
A Linear Deduction System with
Integrated Semantic Guidance

by

Geoff Sutcliffe (BSc, BSc (Hons), MSc)

This thesis is presented for the degree of Doctor of Philosophy
at The University of Western Australia, Department of Computer Science, 1992.

Page ii A Linear Deduction System with Integrated Semantic Guidance

A Linear Deduction System with Integrated Semantic Guidance Page iii

A Linear Deduction System with
Integrated Semantic Guidance

Abstract

Guidance systems are central to the success of automated deduction systems. Semantic
guidance systems are guidance systems that exploit semantic information when guiding
the search of a deduction system. The general objective of this research has been to
investigate how semantic guidance can be used to improve the performance of automated
deduction systems. More specifically, this research has investigated how semantic
guidance can be used to improve the performance of linear deduction systems. As
semantic guidance has, until now, been considered unsuitable for use in linear deduction
systems, the results presented in this thesis are noteworthy in automated deduction
research.

A new chain format linear deduction system, called Guided Linear Deduction (GLD), has
been developed as part of this work. GLD improves upon existing linear deduction
systems in several aspects. In the context of this research, an important feature in GLD is
the provision of an explicit entry point for the incorporation of guidance systems. This
entry point has been used to incorporate a semantic guidance system into GLD, to form the
Semantically Guided Linear Deduction (SGLD) system. SGLD's semantic guidance
system builds upon four separate developments, as follows. (i) Linear-input subset
analysis, which is a method of determining some of the structure in GLD deductions. (ii) A
truth value semantic deletion system for (chain format) linear deduction systems. This
system uses linear-input subset analysis to determine when it can be applied. (iii) A sort
value semantic deletion system that has the same format as the truth value deletion system.
(iv) A heuristic function that uses semantic information to evaluate the quality of clauses
in a deduction. The combination of the latter three of these developments forms the
semantic guidance system used in SGLD. For any semantic guidance system to operate, an
interpretive structure is required to store the semantic information used. It is desirable that
the interpretive structure be representationally powerful, space efficient, effective in
supplying semantic information and also user friendly. A new form of interpretive
structure which fulfils these criteria has been developed. The new structures are called
designations.

SGLD has been implemented in Prolog. Each component of SGLD is of individual interest
and their combination is unique in the field of automated deduction. The performance of
SGLD has been investigated.

Page iv A Linear Deduction System with Integrated Semantic Guidance

A Linear Deduction System with Integrated Semantic Guidance Page v

Contents

Chapters and Appendices ..v

Definitions ..vii

Chapters and Appendices

Chapter One - Introduction and Technical Preliminaries...1
1.1 Background...1
1.2 The Necessity for Semantic Guidance ...3
1.3 Research Objectives ..4
1.4 Languages and Notation ..6
1.5 Deduction Faithfulness.. 14
1.6. Contributions of this Thesis... 16
1.7. Thesis Structure... 17

Chapter Two - Guided Linear Deduction .. 21
2.1. Linear Deduction Systems... 21
2.2. The Design of GLD... 27
2.3. The Formal Definition of GLD.. 30
2.4. The Deduction Operations and Search Strategies in GLD.............................. 36
2.5. Linear-Input Subset Analysis... 45
2.6. Embedding Equality into GLD .. 55
2.7. Conclusion .. 57

Chapter Three - Semantic Guidance .. 61
3.1. Basic Semantic Information... 61
3.2. Semantically Guided Deduction Systems... 63
3.3. Truth Value Deletion in Linear-Input Deduction Systems.............................. 70
3.4. Truth Value Deletion in GLD.. 75
3.5. The FALSE-Preference Strategy ... 78
3.6. Reformulating Sort Value Deletion.. 80
3.7. Combined Truth Value and Sort Value Guidance .. 81
3.8. Theory Resolution... 84
3.9. Conclusion .. 84

Page vi A Linear Deduction System with Integrated Semantic Guidance

Chapter Four - Designations..87
4.1. Interpretive Structures..87
4.2. Semantic Relation based Interpretive Structures...91
4.3. The Design of Designations ...96
4.4. The Formal Definition of Designations ..98
4.5. The Interpretation Process using Designations ...101
4.6. Using Designations ..103
4.7. Building Designations..105
4.8. Conclusion...114

Chapter Five - Semantically Guided Linear Deduction...117
5.1. The Overall Structure...117
5.2. Semantic Guidance ..121
5.3. The Effects of the Semantic Guidance System ...126
5.4. Performance...128
5.5. Conclusion...139

Chapter Six - Conclusion ..141
6.1. Overview...141
6.2. GLD ..142
6.3. Semantic Guidance ..143
6.4. Designations ..144
6.5. SGLD ..144
6.6. Conclusion...146

References ..147

Appendix One - Examples ..159
A1.1. Trace of Algorithm 4.13 ..159
A1.2. The Compiled Version of Designation simpsons..162
A1.3. The Effects of the Rightwards Subchain System..164

Appendix Two - Test Problems and Designations ...167

A Linear Deduction System with Integrated Semantic Guidance Page vii

Definitions

1st order languages..6
Extended 1st order languages ..7
d-expressions ..8
Substitution ...8
Sort-expressions ..8
Structures ..9
The chain format ...9
Discarded literals... 11
Linear deduction ... 11
Linear-input deduction .. 14
Linear-input subdeductions ... 54
Basic semantic information ... 62
Semantic guidance and Semantic deletion ... 63
Sort legality... 69
Truth value soundness ... 70
Side chain models ... 71
Side chain predictability .. 72
Discard predictability .. 73
Rightwards subchains.. 75
Semantic relation based interpretive structures .. 91
SRI structures.. 91
Interpretation using SRI Structures.. 92
Single level expansion... 94
The SLE Process ... 94
Basic semantic information in designations ... 97
Designations.. 98
The partial order <... 98
Redundancy .. 99
Consistency... 99
Interpretation using designations ... 100

Acknowledgments
Thanks to (i) Dr C.P. Tsang for supervising my research, (ii) Winston Tabada for
inspirational discussions and (iii) fellow PhD students (especially MarkE, James, Nick and
MarkN) for tolerating me.

Introduction and Technical Preliminaries Page 1

Chapter One

Introduction and Technical Preliminaries

Guidance systems are central to the success of automated deduction systems. Semantic
guidance systems are guidance systems that use semantic information to determine search
direction for their host deduction systems. Relative to their potential for improving the
performance of deduction systems, it seems that semantic guidance systems have been
badly neglected. All guidance systems are necessarily formulated to be compatible with
their host deduction systems. Beyond this constraint, it is desirable to abstract the issues of
syntax, application and implementation, as far as possible. This chapter introduces these
issues and presents the notation and terminology used in this thesis.

This chapter contains :
1. A brief background to automated deduction systems.
2. Motivation for semantic guidance of automated deduction systems.
3. The objectives of this research.
4. Definitions of the language and notation used in this thesis.
5. An abstract discussion of the nature and imposition of restrictions in deductions.
6. A preview of the contributions made by this thesis.
7. An overview of the content of the thesis.

1.1 Background

Although automated deduction has yet to prove itself as a commercially viable technique
for solving real-world problems, there is no doubt that the time will come when it will play
a major and day-to-day role in society. Application areas of automated deduction systems
include "expert systems, planning, common sense reasoning, proof checking, instruction
and aids to human mathematicians" [Plaisted, 1990a, p. 270]. The impact of transferring
the general task of problem solving from man to machine is significant, and research
efforts to this end are easily justified on both economic and social grounds. This thesis
documents research into the use of semantic information (i.e., information that is specific
to the problem domain) in guiding automated deduction systems.

Page 2 Introduction and Technical Preliminaries

There is no point in including a survey of the general topic of automated deduction in this
thesis, as this task has been performed by many authors. The surveys of Bledsoe and
Hodges [1988], Stickel [1986a] and Plaisted [1990a] are recommended. These surveys
also provide references to introductory and advanced texts. Familiarity with the
terminology of resolution based automated deduction is henceforth assumed.

It is clear that the basic resolution procedure [Robinson J.A., 1965a] is inadequate for
solving anything but the most trivial problems. The combinatorial growth of the resolution
procedure's search space soon swamps available computing power, regardless of the
efficiency of implementation. Deduction systems that refine the basic procedure are thus
of interest. The basic resolution procedure is refined by imposing restrictions on the
deductions that are built, e.g., unit resolution imposes the restriction that one parent of
each resolution operation must be a unit clause. Although refined deduction systems may
be categorised according to the nature of the restrictions used (see section 1.5 for
example), upon abstraction it is evident that they all have the same essential feature. That
is, they impose restrictions that assist in deciding which deduction operation and which of
the available clauses will be used at each step of a deduction. In this manner the
restrictions guide the search of the deduction system.

A broad spectrum of restrictions have been used to refine the basic resolution procedure.
At one extreme of the spectrum are restrictions that require a certain deduction operation
or clause to be used in certain circumstances. At the other extreme are restrictions that
exclude a deduction operation or clause from use. Both these extreme forms are called
absolute restrictions. Absolute restrictions guide the search of a deduction system by
reducing its search space. An example of an absolute restriction, that requires a certain
deduction operation to be used, is compulsory reduction in chain format linear deduction
systems (see chapter 2). Examples of absolute restrictions, that prevent certain clauses
from being used, are subsumption [Robinson J.A., 1965a], admissibility restrictions (see
chapter 2) and semantic deletion (see chapter 3). In between the two absolute extremes are
preferential restrictions. Preferential restrictions do not reduce the search space of a
deduction system, but rather guide a deduction system by indicating a preference for the
use of certain deduction operations and/or clauses. Examples of preferential restrictions are
the unit preference strategy [Wos, Carson, & Robinson G.A., 1964] and restrictions that
use a heuristic function to guide the search of the deduction system, e.g., those described
by Overbeek, McCharen and Wos [1976].

When discussing deduction systems, it is useful to separate the restrictions used from the
underlying deduction mechanism. The restrictions are considered to form a guidance

Introduction and Technical Preliminaries Page 3

system, which is used by the host deduction system. Restrictions and guidance systems are
categorised as either syntactic or semantic, depending on the type of information used.

1.2 The Necessity for Semantic Guidance

One accepted description of intelligent action is, as expounded by Newell and Simon in
their Turing award lecture [1976], the ability to solve problems via state space search. For
some problems, algorithms have been devised so that no search is necessary. These are the
algorithms of traditional computer science; the so-called strong methods. The balance of
intelligent action is necessarily to be achieved by genuine state space search. Methods
which employ search (including automated deduction) constitute the weak methods of
computing. The strong methods depend on semantic information which is encoded directly
into the algorithms' steps. It is reasonable to hypothesize (but no attempt is made to prove)
that no strong methods of computing can be domain independent. The weak methods of
computing can be divided into two groups; those that use semantic information to guide
their search and those do not. It is also reasonable to hypothesize that weak methods that
do not use semantic information will never be able to conquer the exponentially growing
search spaces of hard problems. This view is supported by Newell and Simon, who claim
that physical symbol systems "exercise intelligence by extracting information from a
problem domain and using that information to guide their search ..." [Newell &
Simon, 1976, p. 126] Semantic information thus appears to be prerequisite to intelligent
action1.

In the area of automated deduction, the need to use semantic information is translated into
a need to use semantic guidance systems. The need for semantic guidance has been noted
in the literature, e.g. "An emphasis on semantics rather than on syntax has far greater
potential for producing a dramatic impact on the power of automated reasoning programs"
[Wos, 1988, p. 257] (research towards a "semantically orientated strategy" is Problem 5 in
[Wos, 1988]) and "... if searches in symbolic computation are not to fall prey to
combinatorial explosion, they must incorporate domain-specific knowledge in such a way
so as to give direction to the search." [McRobbie, Meyer, & Thistlewaite, 1988, p. 198].
Despite the acknowledged need for semantic guidance, the overwhelming majority of
guidance systems that have been developed to date are syntactic. The lack of attention paid
to semantic guidance has been noted by leading researchers. Bledsoe and Henschen, in
their contribution to the first issue of the Journal of Automated Reasoning [1985, p. 27],

1 For readers who do not subscribe to this mechanistic view of intelligent action, it is suggested that "Since

humans use semantics (models) extensively in proving theorems, it seems natural that computer theorem

provers should also." [Plaisted, 1990a, p. 308]

Page 4 Introduction and Technical Preliminaries

prophesy that "It seems likely that such approaches [to guiding deduction systems] will
have to rely on the semantics of problems to a much larger degree than in the past.". Alan
Bundy has stated [1987] that "There has not been nearly as much work on semantic
checking as I think it deserves ...". It should be noted that the dearth of semantic guidance
systems is not due to their importance being acknowledged only recently. In 1973 it was
claimed that "Virtually everyone is now agreed that knowledge about the problem domain
must be used in the logic." [Reiter, 1973, p. 41]. Rather, the probable reason for the
imbalance is the ease with which syntactic guidance systems can be designed and
implemented, compared to the complexity of semantic guidance systems.

In light of the above, research into the semantic guidance of automated deduction systems
is well justified.

1.3 Research Objectives

The overall objective of this research has been to investigate how semantic guidance can
be used to improve the performance of automated deduction systems. This overall
objective has been broken down into four subobjectives. (i) To develop a host deduction
system. (ii) To develop a semantic guidance system for the host deduction system. (iii) To
develop an interpretive structure for storing the semantic information used by the semantic
guidance system. (iv) To combine the deduction system, semantic guidance system and
interpretive structure, into a coherent whole.

In fulfilling the first subobjective, to develop a host deduction system, a requirement has
been that the host deduction system be effective in its own right. This ensures that any
favourable effects of incorporating semantic guidance into the deduction system are not
attributable to the inadequacy of the deduction system. If the host deduction system is
weak, then the addition of any guidance will improve its performance. On the other hand,
if the performance of an effective deduction system is improved through the addition of a
guidance system (here a semantic guidance system), then the effectiveness of the guidance
system is clearly demonstrated. A preliminary step in this task has been to select a basic
deduction format. In the context of this research, it has been necessary that the deduction
format produce deductions with a relatively uncomplicated structure, as this eases the
design of an appropriate semantic guidance system. The choice has been the linear format
(see section 2.1.1), and the subobjective of developing the host deduction system has
proceeded from that starting point.

The choice of the linear format for the host deduction system was made independently of
known compatibility with semantic guidance. The (now more specific) subobjective of

Introduction and Technical Preliminaries Page 5

developing a semantic guidance system for a linear deduction system is interesting, as
linear deduction is known to be incompatible with truth value (semantic2) deletion (see
section 3.2.1). The use of semantic guidance in linear deduction systems has, however,
been suggested :
• "Another interesting question ... is whether there exists a decision procedure ... for

recognising ... whether there is a proof tree ... satisfying R~ 1 ∩ R~ 3 [model
resolution ∩ ancestry-filter format resolution]." [Luckham, 1970, p. 173]

• "As a heuristic, combining the two strategies [the ancestry-filter and model strategies]
may often yield efficient searches for refutations." [Nilsson, 1971, p. 227]

As no other semantically guided linear deduction system appears to have been developed
and implemented, the fulfilment of this subobjective has been a step towards extending the
use of semantic information in automated deduction systems.

The third subobjective, to develop an interpretive structure for storing the semantic
information used by the semantic guidance system, is pragmatically motivated; the
efficacy of a semantic guidance system is limited by the supply of semantic information.
To meet this subobjective, two criteria have had to be met. Firstly, the interpretive
structure has to be computationally efficient. If this criteria is not met then the client
semantic guidance system is unlikely to be of utility. In order to fulfil this criteria, only
bodies of semantic informtion with finite domains have been targeted. Secondly, as the
original source of semantic information is typically human, it has been required that it be
reasonably easy to specify the required semantic information.

The final subobjective, to combine the outcomes of the first three subobjectives, is aimed
at developing a coherent semantically guided deduction system, i.e. one in which the three
components fit together in a natural manner. This subobjective has necessarily had to have
an influence on the first three. It has, therefore, been a rider throughout that the host
deduction system, the semantic guidance system and the interpretive structure should be
cognisant of each others features. It has also been an objective to produce a full
implementation of the combined system. The implementation has aimed to be portable and
easily updated.

2 Throughout this thesis, words such as "semantics", "semantic guidance", "interpretation", etc. are meant in

a generic sense, rather than the common usage which associates them with truth values. Wherever a specific

type of semantic information needs to be associated with such terms, the association is made explicit. Thus

"truth value deletion" refers explicitly to rejection of clauses based upon their truth value interpretation.

Page 6 Introduction and Technical Preliminaries

In light of the above, the thesis of this research is summarised as :

Semantic guidance can be used to improve the performance of a linear
deduction system.

The thesis has been verified through the development of the Semantically Guided Linear
Deduction (SGLD) system. SGLD is a chain format linear deduction system with
integrated semantic guidance. The host deduction system of SGLD is a new chain format
linear deduction system called Guided Linear Deduction (GLD). SGLD's semantic
guidance system uses a new form of interpretive structures, called designations, to store
the semantic information that it uses.

1.4 Languages and Notation

This section defines the language and notation used in this thesis.

Definition 1.1 - 1st order languages
A 1st order language consists of variables, functors and predicate symbols (constants are
viewed as functors of arity 0). The terms of the language are built from the variables and
functors, the universe is built from the functors, the atoms are built from the terms and the
predicate symbols and the base is built from the universe and the predicate symbols. (See,
for example, [Lloyd, 1984] for details.) Literals are atoms and their negations, and clauses
are disjunctions of literals (not sets of literals). Variables in terms, atoms, literals and
clauses are (implicitly) universally quantified. As the interpretive structure presented in
this thesis treats universe and base elements in the same way, the union of these two sets is
called, for convenience, the unibase.
Notation : • Variables are written with the first letter in uppercase. • Functors are written
in lower case. • Predicate symbols are written in lower case. • Disjunction is represented
by "v". • Negation is represented by "~".

Example
An example of a 1st order language, named L, is :
 VariablesL Anything beginning with uppercase alphabetic, e.g. Person.
 FunctorsL {homer/0, spouse_of/1}
 PredicatesL {heart_ok/1, lungs_ok/1, alive/1, person/1}
The value following the /, after each functor and predicate symbol, is the symbol's
arity. Examples of the various language elements are :
 TermsL homer, spouse_of(Person)
 UniverseL homer, spouse_of(homer)
 AtomsL lungs_ok(homer), alive(spouse_of(Person))

Introduction and Technical Preliminaries Page 7

 BaseL lungs_ok(homer), alive(spouse_of(homer))
 LiteralsL ~lungs_ok(homer), alive(spouse_of(Person))
 ClausesL ~lungs_ok(homer) v
alive(spouse_of(Person))
 UnibaseL homer, spouse_of(homer), lungs_ok(homer),
 alive(spouse_of(homer))

The truth value semantics3 of a 1st order language is typically specified via a Tarskian
style semantics. Such a semantics consists of a domain D, whose elements are constants; a
functor-mapping F, from Dn to D, for each functor of arity n; and a predicate-mapping P,
from Dn to {TRUE, FALSE}, for each predicate symbol of arity n. (See, for example,
[Lloyd, 1984] for details.) A 1st order language may be extended using the domain of such
an interpretive structure, to form an extended 1st order language.

Definition 1.2 - Extended 1st order languages
An extended 1st order language, formed by extending a 1st order language by the domain
of an interpretation, has : the variables of the original language; the union of the domain
and the original functors, as functors; the predicate symbols of the original language. The
extended-terms, extended-universe, extended-atoms, extended-base and extended-unibase
are built in the usual way. Collectively they are called extended-expressions. The domain
and the original universe are both subsets of the extended-universe.
Notation : • Domain elements are written in lower case.

Example
The extended 1st order language L+D, formed by extending L by the domain
D = {mr_s, mrs_s, person}, is :
 VariablesL+D Anything beginning with uppercase alphabetic, e.g. Person.
 FunctorsL+D {homer/0, mr_s/0, mrs_s/0, person/0, spouse_of/1}
 PredicatesL+D {heart_ok/1, lungs_ok/1, alive/1, person/1}
Examples of the various extended language elements include the corresponding
elements in L, and also :
 TermsL+D mr_s
 UniverseL+D mr_s, spouse_of(mrs_s)
 AtomsL+D lungs_ok(mr_s)
 BaseL+D lungs_ok(mr_s), alive(spouse_of(mrs_s))
 UnibaseL+D mr_s, spouse_of(mrs_s), lungs_ok(mr_s),
 alive(spouse_of(mrs_s))

3 Here the standard truth value semantics of a 1st order language is described. In chapter 4 this is generalised

to a generic form, and discussed further.

Page 8 Introduction and Technical Preliminaries

Definition 1.3 - d-expressions
For a given domain, expressions of the form r(d1, ... ,dn), where each di is a domain
element, are called d-expressions. If r is a functor then the expression is a d-function and if
r is a predicate symbol then the expression is a d-predicate.

Example
Examples of d-expressions are :
 d-functionsL+D homer, spouse_of(mr_s), spouse_of(person)
 d-predicatesL+D lungs_ok(mr_s), person(mrs_s)

Definition 1.4 - Substitution
Given a set S, an S substitution is a finite set of the form {X1/d1, ... ,Xn/dn}, where each Xi
is a distinct variable and each di is an element of S not containing Xi. If θ is an S
substitution then Tθ is an S instance of T obtained from T by simultaneously replacing
each occurrence of each variable Xi in T by di. If Tθ contains no variables then Tθ is a
ground S instance of T. (Term and universe substitutions are the standard substitutions of
1st order logic. Application of a domain substitution forms an extended-expression.)

Example
Examples of substitutions are :
 A TermsL substitution, θ, is
 {Man/homer, Person/spouse_of(Father)}
 The TermsL instance, alive(Person)θ, is
 alive(spouse_of(Father))
 A ground TermsL instance of alive(Person) is
 alive(spouse_of(homer))
 A D substitution, σ, is
 {Man/mr_s, Person/mrs_s}
 The ground D instance, alive(Person)σ, is
 alive(mrs_s)

Definition 1.5 - Sort-expressions
In defining sort value interpretations, predicate symbols of arity 1 that determine sort also
appear as domain elements. Expressions whose principal symbols are also domain
elements, have their names prefixed by sort-, e.g sort-literals, sort-d-predicates and
sort-expressions.

Introduction and Technical Preliminaries Page 9

Example
Examples of sort-expressions are :
 Sort-atomsL person(homer), person(Person)
 Sort-baseL person(homer)
 Sort-atomsL+D person(mr_s)
 Sort-baseL+D person(mr_s), person(person)

Definition 1.6 - Structures
The structure of a function is the double consisting of its functor and arity. The structure
of an atom is the double consisting of its predicate symbol and arity. The structure of a
literal is the triple consisting of its sign, predicate symbol and arity.

Example
Examples of structures are :
 FunctionsL homer ⇒ homer/0,
 spouse_of(Person) ⇒ spouse_of/1
 AtomsL lungs_ok(homer) ⇒ lungs_ok/1
 LiteralsL ~lungs_ok(homer) ⇒ ~lungs_ok/1
 alive(spouse_of(Person)) ⇒ alive/1

1.4.1 Input Sets

A problem is presented to a deduction system as a set of input clauses written in a 1st order
language. In chain format linear deduction systems (introduced in section 1.4.2) clauses
are represented in the chain format.

Definition 1.7 - The chain format
A chain is an ordered sequence of literals. Each literal in a chain is classified as either an
A-, B- or C-literal. The disjunction of the B-literals in a chain makes up the clause that is
represented by the chain. An uninterrupted sequence of B-literals in a chain is called a cell.
Input clauses are used to form input chains which consist entirely of B-literals. Chains that
contain a single B-literal is called unit chains. Centre clauses of linear deductions (see
definition 1.9) are represented by centre chains. Centre chains may contain A-, B- and
C-literals. Various items of information may be associated with the literals in a chain.
Notation : • A-literals are placed in rectangles. • B-literals stand free. • C-literals are
placed in ellipses. Literals in a chain are simply separated by spaces.

Page 10 Introduction and Technical Preliminaries

Example
An example of a chain format input set, written in L and called S, is :
 S = {~heart_ok(P) lungs_ok(P),
 heart_ok(P) ~lungs_ok(P),
 heart_ok(P) lungs_ok(P) ~alive(spouse_of(P)),
 ~heart_ok(P) ~lungs_ok(P),
 alive(spouse_of(homer))}
An example of a centre chain is :
 ~heart_ok(P) ~lungs_ok(P) 0 (~heart_ok(P))
 ~alive(spouse_of(P))

 The superscript 0 on the A-literal is a piece of associated information.

There is a 1st order language implicit in every input set. The implicit language consists of
the variables (with multiple distinct copies available), functors and predicate symbols that
appear in the input set. The sets of variables, functors and predicate symbols in the implicit
language are subsets of their counterparts in the 1st order language in use. The universe
and base of the implicit language are the Herbrand universe and the Herbrand base of the
input set.

Example
The 1st order language L[S] implicit in S is :
 VariablesL[S] Anything beginning with uppercase alphabetic, e.g., P.
 FunctorsL[S] {homer/0, spouse_of/1}
 PredicatesL[S] {heart_ok/1, lungs_ok/1, alive/1}

1.4.2 Deductions

The basic building blocks of deductions are deduction operations. Deduction operations
are divided into two categories; inference operations, e.g., resolution, factoring,
paramodulation, and bookkeeping operations, e.g., reordering of literals, truncation.
Unification in all inference operations includes an occurs check. It is always understood
that any substitutions resulting from unification are applied to the appropriate expressions.
Each time an input clause is used in a deduction operation, a new set of variables is
substituted for those in the input clause, thus avoiding variable clashes.

The deduced clause of a deduction operation contains literals inherited from the parent
clauses and new literals introduced in the deduction operation. Some literals of the parent
clauses do not appear, in any form, in the deduced clause.

Introduction and Technical Preliminaries Page 11

Definition 1.8 - Discarded literals
Any parent clause literals that are not inherited by the deduced clause of an deduction
operation are called discarded literals.

Linear Deduction
A refinement of the basic resolution procedure, that is of specific interest in this research,
is the linear format. In particular, GLD and SGLD are chain format linear deduction
systems. Due to the importance of (chain format) linear deduction in this research, a brief
review is provided here.

Definition 1.9 - Linear deduction
Given an input set of clauses and a clause C1 chosen from the input set, a linear deduction
of Cn from the input set, with top clause C1, is a sequence of centre clauses C1, ... ,Cn.
Each deduced clause Ci+1, i = 1..n-1, is deduced from the centre clause Ci and side
clauses. The side clauses are chosen from the input set and C1, ... ,Ci-1. For any Ci, the
centre clauses C1 to Ci-1 are the ancestor clauses of Ci. A deduction operation that uses an
ancestor clause is called an ancestor deduction operation. A linear deduction of the empty
clause is called a linear refutation. These terms are used equivalently for chain format
linear deduction systems, with reference to chains rather than clauses.

