzzle) 
Wolves, foxes, birds, caterpillars and snails are animals and there are some of each of 
them. Also there are some grains and grains are plants. Every animal either likes to eat all 
plants or all animals much smaller than itself that like to eat some plants. Caterpillars and 
snails are much smaller than birds, which are much smaller than foxes, which in turn are 
much smaller than wolves. Wolves do not like to eat foxes or grains, while birds like to eat 
caterpillars but not snails. Caterpillars and snails like to eat some plants. Therefore there is 
an animal that likes to eat a grain-eating animal. Problem 47 in [Pelletier, 1986] 
Designation 1 : Knows about sorts. Knows that only animals eat and that only two animals 
can be compared in size. Meaningless sort literals, eats literals and much_smaller 
literals are not interpreted. Meaningful eats literals are all interpreted as 
UNKNOWN_TRUTH_VALUE. 
Designation 2 : Same as designation 1, but meaningless sort literals, eats literals and 
much_smaller literals are interpreted as FALSE. Should give results similar to 
designation 1, as LISS analysis detects the problems with sort literals and 
much_smaller literals. 
 
Truthtellers and the Liars (Puzzle) 
On a certain island the inhabitants are partitioned into those who always tell the truth and 
those who always lie. I landed on the island and met three inhabitants A, B and C. I asked 
A, 'Are you a truthteller or a liar?' He mumbled something which I couldn't make out. I 
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asked B what A had said. B replied, 'A said he was a liar'. C then volunteered, 'Don't 
believe B, he's lying!' What can you tell about A, B and C? A problem in [Lusk & 
Overbeek, 1985]. 
 
Blind Hand 2 (Miscellaneous) 
A version of Popplestone's [1970] Blind Hand Problem. Problem DBABHP in [Michie, 
Ross, & Shannan, 1972]. 
 
Blind Hand 3 (Miscellaneous) 
A variant of Blind Hand 2, obtained by excluding clauses regarding hand movement. 
Designation : The object is initially here, being held. The object is then dropped, picked 
up again and taken there. 
 
Computing 2 (Miscellaneous) 
A computing state space, with eight states - P1 to P8. P1 leads to P3 via P2. There is a 
branch at P3 such that the following state is either P4 or P6. P6 leads to P8, which has a 
loop back to P3, while P4 leads to termination. The problem is to show that there is a loop 
in the computation, passing through P3. Problem BURSTALL in [Reboh, Raphael, Yates, 
Kling, & Verlarde, 1972]. Obtained from the SPRFN problem set [Plaisted, 1991]. 
Designation 1 : The designation knows the layout of the state space and which states can 
be reached from which others. It also knows the argument sorts for all predicates and 
functions. 
Designation 2 : Designation 1, but with no knowledge of sorts. Meaningless universe and 
base elements which are not interpreted by designation 1, are interpreted as "meaningless" 
and FALSE respectively. 
 
Computing 3 (Miscellaneous) 
A variant of Computing 2, obtained by considering failure in the state space, rather than 
success. 
Designation : The designation knows the layout of the state space and which states can be 
reached from which others. 
 
Has Parts 2 (Miscellaneous) 
Shows that the boy John has ten fingers. Problem HASPARTS-T2 in [Reboh et al., 1972]. 
Obtained from the SPRFN problem set [Plaisted, 1991]. 
Designation : The normal semantics of human anatomy. The designation knows about the 
sorts involved, but due to the clauses' structures this does not affect deductions. 
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Latin Squares (Miscellaneous) 
The inconstructability of a Graeco-Latin Square for t=0 in 4t + 2. A problem in 
[Robinson, 1963]. 
Designation : The 'non-square' in which the Greek and Latin layers are identical. 
 
Pigeon 4 (Miscellaneous) 
Suppose there are N holes and (N + 1) objects to put in the holes. Every object is in a hole 
and no hole contains more than one object. The representation of this situation produces an 
inconsistent set of clauses. Problem 72 in [Pelletier, 1986]. 
Designation : The Nth pigeon is placed in the Nth hole. The (N+1)th pigeon is left out. 
 
XOR evaluation (Miscellaneous) 
The evaluation of exclusive OR represented in clausal form, the goal being to evaluate 
((((T^F)^F)^T)^T), where ^ represents exclusive OR. Problem 5.1 in [Plaisted, 1982]. 
Designation : The usual semantics of exclusive OR. Everything is meaningful in this 
designation. 
 