All chain format linear deduction systems have a common core of deduction operations.
There are two inference operations based on binary resolution and one bookkeeping
operation. The inference operations are extension and reduction.
1. Extension resolves a B-literal in the rightmost cell of a centre chain against a B-literal

in an input chain. The deduced chain is formed by (i) placing the resolved upon centre
chain B-literal at the right-hand end of the centre chain and reclassifying it as an A-
literal and (ii) adding the non-resolved upon input chain B-literals to the right of the
new A-literal.

Example
An example of an extension operation is :
 ~heart_ok(P) ~lungs_ok(P) 0 ~alive(spouse_of(P))

 heart_ok(P)
 • Extends with ~heart_ok(P) lungs_ok(P) to produce :
 ~heart_ok(P) ~lungs_ok(P) 0 ~alive(spouse_of(P))

 heart_ok(P) 0 lungs_ok(P)

2. Reduction unifies a B-literal in a centre chain with a complementary A-literal to its
left. The deduced chain is formed by removing the B-literal from the centre chain.
Reduction implements ancestor resolution, followed by a sequence of factoring

Page 12 Introduction and Technical Preliminaries

operations. The implemented ancestor resolution is restricted so that all the ancestor
B-literals added to the centre chain are identical to B-literals still existing in the centre
chain. These identical instances are automatically factored by the reduction. The
reduction of a B-literal against the A-literal immediately to its left may also be viewed
as factoring of the corresponding input chain.

Example
An example of a reduction operation is :
 ~heart_ok(P) ~lungs_ok(P) 0 ~alive(spouse_of(P))

 heart_ok(P) 0 lungs_ok(P)

 • Reduces to produce :
 ~heart_ok(P) ~lungs_ok(P) 1 ~alive(spouse_of(P))

 heart_ok(P) 0

The bookkeeping operation is truncation (also called contraction).
3. Truncation removes an A- or C-literal from the right-hand end of a centre chain. In

some deduction systems, the truncation of an A-literal may cause the insertion of
another A- or C-literal.

Example
An example of a truncation operation is :
 ~heart_ok(P) ~lungs_ok(P) 1 ~alive(spouse_of(P))

 heart_ok(P) 0

 • Truncates to produce :
 ~heart_ok(P) ~lungs_ok(P) 0 (~heart_ok(P))
 ~alive(spouse_of(P))

In GLD and SGLD, deductions are built from deduction chunks, each of which may
contain multiple deduction operations.

Below is an example of a chain format linear refutation of the input set S given in section
1.4.1. The example uses a very simple form of chain format linear deduction, and therefore
does not illustrate all aspects of chain format linear deduction. Rather it serves to confirm
the fundamental ideas.

Introduction and Technical Preliminaries Page 13

Example
An example of a chain format linear refutation of S is :
~heart_ok(P) ~lungs_ok(P)
• Extends with heart_ok(P) lungs_ok(P) ~alive(spouse_of(P))

to produce :
~heart_ok(P) ~lungs_ok(P) ~alive(spouse_of(P))

 heart_ok(P)

• Extends with ~heart_ok(P) lungs_ok(P) to produce :
~heart_ok(P) ~lungs_ok(P) ~alive(spouse_of(P))

 heart_ok(P) lungs_ok(P)

• Reduces to produce :
~heart_ok(P) ~lungs_ok(P) ~alive(spouse_of(P))

 heart_ok(P)

• Truncates to produce :
~heart_ok(P) ~lungs_ok(P) ~alive(spouse_of(P))

• Extends with alive(spouse_of(homer)) to produce :
~heart_ok(homer) ~lungs_ok(homer)

 ~alive(spouse_of(homer))

• Truncates twice to produce :
~heart_ok(homer)
• Extends with heart_ok(P) ~lungs_ok(P) to produce :
~heart_ok(homer) ~lungs_ok(homer)

• Extends with heart_ok(P) lungs_ok(P) ~alive(spouse_of(P))
to produce :

~heart_ok(homer) ~lungs_ok(homer)

 ~alive(spouse_of(homer)) heart_ok(homer)
• Reduces to produce :
~heart_ok(homer) ~lungs_ok(homer)

 ~alive(spouse_of(homer))
• Extends with alive(spouse_of(homer)) to produce :
~heart_ok(homer) ~lungs_ok(homer)

 ~alive(spouse_of(homer))

• Truncates thrice to complete the refutation.

Linear-input Deduction
Linear-input deduction is a refinement of linear deduction which does not permit any form
of ancestor resolution, i.e., (chain format) linear deduction using only the extension and

Page 14 Introduction and Technical Preliminaries

truncation operations. Linear-input deduction is complete for input sets of Horn clauses,
but is not complete for input sets that contain non-Horn clauses. Linear-input deduction is
of interest in this thesis because truth value deletion in linear-input deduction underlies
many of the semantic guidance systems developed in chapter 3.

Definition 1.10 - Linear-input deduction
Given an input set of clauses and a clause C1 chosen from the input set, a linear-input
deduction of Cn from the input set, with top clause C1, is a sequence of centre clauses
C1, ... ,Cn. Each deduced clause Ci+1, i = 1..n-1, is deduced from the centre clause Ci and
side clauses. The side clauses are chosen from the input set. For any Ci, the centre clauses
C1 to Ci-1 are the ancestor clauses of Ci. A linear-input deduction of the empty clause is
called a linear-input refutation.

Ringwood [1988] provides an interesting synopsis and references for the history of
linear-input deduction systems.

1.5 Deduction Faithfulness

The restrictions of a guidance system are imposed when a deduction operation is
performed in the host deduction system. The restrictions are expressed in terms of the
clauses involved in the deduction thus far. Restrictions can be divided into three
categories, in increasing order of the extent of their effect. (i) Operation restrictions,
which must hold at each deduction operation when it is performed. The restrictions are
allowed to become violated as the deduction progresses. (ii) Independent deduction
restrictions, which must hold independently at each deduction operation in a completed
deduction. (iii) Simultaneous deduction restrictions, which must hold simultaneously at
each deduction operation in a completed deduction. Independent deduction restrictions
whose satisfaction is established without instantiating any variables, e.g., admissibility
restrictions, have the same effect as simultaneous deduction restrictions. Operation
restrictions that once satisfied always remain satisfied, are equivalent to deduction
restrictions.

There are two principal approaches to establishing the satisfaction of restrictions. The first
approach is to examine the clauses involved directly. The second approach, called the
ground approach, is to find a ground universe instance of the clauses involved, that
satisfies the restrictions. The ground approach can sometimes be used to check restrictions
expressed in terms of the direct approach, e.g., an atom is FALSE if a FALSE ground
universe instance of that atom can be found. The ground approach is typically suitable for
use in semantic guidance systems. For semantic restrictions, the ground approach also

Introduction and Technical Preliminaries Page 15

alleviates the problem that "if the domain of the interpretation contains more than a few
elements the computation required to fully evaluate a non-ground clause may be too time
consuming." [Henschen, 1976, p. 816]. In the ground approach only one suitable ground
instance need be found at each check point.

For deduction restrictions, establishing that a restriction is satisfied when a particular
deduction operation is performed, does not establish that the restriction will be satisfied in
the completed deduction. The instantiation of variables later in the deduction may cause
the restriction to become violated. Thus, after any instantiation of variables when building
a deduction, it is necessary to recheck deduction restrictions at every deduction operation
that has been performed thus far. This repeated rechecking entails a large amount of effort
which may be prohibitive, or at least of negative utility. An alternative approach is to use
deduction restrictions as operation restrictions, i.e., without rechecking at previous
deduction operations, and to supply supplementary mechanisms to detect violations caused
by the instantiation of variables. With the use of supplementary mechanisms, the
operational imposition of deduction restrictions can be formulated to have the same or
very nearly the same effect as full imposition. The extent to which operational imposition
achieves the effects of full imposition is measured in terms of deduction faithfulness.
Operationally imposed deduction restrictions are deduction faithful if they ensure that
completed deductions conform to the deduction restrictions. Deduction faithfulness is a
generalisation of "ground faithfulness" [Sandford, 1980, p. 209].

Two methods have been used to make operationally imposed deduction restrictions
deduction faithful. (i) The deduction restrictions are formulated so that they have
retrospective effect, i.e., so that their operational imposition at one deduction operation
also has the effect of imposing restrictions at previous deduction operations. This is
achieved by examining expressions that are available at the current deduction operation.
For example, the admissibility restrictions on A- and C-literals in the Graph Construction
procedure [Shostak, 1976] impose restrictions on B-literals in earlier deduction operations.
This retrospective detection of deduction restriction violations also has a converse.
Deduction restrictions can be formulated so that they prospectively detect inevitable
violations. Such restrictions are designed by analysing possible sequences of deduction
operations from a given point in a deduction. (ii) Auxiliary data structures are maintained
specifically to enforce deduction faithfulness, e.g., the False Substitution Lists used in
Hierarchical Lock Resolution [Sandford, 1980]. The auxiliary data structures need keep
only sufficient information to detect violations and do not need to store a complete history
of the deduction.

Page 16 Introduction and Technical Preliminaries

A factor which affects the extent to which operationally imposed deduction restrictions are
deduction faithful is the timing of their use. Delaying the imposition of such restrictions,
until after the instantiation of variables, increases the level of deduction faithfulness. This
is because violations caused by the instantiation will be detected. On the other hand,
delaying the imposition of the restriction may delay the detection of a violation. The effort
expended from the point where the violation arose to the point of detection, is wasted.
When determining the timing of the operational imposition of deduction restrictions,
careful examination of the restrictions in terms of the host deduction system is therefore
necessary. In linear deduction systems the timing decision is somewhat simplified. The
deduction restrictions in linear deduction systems are, almost exclusively, based on the
nature of the centre clauses. By operationally imposing deduction restrictions between
deduction operations, both a delayed check on the preceding operation and a preemptive
check on the next operation are performed .

1.6. Contributions of this Thesis

Section 1.3. describes the objectives of this research. In fulfilling the objectives, the
research described in this thesis has contributed to the area of automated deduction. The
major contributions are as follows.
1. The chain format linear deduction system, GLD, has been developed. GLD improves

upon existing chain format linear deduction systems in various aspects. The notable
improvements are (i) the provision of an explicit entry point for the incorporation of
search guidance systems, (ii) the use of coarse grain deduction steps, (iii) a combined
lemma/C-literal mechanism and (iv) an extended suite of admissibility restrictions.
GLD is described in sections 2.3 and 2.4.

2. Three original methods of analysing input sets, that partially predict the structure of
chain format linear deductions, have been developed. These methods are collectively
called linear-input subset analysis. Linear-input subset analysis is described in section
2.5.

3. The implementational issues associated with truth value semantic deletion in
linear-input deduction have been clarified, thus broadening the field of applicability.
This work is described in section 3.3.

4. Semantic guidance systems have been developed for linear deduction systems. These
include (i) a truth value deletion system (this is especially significant, as truth value
deletion has previously been considered incompatible with linear deduction), (ii) a truth
value preference strategy and (iii) combinations of sort value deletion with (i) and (ii).
The semantic guidance systems are described in sections 3.4, 3.5, 3.6 and 3.7.

5. Designations (the new interpretive structures) have been developed for storing semantic
information. The domains of designations are limited to be finite. Designations improve

Introduction and Technical Preliminaries Page 17

upon existing structures by incorporating a generalised form of property inheritance.
An efficient way of extracting the semantic information, stored in designations, has
been formalized. Designations are described in section 4.4 and the extraction procedure
is given in section 4.5.

6. The semantically guided linear deduction system, SGLD, has been developed. The
combination of features integrated in SGLD is new. In particular, the semantic
guidance in SGLD is original. SGLD is described in sections 5.1 and 5.2.

7. Testing of SGLD (described in section 5.4) has highlighted its strengths and
weaknesses, thus giving direction for future research. These directions are noted in
chapter 6, as part of the thesis' conclusion.

1.7. Thesis Structure

The chapters of this thesis are divided to cover the modular development of SGLD. There
are two streams of development. Chapter two covers the first stream, describing the
development of GLD. Chapters three and four cover the second stream. Chapter three
investigates semantic guidance and chapter four describes designations. Each of these
chapters is, to a large extent, self contained and has only this introductory chapter as
prerequisite reading. Each chapter contains its own literature survey of related work. The
two streams join in chapter five with the description of SGLD, merging the work of the
preceding three chapters. The thesis is concluded in chapter six. At the end of the thesis are
the reference list and two appendices. The first appendix contains examples that are too
bulky to be retained in the main text. The second appendix contains the statements of the
problems used to test SGLD and descriptions of the designations used in testing SGLD's
semantic guidance system. Each chapter of the thesis starts with a brief introduction. These
introductions have been duplicated below to give an overview of the thesis.

Chapter One - Introduction and Technical Preliminaries
Guidance systems are central to the success of automated deduction systems. Semantic
guidance systems are guidance systems that use semantic information to determine search
direction for their host deduction systems. Relative to their potential for improving the
performance of deduction systems, it seems that semantic guidance systems have been
badly neglected. All guidance systems are necessarily formulated to be compatible with
their host deduction systems. Beyond this constraint, it is desirable to abstract the issues of
syntax, application and implementation, as far as possible. This chapter introduces these
issues and presents the notation and terminology used in this thesis.

Page 18 Introduction and Technical Preliminaries

Chapter Two - Guided Linear Deduction
This chapter introduces a new linear deduction system, called Guided Linear Deduction
(GLD). GLD has been developed as a linear deduction system in which semantic guidance
can be used and tested. To fulfil its role successfully, GLD must be an effective deduction
system in its own right. This ensures that any favourable effects of incorporating semantic
guidance are not attributable to the inadequacy of GLD. GLD must also have an
appropriate entry point through which semantic guidance can be incorporated. GLD has
been designed after an examination of existing linear deduction systems. GLD improves
upon existing systems.

Chapter Three - Semantic Guidance
This chapter investigates and describes ways of using semantic guidance in deduction
systems, particularly in linear deduction systems. As a first step, the underlying structure
of truth value (semantic) deletion in linear-input deduction systems has been investigated.
Understanding this structure has facilitated the development of (i) effective
implementations of truth value deletion for linear-input deduction systems, (ii) a truth
value deletion system for linear deduction systems and (iii) a truth value guidance strategy
that can be used in a wide range of deduction systems. Sort value (semantic) deletion has
also been seen to be effective in guiding deduction systems. This observation has
motivated a reformulation of sort value deletion so that it has the same format as truth
value deletion. In turn, this reformulation has facilitated the development of combined sort
and truth value guidance systems.

Chapter Four - Designations
This chapter describes a new interpretive structure suitable for storing and supplying the
semantic information used by semantic guidance systems. The new structures are called
designations. The difficulty of storing and supplying semantic information is one of the
factors that has discouraged the use of semantic guidance systems. There is a need for an
interpretive structure that is expressive, space efficient, effective in supplying semantic
information and also user friendly. A common approach is to store the semantic
information as semantic functions. Interpretation of ground expressions is then performed
using recursive descent. Designations generalise this approach, inheriting its good
properties and remedying some of its faults. The domains of designations are limited to be
finite.

Chapter Five - Semantically Guided Linear Deduction
This chapter describes the Semantically Guided Linear Deduction system (SGLD). SGLD
is a semantically guided implementation of GLD. The implementation, in Prolog,

Introduction and Technical Preliminaries Page 19

combines GLD with a semantic guidance system. Designations are used to store the
semantic information used. SGLD has some features that are not specified in GLD. These
features improve the real time performance of the implemented system without changing
the structure of the deductions or the search space. The performance of SGLD has been
investigated.

Chapter Six - Conclusion
This chapter reviews the outcomes of this research. SGLD has combined GLD, a semantic
guidance system and designations, to form a unique deduction system. The components of
SGLD are individually of interest and their combination into SGLD has confirmed the
thesis of this research. Areas worthy of further investigation have also been noted.

Page 20 Introduction and Technical Preliminaries

Guided Linear deduction Page 21

Chapter Two

Guided Linear Deduction

This chapter introduces a new linear deduction system, called Guided Linear Deduction
(GLD). GLD has been developed as a linear deduction system in which semantic guidance
can be used and tested. To fulfil its role successfully, GLD must be an effective deduction
system in its own right. This ensures that any favourable effects of incorporating semantic
guidance are not attributable to the inadequacy of GLD. GLD must also have an
appropriate entry point through which semantic guidance can be incorporated. GLD has
been designed after an examination of existing linear deduction systems. GLD improves
upon existing systems.

This chapter contains :
1. A historical survey of linear deduction systems.
2. The design criteria for GLD.
3. The formal definition of GLD.
4. Discussion of the deduction operations, deduction chunks and search strategy in GLD.
5. The description of three methods of analysing input sets, that partially predict the

structure of GLD deductions.
6. A brief description of how equality may be embedded into GLD.
7. Concluding comments.

2.1. Linear Deduction Systems

Background
The linear refinements of the basic resolution procedure combine a range of restrictions,
resulting in a deduction format that has some fundamentally desirable properties :
• Linear refutations are based on a sequence of modus ponens and contradiction

arguments. This is a simple and natural structure for a proof. The structure makes it
possible to extract an 'answer' from a refutation, thus making linear deduction systems
suitable for question-answer systems.

Page 22 Guided Linear Deduction

• Linear deduction systems have "relatively uncomplicated" [Kowalski &
Kuehner, 1971, pg 230] search spaces, thus making it easy to impose search guidance.

• The chain format linear deduction systems use a stack style data structure, thus
permitting efficient implementation.

These, and other lesser, considerations have focused attention onto linear deduction
systems. Most of the development of linear deduction systems appears to have taken place
in the years (approximately) 1968 to 1974. After 1974, there has been little reported
development.

Although different in presentation, the connection graph proof methods [Bibel, 1987] have
parallels in linear deduction systems. The tableau format [Letz, Schumann, Bayerl, &
Bibel, 1992] in particular is very similar to Selective Linear Model deduction
[Brown, 1974] and LUST-resolution [Minker & Zanon, 1982]. The connection graph
methods are, however, distinct enough to place them beyond the scope of this discussion.

Ancient History
The earliest linear deduction systems were the R~ 3 refinement [Luckham, 1970], s-linear
resolution [Loveland, 1970] and the strategy of preference of a 'new' conjunction [Zamov
& Sharonov, 1969]. These three systems were devised independently by their respective
authors. The R~ 3 refinement is the simplest of these early systems, and proves the

completeness of the linear format using full resolution. The R~ 3 refinement is also referred
to as ancestry filter form resolution [Nilsson, 1971]. As well as proving the completeness
of the linear format, s-linear resolution (full resolution is used) describes an important
restriction for linear deduction systems. That is, the resolvant of an ancestor resolution
operation must, possibly after factoring, subsume an instance of the parent centre clause.
This restriction introduced the idea that ancestor resolution need be performed only if all
the non-resolved upon literals in the ancestor clause can factor against non-resolved upon
literals in the parent centre clause. The strategy of preference of a 'new' conjunction
parallels s-linear resolution, but is expressed for input sets in prenex disjunctive normal
form. The strategy uses the equivalent of full resolution. The equivalent of s-linear
resolution's subsumption requirement is introduced in terms of "absorption" [Zamov &
Sharanov, 1969, p. 9]. Because the development of deduction systems has been almost
exclusively for input sets in conjunctive normal form, this latter system has been largely
ignored. As an early work on linear deduction it is, however, equally as noteworthy as
s-linear resolution.

Each of the first three systems is compatible with the Set of Support (SoS) strategy [Wos,
Robinson G.A., & Carson, 1965]. Although not mentioned explicitly in some

Guided Linear deduction Page 23

presentations, the SoS strategy can be used with each of the linear deduction systems
described in this section.

After the three initial systems, two streams of development emerged. One stream
developed refinements based on resolution with merging [Andrews, 1968], while the other
developed the chain format systems. Two significant common features emerged in the two
streams of development. (i) The incorporation of the subsumption restriction of s-linear
resolution. (ii) A mechanism for selecting the ancestor literal to resolve upon in an
ancestor resolution. GLD is a chain format linear deduction system, and hence greater
emphasis will be placed on such systems.

2.1.1. Resolution with Merging

Resolution with merging [Andrews, 1968] (where full resolution is used) was reported
prior to the introduction of linear deduction systems. Resolution with merging imposes a
restriction on the non-resolved upon literals of a resolution operation. A resolvant is a
merge if, after factoring, it contains a literal that is descended from both of the parent
clauses. This literal is called a merge literal. Andrews showed that it is never necessary to
resolve two non-merges, and that this restriction is compatible with the SoS strategy.

A connection between resolution with merging and the subsumption restriction of s-linear
resolution was noted by Loveland [1970], and several researchers have developed linear
deduction systems that take advantage of resolution with merging. The first developed was
the merge fishtail restriction, informally presented by Raphael [1969] and later formalized
by Yates, Raphael and Hart [1970]. The merge fishtail restriction demonstrates the
compatibility of linear deduction (using full resolution), resolution with merging and the
SoS strategy. It also shows that, in an ancestor resolution, it is only necessary to resolve
against a merge literal of the ancestor clause.

Anderson and Bledsoe [1970] extended the work of Raphael, to include the subsumption
restriction of s-linear resolution and also added a no tautologies restriction. The
completeness of this system was also independently reported by Yates et al. [1970]. This
system is significant within this stream of development. It defines a linear deduction
system which incorporates the subsumption restriction and provides a mechanism for
selecting the ancestor literal to resolve against in an ancestor resolution.

Reiter [1971] imposed ordering strategies on a merging/linear/SoS type deduction system.
An unfortunate side effect of the addition of ordering is that it is necessary to omit the
subsumption restriction on ancestor resolution operations. The merge tight ordered s-linear

Page 24 Guided Linear Deduction

deduction with subsumption rule (MTOSS) system [Loveland, 1978] overcomes this
problem by allowing descendants of merge literals to be resolved upon in ancestor
resolution operations. The MTOSS system appears to be the last system in this stream of
development.

2.1.2. Chain Format Linear Deduction Systems

All the chain format linear deduction systems use the chain format for clauses and the
three core deduction operations, described in section 1.4.2. The reduction operation of
chain format systems incorporates the subsumption restriction of s-linear resolution and
the selection of a literal in an ancestor resolution is made using A-literals. These features
provide commonality with the systems based on resolution with merging.

Besides the common data structure and deduction operations, all the chain format systems
also use admissibility restrictions. These are restrictions on the extent to which atoms in a
centre chain may be identical. The general effects of admissibility restrictions are to
prevent loops in deductions, to prevent the use of tautologies in deductions and to make
the use of certain deduction operations compulsory in certain circumstances. Each
individual system provides its own specific admissibility restrictions to obtain the desired
effects. In some systems the admissibility restrictions are defined as operation restrictions,
while in other systems the admissibility restrictions are deduction restrictions.

The first chain format system developed was the Model Elimination (ME) procedure
[Loveland, 1969a]. The first presentation of the ME procedure [Loveland, 1968] did not
resemble a linear deduction system, but subsequent presentations
[Loveland, 1969a, 1969b, 1972] set the standard for all the chain format systems that
followed. Interesting features in the ME procedure are listed below.
• The ME procedure's extension operation always extends against the rightmost B-literal

of the centre chain, while the reduction operation may use any B-literal in the centre
chain. (In [Loveland, 1972] this flexibility is removed and only the rightmost B-literal
of a centre chain may be used in a reduction operation.)

• The contraction operation of the ME procedure includes a mechanism by which lemma
chains are produced and added to the input set. The lemma mechanism is a significant
feature of the ME procedure, but has often been found to be of low utility. The
persistent nature of lemma chains often increases the size of the search space
unacceptably. As the ME procedure is complete without the lemma mechanism,
restrictions can be used to reduce this problem. This approach has been taken by
Fleisig, Loveland, Smiley and Yarmush [1974], whose implementation of the lemma
mechanism includes a simplified subsumption test.

Guided Linear deduction Page 25

• The admissibility restrictions used in the ME procedure are operation restrictions. They
restrict which centre chains can be used in deduction operations.

Developed independently of the ME procedure, Linear resolution with Selection function
(SL-resolution) [Kowalski & Kuehner, 1971] was the second major chain format system
presented. Interesting features in SL-resolution are listed below.
• The major contribution of SL-resolution was the introduction of a selection function.

The selection function selects a B-literal in the rightmost cell of the centre chain for use
in an extension operation. The use of a selection function facilitates some search
guidance. A selection function or a selection rule has been used in all
post-SL-resolution chain format systems. (A selection function is distinct from a
selection rule, in that a selection rule "may depend on the history of the derivation"
[Ringwood, 1988, p. 6]. A selection function provides an independent selection
mechanism.) Note that no selection function is used in SL-resolution's reduction
operation.

• As well as the three core deduction operations, SL-resolution incorporates m-factoring
[Kowalski, 1970]. Although the added operation makes shorter refutations possible, it
also increases the size of the search space. The necessity of selecting a B-literal from
the rightmost cell of the centre chain in extension operations also prevents the
m-factoring from having maximum effect. As was noted by Plaisted [1982, p. 235],
"... the failure to economise on repeated subgoals seems to be a serious problem with
SL-resolution ...".

• The admissibility restrictions in SL-resolution are deduction restrictions. Of the chain
format systems described, SL-resolution is the only one in which the admissibility
restrictions reject all tautologous centre chains. This is possible due to the inclusion of
m-factoring.

Ordered Linear (OL)-deduction [Chang & Lee, 1973] combines features of the ME
procedure and SL-resolution. Interesting features in OL-deduction are listed below.
• As in the ME procedure, the rightmost B-literal of a centre chain is always used in

OL-deduction extension and reduction operations. The input chains of OL-deduction
are ordered, thereby implementing a selection rule for extension and reduction
operations.

• From SL-resolution, OL-deduction has adopted factoring (general factoring, not
m-factoring) and a no tautologies deduction restriction.

• No admissibility restrictions beyond the no tautologies restriction are specified for
OL-deduction.

Page 26 Guided Linear Deduction

The Graph Construction (GC) procedure [Shostak, 1976] introduced the use of C-literals
in chain format systems. The C-literal mechanism overcomes SL-resolution's "failure to
economise on repeated subgoals" to a large extent. Interesting features in the GC
procedure are listed below.
• C-literals are inserted into the deduced centre chain whenever an A-literal is truncated.

B-literals may reduce against C-literals as well as A-literals. Reduction against a
C-literal recalls a portion of the deduction for reuse and effects a retrospective form of
factoring. There is an equivalence (discussed further in section 2.4.4) between the
lemma mechanism of the ME procedure and the C-literal mechanism.

• As in SL-resolution, the admissibility restrictions of the GC procedure are deduction
restrictions. In comparison with the admissibility restrictions of other chain format
systems, those of the GC procedure are slow to achieve the desired effects.

Selective Linear Model (SLM) deduction [Brown, 1974] was the last of the chain format
systems developed in the prolific period up to 1974. Interesting features in SLM are listed
below.
• SLM chains have a tree structure. A-literals are internal to the trees and B-literals are

leaves of the trees. The tree structure of centre chains is brought about by a new
deduction operation called spreading. Spreading, under certain conditions, spreads
B-literals in a rightmost cell of a centre chain (each branch has such a cell) onto new
branches of the centre chain.

• Any B-literal in any rightmost cell of a centre chain may be selected for use in an
extension operation, thus providing more flexibility in the system.

• SLM provides a partial C-literal mechanism.
• A notable feature of SLM is the use of semantic information. Semantic information is

used to control the use of the spreading and reduction operations and to determine
admissibility.

• The admissibility restrictions of SLM are deduction restrictions. They are less strict
than those of other chain format systems.

Linear resolution with Unrestricted Selection based on Trees (LUST)-resolution [Minker
& Zanon, 1982] is based on SL-resolution, but (apparently unknown to its authors)
incorporates features found in SLM deduction. Interesting features in LUST-resolution are
listed below.
• LUST-resolution, like SLM deduction, uses a tree structure for its chains.
• LUST-resolution always spreads the B-literals in the rightmost cell of a centre chain.
• General factoring is used.
• LUST-resolution has deduction admissibility restrictions similar to those of

SL-resolution.

Guided Linear deduction Page 27

There have been many implementations of chain format systems, e.g., [Fleisig et al., 1974;
Stickel, 1986b; Tarver, 1990], which have incorporated various combinations of features,
including some beyond those mentioned above. Of interest is the Prolog Technology
Theorem Prover (PTTP) [Stickel, 1986b], which made minimal changes to the ME
procedure (upon which it is based), but instead focused on a highly optimised
implementation. It has been noted that "Although PTTP is one of the fastest theorem
provers in existence when evaluated by its inference rate ... its high inference rate can be
overwhelmed by its exponential search space ..." [Stickel, 1990, p. 674]. The failure of
'brute force' to produce a completely successful linear deduction system is an indicator of
the necessity for search guidance.

2.2. The Design of GLD

The basic structure and core of deduction operations of chain format linear deduction
systems provide a suitable foundation upon which to build powerful deduction systems.
Other non-core features, found in chain format systems developed to date, provide a rich
selection that can be used in such systems. Beyond the core deduction operations, notable
features of the chain format systems discussed above, are (i) the use of a selection
function/rule in extension operations, (ii) the compulsory use of certain operations in
certain circumstances (not explicitly mentioned above, but enforced via admissibility
restrictions), (iii) the incorporation of a factoring operation, (iv) the addition of lemma
chains to the input set, (v) the use of the C-literal mechanism, (vi) the incorporation of a
spreading operation and (vii) the imposition of admissibility restrictions. Notable by the
their absence from the systems discussed are (i) more extensive use of a selection
function/rule, (ii) explicit methods for ordering alternative successor centre chains,
(iii) coarse grain deduction steps, (iv) specification of an overall search strategy.

The use of a selection function/rule in extension operations is the dominant search
guidance mechanism used in existing chain format deduction systems. OL-deduction is the
only chain format system that extends selection to its reduction operation, in the form of a
selection rule. More general search guidance mechanisms are needed. Firstly, a selection
rule should be used in all inference operations. It is important that a selection rule rather
than a selection function be used, as this permits more flexibility in the choice of B-literal.
Secondly, alternative successor centre chains should be evaluated and ordered for use.

The compulsory use of certain deduction operations (with a specific input chain in some
cases) plays an important role in pruning the search space of chain format deduction

Page 28 Guided Linear Deduction

systems. Further emphasis on detecting situations in which the use of a certain operation
can be compulsory, would result in an improved deduction system.

The incorporation of a separate factoring operation in linear deduction systems has both
advantages and disadvantages. Factoring makes shorter refutations possible, but also
increases the size of the search space. The reduction operation, lemma mechanism and
C-literal mechanism, each implement some factoring. Reduction of a B-literal against the
A-literal immediately to its left, implements factoring of input chains. The C-literal
mechanism and, to a lesser extent, the lemma mechanism implement a retrospective form
of factoring. A separate factoring operation thus seems to be redundant.

In addition to their factoring effects, the lemma and C-literal mechanisms implement reuse
of previously deduced information. This has evident advantages. The lemma mechanism is
more powerful than the C-literal mechanism, but often increases the size of the search
space unacceptably. A mechanism for reusing deduced information, but which avoids
increasing the size of the search space, would be of significant benefit.

Empirical evidence indicates that the spreading operation used in SLM deduction and
LUST-resolution has some benefits [Tabada & Sutcliffe, 1990]. A drawback of the
spreading operation is that it destroys the stack like nature of the centre chains, thus
complicating implementation. There is insufficient firm evidence available to make a
statement about the desirability of incorporating the spreading operation.

The deduction operations used in existing chain format systems are very fine grained.
Several authors, e.g., Wos [1988], Bledsoe & Hodges [1988], have noted the importance
of taking deduction steps of an appropriate size. If the deduction steps are too small, an
excessive amount of intermediate information may be generated and stored. On the other
hand, taking too large deduction steps may by-pass a path to a refutation. Optimally,
deduction steps that are as large as possible should be taken so long as completeness is
maintained. Coarser grain operations, such as hyper-resolution [Robinson J.A., 1965b] and
linked-UR-resolution [Wos, Verhoff, Smith, & McCune, 1984], have proved to be
successful in other deduction systems. The use of coarse grain deduction steps would
enhance a chain format linear deduction system.

Many of the deduction admissibility restrictions defined for the chain format systems
would have retrospective effect if imposed operationally. There is thus some redundancy
in the restrictions. An admissibility checking system that uses deduction faithful,
operationally imposed, admissibility restrictions would be desirable. The restrictions
should retrospectively and prospectively detect admissibility violations.

Guided Linear deduction Page 29

None of the chain format systems discussed explicitly specifies an overall search strategy.
A chain format linear deduction system (like all deduction systems) must have a fair
[Lloyd, 1984, p. 52] search strategy, i.e., one that does not ignore any part of the search
space that may contain a solution. It is desirable that the search strategy be specified as
part of the deduction system.

Based on the above comments, an improved chain format linear deduction system would
have the following features :
• No deduction operations beyond the core three.
• Use of a selection rule wherever possible.
• A method of ordering alternative successor centre chains.
• Maximised detection of situations in which the use of a certain deduction operation is

compulsory.
• Coarse grain deduction steps.
• A mechanism for reusing deduced information. The mechanism must not increase the

size of the search space dramatically.
• Operationally imposed deduction restrictions, formulated to have retrospective and

prospective effect.
• An appropriate overall search strategy.
GLD is a chain format linear deduction system, designed to satisfy these goals. GLD is
based broadly on the GC procedure. Many of the GC procedure's features have been
enhanced and new features have been added. The following features make GLD an
improvement over existing chain format linear deduction systems :
• A selection rule can be used in GLD's extension and reduction operations, and

alternative successor chains can be ordered for use. Both the selection rule and ordering
are controlled by a heuristic function. The heuristic function thus supplies an explicit
entry point for the incorporation of guidance systems. There are many possible heuristic
functions that could be used, some of which are listed by Chang and Lee [1973, p. 154].
A semantically based heuristic function is presented in chapter 3.

• Coarse grain deduction steps, called deduction chunks, are formed.
• A combined lemma/C-literal mechanism has been developed. The mechanism limits the

increase in the size of the search space.
• An extended suite of operationally imposed admissibility restrictions is specified.

In designing specific details of GLD features, four basic maxims were adopted, as follows.
1. GLD would be 'tuned' to find deductions that end with the empty chain, i.e., refutations.
2. Unit input chains would be given preferential treatment. This idea is not new and

underlies several refinements to the resolution procedure, e.g., the unit preference

Page 30 Guided Linear Deduction

strategy [Wos et al., 1964], unit resolution [Henschen & Wos, 1974] and UR resolution
[Overbeek et al., 1976]. In GLD, several features have been structured to exploit the
advantages of using unit input chains. For all chains in GLD, this maxim was
extrapolated to a "fewest-literals preference strategy". Such a generalisation was
originally proposed by Slagle [1965], as cited in [Chang & Lee, 1973, p. 153] and is
based on the idea that shorter chains are closer to a refutation than longer ones.

3. 'A stitch of pruning is worth nine of search.' Any overhead introduced by a mechanism
that could prune the search space, would be considered justified. This maxim is well
motivated by Wos [1988].

4. The various components of the system should integrate smoothly. Given alternative
ways of incorporating a feature, the method that is least disruptive to the overall
structure of the system would be chosen.

The formal definition of GLD is given in a dynamic style, in the manner of [Schumann,
Letz, & Kurfess, 1990]. This is in contrast to the static style used in some other system
definitions. Thus, as well as specifying the nature of a GLD deduction, the definition also
specifies how such a deduction is to be obtained.

2.3. The Formal Definition of GLD

2.3.1. Input and centre chain representation

GLD chains may contain A-, B- and C-literals, as defined in section 1.4.1. Extra items of
information are associated with A- and C- literals, as follows.
• A-literals have an integer scope value. For a given A-literal with scope value N, the N

A-literals to the right of the given A-literal are within the scope of the given A-literal.
• C-literals have a list of (references to) scope A-literals. The scope A-literals of a

C-literal are to the left of the C-literal.

The input chains to a GLD deduction are created by assigning any convenient ordering to
the literals in each input clause and classifying the literals as B-literals. Lemma chains that
are created in the course of a deduction may be added to the input set.

2.3.2. Subsumption

Subsumption is used by GLD's admissibility checking and reuse of deduced information
features. The principal use is in the addition (or non-addition) of lemma chains to the input
set. GLD's preference for shorter chains and considerations concerning linear-input subset
analysis (see section 2.5), have led to a subsumption algorithm that requires that a

Guided Linear deduction Page 31

subsumed chain has at least as many literals as the subsuming chain. This is a common
modification to subsumption, and is called θ-subsumption by Loveland [1968, p. 97].
Thus, a chain C subsumes a chain D if :
1. The number of B-literals in C is less than or equal to the number in D.
2. There exists a substitution θ such that each B-literal in Cθ is a B-literal in D.

2.3.3. The Structure of GLD Deductions4

The building of GLD deductions is driven by several parameters. They are :
1. An input set of clauses. GLD converts the input clauses to input chains.
2. Definition of a support set, from which the top chain is chosen.
3. A search bound for the first iteration of GLD's consecutively bounded search. (An

iteration of the consecutively bounded search is a complete search within one bound.)
4. A heuristic function. The heuristic function returns a value indicating the perceived

quality of a centre chain.
5. A search style, one of literal-selected, literal-ordered, cell-selected or cell-ordered.

For a given input set, support set, initial search bound, heuristic function and search style,
a GLD deduction of Cn is a sequence of centre chains C*1,C1, ... ,C*n,Cn built such that :
1. Each C*i+1, i=1..n-1, is deduced from Ci by one of extension, A-reduction or

C-reduction.
2. Each Ci+1, i=0..n-1, is deduced from C*i+1 by a (there is only one) maximal sequence

of Unit subsumed extensions, Identical A-reductions, Identical C-reductions,
A-truncations and C-truncations (descibed below).

3. Only the Ci are stored.
4. C*1 is chosen from the support set. The order in which support set elements are used

as top chains is :
1. The order in which they appear in the input set, for the literal-selected and

cell-selected search styles.
2. An order such that the alternative C1s are used in order of worsening heuristic

value, for the literal-ordered and cell-ordered search styles.
5. For each Ci, the selected B-literal from the rightmost cell of Ci is :

1. The rightmost B-literal, for the literal-selected and literal-ordered search styles.
2. The B-literal that leads to the set of Ci+1s with the worst heuristic value, for the

cell-selected and cell-ordered search styles. The heuristic value of a set of
chains is the best of its elements' heuristic values, or the worst possible
heuristic value if the set is empty.

4Explanatory comments on aspects of this formal definition are to be found in section 2.4.

Page 32 Guided Linear Deduction

6. For each Ci, given the selected B-literal, the order in which the possible Ci+1s are
considered is :

1. A default order (see section 2.4.3), for the literal-selected and cell-selected
search styles.

2. Worsening order of their heuristic values, for the literal-ordered and
cell-ordered search styles.

7. In every C*i, when it is deduced :
1. No two non-B-literals have identical atoms.
2. No A- or C-literal is to the left of an identical B-literal.
3. No B-literal is complementarily5 identical to another B-literal in the same cell,

or to the A-literal immediately to the right of its cell.
4. No A-literal is complementarily subsumed by a unit input chain, unless the

A-literal is the rightmost literal in C*i.
 These are GLD's admissibility restrictions. They are operation restrictions.
8. No Ci has more A- and B-literals than the search bound. Any Ci created with an

excess of A- and B-literals is rejected. If Cn cannot be deduced using a given search
bound, then the deduction may be restarted from C1, as follows. If any lemma chains
have been added to the input set in the iteration, then the search is restarted from C1
with the search bound increased by one. If no lemma chains have been added to the
input set in the iteration and the search bound has been exceeded, then the search is
restarted from C1 with the search bound increased by the minimum amount by which
it was exceeded.

Cdeduced is deduced from Ccentre by extension against an input chain Cinput if :
1. The selected B-literal in Ccentre is complementarily unifiable with a B-literal in Cinput.
2. C'centre is Ccentre with the selected B-literal moved to the rightmost end, C'input is

Cinput with the used B-literal removed and Cdeduced is the juxtaposition of C'centre and
C'input. The selected B-literal is reclassified as an A-literal, with scope 0.

3. If C'input is a unit input chain then the extension is called a unit extension.

Cdeduced is deduced from Ccentre by A-reduction if :
1. The selected B-literal in Ccentre is complementarily unifiable with an A-literal to its

left.
2. Cdeduced is Ccentre with the selected B-literal removed. The scope of the A-literal is

reset to the number of A-literals to its right.

5The term complimentarily is used to specify a literal of opposite sign. Thus, for example, a complementarily

identical literal is a literal of opposite sign with an identical atom, and a complementarily unifiable literal is a

literal of opposite sign whose atom unifies with the atom of the literal in question.

Guided Linear deduction Page 33

Cdeduced is deduced from Ccentre by C-reduction if :
1. The selected B-literal in Ccentre is complementarily unifiable with a C-literal to its left.
2. Cdeduced is Ccentre with the selected B-literal removed. The scope of each scope

A-literal (of the C-literal) is reset to the number of A-literals to its right.

Cdeduced is deduced from Ccentre by Unit subsumed extension against a unit input chain
Cinput if :
1. The rightmost literal of Ccentre is a B-literal.
2. There is a target B-literal in Ccentre which is complementarily subsumed by Cinput.
3. No identical A-reduction or identical C-reduction is possible against a B-literal to the

right of the target B-literal.
4. Cdeduced is Ccentre with the target B-literal removed.

Cdeduced is deduced from Ccentre by Identical A-reduction if :
1. The rightmost literal of Ccentre is a B-literal.
2. There is a target B-literal in Ccentre which is complementarily identical to an A-literal

to its left.
3. No unit subsumed extension, identical A-reduction or identical C-reduction against a

B-literal to the right of the target B-literal is possible; unit subsumed extension against
the target B-literal is not possible; identical A-reduction of the target B-literal against
an A-literal to the left of this A-literal is not possible; identical C-reduction of the
target B-literal against a C-literal to the left of this A-literal is not possible.

4. Cdeduced is Ccentre with the target B-literal removed. The scope of the A-literal is reset
to the greater of its current scope and the number of A-literals between itself and the
position of the (removed) target B-literal.

Cdeduced is deduced from Ccentre by Identical C-reduction if :
1. The rightmost literal of Ccentre is a B-literal.
2. There is a target B-literal in Ccentre which is complementarily identical to a C-literal to

its left;
3. No unit subsumed extension, identical A-reduction or identical C-reduction against a

B-literal to the right of the target B-literal is possible; unit subsumed extension against
the target B-literal is not possible; identical C-reduction of the target B-literal against a
C-literal to the left of this C-literal is not possible; identical A-reduction of the target
B-literal against an A-literal to the left of this C-literal is not possible.

4. Cdeduced is Ccentre with the target B-literal removed. The scope of each scope A-literal
(of the C-literal) is reset to the greater of its current scope and the number of A-literals
between itself and the position of the (removed) the target B-literal.

Page 34 Guided Linear Deduction

Cdeduced is deduced from Ccentre by A-truncation if :
1. The rightmost literal of Ccentre is an A-literal.
2. An A-literal is a lemma A-literal of the truncation if its scope is equal to the number of

A-literals to its right. The scope A-literals of the truncation are the lemma A-literals
other than the rightmost A-literal. The C-point of the truncation is immediately to the
right of the rightmost scope A-literal, or at the leftmost end of Ccentre if there are no
scope A-literals. A lemma chain of B-literals is formed from the negations of the
lemma A-literals.

3. C'centre is Ccentre with the rightmost A-literal removed and with the scope of each
scope A-literal decremented by 1.

4. If the lemma chain is subsumed by an input chain then :
1. Cdeduced is C'centre.

 If the lemma chain is a unit chain that is not subsumed by an input chain then :
1. All input chains that are subsumed by the lemma chain are removed from the

input set.
2. The lemma chain is added to the input set.
3. Cdeduced is C'centre.

 If the lemma chain is a non-unit chain that is not subsumed by an input chain and the
lemma chain subsumes at least one input chain then :

1. All input chains that are subsumed by the lemma chain are removed from the
input set.

2. The lemma chain is added to the input set.
3. Cdeduced is C'centre.

 If the lemma chain is a non-unit lemma chain that is not subsumed by an input chain
and the lemma chain does not subsume any input chains then :

1. Cdeduced is C'centre with a C-literal inserted at the C-point. The C-literal is the
complement of the removed A-literal, with scope A-literals as above.

Cdeduced is deduced from Ccentre by C-truncation if :
1. The rightmost literal of Ccentre is a C-literal.
2. Cdeduced is Ccentre with the C-literal removed.

Below is a GLD refutation of the input set S given in section 1.4.1. The refutation should
be contrasted with that given in section 1.4.2.

Guided Linear deduction Page 35

Example
An example of a GLD refutation of S is :
~heart_ok(P) ~lungs_ok(P)
• Extends with heart_ok(P) lungs_ok(P) ~alive(spouse_of(P))

to produce :
~heart_ok(P) ~lungs_ok(P) 0 ~alive(spouse_of(P))

 heart_ok(P)

• Extends with ~heart_ok(P) lungs_ok(P) to produce :
~heart_ok(P) ~lungs_ok(P) 0 ~alive(spouse_of(P))

 heart_ok(P) 0 lungs_ok(P)

• Reduces to produce :
~heart_ok(P) ~lungs_ok(P) 1 ~alive(spouse_of(P))

 heart_ok(P) 0

• Truncates to produce :
~heart_ok(P) ~lungs_ok(P) 0 ~alive(spouse_of(P))

• The lemma ~heart_ok(P) lungs_ok(P) is produced and subsumed.
The C-point of the truncation is immediately to the right
of ~lungs_ok(P) . If a C-literal were to be inserted, it would be

(~heart_ok(P)) at that location. It would have ~lungs_ok(P) as its

single scope A-literal.
• Extends with alive(spouse_of(homer)) to produce :
~heart_ok(homer) ~lungs_ok(homer) 0

 ~alive(spouse_of(homer)) 0

• Truncates twice to produce :
~heart_ok(homer)

• The lemma alive(spouse_of(homer)) is produced and subsumed.
• The lemma lungs_ok(homer) is added to the input set.

• Extends with heart_ok(P) ~lungs_ok(P) to produce :
~heart_ok(homer) 0 ~lungs_ok(homer)

• Unit subsumed extends with lungs_ok(homer) to produce :
~heart_ok(homer) 0 ~lungs_ok(homer) 0

• Truncates twice to complete the refutation.
• The lemma lungs_ok(homer) is produced and subsumed.
• The lemma heart_ok(homer) is added to the input set.

Page 36 Guided Linear Deduction

2.4. The Deduction Operations and Search Strategies in GLD

2.4.1. The Deduction Operations

GLD's eight deduction operations are comprised of six inference operations and two
bookkeeping operations. The inference operations are the extension and reduction
operations and the bookkeeping operations are the truncation operations. Orthogonal to the
operational divisions, the deduction operations may be split into two groups dependent on
whether or not alternative successor centre chains need to be considered once the operation
has been completed. If alternatives do not need to be considered the operation is called a
compulsory operation. The following table summarises the divisions :

Operation Mode
 Compulsory Non-compulsory
Extension Extension
 Unit subsumed

extension

Reduction A-reduction
 C-reduction
 Identical A-reduction
 Identical C-reduction
Truncation A-truncation
 C-truncation

Table 2.1 - The GLD deduction operations

An important difference between the non-compulsory and compulsory inference
operations is that the non-compulsory inference operations operate on a selected B-literal
in the rightmost cell of a centre chain, while the compulsory inference operations may use
any B-literal in a centre chain. The truncation operations can and must be used when the
rightmost literal in the centre chain is an A- or C-literal.

The extension group of operations are, in combination, equivalent to the extension
operations of other chain format systems. If a B-literal can be removed from a centre chain
without any instantiation of variables in the centre chain, it is unnecessary to consider
alternative ways of removing the B-literal. Thus unit subsumed extension is a compulsory
operation. Stickel [1986b] used 'unit subsumed extensions' in the PTTP. Unit subsumed
extension in GLD is an efficient operation, in that no A-literal is created. The creation of
an A-literal would be redundant as it would immediately be A-truncated and the unit
lemma chain created would necessarily be subsumed by the unit input chain used.

Guided Linear deduction Page 37

GLD's reduction operations combine features from the ME procedure's and the GC
procedure's reduction operations. A significant feature in GLD's non-compulsory reduction
operation is the use of a selection rule. This provides a search guidance point that is not
available in most other chain format systems. As the identical reduction operations do not
instantiate any variables in the centre chain, they, like unit subsumed extension, are
compulsory operations. Making identical reduction a compulsory operation is a common
feature of linear deduction systems. The lack of clarity in the literature over this issue has
been discussed by Sutcliffe and Tabada [1991]. The reduction operations work in tandem
with A-truncation to implement reuse of deduced information.

GLD's A-truncation operation combines features of the ME procedure's and the GC
procedure's truncation operations, providing facilities to add lemma chains to the input set
as well as to insert C-literals. This reuse of deduced information is discussed fully in
section 2.4.4. The C-truncation operation is directly that of the GC procedure.

Although it would be possible to include a factoring operation in GLD, this has not been
done. Both general factoring and factoring of identical B-literals were tested in GLD. The
positive effects of using either of these operations were outweighed by a detrimental effect
on the lemma/C-literal mechanism of GLD and an expanded search space. The absence of
a separate factoring operation is compensated for by the combined effects of the
lemma/C-literal mechanism and A-reduction.

2.4.2. Chunking

GLD is the first chain format system to explicitly build coarse grain deduction steps. In
GLD multiple deduction operations are combined into indivisible deduction chunks. The
philosophy underlying GLD's operation chunking is that no centre chain is stored while it
contains a literal that can be removed by a compulsory operation. This approach does not
destroy the deduction completeness of the system. Thus, after each non-compulsory
operation, a maximal sequence of compulsory operations is performed before the resulting
centre chain is stored. The intermediate chains deduced are discarded. The initial
non-compulsory operation and the sequence of compulsory operations form a deduction
chunk. The chunk is based on the non-compulsory operation. A side effect of chunking is
that every stored centre chain necessarily has a cell at its right-hand end, and can therefore
have a non-compulsory inference operation performed on it.

The building of the maximal sequence is arranged so as to avoid changing scope values
when possible. If this is not possible then the scope values of A-literals which are as far to

Page 38 Guided Linear Deduction

the left as possible, are increased. To this end, unit subsumed extension is performed in
preference to identical reduction, and reduction is performed against A- and C-literals
which are as far to the left as possible (no distinction is made between A- and C-literals).
This latter preference, also used in st-linear resolution [Shostak, 1976], has two effects.
Firstly, shorter lemmas are created. Secondly, subsequently inserted C-literals exist longer
and are more effective. To maximise the use of unit extension, any unit lemma chains
created and added to the input set within the sequence, are created as soon as possible.
This is achieved by examining the centre chain literals from right to left.

2.4.3. B-literal Selection and Successor Ordering

In each chunk of a GLD deduction, two choices have to be made. The first is to select a
B-literal for the base operation and the second is to choose an order in which alternative
successor centre chains are to be considered. GLD uses two methods for selecting a
B-literal and two methods for ordering alternative successors. These, in combination,
provide four possible search styles, as summarised in the following table.

Successor Order Literal Selection
 Rightmost literal Most likely to fail
Default Literal-selected Cell-selected
Decreasing quality Literal-ordered Cell-ordered

Table 2.2 - Search styles

The determination of which B-literal is most likely to fail and the order of decreasing
quality, are done in terms of the heuristic function supplied. The heuristic function
provides an explicit entry point for search guidance. Such an entry point is absent in
existing chain format systems. This feature is crucial in GLD, as it is via this entry point
that semantic guidance is incorporated into GLD.

The names of the search styles are derived from how the B-literal is selected and how
alternative successor chains are ordered. These issues are described below.

B-literal Selection
The literal-selected and literal-ordered search styles use a trivial B-literal selection method,
as in the ME procedure, simply taking the rightmost B-literal. This provides no search
guidance.

Guided Linear deduction Page 39

In the cell-selected and cell-ordered styles, the B-literal is selected from the rightmost cell.
The selection aims to make that which is most likely to lead to failure. This selection
criteria is motivated by noting that each B-literal in a cell must be used eventually. There
is no point in selecting a B-literal that is easily dealt with, only to fail later on another. This
approach has been motivated by various authors, e.g. Naish [1986], Plaisted [1990b]. To
make the selection that is most likely to lead to failure, the set of successor centre chains is
deduced for each B-literal in the rightmost cell. For each successor set, the heuristic value
of each successor in the set is calculated. The best of the successors' values is assigned as
the heuristic value of the set. If there are no successors then the set is assigned the worst
possible heuristic value. The B-literal whose successor set has the worst value, is selected.
This technique of looking ahead is better than making a selection based on the nature of
the B-literals themselves.

Successor Ordering
The literal-selected and cell-selected search styles use a default ordering of alternative
successor centre chains. The default ordering is guided by (i) the fewest-literals maxim and
(ii) by avoiding changing scope values if possible, or if not possible increasing the scope
values of A-literals which are as far to the left as possible (as in the maximal sequences of
compulsory operations). Unit extension and reduction operations always deduce shorter
centre chains and extension operations do not change scope values. Therefore preference is
given first to unit extension based chunks, second to reduction based chunks and third to
non-unit extension based chunks. Within reduction based chunks, preference is given to
reductions against A- and C-literals which are as far to the left as possible (no distinction is
made between A- and C-literals).

The literal-ordered and cell-ordered search styles use the alternative successor centre
chains in order of worsening heuristic value.

The four search styles produce different search trees, due to their different methods of
B-literal selection and of ordering alternative successor centre chains. The computational
effort required to select a B-literal and order the alternative successors differs over the four
styles. Effort is expended in two areas, firstly in deducing alternative successors and
secondly in evaluating of the heuristic function for the alternative successors.
• The literal-selected search style incurs the least overhead, as no heuristic values are

used and only one successor is deduced at a time. Correspondingly, no search guidance
other than the default ordering of alternative successors is provided by the
literal-selected search style.

Page 40 Guided Linear Deduction

• The literal-ordered search style deduces all successors for a trivially selected B-literal
and calculates the heuristic value for each. The calculated values are used to provide
search guidance (by ordering the successors). Each successor may be used if those with
better heuristic values lead to failure. Thus the effort required to deduce all the
successors may be justified.

• The cell-ordered search style deduces every successor for every B-literal in the
rightmost cell of the centre chain and calculates a heuristic value for each. These
heuristic values are used to select a B-literal and then to sort the successors for the
selected B-literal. Each of the successors for the selected B-literal may be used, as in
the literal-ordered search style. However, the successors for the non-selected B-literals
are discarded.

• The cell-selected search style is a downgraded version of the cell-ordered search style,
in that the successors for the selected B-literal are left unsorted.

It is evident that the literal-ordered and cell-ordered search styles use heuristic values most
effectively. The literal-ordered search style is called a hill climbing search by
Winston [1984, p. 93] and a modified depth-first method by Chang and Lee [1973, p. 151].

An issue closely related to ordering of alternative successor chains is the order in which
support set elements are used as top chains. In GLD the elements of the support set may be
viewed as alternative intermediate chains deduced by alternative base operations of initial
deduction chunks. The order in which they are used as top chains is similar to the ordering
of alternative successor centre chains. A default order (their order in the input set) is used
for the literal-selected and cell-selected search styles. In the literal-ordered and
cell-ordered search styles the elements are used in an order such that the centre chains
deduced by the 'alternative chunks' are deduced in order of worsening heuristic value.

2.4.4. Reuse of Deduced Information

Three mechanisms for reusing deduced information have been developed in existing chain
format linear deduction systems. They are the lemma mechanism in the ME procedure, the
C-literal mechanism in the GC procedure, and the caching mechanism used by Astrachan
and Stickel [1992]. Caching is appropriate only in purely linear-input deductions, and is
thus not considered further here. The lemma mechanism adds lemma chains to the input
set and these may be used in extension operations. The C-literal mechanism inserts
C-literals into the centre chain and the C-literals may be reduced against. Using a lemma
chain is equivalent to duplicating the sequence of deduction operations that lead to the
creation of the lemma. The same is true for C-literals. Using a lemma or a C-literal
produces a shorter deduction. Caching is a generalised variant of the lemma mechanism.

Guided Linear deduction Page 41

Lemmas and C-literals hold very similar information, as may be observed from an
examination of the two mechanisms. In the ME procedure, lemma chains are formed from
the negations of the A-literal being truncated and certain other A-literals to its left. The
other A-literals are, in GLD parlance, the scope A-literals. An A-literal is a scope A-literal
by virtue of its participation in a prior reduction against a B-literal which was to the right
of the A-literal now being truncated. In the GC procedure such a prior reduction would
have ensured that the C-point (of the A-literal now being truncated) is to the right of all
such reduced against (scope) A-literals. Thus the C-point is immediately to the right of the
rightmost such (scope) A-literal. The A-literals that contribute to a lemma chain in the ME
procedure thus also determine the C-point in the GC procedure. Each C-literal inserted in a
GC procedure deduction corresponds to a lemma chain created in an ME procedure
deduction. C-reduction is equivalent to extension against the corresponding lemma chain
followed by A-reduction of the remaining lemma chain B-literals against the scope
A-literals.

The lemma mechanism has two distinct advantages over the C-literal mechanism. The first
is that lemma chains remain in the input set even if the branch of the search which creates
the lemma chain leads to failure. The lemma chain may be used in another branch of the
search, or, in the environment of a consecutively bounded search, it may be used in the
next iteration of the search. In contrast, a C-literal is available only until it is truncated
from the centre chain. The second advantage is that each time a lemma chain is used in an
extension, a fresh set of variables is created. Thus one use of a lemma chain does not affect
the next use. When a C-literal is used its variables may be instantiated, thus making it
unsuitable for further use. An associated effect is that after an extension against a lemma
chain, the variables in the lemma chain B-literals are not necessarily unified with other
variables in the centre chain. The effects of subsequently instantiating the lemma chain
variables are thus less widely felt. Variables in a C-literal typically share with other
variables in the centre chain and their instantiation has effects elsewhere in the centre
chain.

The C-literal mechanism has one distinct and critical advantage over the lemma
mechanism. The persistent nature of lemmas (which, as discussed above, is an advantage
in some situations) typically leads to a debilitating increase in the size of the search space.
The detrimental effect of this has been noted in various places, the principal problem being
cited that "lemmas tend to be highly redundant - they are often subsumed by other lemmas
and input chains" [Shostak, 1976, p. 63]. The C-literal mechanism does not suffer from
this problem. A second advantage of the C-literal mechanism is that C-reduction combines

Page 42 Guided Linear Deduction

the multiple operations that would have to be done separately if the equivalent extension
against a lemma chain and following A-reductions, were to be performed.

GLD introduces a combination of the lemma and C-literal mechanisms, retaining the best
features of each. The GLD lemma/C-literal mechanism can add lemma chains to the input
set and can also insert C-literals. Because of the evident advantages of the lemma
mechanism over the C-literal mechanism, preference is given to the creation of lemmas.
However, safeguards are provided against the proliferation of non-unit lemma chains. To
implement the combined mechanism, A-literals maintain a scope value as in the ME
procedure. The C-point of an A-truncation is determined from the scope values. Because a
C-reduction implements several A-reductions, it is necessary to update scope values in
C-reductions as well as in A-reductions. The A-literals whose scope values need updating
in a C-reduction are those which determined the insertion point of the C-literal, i.e., the
scope A-literals of the C-literal. In a C-reduction, each such scope A-literal is updated as if
it had A-reduced against the B-literal involved.

GLD's lemma/C-literal mechanism gives preferential treatment to unit lemmas. If a unit
lemma is not forward subsumed it is always added to the input set. The alternative of
inserting a C-literal is never taken. A redundancy in the GC procedure, of inserting
C-literals immediately after a unit extension (such C-literals are subsumed by the unit
input chain used), is eliminated here. In GLD no C-literal is inserted and the lemma chain
created will necessarily be subsumed by the unit input chain used in the extension.
Although the unit lemma chain strategy permits the number of unit input chains to grow,
this is in line with the 'preferential treatment of unit chains' maxim of GLD. As well as
their use in GLD's unit orientated extension operations, unit lemma chains are also used by
one of GLD's admissibility restrictions.

A non-unit lemma chain is added to the input set only if it is not forward subsumed and it
backward subsumes at least one existing input chain. The latter restriction prevents the
number of non-unit input chains from increasing. Further, because a subsuming chain has
no more literals than the subsumed chain, the total number of B-literals in non-unit input
chains never increases. This simplifies the set of input chains. The use of C-literals rather
than adding 'new' non-unit lemma chains maintains the advantages of reusing deduced
information, but does not have the deleterious effect of proliferating non-unit input chains.
It is, in some circumstances, possible for an inserted C-literal to be redundant. This occurs
if the corresponding lemma chain would be subsumed by an existing input chain.
However, the C-literal is still inserted so as to take advantage of the efficiency of the
C-reduction operation. Overall, this non-unit lemma chain strategy maintains the

Guided Linear deduction Page 43

advantages of adding lemma chains to the input set wherever it is possible to do so without
increasing the size of the input set.

There are several possible variations of the lemma/C-literal mechanism, such as inserting a
C-literal only if the corresponding lemma chain is not subsumed by any existing input
chain. The chosen variation combines well with other aspects of GLD and empirical
evidence suggests that the choice is a good one. The lemma/C-literal mechanism achieves
its design aims of reusing deduced information, without dramatically increasing the size of
the search space. The manipulation of scope values in GLD has also tightened up the
rather loose specifications given in the ME procedure. Overall, the combined
C-literal/lemma mechanism improves upon existing approaches to reusing deduced
information in chain format linear deduction systems.

2.4.5. The Admissibility Restrictions

The admissibility restrictions in GLD are based on those of the GC procedure. The GC
procedure specifies the deduction restriction that no two non-B-literals in any centre chain
may have identical atoms. GLD imposes those and five new restrictions, in an operational
manner. The new restrictions are :
1. No A-literal may be to the left of an identical B-literal. This is a prospective version of

the existing GC restriction. An extension against the B-literal would create two
identical A-literals and a reduction against the B-literal would create two
complementarily identical A-literals or complementarily identical A- and C-literals.
This restriction prevents loops in deductions and, in the case of an A-literal
immediately to the left of the cell containing the B-literal, prevents the use of
tautologous instances of input chains (this is never necessary). This restriction is also
used in the ME procedure and the PTTP.

2. No C-literal may be to the left of an identical B-literal. As in item 1, this is a
prospective version of the existing GC restriction. An extension against the B-literal
would create identical A- and C-literals and a reduction against the B-literal would
create two complementarily identical C-literals or complementarily identical A- and
C-literals.

3. No B-literal may be in the same cell as a complementarily identical B-literal. This
situation indicates that a tautologous instance of an input chain has been used. This
restriction is also used in the ME procedure.

4. No B-literal may be in the cell immediately to the left of a complementarily identical
A-literal. This also indicates that a tautologous instance of an input chain has been
used.

Page 44 Guided Linear Deduction

5. No A-literal may be complementarily subsumed by a unit input chain, unless the
A-literal is the rightmost literal of the centre chain (i.e., it was formed in a unit
extension, in which case the unit input chain used would complementarily subsume
it.). This restriction is also used in the PTTP. It maximises the use of unit subsumed
extensions in the completed deduction.

GLD's operationally imposed restrictions detect many deduction restriction violations
retrospectively and prospectively. It is worth highlighting those restrictions, inherited from
the GC procedure, that have retrospective effect when imposed operationally. It is these
retrospective effects that make it possible to impose the restrictions operationally, with a
high level of deduction faithfulness. (The notation XY means an X-literal to the left of an
identical Y-literal) :
1. AC retrospectively checks A~A.
2. CA retrospectively checks A~A.
3. C~A retrospectively checks AA.
4. CC retrospectively checks C~A.
5. C~C retrospectively checks CA.

If a chain is admissible, no compulsory operation will deduce a chain that is inadmissible.
Thus GLD imposes the admissibility restrictions on the chains deduced by the base
operations in deduction chunks. This prevents GLD from unnecessarily performing
compulsory operations, while still ensuring that all stored centre chains are admissible.

2.4.6. The Consecutively Bounded Search

The overall search strategy of GLD is a modified consecutively bounded search.
Stickel [1986b] gives the arguments for the use of a consecutively bounded depth first
search in a linear deduction system. A standard consecutively bounded depth first search
[Stickel & Tyson, 1985; Korf, 1985] truncates any long deduction sequence, whereas GLD
improves on this by truncating only long deduction sequences that are not making progress
towards a refutation. This is achieved by placing a bound on the number of centre chain A-
and B-literals. Variations of this bounding scheme have been used in other deduction
systems, e.g., the C(2) and C(3) variants of the ME procedure, which place a bound on the
number of extensions.

As well as providing a complete search strategy, the consecutively bounded search is also
used to counteract a side effect of GLD's lemma/C-literal mechanism. The removal and
addition of chains to the input set within the lemma/C-literal mechanism can cause an
iteration of the GLD search to fail, even if a refutation can be built within the search

Guided Linear deduction Page 45

bound. Such failure can occur when the input set is modified after successor centre chains
have been deduced, in the literal-ordered, cell-selected and cell-ordered search styles.

Thus an iteration of GLD's search may fail either because centre chains that exceed the
search bound are needed to build the desired deduction, or because the lemma/C-literal
mechanism has interfered with the search. In both cases another iteration of the search is
necessary. In the former case the search bound is increased by the minimum amount by
which it was exceeded. This increment is also used in the PTTP. In the second case the
search is reiterated with the search bound incremented by one. It is necessary to minimally
increase the search bound in the second case to prevent GLD simply generating a sequence
of lemmas which differ only in their literals' arguments. The strategy of permitting a
deduction system to be incomplete within one iteration of a search, but complete over
successive iterations, is a general one. If the advantage of imposing stringent restrictions
outweighs the overhead of repeating the search, then the strategy is justified. Empirical
evidence indicates that this is the case in GLD.

Although the lemma/C-literal mechanism can interfere with GLD's search, the
lemma/C-literal mechanism also acquires added power within the consecutively bounded
search. Because of their persistent nature, lemma chains added to the input set in one
iteration of the search are carried over to, and may be used in, the next iteration.

2.5. Linear-Input Subset Analysis

The use of A-reduction in linear deduction systems makes them complete for sets of
non-Horn clauses. There are, however, syntactically identifiable situations in which A- and
C-reduction do not occur in GLD (and other linear deduction systems), i.e., situations in
which linear-input deduction is performed. Three methods of analysing sets of input chains
have been developed for detecting these situations. The first method focuses on Horn input
chains while the second and third are successive generalisations of the first method. The
detection of situations in which reduction does not occur is a new idea in linear deduction
systems. It is useful for (and was largely motivated by) the imposition of truth value
deletion (see section 3.4). Wakayama and Payne [1990] have also noted that ancestor
resolution and factoring are not always necessary for obtaining a refutation when the input
set is non-Horn. Their analysis is, however, restricted to entire input sets and the greater
flexibility of linear-input subset analysis is desirable.

Page 46 Guided Linear Deduction

2.5.1 Horn Subsets

It has been noted that "... in many proofs, most of the input clauses are Horn clauses ..."
[Plaisted, 1982, p. 231]. In linear refutations of some such input sets, once the positive
B-literal of a Horn input chain has been extended against, no reductions are performed
until that B-literal (in the guise of an A-literal) is truncated. Horn subset analysis detects
such subdeductions in GLD deductions. Intuitively, Horn subset analysis detects those
negative literals in the input set that can only resolve against Horn clauses in the input set,
such that the negative literals in those Horn clauses also conform to this restriction. Then
extension against such a negative literal can only lead to further extensions against Horn
input clauses. This notion is now formalized.

The Horn subset , of an input set, contains atom structures that appear in the input set. To
detect situations in which reduction does not occur in a GLD deduction from a negative
top chain, the Horn subset of the input set is extracted. An atom's structure is in the Horn
subset iff (i) it does not occur positively in a non-Horn input chain and (ii) for every Horn
input chain in which the predicate structure occurs positively, every predicate structure in
the chain is in the Horn subset.

Example
The Horn subset of {~r~p~q, ~pq, p~q, pq, r~t~s, t~u, u, s}, with
~r~p~q as the top chain, is {r/0, t/0, u/0, s/0}.

The Horn subset divides the input chains into two groups, dependent on whether or not all
literals in the chain have predicate structures that are in the Horn subset. Any predicate
structures, literals, or input chains which contain only predicate structures that are in the
Horn subset, are called Horn subset objects, e.g. ~r is a Horn subset literal, and r~t~s is
a Horn subset clause.

Horn subset analysis reveals three structural properties of GLD deductions from a negative
top chain. Firstly, no A- or C-reductions against Horn subset literals are performed.
Secondly, only the positive B-literal of a Horn subset input chain is ever resolved against
in an extension operation. Finally, once a Horn subset B-literal has been selected, no
reductions against literals rightwards from the selected B-literal are performed until that
B-literal (in the guise of an A-literal) is truncated. These properties are now proved.
(Concepts similar to those used here were informally introduced in [Sutcliffe, 1989].)

Guided Linear deduction Page 47

Lemma 2.3
In a GLD deduction from a negative top chain (i) no positive Horn subset A- or B-literal
occurs in a centre chain, (ii) negative B-literals in Horn subset input chains are never
resolved against in extension operations, and (iii) no A-reductions against Horn subset A-
or B-literals are performed.

The proof of part (i) is by contradiction. If a positive Horn subset A- or B-literal occurs in
a centre chain then the A-literal immediately to its left must be a Horn subset A-literal, as
its complement originates from the same input chain as the first literal. Further, the Horn
subset A-literal to the left must be positive, for otherwise the first literal occurs positively
in a non-Horn input chain. Iteratively, all the A-literals to the left of a positive Horn subset
A- or B-literal must be positive. However, the leftmost A-literal in the centre chain must
be negative as the top chain is negative. Contradiction. Hence (i) no positive Horn subset
A- or B-literal occurs in a centre chain, (ii) as there can be only negative Horn subset
B-literals in a centre chain, negative B-literals in Horn subset input chains can never be
resolved against in extension operations, and (iii) as complementary Horn subset A- and
B-literals cannot occur in any centre chain, no A-reductions against such literals are
performed. QED

Lemma 2.4
In a GLD deduction from a negative top chain (i) every A- and B-literal to the right of a
Horn subset A-literal in a centre chain, is also a Horn subset literal, (ii) no A-reductions
against A- and B-literals rightwards from a Horn subset A-literal are performed, and
(iii) once a Horn subset B-literal has been selected, no A-reductions against literals
rightwards from the selected B-literal are performed until that B-literal (in the guise of an
A-literal) is truncated.

By lemma 2.3, once a Horn subset B-literal in a centre chain has been selected, it is
necessarily extended against. From the definition of the Horn subset, the B-literals added
to the centre chain in the extension are Horn subset B-literals. Therefore (i) iteratively,
every A- and B-literal to the right of the original Horn subset B-literal (now an A-literal) is
a Horn subset literal, (ii) by lemma 2.3, no reductions against A- and B-literals rightwards
from a Horn subset A-literal are performed, and (iii) the structure of GLD deductions and
(ii) ensure that no A-reductions against literals rightwards from the selected B-literal are
performed until that B-literal (in the guise of an A-literal) is truncated. QED

Page 48 Guided Linear Deduction

Lemma 2.5
In a GLD deduction from a negative top chain (i) no Horn subset C-literal ever occurs in a
centre chain, and (ii) no C-reductions against Horn subset literals are performed.

Whenever a (Horn subset) A-literal is created, it is not within the scope of any A-literal to
its left. By lemma 2.4 no A-reduction can occur against a B-literal to the right of any Horn
subset A-literal. Thus no Horn subset A-literal can ever come to be within the scope of
another A-literal. The A-truncation of a Horn subset A-literal therefore leads to the
creation of a unit lemma and not to the insertion of a C-literal. Hence (i) no Horn subset
C-literal ever occurs in a centre chain, and (ii) no C-reductions against Horn subset literals
are performed. QED

Theorem 2.6 - Horn Subset Analysis
In an GLD deduction from a negative top chain (i) no reductions against Horn subset
literals are performed, and (ii) once a Horn subset B-literal has been selected, no
reductions against literals rightwards from the selected B-literal are performed until that
B-literal (in the guise of an A-literal) is truncated.

Directly from lemmas 2.3, 2.4 and 2.5. QED

2.5.2 Linear-Input Subsets for literal Structures

Horn subset analysis focuses on Horn input chains. It does not provide adequate analysis
for input chains which are non-Horn but are Horn in a renaming of the input set. Many
results based on the polarity of literals can be generalised to be based on a division of the
literal structures that appear in the input set, e.g., P1 resolution [Robinson J.A., 1965b]
generalises to PP resolution [Meltzer, 1966], hyper-resolution [Robinson J.A., 1965b]
generalises to AM-clashes [Slagle, 1967]. Similarly, Horn subset analysis generalises to
results for non-Horn chains, in the form of Linear-Input Subset for literal Structures (LISS)
analysis. The generalisation from Horn subsets to LISSs comes at the cost of a more
complex analysis. Rather than a direct examination of the input set, LISS analysis requires
examination of an abstraction of GLD's search tree. Intuitively, LISS analysis determines a
superset of the possible sequences of A- and B-literals that can appear in a centre chain. It
then extracts those literals that cannot be involved in a reduction operation, and also
cannot appear to the right of a literal that can be involved in a reduction operation. Then
extension against such a literal can only lead to further extension operations. This notion is
now formalized.

Guided Linear deduction Page 49

For an input chain, the corresponding chain structure set contains the literal structures that
occur in the input chain. To detect situations in which reduction does not occur in a
deduction from a chosen top chain, the linear-input subset of the literal structures that
occur in the input set is extracted. This is done by building an extension tree whose nodes
are literal structures. The extension tree has a mythical root whose offspring are the
elements of the chain structure set corresponding to the top chain. A literal structure in an
extension tree has no offspring if it has itself as an ancestor in the extension tree unless,
between itself and the ancestor, there exists a literal structure which does not have itself as
an ancestor above the first ancestor. If a literal structure does have offspring then its
offspring are those literal structures that (i) are in chain structure sets that contain a literal
structure complementary to the parent literal structure, and (ii) are not the complementary
literal structure. A literal structure is in the LISS iff for every occurrence in the extension
tree (i) it is not complementary to an ancestor and (ii) all of its descendants are in the
LISS.

Example
The first few levels of the LISS tree for {r~p~q, ~pq, p~q, pq,
~r~t~s, tu, ~u, s}, with r~p~q as the top chain, are :

r/0 ~p/0 ~q/0

~q/0

~q/0 ~q/0

~q/0 ~q/0r/0r/0

~p/0~p/0

~p/0

q/0 q/0

q/0q/0

p/0p/0

p/0

~t/0

~t/0~t/0

~s/0

~s/0 ~s/0

u/0

u/0

u/0

~p/0q/0

~p/0 p/0

p/0

Circled nodes are those that have no offspring due to the identical ancestor
restriction. Boxes nodes are complementary to an ancestor. The lower levels of the
tree reveal no new information. The LISS is thus {r/0, ~t/0, u/0, ~s/0}. No
Horn subset exists for this top chain, as it is non-negative. With ~r~t~s as the top
chain, the Horn subset is {s/0} and the LISS is {~t/0, u/0, ~s/0}. Note that this
input set is simply a renaming of that given in the example in section 2.5.1, with r
renamed to ~r and u renamed to ~u. The LISS obtained here is a corresponding
renaming of the Horn subset in that example, given that negation signs implicitly
prefix elements of a Horn subset. This illustrates the generalisation from Horn subset
analysis to LISS analysis.

Any literal structures or literals which contain only literal structures that are in the LISS,
are called LISS objects, e.g., r is a LISS literal.

Page 50 Guided Linear Deduction

LISS analysis reveals two structural properties of GLD deductions from a chosen top
chain. Firstly, no A- or C-reductions against LISS B-literals are performed. Secondly, once
a LISS B-literal has been selected, no reductions against literals rightwards from the
selected B-literal are performed until that literal (in the guise of an A-literal) is truncated.
These properties are now proved.

Lemma 2.7
In a GLD deduction from a chosen top chain, no A-reductions against LISS A- or
B-literals are performed.

The root to tip sequence of literal structures in a branch of the extension tree corresponds
to possible left to right sequences of A- and B-literal structures in centre chains of a
deduction from the chosen top chain. Each node corresponds to a possible A-literal in a
centre chain and literal structures further down the branch correspond to possible B-literals
to the left of that A-literal in the centre chain. (Lemma 2.9 shows that no C-reductions
against LISS literals are performed, but at this point nodes corresponding to LISS
B-literals removed by C-reduction can simply be ignored.) Therefore (i) no LISS B-literal
in a centre chain has a structure complementary to an A-literal to its left (LISS definition
part (i)) and no A-reductions against LISS B-literals are performed, and (ii) no LISS
A-literal has a B-literal with a complementary structure to its right (LISS definition part
(ii)) and no A-reductions against LISS A-literals are performed. QED

Lemma 2.8
In a GLD deduction from a chosen top chain (i) every A- and B-literal to the right of a
LISS A-literal in a centre chain is also a LISS literal, (ii) no A-reductions against A- or
B-literals which are to the right of a LISS A-literal are performed, and (iii) once a LISS
B-literal has been selected, no A-reductions against A- and B-literals rightwards from the
selected B-literal are performed until that B-literal (in the guise of an A-literal) is
truncated.

The proof is analogous to that of lemma 2.4.

Lemma 2.9
In a GLD deduction from a chosen top chain (i) no LISS C-literal ever occurs in a centre
chain, and (ii) no C-reductions against LISS literals are performed.

The proof is analogous to that of lemma 2.5.

Guided Linear deduction Page 51

Theorem 2.10 - LISS Analysis
In a GLD deduction from a chosen top chain (i) no reductions against LISS literals are
performed, and (ii) once a LISS B-literal has been selected, no reductions against literals
rightwards from the selected B-literal are performed until that B-literal (in the guise of an
A-literal) is truncated.

Directly from lemmas 2.7, 2.8 and 2.9. QED

LISS Extraction
LISS analysis has been employed in the implementation of SGLD, as described in chapter
5. Algorithm 2.11, below, has been used to extract the LISS from input sets. The algorithm
implements a traversal of the LISS extension tree, for the given TopChain. The offspring
of the root node are determined at line M4, and the offspring of other nodes are determined
at line L2. For each literal structure in the tree (referred to as Applicants in the
algorithm, because they "apply" to be in the LISS), a check is first made to determine if it
has previously been added to the LISS, by virtue of its occurrence in another branch of the
tree (line C2). If this is so, then it rechecked (lines C3-C4). This is necessary because the
current occurrence may violate the conditions of membership, even if other occurrences do
not. If the literal structure has previously been noted as not in the LISS, then this is
acknowledged (lines C5-C6). The subtree rooted at such a node need not be re-examined.
If a literal structure is complementary to an ancestor (line C7), then it is not in the LISS
(line C9). However, its offspring are still created and checked, so as to determine their
status (line C8). If a node meets the identical ancestor restriction (lines C10, R1-R6), then
no offspring are created, and the repetition in the tree is noted (line C11). If none of the
above conditions hold, then the literal structure is a potential LISS object. The offspring of
the structure are created and checked (line C12). Provided that each offspring may be in
the LISS (an offspring that is repeated may still be in the LISS - the determination is made
at the identical ancestor node), then the current literal structure is in the LISS (line C14). If
any offspring is not in the LISS then the current literal structure is not in the LISS, and this
is noted (line C13).

Algorithm 2.11 - LISS Extraction
M1 Procedure Main(TopChain)
M2 LISS:={}
M3 NonLISS:={}
M4 Applicants:=The set of literal structures in TopChain
M5 CheckEachApplicant(Applicants,[])

Page 52 Guided Linear Deduction

E1 Function CheckEachApplicant(Applicants,HigherInTree)
E2 If there exists AnApplicant ∈ Applicants then
E3 Status = CheckAnApplicant(AnApplicant,HigherInTree)
E4 UpdateSets(AnApplicant,Status)
E5 Return({Status} ∪ CheckEachApplicant(
 Applicants - {AnApplicant},HigherInTree))
E6 Else Return({})

C1 Function CheckAnApplicant(TheApplicant,HigherInTree)
C2 If TheApplicant ∈ LISS then
C3 LISS:=LISS - {TheApplicant}
C4 Return(CheckAnApplicant(TheApplicant,HigherInTree))
C5 Else If TheApplicant ∈ NonLISS then
C6 Return(failed)
C7 Else If ~TheApplicant ∈ HigherInTree then
C8 CheckLowerApplicants([TheApplicant|HigherIntTree])
C9 Return(failed)
C10 Else If Repeated(TheApplicant,HigherInTree) then
C11 Return(repeated)
C12 Else If failed ∈ CheckLowerApplicants(
 [TheApplicant|HigherIntTree]) then
C13 Return(failed)
C14 Else Return(succeeded)

L1 Function CheckLowerApplicants([Parent|HigherInTree])
L2 Return(CheckEachApplicant({Applicant | Applicant ∈ a

chain structure set containing ~Parent &
Applicant ≠ ~Parent}, [Parent|HigherInTree]))

U1 Procedure UpdateSets(Applicant,Status)
U2 If Status = succeeded then
U3 LISS:=LISS ∪ {Applicant}
U4 If Status = failed then
U5 LISS:=LISS - {Applicant}
U6 NonLISS:=NonLISS ∪ {Applicant}

R1 Function Repeated(Applicant,[Parent|HigherInTree])
R2 If Applicant = Parent then
R3 Return(TRUE)
R4 Else If Parent ∈ HigherInTree then
R5 Return(Repeated(Applicant,HigherInTree))
R6 Else Return(FALSE)

Guided Linear deduction Page 53

2.5.3 Linear-Input Subsets for Literals

In building the extension tree, LISS analysis makes the assumption that every pair of
literals with complementary literal structures can unify. A more accurate analysis is
possible by working directly with the literals in the input set. Linear-Input Subset for
Literals (LISL) analysis does this. Intuitively, LISL (like LISS) analysis determines a
superset of the possible sequences of A- and B-literals that can appear in a centre chain.
However, LISL analysis does not assume that every pair of literals with complementary
literal structures can unify. Rather, when building the extension tree, LISL analysis tests
whether or not the parent node can unify with a literal in an input chain. This notion is now
formalised.

To detect situations in which reduction does not occur in a deduction from a chosen top
chain, the linear-input subset of the literals in the input set is extracted. This is done by
building an extension tree whose nodes are literals from the input set. The method used is
similar to that for LISS analysis. The extension tree has a mythical root whose offspring
are the literals of the top chain. A literal in a LISL extension tree has no offspring if it has
itself as an ancestor in the extension tree unless, between itself and the ancestor, there
exists a literal which does not have itself as an ancestor above the first ancestor. If a literal
does have offspring then its offspring are those literals that (i) are in chains that contain a
literal complementarily unifiable with the parent literal, and (ii) are not the
complementarily unifiable literal. A literal structure is in the LISL iff for every occurrence
in the extension tree (i) it is not complementarily unifiable with an ancestor and (ii) all of
its descendants are in the LISL. Note that although the extension tree uses unifiability,
unification is never consummated.

Example
The first few levels of the LISL tree for {r~p(a)~q, ~p(a)q, p(a)~q,
p(a)q, ~r~t~s, tu, ~u, s~p(b), p(b)}, with r~p(a)~q as the top
chain, are :

r ~p(a) ~q

~q

~q ~q

~q ~qrr

~p(a)~p(a)

~p(a)

q q

qq

p(a)p(a)

p(a)

~t

~t~t

~s

~s ~s

u

u

u

~p(a)q

~p(a

)

p(a)

p

~p(b)

~p(b) ~p(b)
Circled literal structures are leaves of the tree, as dictated by item (iii) in the
definition of these trees. Boxes literal structures are complementarily unifiable with
an ancestor. The lower levels of the tree produce no new information. The LISL is

Page 54 Guided Linear Deduction

thus {r1, ~t5, u6, ~s5, ~p(b)8} (where the superscripts indicate the chain
number that the literal is in). The LISS is {~t/0, u/0}.

The results and theorem proofs for LISL analysis are analogous to those for LISS analysis.
The results are simply stated here.

Lemma 2.12
In a GLD deduction from a chosen top chain no A-reductions against LISL A- or B-literals
are performed.

Lemma 2.13
In a GLD deduction from a chosen top chain (i) every A- and B-literal to the right of a
LISL A-literal in a centre chain is also a LISL literal, (ii) no A-reductions against A- or
B-literals rightwards from a LISL A-literal are performed, and (iii) once a LISL B-literal
has been selected, no A-reductions against A- and B-literals rightwards from the selected
B-literal are performed until that B-literal (in the guise of an A-literal) is truncated.

Lemma 2.14
In a GLD deduction from a chosen top chain (i) no LISL C-literal ever occurs in a centre
chain, and (ii) no C-reductions against LISL literals are performed.

Theorem 2.15 - LISL Analysis
In a GLD deduction from a chosen top chain (i) no A- or C-reductions against LISL
literals are performed, and (ii) once a LISL B-literal has been selected, no reductions
against literals rightwards from the selected B-literal are performed until that B-literal (in
the guise of an A-literal) is truncated.

2.5.4 Discussion

The above results show that once a Horn subset/LISS/LISL B-literal (henceforth, Horn
subset/LISS/LISL objects will be referred to generically as linear-input objects) has been
selected, a linear deduction system goes into a linear-input configuration. The deduction
system remains in linear-input configuration until that B-literal (in the guise of an
A-literal) is truncated.

Definition 2.16 - Linear-input subdeductions
In a linear deduction, a subdeduction from the point when a linear-input B-literal is
selected up to the point when it (in the guise of an A-literal) is truncated, is called a

Guided Linear deduction Page 55

linear-input subdeduction. The selected B-literal is called the top literal of the
subdeduction.

In linear-input subdeductions the reduction operations can be explicitly ignored, so that no
effort is spent trying to find A- and C-literals to reduce against. If Horn subset analysis is
used then only the positive literals of Horn subset input chains need ever be considered
when searching for suitable input chains in extension operations. A more significant
benefit that may be derived from linear-input subset analysis is the completeness of a truth
value deletion strategy in linear-input subdeductions. This strategy is described in section
3.4. In summary : In a linear-input subdeduction, every subchain consisting of the top
literal and all literals to its right, must be FALSE in certain truth value interpretations.

The initial generation of the Horn subset/LISS/LISL is a simple iterative task, and may be
done before deductions are built. In the course of a GLD deduction, existing input chains
may be removed and lemma chains may be added to the input set. The effect of this on the
linear-input subsets needs to be considered. The addition of unit lemma chains to the input
set has no effect on the subsets. In the case of non-unit lemma chains, the subsumption
requirement of the lemma/C-literal mechanism ensures that the set of literal structures in a
non-unit lemma chain is a subset of that of a previously existing input chain. Thus the
addition of new non-unit lemma chains to the input set neither reduces nor expands Horn
subsets or LISSs. LISsL may, however, be reduced by the addition of non-unit lemma
chains to the input set. This is because the added chains may cause the LISL extension tree
to grow. In this situation the LISL must be updated immediately. The removal of chains
from the input set could expand any of the subsets, as the removed chains may have
caused the exclusion of potential linear-input objects. In this situation the subsets can be
updated when it is convenient.

This presentation of linear-input subset analysis relates directly to GLD. These results are
readily transferred to other linear deduction systems [Sutcliffe, 1992]. If the deduction
system does not employ a lemma or C-literal mechanism, the transfer is trivial. If a lemma
or C-literal mechanism is used, then the results of lemmas 2.5, 2.9 and 2.14 need to be
re-established for the particular mechanism used.

2.6. Embedding Equality into GLD

As defined, GLD has no specific provisions for implementing deductions involving the
axioms of equality. Many problems use include these axioms, so consideration has been
given to embedding (the axioms of) equality into GLD's inference system. Although not

Page 56 Guided Linear Deduction

central to this research, the proposed embedding warrants mention, as the effects of
semantic guidance on this form of embedding are of interest.

Probably the most well known method of embedding equality into a deduction system is
the use of the paramodulation operation [Robinson G.A. & Wos, 1969]. Many other
methods have been proposed, e.g., E-resolution [Morris, 1969], the Knuth-Bendix method
[Knuth & Bendix, 1970], equational unification [Plotkin, 1972], narrowing [Slagle, 1974],
the Resolution by Unification and Equality (RUE) and Negative Reflexive Function (NRF)
inference operations [Digricoli, 1979], Prolog-with-Equality [Kornfield, 1983], lazy
paramodulation [Gallier & Snyder, 1989] and relaxed paramodulation [Dougherty &
Johann, 1990]. The method proposed for embedding equality into GLD is based on the
RUE and NRF inference operations. The original RUE and NRF have been restructured to
facilitate smooth integration with GLD.

The core of the embedding is a modified form of unification called ED-unification . Given
a pair of expressions that need to be unified as part of a deduction operation,
ED-unification may instantiate some variables (in a similar manner to standard unification)
and also returns an equality-demand chain. An equality-demand chain contains negative
equality B-literals called equality-demand literals. The arguments of equality-demand
literals are pairs of non-identical, equivalently positioned, subexpressions of the
expressions being ED-unified. The equality-demand literals are included in the deduced
chain of the deduction operation.

Example
In extending the centre chain q(Y) ~p(Y,c,f(e,g)) against the input chain
p(b,d,f(X,h)) ~r(X), the equality-demand chain created is
~equal(c,d) ~equal(f(e,g),f(X,h)) and the deduced chain is
q(b) ~p(b,c,f(e,g)) ~r(X) ~equal(c,d)

 ~equal(f(e,g), f(X,h))
ED-unification also permits the arguments of equality literals to be used reversibly, so that
ED-unification embeds the equality axioms of symmetry, transitivity and predicate
substitutivity.

To complete the embedding of equality, a modified version of Digricoli's NRF operation is
used. NRF is applied to a negative equality B-literal (possibly created as an
equality-demand literal) in a centre chain and removes it from the centre chain. If either of
the equality literal's arguments is a variable then the variable is instantiated to the other
argument. Otherwise the two arguments must have the same principal symbol and the
arguments' arguments are passed pairwise to ED-unification. Any equality-demand literals
created are included in the deduced chain.

Guided Linear deduction Page 57

Example
An NRF operation applied to the last literal of
q(b), ~p(b,c,f(e,g)) ,~r(X),~equal(c,d),

 ~equal(f(e,g),f(X,h))
produces
q(b), ~p(b,c,f(e,g)) ,~r(e),~equal(c,d),

 ~equal(f(e,g),f(e,h)) ,~equal(g,h).

NRF embeds the equality axioms of reflexivity, and functional substitutivity. Within NRF,
ED-unification is refined to implement standard unification whenever the functors of the
terms being unified are Skolem functors. The motivation for this refinement is given in
[McCune, 1990].

The extent to which this method of embedding equality instantiates variables and
dismantles atoms is necessarily controlled. ED-unification instantiates variables and
dismantles atoms to a minimal extent, with further instantiation and dismantling occurring
in and controlled by the overall deduction structure. This contrasts with Digricoli's
formulation, in which the RUE and NRF operations are controlled by a suite of
restrictions.

ED-unification and NRF could be used to embed equality into GLD. ED-unification would
be used in extension and reduction operations and NRF would be added as a
non-compulsory operation. This embedding of equality is especially appropriate in GLD,
as any equality-demand literals created will influence the search guidance. If this
embedding is viewed as a demand driven implementation of paramodulation, the effects
that the equality-demand literals have on the search provide a partial solution to problem 3
in [Wos, 1988]. The implicit existence of equality axiom input chains in such an
embedding of equality would also affect subsumption and the generation of linear-input
subsets.

2.7. Conclusion

GLD is a chain format linear deduction system that incorporates features of existing chain
format systems. It also adds new features that were perceived to be missing from previous
systems. The most important development associated with GLD is linear-input subset
analysis. Linear-input subset analysis provides important information about the structure
of GLD deductions. The information provided is used to gain some efficiency in GLD, but

Page 58 Guided Linear Deduction

more importantly to admit a semantic deletion system in (the linear-input) parts of GLD
deductions.

Within GLD, there are some interesting features. The main points are listed below.
• GLD has explicit mechanisms for guiding its search, at both ordering and choice points.

The ordering guidance is implemented via a selection rule on all non-compulsory
inference operations. The choice guidance is implemented via ordering of alternative
successor centre chains. Both mechanisms look ahead in the deduction to make the
required decisions, using a heuristic function to evaluate alternative successor centre
chains. The heuristic function provides an explicit entry point for the incorporation of
guidance systems.

• GLD's reuse of deduced information, via the combined lemma/C-literal mechanism,
improves on previous mechanisms. The lemma/C-literal mechanism interacts
productively with GLD's unit orientated deduction operations, admissibility restrictions
and overall search strategy.

• GLD is the first linear deduction system that explicitly exploits deduction chunking.
The deduction chunking is possible due to five deduction operations for which
alternative successor centre chains need not be considered, once the operation is
completed. These compulsory operations are performed within deduction chunks. The
deduction chunks are of maximal size and form coarse grain deduction steps. Choice
points arise only between deduction chunks.

• GLD's operationally imposed admissibility restrictions have a high level of deduction
faithfulness, due their retrospective and prospective effects.

The amalgamation of the features in GLD was guided by sound design maxims. Deciding
on and adhering to the design maxims facilitated the development of a coherent system. As
a result the various features of GLD complement, rather than conflict with, each other.

The definition of GLD has been given in a dynamic style, thus defining not only the nature
of GLD deductions, but also the manner in which they are built. This approach is arguably
more appropriate than the static approach used in some previous systems, as it permits
GLD deduction systems to be implemented in a reproducible fashion. This kind of rigour
in artificial intelligence research, automated deduction in particular, has been argued for by
Pollack in her Computers and Thought award lecture [1991, pp. 22-23].

The design criteria of GLD have been successfully fulfilled. The dominant contributions to
the research area of chain format linear deduction systems are linear-input subset analysis,
the search guidance facilities and the lemma/C-literal mechanism. In the context of this
research, linear-input subset analysis and the search guidance facilities are of paramount

Guided Linear deduction Page 59

importance, in that semantic information can now be used to directly guide GLD's search.
The semantic guidance systems are developed in the next chapter.

Page 60 Guided Linear Deduction

Semantic Guidance Page 61

Chapter Three

Semantic Guidance

This chapter investigates and describes ways of using semantic guidance in deduction
systems, particularly in linear deduction systems. As a first step, the underlying structure
of truth value (semantic) deletion in linear-input deduction systems has been investigated.
Understanding this structure has facilitated the development of (i) effective
implementations of truth value deletion for linear-input deduction systems, (ii) a truth
value deletion system for linear deduction systems and (iii) a truth value guidance strategy
that can be used in a wide range of deduction systems. Sort value (semantic) deletion has
also been seen to be effective in guiding deduction systems. This observation has
motivated a reformulation of sort value deletion so that it has the same format as truth
value deletion. In turn, this reformulation has facilitated the development of combined sort
and truth value guidance systems.

This chapter contains :
1. A generic description of the semantic information required for semantic guidance.
2. A survey of semantic guidance in automated deduction systems.
3. An exposé of truth value deletion in linear-input deduction systems.
4. The description of a truth value deletion system for linear deduction systems.
5. The description of a broadly applicable truth value guidance strategy.
6. A useful reformulation of sort value deletion.
7. The description of combined semantic guidance systems.
8 A brief investigation of the relationship between semantic guidance and theory

resolution.
9. Concluding comments.

3.1. Basic Semantic Information

The semantic guidance systems described in this chapter make use of truth value and sort
value information. There are many ways that such information can be stored (see chapter
4), but for present purposes it is necessary to define only the nature of the information. It is

Page 62 Semantic Guidance

noteworthy that the information is described here in a generic form and that specific types
of semantic information (e.g., truth value information) are presented as specialisations of
the generic form. It is for this reason that words such as "semantic guidance" and
"interpretation" have been used in a generic manner.

Definition 3.1 - Basic semantic information
An interpretation of a 1st order language is a system that supplies :
• A domain, whose elements are constants.
• A set of truth values, whose elements are constants.
• A universe-relation from the universe to the domain6.
• A base-relation from the base to the set of truth values.

If a unibase element is related to a certain domain element/truth value, the unibase element
is interpreted as that domain element/truth value. The domain element/truth value is (one
of) the unibase element's interpretation value(s). Interpretations are categorised according
to the type of semantic information supplied. Membership of a category is indicated by
using the type of semantic information as a prefix; e.g., truth value interpretation.

Because the universe- and base-relations are relations (as opposed to mappings) it is
possible that some unibase elements may not be interpretable. If a specific interpretation
requires that all universe and/or base elements be interpretable, this must be specified
explicitly for that interpretation.

A truth value interpretation is an interpretation in which the set of truth values is
{TRUE, FALSE} and both relations are total functions. Truth value interpretation is the
standard way of interpreting 1st order languages. Three simple truth value interpretations
are :
• The positive interpretation, which maps all base elements to TRUE.
• The negative interpretation, which maps all base elements to FALSE.
• A predicate partition, which divides the predicate symbols of the 1st order language

into two partitions P1 and P2. Base elements whose predicate symbols are in P1, are
mapped to TRUE. Base elements whose predicate symbols are in P2, are mapped to
FALSE.

A sort value interpretation is an interpretation where the domain contains the sorts
required and the set of truth values is {TRUE, FALSE, UNKNOWN_TRUTH_VALUE}.

6For the semantic guidance systems described in this chapter, the domain and the universe-relation are

surplus to requirement. However, in chapter 4 these components are used.

Semantic Guidance Page 63

The relations may be partial, but the base-relation must be a partial function. A unibase
element can relate to a domain element/truth value only if all its arguments relate to
domain elements (Cohn [1987, p. 129] calls this restriction "strictness".) Sort-base
elements, if they do map to any truth value, are restricted to map to one of TRUE or
FALSE. A universe element that is related to a given domain element is said to be of the
sort of the domain element. Sort value interpretations provide the notion of sort legality,
which requires expressions to be of certain sorts (see section 3.2.3).

3.2. Semantically Guided Deduction Systems

Definition 3.2 - Semantic guidance and Semantic deletion
Semantic guidance is the use of semantic information to guide the search of a deduction
system. Semantic deletion is the form of semantic guidance that guides the search by
preventing certain chains from existing or being used. Semantic guidance and deletion are
categorised according to the type of semantic information used. Membership of a category
is indicated by using the type of semantic information as a prefix; e.g., truth value
guidance and sort value deletion.

Background
The importance of taking advantage of semantic information in deduction systems has
been expounded in chapter 1. The use of semantic information has the potential to improve
the performance of deduction systems, as has been illustrated by existing deduction
systems that use semantic information. The earliest work done in this area
[Gelerneter, 1963; Gelerneter, Hansen, & Loveland, 1963] used semantic information to
guide deductions in the domain of elementary geometry. Since then several (but as a
proportion of deduction systems developed, relatively few) deduction systems that employ
semantic guidance have been developed. There are three main approaches to using
semantic information in deduction systems, as follows. (i) Performing reasoning in the
problem domain and then reasoning analogously with the deduction system. (ii) Using
semantic information directly within deduction operations. (iii) Using semantic
information to direct and prune the search of the deduction system, i.e., semantic guidance.
The linear deduction system described in this thesis is semantically guided and this
background information will concentrate on that area. However, it is instructive to
examine briefly the other two approaches.
• Reasoning analogously to reasoning in the problem domain is an under utilised

technique in deduction systems. Only a few deduction systems (e.g.,
[Plaisted, 1981, 1984]) have used it. The principle is to transform the input set by
replacing terms in the input set by their interpretation values, and to then build

Page 64 Semantic Guidance

deductions using the transformed input set. Deductions built using the transformed
input set are then used to guide the building of analogous deductions using the original
input set. If semantic guidance can be used in the deduction system, then it may often
be used while building the deduction using the transformed input set.

• The use of semantic information directly within the deduction operations of a deduction
system is a highly restrictive but effective way of solving problems in the associated
problem domain. Deduction systems that utilise this approach are necessarily restricted
in application to the associated problem domain. There is also some evidence that this
kind of direct use of semantic information is unnecessary. See, for example, [Ginsberg
& Geddis, 1991] for further discussion of this issue. Examples of problem domains that
have been tackled using this approach are topology [Ballantyne, 1973], plane geometry
[Nevins, 1975], set theory [Pastre, 1978; Ballantyne & Bledsoe 1982] and Boolean
algebra [Winker, 1982]. As well as being of use in their own right, such systems could
also find use within a more general deduction system, being used to implement and
manipulate the interpretations required for semantic guidance in the general system.

An issue closely associated with the use of semantic information in deduction systems is
the automatic generation of the required interpretations. Some work has been done in this
area, as follows.
• The process of generating truth value interpretations to be used in Hierarchical

Deduction [Wang, 1985] can be, at least in part, automated.
• The EGS system [Kim, 1986] automatically generates truth value interpretations for

problems expressed in Boyer-Moore theory.
• Model generation systems, such as SATCHMO [Manthey & Bry, 1988] may be useful

for this task.
• Some deduction systems that use semantic information directly in their deduction

operations, e.g., [Winker, 1982; Ballantyne & Bledsoe, 1982], do so by generating
counter examples for the input set, i.e., they generate truth value interpretations.

• The automatic augmentation of existing sort interpretations has been addressed by
Schmidt-Schauss [1988]. Irani and Shin [1985] have done related work.

• The automatic generation of type information for Prolog style clauses has been
addressed by, e.g., Mycroft and O'Keefe [1984] and Fruhwirth [1989].

The automatic generation of interpretations will inevitably become more important when
techniques of using the interpretations become sufficiently developed. The topic is,
however, sufficiently divorced from the focus of this research for it to be placed beyond
the scope of this discussion.

Attention is now turned to semantic guidance in deduction systems. By far the most
common form of semantic guidance is truth value deletion of parent chains in deduction

Semantic Guidance Page 65

operations. Truth value deletion has been developed in a variety of formats. One format,
which is of particular interest in this research, is truth value deletion in back chaining
deduction systems. Other forms of truth value guidance, less common than truth value
deletion, are : suggesting universe instances of parent chains to be used in a deduction
operation; helping to choose a deduction operation to perform; and guiding a
transformation of the input set. Semantic guidance using sort value information is limited
to sort value deletion.

3.2.1. Truth Value Deletion

Truth value deletion requires that one or more parent clauses7 of each deduction operation
be interpreted as FALSE (or at least, not necessarily TRUE) in some given truth value
interpretation. Many refinements of the basic resolution procedure which appear to be
based on syntactic considerations, and at the time of development were not regarded as
being semantically guided, are in fact guided by truth value deletion. The ground approach
is appropriate for imposing truth value deletion (because establishing that a clause has a
FALSE ground universe instance also establishes that the clause itself is FALSE).

The first exploitation of truth value deletion was the Set of Support (SoS) strategy
[Wos et al., 1965]. The SoS strategy can be used in many deduction systems. (The
compatibility of SoS with linear deduction systems was noted in chapter 2.) In the SoS
strategy a subset of the input set, called the support set, is chosen so that the difference
between the input set and the support set is a satisfiable set. This SoS strategy requires that
at least one parent clause of each deduction operation is in the support set, i.e., ensuring
that at least one parent is not necessarily interpreted as TRUE in models of the difference
set. Deduced clauses are added to the support set. Some possible support sets are : the set
of all positive clauses - the model of the difference set is the negative interpretation; the set
of all negative clauses - the model is the positive interpretation; and the set of clauses
deduced from the negation of the theorem to be proved - this choice assumes that there
exists a model of the difference set.

The SoS strategy shows no preference amongst deduced clauses as parent clauses, thus it
rapidly loses its effectiveness as deductions proceed. However, as the addition of a

7 As GLD and SGLD use the chain format for their input sets, chain format terminology has been used in the

sections of this chapter that describe the development of semantic guidance systems for linear deduction

systems. However, the descriptions of existing semantic guidance systems have been expressed in terms

consistent with their original presentations (typically clausal). With a few obvious exceptions, the semantic

guidance systems developed in terms of chains are equally applicable to clausal systems, and vice versa.

Page 66 Semantic Guidance

deduced clause to an input set does not change the satisfiability of the set, the SoS strategy
may be reapplied after each deduction operation. Such repeated use of the SoS strategy
gives rise to several refinements of the basic resolution procedure, each of which employs
truth value deletion. All of these refinements are variants of model resolution
[Luckham, 1968, 1970]. Model resolution requires that at least one parent of each
resolution operation is interpreted as FALSE, in a given truth value interpretation. Two
simple forms of model resolution are P1 [Robinson, 1965b] and N1 resolution, which use
the negative and positive interpretations respectively. Pp resolution [Meltzer, 1966] is a
generalisation of P1 and N1 resolution, being based on a predicate partition.

Closely related to P1 resolution is hyper-resolution [Robinson, 1965b]. Hyper-resolution is
an efficient implementation of P1 resolution. It requires that the electron parent clauses and
the hyper-resolvant are positive clauses, and that the nucleus parent clause contains at least
one negative literal. These restrictions ensure that the electron parent clauses and the
hyper-resolvant are interpreted as FALSE, and that the nucleus parent clause has a ground
universe instance that is interpreted as TRUE, in the negative interpretation. Similarly,
negative hyper-resolution, AM-clash resolution [Slagle, 1967] and semantic clash
resolution [Slagle, 1967] are efficient implementations of N1, Pp and model resolution,
based on the positive interpretation, a predicate partition, and some given interpretation,
respectively. (Semantic clash resolution has also been called OM-resolution
[Loveland, 1978] and PI-resolution [Chang & Lee, 1973]. An extension incorporating
subsumption is LI-rc resolution [Slagle, 1972].)

AM- and semantic clash resolution, as well as being more general than the
hyper-resolutions, use an ordering strategy in their deduction operations. A more
restrictive ordering strategy is imposed by lock resolution [Boyer, 1971]. Variants of lock
resolution that impose truth value deletion have been developed. The first of these,
OIM-resolution [Loveland, 1978], combines semantic clash resolution with a variant of
lock resolution. OIM-resolution places lock numbers only on those literals that are
interpreted as FALSE in a given truth value interpretation. Similar to OIM-resolution is
Lock Resolution ∩ The Model Strategy (LR∩TMS) [Sandford, 1980], which combines
lock resolution with model resolution. LR∩TMS places lock numbers on all literals in a
restricted fashion, and is complete only for ground input sets. The completeness proof for
LR∩TMS shows that, at the ground level, a variant of lock resolution is in fact a
refinement of model resolution. LR∩TMS paves the way to Hereditary Lock Resolution
(HLR) [Sandford, 1980] which combines model resolution with an extended form of lock
resolution, in which literals are assigned a TRUE and a FALSE lock number.

Semantic Guidance Page 67

On a distinct development path from the systems described above are Semantic Resolution
for Horn Sets [Henschen, 1976] and Semantic Paramodulation for Horn Sets [McCune &
Henschen, 1983]. Semantic Resolution for Horn Sets is a refinement of model resolution,
tuned for Horn input sets. The system requires that, in every resolution operation, either
one parent clause is a FALSE unit clause or that one parent clause and the resolvant are
interpreted as FALSE, in a given truth value interpretation. Semantic Paramodulation for
Horn Sets adds paramodulation to the Semantic Resolution for Horn Sets deduction
system. It requires that, in each paramodulation operation, either both parents are FALSE
unit clauses or that one parent clause and the paramodulant are interpreted as FALSE, in a
given truth value interpretation.

The semantically guided deduction systems described thus far are forward chaining
deduction systems. In such systems there is typically a large number of potential parent
clauses for each deduction operation, and truth value deletion helps to choose which to
use. In back chaining deduction systems the choice of 'sub-goal' parent clauses is limited,
in some cases to a single clause. For example, in linear-input and linear deduction systems
the centre parent clause must be used. This limited choice makes truth value deletion of
sub-goal parent clauses particularly effective. The first semantically guided deduction
system [Gelerneter, 1963; Gelerneter et al., 1963], in effect, used this format of truth value
deletion.

The most direct use of truth value deletion in back chaining deduction systems is in
linear-input deduction systems. Here truth value deletion requires that every centre clause
is interpreted as FALSE in all models of the side clauses of the deduction. The first
explicit description of truth value deletion in a resolution based linear-input deduction
system appears to be that by Brown [1973]. Brown describes a general form of truth value
deletion for linear-input deductions using input sets that are, or are renamable to, Horn
sets. Truth value deletion was, however, also implicitly present in earlier work
[Kuehner, 1972], based on the positive truth value interpretation. The applicability and
implementation of truth value deletion in linear-input deduction systems are discussed in
section 3.3.

As linear-input deduction is incomplete for non-Horn input sets and truth value deletion is
incomplete for linear deduction systems, truth value deletion has been rejected as
unsuitable for linear deduction systems. One way of circumventing these problems is to
employ splitting [Chang, 1972] to decompose a non-Horn input set into multiple Horn
input sets, thus making linear-input deduction applicable. This technique is used in the
Simplified Problem Reduction Format [Plaisted, 1982] and the Semantic Proof System

Page 68 Semantic Guidance

[Nie & Plaisted, 1990]. (Note that these systems are natural, as opposed to resolution
based, deduction systems.) An alternative approach is introduced in section 3.4.
There are also some less main stream uses of truth value deletion in back chaining
deduction systems. They are as follows.
• The Semantically Guided Deductive System [Reiter, 1973] is an incomplete natural

deduction system which, being a validation system, requires sub-goals to be interpreted
as TRUE in a given truth value interpretation.

• The MECHO system for for solving mechanics problems [Bundy, Byrd, Luger,
Mellish, Milne and Palmer, 1979] uses the interval package INT [Bundy, 1984] to
reject "nonsensical solutions" [Bundy, 1984, p. 398] that are generated by the algebraic
manipulation program PRESS.

• An unsuccessful attempt has been made to use truth value deletion in Boyer-Moore
theory [Kim, 1986].

• Hierarchical Deduction [Wang & Bledsoe, 1987] is a deduction system for non-Horn
input sets, for which a truth value deletion system has been designed. The deletion
system is, however, complete only in limited situations. More general application of the
deletion system relies on specially designed truth value interpretations [Wang, 1985].

• Truth value deletion has been used successfully in deduction systems for non-standard
logics [McRobbie et al., 1988].

3.2.2. Other Forms of Truth Value Semantic Guidance

Instance Suggestion
Truth value information can be used to suggest universe instances of parent clauses to be
used in deduction operations. The Semantically Guided Deductive System [Reiter, 1973]
exploits this approach for arbitrary problem domains, and Bledsoe [1983] used this
approach in the domain of set theory. The centre chain instance and compile time systems,
described in section 3.3, use this approach.

Determining the Deduction Operation
The choice of which deduction operation to use at each step in a deduction can be
influenced by the use of truth value information. SLM [Brown, 1974] uses truth value
information to control the use of its reduction rule. A simpler version of this control
mechanism can be used in the Sequent-Style Model Elimination Strategy
[Plaisted, 1990b].

Semantic Guidance Page 69

Transforming the Input Set
The Semantic Proof System [Nie & Plaisted, 1990] requires that, before a deduction starts,
the input set be extended by the addition of contrapositives. Truth value information is
used to help determine which contrapositives of input clauses to use.

3.2.3. Sort Value Deletion

Definition 3.3 - Sort legalityAn atom is sort legal in a given sort value interpretation iff it
has a ground universe instance that is interpreted as at least one truth value. In addition, the
atom of a positive sort literal is sort legal only if it has a ground instance that is interpreted
as TRUE, and the atom of a negative sort literal is sort legal only if it has a ground
instance that is interpreted as FALSE. Literals and clauses are sort legal iff their
constituent atoms are simultaneously sort legal. Note that if an atom is sort legal, its
subterms are necessarily sort legal.

Sort value deletion prevents a deduction from containing sort illegal clauses. Sort value
deletion thus imposes a simultaneous deduction restriction. The definition of sort legality
indicates that the ground approach must be used to establish that an expression is sort
legal. Imposing the requirement of sort legality onto a deduction from an input set is
equivalent to ensuring that there is a corresponding deduction of the "relativisation"
[Walther, 1983, p. 885] of the input set. In such a corresponding deduction, sort legality is
ensured via the sort literals which are added to the original input set chains in the
relativisation process. Primary examples of deduction systems that use sort value deletion
are described here. A notable feature of these systems is that they redefine satisfiability in
terms of the sort value interpretation in use. Thus the systems are not necessarily complete
in the conventional sense.

The Many-Sorted Calculus [Walther, 1983] brought sort value deletion into the spotlight
by finding an automatic solution to Schubert's Steamroller problem [Walther, 1984]. The
Many-Sorted Calculus uses a sort value interpretation with a monomorphic interpretation
of functors. The domain of sorts used is partially ordered and a variable may be substituted
only by a term of equal or lesser sort. This restriction is effected by the use of many-sorted
unification in the resolution and paramodulation operations. An extra deduction operation,
called weakening, is used to permit the unification of variables which are of unrelated sorts
but whose sorts have a common lesser sort.

The limiting feature of the Many-Sorted Calculus is its monomorphic interpretation of
functors. The Many-Sorted Calculus with Polymorphic Functions
[Schmidt-Schauss, 1985] extends the Many-Sorted Calculus to use a sort value

Page 70 Semantic Guidance

interpretation with a polymorphic interpretation of functors whose arity is greater than 0.
The polymorphism is achieved by associating multiple sort signatures with each such
functor.

The Many-Sorted Resolution system [Irani & Shin, 1985] also extends the Many-Sorted
Calculus, by introducing the notion of aggregate variables. This permits the dynamic
alteration of the sort value interpretation by adding new sorts formed from the intersection
of existing sorts.

A more expressive 'sort legal' system is the LLAMA many sorted logic [Cohn, 1987].
Variables are non-sorted in this system, but the range of terms to which a variable can be
instantiated is restricted by the argument position that the variable holds8. LLAMA
introduced the notion of having three meaningful truth values (there called TT, FF and
UU, corresponding to the TRUE, FALSE and UNKNOWN_TRUTH_VALUE truth values
mentioned in section 3.1) in a sort value interpretation. As well as implementing sort value
deletion, LLAMA also uses sort value information directly in new deduction operations
which manipulate sort literals in clauses. For example, the evaluation operation 'resolves'
sort literals against sort value information.

Sort value information has also been used in logical systems other than 1st order deduction
systems, e.g., a Logic of Actions [Hayes, 1971], higher order reasoning
[Robinson J.A., 1969; Henschen, 1972] and knowledge representation [Shin &
Irani, 1984].

3.3. Truth Value Deletion in Linear-Input Deduction Systems

As is indicated in section 3.2.1, truth value deletion is a known semantic guidance system
for resolution based linear-input deduction systems. However, the details of implementing
this system are often ignored. It is also possible to generalise this system to be used with
other deduction operations. In this section various properties of deduction operations and
deduction systems are defined, and truth value deletion for linear-input deduction systems
is developed in terms of these properties. This clarifies the implementational issues and
broadens the field of applicability.

8 The version of sort legality defined in definition 3.3 is actually more restrictive than that that implemented

by the sort arrays in the LLAMA logic. The sort array approach may find an expression to be sort legal by

virtue of the existence of an appropriate sort with which to instantiate a variable, even if there are no

universe elements of that sort. In definition 3.3 the existence of an appropriate universe element is required.

Semantic Guidance Page 71

Definition 3.4 - Truth value soundness
A deduction operation is truth value sound if it can deduce a chain that is interpreted as
FALSE only if one of the parent chains of the operation is interpreted as FALSE, in a
given truth value interpretation.

Resolution (i.e., including extension and reduction in chain format deduction systems),
paramodulation and factoring are examples of truth value sound deduction operations. The
semantic guidance systems developed in this chapter are designed for deduction systems
that use only truth value sound deduction operations.

Definition 3.5 - Side chain models
A side chain model of a linear or linear-input deduction is a truth value interpretation that
is a model of the side chains of the deduction.

Bundy [1983, p. 147] proves the completeness of an independent deduction restriction on
linear-input deductions, that requires all centre chains to be interpreted as FALSE in all
side chain models of the deduction. This restriction may be refined to a simultaneous
deduction restriction, as is shown in theorem 3.6. The proof of theorem 3.6 is analogous to
that of Bundy's theorem.

Theorem 3.6 - Truth Values in Linear-Input Deductions
In a linear-input refutation, all centre chains are simultaneously interpreted as FALSE in
all side chain models of the refutation.

If the deduced centre chain of a deduction operation is interpreted as FALSE in a given
truth value interpretation, then one of its parent chains is necessarily interpreted as FALSE
in the truth value interpretation. If a deduced centre chain in a linear-input refutation is
interpreted as FALSE in a side chain model of the refutation, then it must be that its centre
parent chain is interpreted as FALSE in the side chain model. Let D be such a deduced
chain and let its centre parent chain be C. If D is interpreted as FALSE in a side chain
model, then it has a FALSE ground universe instance Dθ. Then Cθ must be FALSE in the
side chain model and hence C has a FALSE ground universe instance Cθσ. The last centre
chain in a linear-input refutation, the empty chain, is ground and is interpreted as FALSE
in all truth value interpretations. Inductively, in a linear-input refutation, all centre chains
simultaneously have ground universe instances that are interpreted as FALSE in all side
chain models of the refutation. Therefore, in a linear-input refutation, all centre chains are
simultaneously interpreted as FALSE in all side chain models of the refutation. QED

Page 72 Semantic Guidance

Theorem 3.6 establishes the completeness of a truth value deletion system for linear-input
deduction systems. The deletion system requires all centre chains to simultaneously be
interpreted as FALSE in all side chain models of the refutation. This system is called the
simultaneous centre chain truth value deletion system. The ground approach is evidently
appropriate for establishing the satisfaction of the restriction imposed by this system.

In order to use the simultaneous centre chain system in a deduction system, it is necessary
to be able to determine in advance which input chains can be used as side chains. This is
so that side chain models can be supplied. An extremely common solution to this proviso
is to adopt the system only for deductions from Horn input sets, and to use a negative input
chain as the top chain. In this environment only the non-negative input chains can be used
as side chains, and a model of these chains is supplied. It is, however, unnecessary to so
limit the use of these systems. In general, to use this system it is necessary merely to be
able to determine which input chains may be needed as side chains in order to obtain a
refutation. Having determined which are the potential side chains of a deduction, the side
chain models can be constructed.

Definition 3.7 - Side chain predictability
A linear or linear-input deduction system is side chain predictable if it is possible to
determine in advance which input chains may be needed as side chains in a refutation.

Example
A linear-input deduction system that builds deductions from sets of Horn chains,
using a negative chain as the top chain, is side chain predictable because it can be
determined that the non-negative input chains may be needed as side chains in a
refutation.

A side chain predictable linear-input deduction system can employ the simultaneous centre
chain system. In the deductions built, the top chain is subject to the truth value check like
all other centre chains; i.e., the top chain must be interpreted as FALSE in all side chain
models of the deduction.

3.3.1. Maintaining deduction faithfulness

The problems of imposing deduction restrictions, highlighted in section 1.5, apply to the
restriction of the simultaneous centre chain system. If the restriction is imposed
operationally, then the techniques of ensuring deduction faithfulness suggested in section
1.5 can be used. The proof of theorem 3.6 also suggests a deduction faithful operational
version of the restriction.

Semantic Guidance Page 73

Theorem 3.6 shows that every centre chain in a refutation has a ground universe instance
that is interpreted as FALSE in all side chain models of the refutation. If, at deduction
time, those instances are used instead of the centre chains themselves, a refutation
isomorphic to the original would be found. By using the FALSE ground universe instances
it is assured that the centre chains will remain FALSE throughout the deduction. Thus the
simultaneous centre chain system may be implemented by using, at each deduction
operation, a ground universe instance of the centre parent chain that is interpreted as
FALSE, in all side chain models of the deduction. This is called the centre chain instance
truth value deletion system. The restriction of the centre chain instance system is a
deduction faithful operational implementation of that of the simultaneous centre chain
system. Two benefits are gained. Firstly, the FALSE interpretation value of each centre
chain is established only once, at the point of instantiation. Secondly, redundant deduction
operations do not occur and any associated overheads are avoided. This contrasts with the
simultaneous centre chain system which may detect the redundancy of a deduction
operation only long after it is performed. The use of truth value information to suggest
instances of parent clauses has been used in other deduction systems; e.g., the
Semantically Guided Deductive System [Reiter, 1973]. As noted by Reiter [1973, p. 43],
"the first [instantiated] goal will, in general, be much easier to prove than the second
[uninstantiated]". The disadvantage of this type of system is the enlargement of the host
deduction system's search space.

Although the centre chain instance system is effective, truth values still have to be
established at deduction time. It is possible to reformulate the centre chain instance system
so that the work required to maintain deduction faithfulness is performed prior to the start
of the deduction, i.e., at compile time. The principle of the reformulation is to identify and
reject at compile time those ground universe instances of input chains that, if used as side
chains, would cause the deduced centre chain to be rejected. This is possible if one can
determine a priori which literals of an input chain will be discarded when the input chain is
used as a side chain.

Definition 3.8 - Discard predictability
A deduction system is discard predictable if it is possible to determine which literals of an
input chain will be discarded when that input chain is used as a parent chain in a deduction
operation. Deduction systems that are both side chain predictable and discard predictable
are side chain discard predictable.

Page 74 Semantic Guidance

Example
A linear-input deduction system that builds deductions from sets of Horn chains,
using a negative chain as the top chain, discards the positive literal of the side chain
used in each resolution operation.

The centre chain instance system uses only ground universe instance of centre chains that
are interpreted as FALSE in all side chain models of the deduction. The literals of such
ground universe instances are inherited from either the top chain of the deduction or from
non-discarded literals of side chains of the deduction. Thus, to obtain a refutation, it is
necessary to use only (i) ground universe instances of the top chain that are interpreted as
FALSE in all side chain models of the deduction and (ii) ground universe instances of side
chains in which literals that will not be discarded in a deduction operation, are interpreted
as FALSE in all side chain models of the deduction. Thus the centre chain instance system
may be implemented by using only certain ground universe instances of input chains. The
generation of the ground universe instances may be done before a deduction begins. This
system is called the compile time truth value deletion system. As indicated, this system
requires that the deduction system be discard predictable. If the choice of literals to be
discarded depends on the deduction operation used or other contextual information, then
ground universe instances of input chains need to be generated for each possible scenario.

The compile time system has the same advantages and disadvantages as the centre chain
instance system. That is, its restriction is a deduction faithful version of that of the
simultaneous centre chain system, but the host deduction system's search space is
enlarged. The compile time system does, however, have the advantage that the work
required to impose truth value deletion is done prior to the start of the search for a
refutation. Further, the FALSE interpretation value of non-discarded literals is established
only once, at compile time. This is of benefit if a ground universe instance of a chain is
used multiple times in a deduction. In the centre chain instance system the FALSE
interpretation value must be established at each usage.

Discussion
The centre chain instance and compile time systems both enlarge the host deduction
system's search space. In general there are infinitely many ground universe instances of
centre and input chains to be considered. The centre chain instance system can sequentially
create and use FALSE ground universe instances of each centre chain. This may, however,
seriously degrade the performance of the deduction system, depending on how its search is
arranged. The compile time system will not be able to generate the required instances of
the input set if the universe in infinite. The root of these difficulties is that the prime

Semantic Guidance Page 75

benefit of resolution, that instantiation is delayed for as long as possible, is revoked by
these two systems.

For most of the truth value guidance systems described in this chapter, an added demand
on the supply of semantic information is that it must be possible to check that the truth
value interpretation in use is a side chain model of the deduction. With semantic
information supplied in the format described in section 3.1, this is typically an undecidable
problem. However, the task is vastly simplified if an appropriate interpretive structure is
provided to store the semantic information. This issue is addressed in chapter 4.

The utility of the centre chain instance and compile time systems has not been established,
and is not a focus of this research. The simultaneous centre chain system is, however, of
more interest and in fact leads to a more general formulation which can be used in GLD
(and other linear deduction systems).

3.4. Truth Value Deletion in GLD

 (and Other Linear Deduction Systems)

In section 2.5 linear-input subset analysis was introduced as a method for detecting
situations in which GLD builds linear-input subdeductions. The truth value deletion
systems for linear-input deduction systems, described in section 3.3, can be transferred to
GLD linear-input subdeductions. This is a significant new idea, as truth value deletion has
previously been considered incompatible with linear deduction.

Definition 3.9 - Rightwards subchains
The rightwards subchain of a literal in a centre chain is the subchain that consists of the
literal and all literals to its right.

A truth value deletion system that requires all rightwards subchains of the top literal in a
GLD linear-input subdeduction to be interpreted as FALSE, in all side chain models of the
subdeduction, is complete. The system arises from the following results.

Lemma 3.10
In a GLD refutation in which only extension and truncation operations are performed, all
centre chains are simultaneously interpreted as FALSE in all side chain models of the
refutation. (In determining the interpretation value of a centre chain, only B-literals are
considered.)

Page 76 Semantic Guidance

In this situation a GLD refutation is reduced to a linear-input refutation. The lemma then
follows directly from theorem 3.6. QED

Lemma 3.11
In a linear-input subdeduction of a GLD deduction, all rightwards subchains of the top
literal are simultaneously interpreted as FALSE in all side chain models of the
subdeduction. (In determining the interpretation value of a rightwards subchain, only
B-literals are considered.)

Let C1R1, ... ,Cn-1Rn-1,Cn be the centre chains of a linear-input subdeduction, so that R1 is
the top literal, each Ri is a rightwards subchain of the top literal and Rn-1 is the top literal
in the guise of an A-literal. Theorems 2.6, 2.10 and 2.15 show that no reductions against
literals in any Ri are performed, so no literal in any Ci is used in deduction operations that
affect the Ri. Therefore there is a refutation from the top chain R1 using only extension
and truncation operations. By lemma 3.10, all the Ri are simultaneously interpreted as
FALSE in all side chain models of that refutation. Thus in the linear-input subdeduction all
the Ri are simultaneously interpreted as FALSE in all side chain models of the
subdeduction. QED

Theorem 3.12 - Truth Values in Linear Deductions
In a linear-input subdeduction of a GLD deduction, all rightwards subchains of the top
literal are simultaneously interpreted as FALSE in all side chain models of the
subdeduction. (In determining the interpretation value of a rightwards subchain, all literals,
including A-literals, are considered.)

In a linear-input subdeduction, A-literals in rightwards subchains of the top literal also
occur as B-literals in ancestor rightwards subchains. By lemma 3.11 the ancestor
rightwards subchains are simultaneously subject to the truth value restriction. Therefore
the A-literals can be included when determining the interpretation value of a rightwards
subchain. QED

Theorem 3.12 establishes the completeness of a truth value deletion system for GLD when
in linear-input configuration. The system is analogous to the simultaneous centre chain
system and is called the rightwards subchain truth value deletion system. The restriction of
the rightwards subchain system is a special case of the simultaneous deduction restriction,
in that it is imposed only at some deduction operations. Again, the ground approach to
establishing the satisfaction of the restriction is appropriate. If the restriction of the
rightwards subchain system is imposed operationally, the checking of A-literals effects a
retrospective check of B-literals. This helps to (locally) maintain deduction faithfulness of

Semantic Guidance Page 77

the restriction. The maintenance of deduction faithfulness is local in the sense that it is
maintained only within each linear-input subdeduction.

Example
An example, illustrating the effects of the rightwards subchain system, is to be found
in appendix 1, section A1.3. See section 5.4.3 for further details.

As with truth value deletion in linear-input deduction systems, the imposition of the
rightwards subchain system relies on side chain predictability. Here side chain
predictability is required in each linear-input subdeduction. If Horn subset analysis is used
to detect the linear-input subdeductions then GLD is trivially side chain predictable in each
linear-input subdeduction. Only non-negative Horn subset input chains are used as side
chains. For LISS analysis, side chain predictability is obtained by inspection of the
extension tree. The input chains that may be used as side chains in a linear-input
subdeduction are those that were used in building extension subtrees rooted at the LISS
element corresponding to the top literal. Thus a set of possible side chains is associated
with each LISS element. There are then two options for building side chain models, as
follows.
• Different side chain models may be built for each LISS element, based upon the

associated input chains. Although this may require significant effort, there may be some
benefit in constructing models that are local to each possible linear-input subdeduction,
as the models need reflect only truth value information relevant to the subdeduction. As
is noted by Plaisted [1982, p. 238], "This is interesting because it corresponds to the
fact that in the human theorem proving process attention is given to various specialised
models at various stages of the proof."

• Side chain models of the union of the sets associated with the LISS elements may be
built. This approach is possible only if the union is a proper subset of the input set. If all
input chains are possible side chains, the LISS may be made smaller by adding a third
condition for membership of the LISS - (iii) the top chain of the deduction is not used
in forming any descendant of the literal structure. If this condition is added, then the top
chain of the deduction cannot be a side chain in any linear-input subdeduction and
models of the union are possible. If this latter approach excludes only the top chain
from being a side chain then an additional truth value restriction, that requires the top
chain of the deduction to be interpreted as FALSE in the side chain models, may be
imposed. This restriction may be added because at least one input chain in a refutation
must be interpreted as FALSE, in every truth value interpretation.

Side chain predictability for LISL analysis is analogous to that for LISS analysis.

As with linear-input subset analysis, the rightwards subchain system is readily transferred
to linear deduction systems other than GLD. A noteworthy instance is that it is transferable

Page 78 Semantic Guidance

to chain format systems that use the GC procedure's C-literal mechanism. In these systems
C-reduction can occur in, what would otherwise be, linear-input subdeductions. This added
possibility does not affect the rightwards subchain system : All linear-input C-literals are
inserted at the left most end of centre chains, indicating that they are logical consequences
of the side chains that participated in their production. Therefore the C-literals are TRUE
in all models of such side chains. Lemma 3.10 is easily extended to cover reduction
against such C-literals, and the rightwards subchain system remains complete.

Truth value deletion systems analogous to the centre chain instance and compile time
systems have not been formalized for GLD, although there do not appear to be any
immediate difficulties with such systems. As is described in chapter 5, the rightwards
subchain system has been employed in SGLD. The success of the rightwards subchain
system is analogous to that achieved in the Simplified Problem Reduction Format in which
the success of truth value deletion "seems to have something to do with the fact that Horn
clauses are common in typical problems." [Plaisted, 1982, p. 238] However, the rightwards
subchain system has a potential for greater success as a more general notion than
Horn-ness is used to determine when truth value deletion can be used.

3.5. The FALSE-Preference Strategy

The imposition of any form of truth value deletion is limited by the requirement of
completeness; i.e., a host deduction system must remain complete under the restrictions
imposed by its deletion system. If a variant of such a host deduction system is designed, it
may be necessary to drop its truth value deletion system in order to maintain completeness.
For example, truth value deletion may be imposed on pure resolution but must be dropped
when lock numbering is added. In other deduction systems, e.g., hierarchical deduction
[Wang & Bledsoe, 1987], the imposition of truth value deletion destroys completeness in
only some circumstances. A truth value guidance strategy that can never destroy
completeness is described here. This is a new approach to semantic guidance and it
broadens the range of deduction systems in which truth value guidance can be used
fruitfully.

Truth value deletion systems rigidly expect one or more parent chains to be interpreted as
FALSE, in a given truth value interpretation. By softening this expectation to a preference
for FALSE parent chains, a new truth value guidance strategy is formed. The new strategy
is called the FALSE-preference strategy. The FALSE-preference strategy guides a
deduction system's search by showing a preference for parent chains that are interpreted as
FALSE, in a given truth value interpretation. Clearly the use of the FALSE-preference
strategy cannot destroy completeness. The FALSE-preference strategy can also be used in

Semantic Guidance Page 79

conjunction with a truth value deletion system. In this scenario truth value deletion is
imposed where ever it does not destroy completeness, and the FALSE-preference strategy
is used where truth value deletion is 'appropriate' but cannot be imposed because
completeness would be lost.

A FALSE-preference strategy that simply compares the interpretation values of chains
does not differentiate between chains which are interpreted as the same truth value. To
make a finer distinction between chains, and hence differentiate amongst chains with the
same interpretation value, a FALSEness level can be assigned to each chain. The
FALSEness of a chain is determined by looking at ground instances of the chain's literals,
as follows.
• The FALSEness of a chain, in a given truth value interpretation, is a function of the

FALSEness levels of its ground universe instances. The function must be optimistic, in
the sense that it may return a poor FALSEness level only if all of its arguments are poor
FALSEness levels.

• The FALSEness of a ground chain is a function of the FALSEness levels of its literals.
The function must return a value roughly proportional to its arguments, i.e., so that if
the arguments are mostly good FALSEness levels then the function value is a good
FALSEness level, and vice versa.

• The FALSEness of a ground literal is GoodScore if the literal is interpreted as FALSE
and BadScore otherwise. GoodScore and BadScore are parameters to the
FALSE-preference system, with GoodScore being a better FALSEness than BadScore.

FALSEness thus measures the numbers of literals that are interpreted as FALSE in ground
instances of a chain. A deduction system is guided by giving preference to parent chains
with a better FALSEness level.

In chain format linear deduction systems the FALSE-preference strategy guides the search
away from refutations that require reduction operations, as follows. If a centre chain
B-literal is interpreted as TRUE in a model of all the forthcoming side chains in the
deduction, then that B-literal, or some descendant through extension operations, must be
reduced against. By guiding the search away from centre chains that contain TRUE
literals, the FALSE-preference strategy guides the search away from refutations that
contain reduction operations. In general, however, it is not possible to determine that a
truth value interpretation is a model of "all the forthcoming side chains in a deduction".
This is because linear deduction systems are not, in general, side chain predictable. The
most that can be achieved is to use a truth value interpretation that is a model of as many
input chains as possible. If the input set is minimally unsatisfiable, then a truth value
interpretation that is a model of all but one of the input chains can be found. If a centre
chain literal is interpreted as TRUE in such a truth value interpretation then it, or some

Page 80 Semantic Guidance

descendant through extension operations, must either be reduced against or extend against
the input chain which is FALSE in the truth value interpretation.

There are other possible ways of determining a FALSEness level for a chain, besides that
described here. This method corresponds directly to the ground approach of establishing
that a chain is interpreted as FALSE, as is typically used by truth value deletion systems.
The method is thus suitable for use in a truth value guidance system that combines truth
value deletion with the FALSE-preference strategy.

3.6. Reformulating Sort Value Deletion

A common feature of the 'sort legal' deduction systems described in section 3.2.3 is that
their deduction operations never deduce sort illegal clauses. This is in contrast to a
deduction system which employs truth value deletion, in which the deduction operations
independently deduce clauses and the truth value deletion system later rejects those which
are unacceptable. It is evident from section 3.1 that truth value interpretations and sort
value interpretations supply analogous information. This observation prompts a different
formulation of sort value deletion, that is similar to truth value deletion. In this
formulation, sort illegal chains may be deduced. Each deduced chain is subsequently
checked, and rejected if not sort legal. This formulation parallels the approach taken in
truth value deletion systems. The usual considerations concerning deduction faithfulness
apply and the previously discussed techniques are again applicable. This approach to sort
value deletion is extremely flexible as it does not affect the deduction operations of the
host deduction system. It is therefore not tied to a specific deduction system.

The proposed use of this formulation of sort value deletion is to impose the sort legality
restriction in deduction systems which are designed independently of the deletion system.
As a consequence, any deduction built subject to this sort legality restriction can also be
built if the restriction is dropped. The imposition of this formulation of sort value deletion
is thus sound. It is, however, possible for the imposition of this formulation of sort value
deletion to prune refutations from the search space of the host deduction system. This is
evident from the fact that a deduction constructed subject to sort value deletion
corresponds to a deduction from the relativisation of the input set. This means that a
refutation of the input set, subject to sort value deletion, can be found only if there is a
corresponding refutation of the relativised input set. In existing deduction systems that
employ sort deletion this problem has been overcome by redefining satisfiability to be in
terms of the sort value interpretation in use. The completeness of such deduction systems
is then relative to the sort value interpretation in use. Here, where the deletion system is
independent of the host deduction system, such redefinition is not appropriate. Thus this

Semantic Guidance Page 81

formulation of sort value deletion is used under the cloud of possibly introducing
incompleteness into the host deduction system. However, experiences using this deletion
system have been positive and loss of completeness has not been a problem.

Finer Granularity
Every atom structure in a deduction necessarily appears at least twice in the input set. In
some problems it is appropriate to provide a different sort value interpretation for each
distinct occurrence of an atom structure. One way of implementing this is to rename the
predicate symbols of the atoms to unique names, and to add clauses which specify the
equivalence of the atoms. The specification of a sort value interpretation can then proceed
as normal. An alternative, and more direct, approach is to specify the base-relation
separately for each occurrence of an atom structure. The interpretation values of ground
instances of an atom are then defined in terms of the base-relation for that particular
occurrence.

3.7. Combined Truth Value and Sort Value Guidance

3.7.1. Sort&Truth Value Deletion Systems

The formulation of sort value deletion in section 3.6 parallels the approach taken in truth
value deletion systems. As a result, the combination of these two systems becomes quite
natural. Although it is known that truth value deletion and sort value deletion can be used
in parallel, the novelty of the approach described here is that the two are combined into a
single system. This makes the incorporation of the two into a deduction system much
easier. The combined systems, called sort&truth value deletion systems, use a sort value
interpretation. Specific sort&truth value deletion systems are formed by selecting a truth
value deletion system to combine with sort value deletion. For a seamless combination it is
necessary for the selected truth value deletion system to, like sort value deletion, impose a
simultaneous deduction restriction. The rightwards subchain system is, for example,
suitable. Given an appropriate truth value deletion system, the resultant sort&truth value
deletion system simultaneously expects (i) all atoms in a deduction to be sort legal, i.e., all
atoms must have ground universe instances that are interpreted as some truth value (any
one of TRUE, FALSE or UNKNOWN_TRUTH_VALUE), (ii) the restrictions of the truth
value deletion component to be met, i.e. some parent chains are expected to be interpreted
as FALSE and (iii) the sort legality restrictions on sort literals to be met, i.e. sort literals
are expected to have ground universe instances that are interpreted as TRUE or FALSE, as
described in section 3.6. (The possibility of a conflict between the latter two requirements
is discussed below.)

Page 82 Semantic Guidance

The sort value deletion component of a sort&truth value deletion system dictates that the
ground approach must be used to establish the satisfaction of the system's restrictions. This
is completely convenient in terms of the truth value deletion component. Issues of
deduction faithfulness are addressed as before.

The use of a sort value interpretation in a sort&truth value deletion system has some
pragmatic advantages. When building a truth value interpretation it is realistic that the
interpretation value of a given base element may not be known independently of its actual
truth value in the domain of discourse [Delgrande & Mylopolous, 1986, p. 10].
Nevertheless it is necessary to make a commitment to one of the truth values TRUE or
FALSE. In contrast, if a sort value interpretation is used then such base elements can be
mapped to UNKNOWN_TRUTH_VALUE. An atom that is expected to have a ground
universe instance that is interpreted as one of TRUE or FALSE, can be accepted if it has a
ground universe instance that is interpreted as UNKNOWN_TRUTH_VALUE. This
approach can also be used in truth value deletion systems.

As mentioned above, it is possible for the expectations of the truth value component of a
sort&truth value deletion system to conflict with those of the sort value component. This
situation occurs when a positive sort literal is expected to be interpreted as FALSE by the
truth value component. If the sort value interpretation in use correctly reflects the intended
interpretation of the input set, then the expectation of the truth value deletion component is
unlikely to be met in a refutation. However, no formal results in this area have been
established. As with sort value deletion systems, experiences using sort&truth value
deletion systems have been positive.

3.7.2. Combined Semantic Guidance Systems

Section 3.5 introduced the softening of truth value deletion to the FALSE-preference
strategy. The notion of combining truth value deletion and the FALSE-preference strategy
into a single semantic guidance system was also suggested. An analogous combination of
sort&truth value deletion with the FALSE-preference strategy is equally desirable. These
combined semantic guidance systems encompass a rich spectrum of semantic guidance
ideas. A combined semantic guidance system uses a sort value interpretation. The
restrictions of sort&truth value deletion are imposed and, in addition, the
FALSE-preference strategy is used to guide the search of the host deduction system. As in
sort&truth value deletion systems, the ground approach is used to establish the satisfaction
of the deletion system's restrictions.

Semantic Guidance Page 83

In a combined semantic guidance system, the sort&truth value deletion system expects
every literal in a deduction to simultaneously have a ground universe instance that is
interpreted as some truth value. There are three possible expected truth values, TRUE,
FALSE or 'any truth value' (any one of TRUE, FALSE or
UNKNOWN_TRUTH_VALUE). A sort value interpretation may interpret a literal as one
of TRUE, FALSE or UNKNOWN_TRUTH_VALUE, or may not interpret the literal as
any value. Thus there are twelve possible scenarios. Given that the expectations of the
sort&truth value deletion system are met, the FALSE-preference strategy must indicate its
preference. These requirements are embodied in a quality measure called
expected-truth-value-compatibility (ETV-compatibility).

The ETV-compatibility of a chain measures two things. Firstly it checks that the chain has
a ground universe instance in which the interpretation values of the literals are acceptable
to the sort&truth value deletion system. Secondly it biases the first measure in favour of
chains whose literals are interpreted as FALSE. The measure is calculated as follows.
• The ETV-compatibility of a chain, in a given sort value interpretation, is a function of

the ETV-compatibilities of its ground universe instances. The function must be
optimistic, in the sense that it may return a poor ETV-compatibility only if all of its
arguments are poor ETV-compatibilities. For a chain to be acceptable (to the sort&truth
value deletion system) it must have at least one ground instance whose
ETV-compatibility is not "deletion".

• The ETV-compatibility of a ground chain is a function of the ETV-compatibilities of its
literals. The function must return a value roughly proportional to its arguments, i.e., so
that if the arguments are mostly good ETV-compatibilities then the function value is a
good ETV-compatibility, and vice versa. If the ETV-compatibility of any literal is
"deletion", then the ETV-compatibility of the ground chain is also "deletion".

• The ETV-compatibility of a ground literal is is based on its expected and actual
interpretation values, according to Table 3.13.

Actual Value Expected Truth Value
 FALSE Any truth value TRUE
FALSE CorrectScore GoodScore deletion
UNKNOWN OKScore OKScore OKScore
TRUE deletion BadScore CorrectScore
No interp'n deletion deletion deletion

Table 3.13 - ETV-compatibility

Page 84 Semantic Guidance

 CorrectScore, GoodScore, OKScore and BadScore are parameters to the system.
CorrectScore indicates better ETV-compatibility than GoodScore, which indicates a
better ETV-compatibility than OKScore, which indicates better ETV-compatibility than
BadScore. The "deletion" value is a special value, worse than any of the others.

The decreasing ETV-compatibility going down the first two columns of Table 3.13
implements the FALSE-preference strategy. Here it is extended to support the third
possible interpretation value for a literal. The "FALSE" and "TRUE" columns in
Table 3.13 deal with sort&truth value deletion. In the case where the truth value deletion
component expects a FALSE interpretation value, an extension to the third possible
interpretation value is supported.

The ETV-compatibility levels given above can clearly be split into finer groupings. The
benefits of finer grouping have not been investigated.

3.8. Theory Resolution

Theory resolution [Stickel, 1985] provides a method of removing literals from clauses by
virtue of their inconsistency with a given theory. This is in contrast to using deduction
operations to prove their inconsistency with the input set. The manner in which the theory
is specified is open. Theory resolution is total if no new literals are added to the theory
resolvant.

An interpretation may be used to specify the theory to be used in total theory resolution
operations which have a single parent chain. If a group of literals in the parent chain have
an instance that is interpreted as FALSE in the interpretation, then those literals may be
theory resolved away. The substitution that is used to form the instance is adopted by the
theory resolution operation. The use of semantic information in theory resolution was also
briefly mentioned by Plaisted [1982, p. 259]. The evaluation operation of the LLAMA
logic is an instance of this form of theory resolution.

Theory resolution may be viewed as an extreme case of suggesting instances of parent
chains to use in deduction operations, as described in section 3.2.2. The instance
suggestion is made extreme by removing literals directly rather than using deduction
operations.

Semantic Guidance Page 85

3.9. Conclusion

The semantic guidance systems developed in this chapter contribute to the field of
semantic guidance. They provide new ways of using semantic information to guide the
searches of deduction systems. Of particular significance are :
• The non-specific manner in which the truth value deletion systems have been

formulated.
• Implementational issues have been considered and addressed. This means that the

systems developed can be implemented and used without further inquiry being
necessary.

• The rightwards subchain system, which breaks the deadlock between truth value
deletion and linear deduction systems.

• The FALSE-preference strategy, which open a whole new range of possibilities for
using truth value guidance in deduction systems.

• The smooth integration of sort value deletion, truth value deletion and the
FALSE-preference strategy.

For an efficient implementation of a semantic guidance system it is necessary to provide
an efficient interpretive structure for storing and supplying the required semantic
information. This is the focus of the next chapter.

Page 86 Semantic Guidance

Designations Page 87

Chapter Four

Designations

This chapter describes a new interpretive structure suitable for storing and supplying the
semantic information used by semantic guidance systems. The new structures are called
designations. The difficulty of storing and supplying semantic information is one of the
factors that has discouraged the use of semantic guidance systems. There is a need for an
interpretive structure that is expressive, space efficient, effective in supplying semantic
information and also user friendly. A common approach is to store the semantic
information as semantic functions. Interpretation of ground expressions is then performed
using recursive descent. Designations generalise this approach, inheriting its good
properties and remedying some of its faults. The domains of designations are limited to be
finite.

This chapter contains :
1. A survey of existing interpretive structures.
2. An investigation of the inherent properties of the semantic relation + recursive descent

approach.
3. Discussion of the underlying design ideas of designations.
4. The formal definition of designations.
5. A description of how 1st order languages are interpreted using designations.
6. Discussion of the use of designations in semantic guidance systems.
7. An algorithm for building designations.
8. Concluding comments.

4.1. Interpretive Structures

"It appears to be quite challenging both to represent and access the large variety of
examples the human has available". [Bledsoe & Hodges, 1988, p. 517].

Page 88 Designations

Introduction
In section 3.1 a generic form of the semantic information that is used by semantic guidance
systems was given. An interpretive structure is a data structure which stores such semantic
information. The primary requirement of an interpretive structure is that it must be
expressive enough to store the semantic information. Given unlimited storage capacity,
such a structure can always be constructed. However, from a pragmatic view point, an
interpretive structure must also be reasonably space efficient. Besides these expressiveness
and space requirements, two further criteria can be used to measure the quality of an
interpretive structure, as follows. (i) For semantic guidance systems that use the ground
approach to establishing the satisfaction of their restrictions (i.e., the majority semantic
guidance systems, including almost all those described in chapter 3), the semantic
information is used to determine if an atom has a ground universe instance that is
interpreted as a given truth value. Thus a fundamental requirement for an interpretive
structure is that it should be possible to make this determination in effective manner. This
is referred to as the structure's semantic checking capability. Several researchers have
commented on this point - "... deduction in a model M must be able to be performed
extremely efficiently ..." [Brown, 1974, p. 31], "... determining whether or not a clause
containing variables is falsified may be a formidable job." [Henschen, 1976, p. 820] and
"... testing if a clause is false in I can be expensive or impossible if I is
non-trivial" [Plaisted, 1990a, p. 296]. (ii) The original source of the semantic information
stored in an interpretive structure is typically human. The task of specifying the semantic
information must be sufficiently easy for the user, so that real benefits are obtained from
using the information in a semantic guidance system. It is unfortunate that, for many
interpretive structures, the specification of the semantic information is prohibitively
complex and/or time consuming.

Thus, in summary, there are four axes along which the quality of an interpretive structure
will be measured :
• Is the structure expressive enough to store the semantic information?
• Does the structure store semantic information in a space efficient manner?
• Does the structure provide an effective semantic checking mechanism?
• Is the specification of the semantic information an acceptably easy task from a user's

point of view?
Finding an interpretive structure which satisfies these criteria is important if semantic
guidance systems are to be of utility.

Existing interpretive structures have been designed to supply either truth value or sort
value information. A wide variety of interpretive structures have been proposed and used,
with varying levels of success along each of the four criterion axes. A common approach is

Designations Page 89

to store the semantic information as semantic functions and to interpret ground expressions
using recursive descent. See, for example, the truth value interpretations in [Lloyd, 1984].
Designations, as described in this chapter, generalise on this format by using semantic
relations rather than semantic functions. As well as those based on a semantic functions,
other formats of interpretive structures have been used for storing truth value semantic
information (to date, interpretive structures used for storing sort value semantic
information appear to be exclusively semantic function based). Before defining and
examining the properties of the semantic relation format, it is instructive to examine
briefly the other formats.

Existing Interpretive Structures
The simplest interpretive structures for fully supplying semantic information are those that
explicitly store the universe- and base-relations. A common approach is to partition the
universe and base according to their images. If, as in many applications of truth value
interpretation, only a base-relation to {TRUE, FALSE} is required, a simplification of the
explicit storage approach is to store explicitly only the base-relation mappings to
TRUE/FALSE and to use a closed/open world assumption to implicitly store the mappings
to FALSE/TRUE. Latent models [Slagle, 1967] take this approach. This approach is
workable if the set of base elements that map to TRUE/FALSE is finite. However, the
partitioning approach is almost always impractical, due to the infinite sizes of the
partitions.

Examination of the syntax of expressions can be used to implement the universe- and
base-relations of an interpretation. For example, the positive and negative truth value
interpretations examine the sign of a literal, and the predicate partition interpretation
determines the interpretation values of base elements and atoms from their predicate
symbols. Syntactic approaches such as these have the advantage of being able to directly
interpret non-ground expressions. Their weakness is not taking into account the arguments
of the expressions being interpreted. A syntactic approach to implementing a base-relation
for truth value interpretation, which takes expression arguments into account, is provided
by partition settings [Loveland, 1978]. The interpretive structure of partition settings is (in
essence) a set of special literals called generators. If a literal is specified as a generator
then it and all its universe instances, are mapped to TRUE. A closed world assumption is
then taken to store implicitly the mappings to FALSE.

Syntactic approaches to implementing interpretations, although readily implemented, are
non-intuitive and are incapable of representing non-trivial semantic information.
Interpretive structures that associate more directly with the problem domain are easier for
a user to work with, and higher level concepts may be used in the implementation. The

Page 90 Designations

interpretive structure that appears to be closest associated with problem domains is that
suggested by the examples in [Brown, 1974, p. 30]. In the examples, a truth value
interpretation is stored as a set of clauses. Some of the interpretive clauses are taken from
the input set and some are specific to an instance of the problem domain. A feature of this
approach is that it allows the image of Skolem constants to range across multiple domain
elements, as suggested by Reiter [1973]. Details of how the interpretive clause sets should
be specified are not, however, given. A more common format of interpretive structure,
which is also closely associated with a problem domain, is that which uses some data
structure to represent an instance of the problem domain. The data structure is then
interrogated. Examples of this approach are the diagrams used in the geometry proving
machine [Gelerneter, 1963; Gelerneter et al., 1963], the piecewise continuous functions
used by Bledsoe [1983] and the intervals used in the INT package [Bundy et al., 1984].

At the opposite end of the 'problem association' scale, is the approach of mapping the 1st
order language in use to an "amicable" [Sandford, 1980, p. 120] interpretation language.
The interpretation of an expression is achieved by interpreting the image expression in the
amicable language. The amicable language may express concepts in a domain completely
divorced from that of the original 1st order language, but in which interpretation is an
extremely efficient process. One possible amicable language is that of simultaneous linear
equations [Sandford, 1977].

Interpretive structures that closely associate with the problem domain have the advantage
of being easily able to represent subtle features of the problem domain. Their disadvantage
is that their applicability is limited to the problem domain. There is a compromise between
the degree to which an interpretive structure associates with the problem domain and the
generality of the interpretive structure. An intermediate form of interpretive structure,
which is not entirely syntactic, but is also flexible enough to be used in a wide range of
domains, is preferred. Further, the interpretive structures described above are all dedicated
to one of truth value or sort value interpretation. Semantic guidance systems that combine
sort value deletion and truth value guidance were presented in section 3.7. Thus there is a
demand for an interpretive structure that can be used to store multiple types of semantic
information, at a minimum both truth value and sort value information.

Excursus
Two problems that arise when storing semantic information are that (i) the amount of data
that needs to be stored may be large and (ii) the universe- or base-relation for a given
universe/base element may not be known independently of its actual value in the problem
domain (see section 3.7.1). Two existing results that respectively tackle these difficulties
have been presented, as follows.

Designations Page 91

• For truth value interpretation of Horn clauses, a complex interpretation may be formed
by taking the cross product of two simpler interpretations [Henschen, 1976]. This
approach has the potential for considerable savings in space and computational effort.

• Many semantically guided deduction systems are "false permissive complete"
[Sandford, 1980, p. 83]. In the environment of a false permissive complete system, the
interpretive structure can use a default that causes literals, which should be interpreted
as TRUE, to be interpreted as FALSE. The translation of model schemes to sound
semantic functions, described in by Sandford [1980], uses this approach. Note that sort
checking is not false permissive complete because literals can be expected to be
interpreted as TRUE. Thus this approach cannot be taken in the systems described in
section 3.7.

4.2. Semantic Relation based Interpretive Structures

As has been noted, a common form of interpretive structure is that which stores semantic
information as semantic functions, and interprets ground expressions using recursive
descent. This section introduces a generalisation of this format. Semantic relations, rather
than semantic functions, are used.

Definition 4.1 - Semantic relation based interpretive structures
A semantic relation based interpretive structure is a structure that consists of :
• A finite domain9, the elements of which are constants.
• A set of truth values, the elements of which are constants.
• A functor-relation from d-functions to the domain.
• A predicate-relation from d-predicates to the set of truth values.

Definition 4.2 - SRI structures
A survey of mathematical logic literature indicates that there is no existing name that
specifically identifies the form of interpretive structure defined above. Thus, in this thesis,
semantic relation based interpretive structures are called SRI structures.

An SRI structure can supply the semantic information required by semantic guidance
systems, as described in section 3.1.

9At this point only unordered domains (i.e. those in which there is no relationship between elements) are

considered. Domains which support relationships between elements, as often used in interpretive structures

for sort value interpretation, are considered in section 4.2.4.

Page 92 Designations

Definition 4.3 - Interpretation using SRI Structures
For an SRI structure, consisting of domain D, set of truth values T, functor-relation F and
predicate-relation P, the semantic information supplied is :
• The domain of the interpretive structure.
• The set of truth values of the interpretive structure.
• A universe-relation, which for a universe element f(t1, ... ,tn), produces all possible

interpretation values F(f(d1, ... ,dn)), where each di is an interpretation value of ti.
• A base-relation, which for a base element p(t1, ... ,tn), produces all possible

interpretation values P(p(d1, ... ,dn)), where each di is an interpretation value of ti.
The universe- and base-relations extend naturally to extended-universe- and
extended-base-relations, for the language being considered extended by the domain of the
SRI structure :
• An extended-universe-relation which, for an extended-universe element f(t1, ... ,tn),

produces the interpretation value f if f is a domain element, otherwise all the
interpretation values F(f(d1, ... ,dn)), where each di is an interpretation value of ti.

• The extended-base-relation, for an extended-base element p(t1, ... ,tn), produces all the
interpretation values P(p(d1, ... ,dn)), where each di is an interpretation value of ti.

If a universe/base element has been partially interpreted using the universe- and
base-relations, then the interpretation process may be completed using the
extended-universe- and extended-base-relations, with the same result as if the universe-
and base-relations themselves had been used.

Interpretation using an SRI structure is thus a process of recursive descent.

Many existing interpretive structures are based on semantic relations. Standard truth value
interpretations (see [Lloyd, 1984], for example) are based on semantic relations :
• The set of truth values is {TRUE, FALSE}.
• The functor- and predicate-relations are complete functions.
Semantic relations are also a common basis for sort value interpretations, either
monomorphic (e.g., [Enderton, 1972]) or polymorphic (e.g., [Hayes, 1971]) :
• A typical set of truth values is {TRUE, FALSE, UNKNOWN_TRUTH_VALUE}.
• The functor- and predicate-relations are typically partial functions.
• For sort-d-predicates, the predicate-relation is to {TRUE, FALSE}.

4.2.1. Expressiveness and Space Efficiency

SRI structures store semantic information in a very fine grained manner, thus enabling
them to capture the nuances of domain specific information. They thus satisfy the first
criterion for measuring the quality of interpretive structures. That is, they are expressive

Designations Page 93

enough to represent semantic information. Unfortunately, the direct representation of the
finely grained information is inefficient in terms of the information content. SRI structures
have no immediate mechanisms for employing concepts such as property inheritance to
reduce storage requirements. Each element of the semantic relation has to be stored
separately and explicitly. Thus, in an unmodified format, SRI structures do not satisfy the
second criterion for measuring the quality of interpretive structures. That is, they do not
store semantic information in a space efficient manner

4.2.2. The Interpretation Process using SRI Structures

One approach to semantic checking (using any form of interpretive structure), is to
generate and interpret ground universe instances of the atom under consideration.
However, if the universe is infinite this approach is undecidable, as it is impossible to
create all the ground universe instances. Semantic guidance systems which need to
consider all the ground universe instances of an atom (e.g., systems that need to establish
that an atom is interpreted as TRUE) are rendered completely inoperable in this situation.
The universe is infinite whenever the 1st order language in use contains functors of arity
greater than 0, which is the rule rather than the exception. Thus any semantic guidance
system that generates and interprets ground universe instances of atoms, is incomplete for
practical purposes.

When using an SRI structure to interpret a ground universe instance of an atom (a base
element), the universe elements used to instantiate the variables in the atom are, in the
interpretation process, replaced by their interpretation values (domain elements). The
ground domain instance of the atom thus formed (an extended-base element), has the same
interpretation values as the original base element. The extended-base element represents
the base element in terms of interpretation. The instantiation and interpretation process can
therefore be short circuited by directly instantiating variables in the atom with domain
elements, and interpreting the resultant extended-base element using the
extended-base-relation. From the point of view of a semantic guidance system, if an atom
has a ground domain instance that is interpreted as a given truth value, then the atom has at
least one (possibly infinitely many) ground universe instances that are interpreted as that
truth value. This approach to semantic checking is called the domain based approach. The
domain based approach has been used in existing semantic guidance systems [Kowalski &
Hayes, 1969; Reiter, 1973; Wang, 1985], and could certainly be used in other semantic
guidance systems which currently take other approaches, e.g., the False Substitution List
system [Sandford, 1980].

Page 94 Designations

The domain based approach has two advantages over instantiating with universe elements.
(i) The process is finite whenever the domain is finite. (ii) Some computation is saved. The
approach is sound provided that every domain element is the interpretation value of at least
one universe element (an important proviso not made explicit in other systems that use this
approach).

Single Level Expansion
If the domain in use is finite, the domain based approach solves the undecidability problem
in the 'generate ground instance and interpret' approach to semantic checking. However,
the effort of searching for a ground domain instance that is interpreted as the required truth
value is still, as Kowalski and Hayes [1969, p. 97] noted, "likely to be prohibitive". It is,
however, possible to refine the domain based approach to avoid the interpretation process.
Rather than generating ground domain instances of an atom and then interpreting them, the
inverses of the predicate- and functor-relations are used to expand first the required
interpretation value and then recursively the resulting d-expressions' arguments, to find the
required domain instance of the atom. This process is described below.

Definition 4.4 - Single level expansion
A single level expansion of a truth value/domain element is a d-expression which is related
to the truth value/domain element by the predicate-relation/functor-relation of the SRI
structure in use.

Definition 4.5 - The SLE Process
The single level expansion (SLE) process is a process that converts truth values/domain
elements to extended-base/extended-universe elements by :
(i) single level expanding the truth value/domain element to a d-expression.
(ii) applying the SLE process to the arguments of the d-expression.

Given an initial truth value/domain element, applying the SLE process, until no domain
elements remain, generates base/universe elements (possibly infinitely many) which are
interpreted as the truth value/domain element. More usefully, the SLE process may be
restricted to determine if an atom has a ground domain instance that is interpreted as a
given truth value. In each step of the restricted SLE process, either (i) the domain element
under consideration is identical to the corresponding subexpression in the atom (the
subexpression is the same domain element), in which case that branch of the expansion is
stopped, (ii) the domain element under consideration single level expands to a
d-expression whose principal symbol and arity match those of the corresponding
subexpression in the atom, or (iii) the subexpression in the atom is an uninstantiated
variable, in which case the variable is instantiated to the domain element under

Designations Page 95

consideration, and that branch of the expansion is stopped. Option (ii) may have several
possibilities, each of which needs to be considered. If all branches of the process stop, then
the resultant ground domain instance of the atom is interpreted as the given truth value.
The ground domain instance represents ground universe instances of the atom, that are also
interpreted as the given truth value.

This approach to finding appropriate ground domain instance of atoms is more direct than
generating ground instances. The SLE process allows SRI structures to satisfy the third
criterion for measuring the quality of interpretive structures. That is, they can provide an
effective semantic checking mechanism.

4.2.3. Specifying SRI Structures

In [Sutcliffe, 1987] a truth value semantic guidance system, employing an SRI structure, is
presented. Experience using this system highlighted the difficulties of supplying the
required truth value semantic information correctly. It is difficult to ensure that all the
necessary mappings have been supplied and stored. Once stored, the large number of
mappings makes the result difficult to comprehend. As a result, it is also difficult to make
consistent modifications to such a truth value interpretation. Attempts to expand this
system to take advantage of sort value information, which can be more complex than truth
value information, further indicated the difficulties of supplying semantic information
correctly. These difficulties would be exacerbated when storing semantic information in
which a d-expression may be related to multiple values. These experiences are not unique -
"... to design a suitable example for helping prove a hard theorem is not an easy matter."
[Wang, 1985, p. 1201]. Thus, SRI structures do not satisfy the fourth criterion for
measuring the quality of interpretive structures. That is, the specification of semantic
information is not an acceptably easy task from a user's point of view.

4.2.4. SRI Structures and Ordered Domains

SRI structures, with unordered domains, are suitable for storing both truth value and sort
value information. However, the inherent hierarchical nature of sort value information has
suggested the use of ordered domains in SRI structures. This modification allows many
functor-relation elements to be stored implicitly rather than explicitly. A d-function that is
explicitly related to a given domain element, is also implicitly related to all domain
elements higher in the order.

Ordering is imposed on a domain by structuring the domain in some fashion. Various
structures have been used to date, e.g., unconstrained partial ordering [Walther, 1983;

Page 96 Designations

Schmidt-Schauss, 1985], tree structures [Walther, 1985] and boolean lattices
[Cohn, 1987]. It is desirable that the structuring imposed on a domain should support two
important features, as follows. (i) If U1, ... ,Un are the sets of universe elements that are
interpreted as the domain elements d1, ... ,dn respectively, then it must be possible to have
a domain element d∪ such that the union of U1, ... ,Un is the set of universe elements that
are interpreted as d∪. (ii) Similarly, it must be possible to have a domain element d∩ such
that the intersection of U1, ... ,Un is the set of universe elements that are interpreted as d∩.
If these two features are supported, then it is possible to express compactly that a
universe/base element is related to multiple domain elements/truth values and that a
universe/base element is not related to a given domain element/truth value
[Cohn, 1987, p. 119].

The use of ordered domains in SRI structures has two advantages. (i) It allows the natural
structure of sort value information to be encoded into the interpretation. (ii) It is more
space efficient than using an unordered domain. Designations use ordered domains and
comply with the union and intersection requirements.

4.3. The Design of Designations

Designations10 are SRI structures, designed to retain the expressiveness and semantic
checking capability (via the SLE process), but using ordered domains to make them more
space efficient and easier to specify. Designations are thus a new form of SRI structure
that improve upon existing SRI structures. The important new feature in designations is a
relation between domain elements. This feature enables the notion of property inheritance
to be utilised.

Designations are designed to be extremely flexible interpretive structures, which can be
used to store a large range of types of semantic information. To this end designations make
no distinction between d-functions and d-predicates, nor between domain elements and
truth values. This generality may be undesirable for some applications, e.g., it violates the
standard truth value semantics of 1st order languages. Where necessary, restrictions are
imposed so that the semantic information stored in a designation conforms to necessary
restrictions on the nature of that semantic information. A result of this homogeneity is that
the basic semantic information supplied by a designation differs from that described in
section 3.1.

10 The name "designation" has been adopted from Newell and Simon's Turing award lecture [Newell &

Simon, 1976, p 116].

Designations Page 97

Definition 4.6 - Basic semantic information in designations
A designation of a 1st order language is an interpretive structure that supplies :
• A domain, the elements of which are constants.
• A unibase-relation from the unibase to the domain.

A corner stone of SRI structures is the use of relations from d-expressions to truth values
and domain elements. It has been noted previously that it is the fine grained nature of these
relations that causes SRI structures to be space inefficient and hard to specify. To solve
these problems, designations represent the individual relationships in a new way. The
approach taken extrapolates from a feature inherent in the semantic relation approach, that
multiple d-expressions can relate to the same truth value/domain element. In particular,
d-functions that relate to the same domain element form an equivalence class in terms of
interpretation. They are interpretationally equivalent when they appear in arguments of
other d-expressions. In designations this feature is extended to form equivalence classes of
domain elements that are interpretationally equivalent when they appear as arguments of
d-expressions. The equivalence classes are associated with individual argument positions
of principal symbols, so that a domain element may belong to different equivalence classes
in different situations. This association with argument positions provides more finely
grained equivalence classes than those of d-functions, which are global to the interpretive
structure.

Designations' equivalence classes of domain elements are represented by relating all the
domain elements in a class to a single 'class' domain element. Domain elements that
belong to multiple equivalence classes are related to multiple 'class' domain elements. Any
d-expression with a given principal symbol and with equivalence class elements in
appropriate argument positions (i.e., positions associated with the corresponding
equivalence classes), is not explicitly related to a domain element. Rather, the d-expression
formed by replacing the equivalence class elements by their 'class' domain elements, is
related to the desired domain element. The former d-expressions inherit their image in the
relation from the latter. Equivalence classes of 'class' domain elements can also be formed,
with the inheritance of images being transitive. In this manner designations can be
significantly more space efficient than standard SRI structures.

If the feature of relating domain elements to multiple domain elements is used in an
unrestricted fashion then semantic inconsistencies can arise, as follows. Two domain
elements are semantically disjoint if neither is in the 'class' of the other and there is no
other domain element which is in both their 'classes'. If an argument of a unibase element
is interpreted as multiple domain elements, then the unibase element may be interpreted as
multiple, semantically disjoint, domain elements. This is undesirable, as it contradicts the

Page 98 Designations

nature of functions and predicates. This semantic inconsistency also arises if d-expressions
are related to multiple, semantically disjoint, domain elements. To avoid these problems,
restrictions are imposed to ensure that all d-expressions relate to at most one domain
element, i.e., their relationship to the domain is a partial function. As part of these
restrictions, property inheritance in designations is constrained so that a relation element
may be defined only if the relationship cannot be inherited, and vice versa. That is, defined
and inherited relationships are mutually exclusive. This is different from standard property
inheritance in which a property may be defined even if it can be inherited, and the possible
inheritance is over-ridden.

4.4. The Formal Definition of Designations

Definition 4.7 - Designations
A designation of a 1st order language is an interpretive structure that consists of :
• A finite domain, the elements of which are of arity 0.
• An expression-relation which

(i) maps d-expressions to domain elements (i.e. the expression-relation is a partial
function in this case);

(ii) relates, in an acyclic manner, domain elements to domain elements.
Example
A designation of the 1st order language L described in section 1.4, consisting of
domain D and expression-relation R, is :
 D = {mr_s, mrs_s, person, FALSE, TRUE}
 R = {homer R∅ mr_s,heart_ok(person) R∅ TRUE,
 spouse_of(mr_s) R∅ mrs_s,lungs_ok(mr_s) R∅ TRUE,
 spouse_of(mrs_s) R∅ mr_s,lungs_ok(mrs_s) R∅ FALSE,
 mr_s R∅ person,alive(person) R∅ TRUE,
 mrs_s R∅ person,person(person) R∅ TRUE}

An expression-relation determines a partial order on the extended-unibase of the 1st order
language extended by the domain.

Definition 4.8 - The partial order <For a designation with expression-relation R, the
partial order <R is the transitive closure of the immediate ordering <'R between
d-expressions :
• E1 <'R E2 if E2 ∈ expression-relation(E1)
• r(t1, ... ,tn) <'R r(s1, ... ,sn) if there exists j such that tj <'R sj, and for all i ≠ j si = ti.

Designations Page 99

The partial order is used to determine that one d-expression is larger or smaller than
another.

Example
In the example designation above :
 alive(spouse_of(homer)) <'R
 alive(spouse_of(mr_s)) <'R
 alive(mrs_s) <'R
 alive(person) <'R
 TRUE
Thus alive(spouse_of(homer)) < R TRUE.

A domain element is maximal if there is no domain element larger than it and minimal if
there is no domain element smaller than it. Similarly, an extended-unibase element is
maximal if all the domain elements in it are maximal and minimal if all the domain
elements in it are minimal.

Example
In the designation above :
 mr_s is a minimal domain element,
 person is a maximal domain element,
 alive(spouse_of(mr_s)) is a minimal extended-unibase element, and
 alive(spouse_of(person)) is a maximal extended-unibase element.

Two properties of an expression-relation are also defined so that appropriate restrictions on
the nature of a designation can be enforced.

Definition 4.9 - Redundancy
An expression-relation R is non-redundant if for every extended-unibase element E1 there
exists at most one d-expression E2 such that E1 ≤R E2 and expression-relation(E2) is
defined.

Definition 4.10 - Consistency
A redundant expression-relation R is consistent if for each extended-unibase element E1
and every d-expression E2 such that E1 ≤R E2, every E2 is mapped to the same domain
element.

A non-redundant expression-relation is always consistent and an inconsistent
expression-relation is necessarily redundant. A redundant but consistent
expression-relation wastes space and computational effort. An inconsistent
expression-relation leads to semantic inconsistencies. Consistency, in conjunction with the

Page 100 Designations

mapping (as opposed to the more general relation between domain elements) of
d-expressions to the domain, ensures that no unibase element is interpreted as multiple,
semantically disjoint, domain elements. Henceforth, unless otherwise noted, all
expression-relations are non-redundant.

A designation with a non-redundant expression-relation supplies semantic information. As
the basic semantic information supplied by designations is different from that supplied by
standard SRI structures, interpretation using designations is equally different.

Definition 4.11 - Interpretation using designations
For a designation consisting of domain D and expression-relation R, the semantic
information supplied is :
• The domain of the designation.
• A unibase-relation, which for a unibase-element U produces all possible interpretation

values d: U <R d, d ∈ D.
The unibase-relation extends naturally to an extended-unibase-relation, for the language
being considered extended by the domain of the designation :
• The extended-unibase-relation, which for an extended-unibase-element E produces all

the interpretation values d: E <R d, d ∈ D.

In a designation with a non-redundant expression-relation, a unibase element may be
interpreted as multiple domain elements. The set of interpretation values contains totally
ordered sequences of domain elements. Some domain elements may appear in more than
one sequence. If the designation is specified in an appropriate manner (see section 4.7.2), it
is semantically acceptable for a unibase element to be related to multiple domain elements
in this manner. If the expression-relation is inconsistent, however, the total ordering may
be lost as a result of an argument of a unibase element being interpreted as multiple,
semantically disjoint, domain elements.

4.4.1. Expressiveness and Space Efficiency

As designations are SRI structures, they inherit the representational adequacy of such
interpretive structures. Designations are more space efficient than standard SRI structures,
due to the use of property inheritance. Although the domain of a designation is typically
larger than an unordered domain, the typical number of relation elements that have to be
stored is significantly smaller.

Designations Page 101

The union and intersection properties required of interpretive structures with ordered
domains, described in section 4.2.4, hold for designations. Here the requirement is
extended to be in terms of unibase elements, rather than universe elements.

Theorem 4.12 - The Union and Intersection Properties for Designations
For a given designation, let U1, ... ,Un be the sets of unibase elements that are interpreted
as the domain elements d1, ... ,dn respectively. Then it is possible to have a domain
element d∪ such that the the union of U1, ... ,Un is the set of unibase elements that are
interpreted as d∪. Similarly, it is possible to have a domain element d∩ such that the
intersection of U1, ... ,Un is the set of unibase elements that are interpreted as d∩.

• Add d∪ as a new domain element. Define expression-relation to relate each of d1, ... ,dn

to d∪. The set of unibase elements interpreted as d∪ is the union of U1, ... ,Un. As d∪
relates to no domain elements, expression-relation remains acyclic. As no
expression-relations for d-expressions containing d∪ are defined, non-redundancy is
maintained.

• For a unibase element that is interpreted as at least one domain element, there is a
single smallest domain element that is an interpretation value of the unibase element.
The unibase element can only be interpreted as more than one domain element by
virtue of that smallest domain element being smaller than other domain elements. Thus
if the intersection of U1, ... ,Un is non-empty, there exists a smallest domain element
d∩, smaller than each of d1, ... ,dn, that is the interpretation value of the intersection of
U1, ... ,Un.

QED

4.5. The Interpretation Process using Designations

Definition 4.11 does not immediately indicate that interpretation using designations is a
recursive descent process. An alternative definition of the unibase-relation, that makes this
aspect more clear and facilitates algorithmic implementation, is as follows. Here
expression-relation+ denotes one or more applications of expression-relation.
• A unibase-relation, which for a unibase-element p(e1, ... ,en) produces all possible

interpretation values expression-relation+(p(d1, ... ,dn)), where each di is an
interpretation value of ei. Note that because the expression-relation is non-redundant,
there will be at most one combination of dis such that expression-relation(p(d1, ... ,dn))
is defined.

This definition of the unibase-relation also extends naturally to an
extended-unibase-relation, exactly the same as the unibase-relation. If a unibase element
has been partially interpreted using the unibase-relation, then the interpretation process

Page 102 Designations

may be completed using the extended-unibase-relation, with the same result as if the
unibase-relation itself had been used.

Example
An example of interpreting a unibase element using the designation in section 4.4,
but following this definition, is as follows. This process should be compared with the
example illustrating the partial order <R.
To interpret alive(spouse_of(homer)),
 Interpret spouse_of(homer). To do this,
 Interpret homer.
 homer R∅ mr_s, and mr_s R∅ person, so

 homer is interpreted as mr_s and person.
 spouse_of(mr_s)) R∅ mrs_s, and mrs_s R∅ person, so

 spouse_of(homer) is interpreted as mrs_s and person.
 alive(person) R∅ TRUE, so

alive(spouse_of(homer)) is interpreted as TRUE.
Note that R, being non-redundant, is not defined for spouse_of(person) or
alive(mrs_s).

The Domain Based Approach and Single Level Expansion
The domain based approach to semantic checking generalises naturally to the designation
scenario. Here the aim is to determine if an expression has a ground universe instance that
is interpreted as a given domain element. When using a designation to interpret a ground
universe instance of an expression (a unibase element), the universe elements used to
instantiate the variables in the expression are recursively replaced by one or more of their
interpretation values (domain elements), to form ground domain instances of the
expression (extended-unibase elements). The replacement has two phases. Firstly each
universe element is replaced by its smallest interpretation value (a domain element) and
then, in the process of relating the encompassing d-expression to its smallest interpretation
value, the domain element may be replaced by a larger domain element. The
extended-unibase elements thus formed all have the same interpretation values as the
original unibase element. The extended-unibase elements represent the unibase element in
terms of interpretation. The instantiation and interpretation process can be short circuited
by directly instantiating variables in the expression with domain elements, and interpreting
the resultant extended-unibase element using the extended-unibase-relation. From the
point of view of a semantic guidance system, if an expression has a ground domain
instance that is interpreted as a given domain element, then the expression has at least one
(possibly infinitely many) ground universe instances that are interpreted as that domain
element. Soundness is again predicated on every domain element being the interpretation
value of at least one universe element.

Designations Page 103

The restricted SLE process for semantic checking can also be transferred to the
designation scenario. Here the SLE process is restricted so as to determine if an expression
has a ground domain instance that is interpreted as a given domain element. To deal with
the totally ordered sequences of interpretation values, the restricted SLE process is slightly
modified. In each step, either (i) the domain element under consideration is identical to the
corresponding subexpression in the unibase element (the subexpression is the same
domain element), in which case that branch of the expansion is stopped, (ii) the
non-minimal domain element under consideration single level expands to another smaller
domain element, (iii) the domain element under consideration expands to a d-expression
whose principal symbol and arity match those of the corresponding subexpression in the
original expression, or (iv) the domain element under consideration is minimal and the
subexpression in the original expression is an uninstantiated variable, in which case the
variable is instantiated to the domain element and that branch of the expansion is stopped.
Options (ii) and (iii) may have several possibilities, each of which needs to be considered.
If each branch of the process stops, then the resultant ground domain instance of the
expression is interpreted as the given domain element. The ground domain instance
represents ground universe instances of the expression, that are also interpreted as the
given domain element.

Restrictions (ii) and (iv) of this restricted SLE process prevent a variable from being
instantiated to a non-minimal domain element. This restriction is necessary only if the
variable occurs more than once in the expression. If a variable that occurs more than once
is instantiated to a non-minimal domain element, the instantiation may prevent a match
between another occurrence of the variable (now instantiated to the non-minimal domain
element) and a smaller domain element. For this reason non-minimal domain elements
may not generally be used to instantiate variables. (Walther [1983, p. 886] handles this
situation by the use of a "weakening" rule, which is also discussed by Cohn [1987, p. 135],
but is there unnamed.)

4.6. Using Designations

4.6.1 Implementing Interpretations

Designations provide an extremely flexible interpretive structure in which to store
semantic information. As previously noted, the nature of designations may be restricted so
that the stored semantic information conforms to predetermined standards. This is the case
when designations are used for truth value or sort value interpretations.

Page 104 Designations

Truth Value Interpretations
A designation with domain D and expression-relation R may be used for truth value
interpretation :
• TRUE, FALSE ∈ D
• R(P) ∈ {TRUE,FALSE} if P is a d-predicate
• R(F) ∉ {TRUE,FALSE} if F is a d-function
• R(r(d1, ... ,dn)) is undefined if any di ∈ {TRUE,FALSE}

• R must be defined so that every unibase element is interpreted as exactly one domain
element.

Sort Value Interpretation
A designation with domain D and expression-relation R may be used for polymorphic sort
value interpretation :
• TRUE, FALSE, UNKNOWN_TRUTH_VALUE ∈ D
• R(P) ∈ {TRUE,FALSE,UNKNOWN_TRUTH_VALUE} or is undefined, if P is a

d-predicate
• R(F) ∉ {TRUE,FALSE,UNKNOWN_TRUTH_VALUE} if F is a d-function
• R(r(d1, ... ,dn)) is undefined if any di ∈ {TRUE, FALSE,

UNKNOWN_TRUTH_VALUE}

4.6.2. Semantic Guidance

Given a designation, the SLE process may be used for any semantic checking required.
Thus almost all of the semantic guidance systems described in chapter 3 can use
designations.

The two semantic guidance systems that cannot use designations directly are the centre
chain instance and compile time systems. This is because the SLE process does not
immediately generate ground universe instances of atoms, but rather indicates their
existence. There are two possible solutions to this problem (but both complicate
implementation), as follows. (i) Modify the SLE process so that domain elements, which
are in a position to instantiate variables, are expanded to universe elements before
instantiation takes place. All possible expansions to universe elements would have to be
considered. (ii) Permit the instantiation of variables with domain elements and modify the
unification algorithm used by the host deduction system so that the domain elements are
further expanded in unification [Sutcliffe, 1987]. In the latter approach special care must
be taken to ensure that common occurrences of domain elements, which arise from the
instantiation of a variable that has multiple occurrences in a clause, are expanded
equivalently in unification. Expanding common occurrences of a domain element

Designations Page 105

differently corresponds to one or more equality deduction operations, which must be
justified later. Such variations may prove to be useful, similar to relation-matching [Manna
& Waldinger, 1986] and the loose matching ideas of Bledsoe [1986]. This final
complication does not arise if no variables have multiple occurrences, e.g., if clauses are
linearised. As domain elements may represent infinite universe elements, a stronger form
of 1st order reasoning is implemented by instantiating variables with domain elements.

4.6.3. Theory Resolution

The form of theory resolution described in section 3.8 may be implemented using a
designation to express the theory. To obtain appropriate ground universe instances of the
literals being theory resolved upon, the SLE process has to be modified as described in
section 4.6.2. The alternative of instantiating variables with domain elements and further
expanding in unification can also be adopted in theory resolution. Again both approaches
lead to complications in implementation. However, in theory resolution there is a third
option - (iii) Consider the domain elements to be functors of the 1st order language in use
and allow them to remain in theory resolvants. This approach has been adopted in other
theory resolution based systems, e.g., CLP(R) [Jaffar & Lassez, 1987], in which new
numeric functors are introduced as required. Literals containing domain elements (from
the instantiation of variables in literals that have previously been theory resolved upon)
can only be resolved upon in a normal manner if they match with a variable in unification.
Otherwise such literals can only be theory resolved upon.

4.7. Building Designations

The correct specification and maintenance of semantic information stored in SRI structures
has been noted to be a hard task. The smaller size of designations makes completed
designations easier to comprehend and consistently modify, but the difficulty of ensuring
that all the necessary relation elements have been supplied and stored, remains. In this
research, this difficulty has been overcome by providing the user with a mechanical
specification interface. This interface examines the 1st order language which is to be
interpreted, and queries the user for semantic information as required. The consideration of
this pragmatic aspect of semantic guidance is useful.

When building a designation for the semantic guidance of a deduction from an input set, it
is the language implicit in the input set that needs to be interpreted. If the designation is
built for the implicit language then each domain element is the interpretation value of
elements of the Herbrand universe or Herbrand base of the clauses. A designation based on
the implicit language is usually appropriate for semantic guidance.

Page 106 Designations

Algorithm 4.13, below, builds a designation with domain D and expression-relation R, for
a given 1st order language. The general approach of the algorithm is to generate maximal
d-expressions (line M4) and to obtain the images for such d-expressions (line B9). It is
important that the d-expressions generated at line M4 remain maximal, even in the
completed designation. This permits the expression-relation to be defined for such
d-expressions without fear of a larger d-expression coming into existence. If the
expression-relation is defined for a given d-expression and it is subsequently also defined
for a larger d-expression, then the designation will be redundant. To ensure that the
d-expressions generated remain maximal, the expression-relation is defined for new
domain elements immediately after their addition to the domain (lines B12 to B14). This
makes it impossible for non-maximal d-expressions to be generated at line M4, at any
iteration of the repeat loop. The expression-relation is also not defined for d-expressions
that can inherit their expression-relationships (line B3). The implementation of
GetValuesFromUser, called at line B9, must ensure that (i) d-expressions map to a
single value and (ii) the expression-relation image values obtained for a domain element
do not cause the expression-relation to be cyclic.

The expression-relation may be undefined for a given d-expression. A d-expression may
also be expanded to a set of smaller d-expressions so that the expression-relation can be
defined for these smaller d-expressions. The choice of smaller d-expressions is such that
every d-expression that would have inherited its expression-relationship from the first
larger d-expression, now is one of, or inherits from one of, the smaller d-expressions. To
implement the expansion of a d-expression into a set of smaller d-expressions, the larger
d-expression is mapped to the special value expand(p1, ... ,pn). The arguments
p1, ... ,pn are integers which indicate which arguments of the larger d-expression
should be replaced by smaller domain elements. The arguments in the specified positions
are single level expanded in all possible ways (line C3), to form the set of smaller
d-expressions. The expression-relation is then defined for these smaller d-expressions
(line C3). The expression-relation is not defined for the larger d-expression and hence
none of the smaller d-expressions is in danger of inheriting another expression-relationship
from it. Whenever smaller d-expressions are generated by the expansion process, it is
possible that one or more of them may inherit an expression-relationship. The
expression-relation is not redefined for such d-expressions (line B3).

Designations Page 107

Algorithm 4.13 - Building Designations
M1 Procedure Main
M2 D:={}
M3 Repeat
M4 Build({r(e1, ... ,en) | r is a functor or predicate

symbol and each ei is a maximal domain element})
M5 Until no new domain elements are found
M6 Remove expression-relation elements to 'expand' values

B1 Procedure Build(Instances) :
B2 For each r(e1, ... ,en) ∈ Instances do
B3 If there is no d-expression larger than

r(e1, ... ,en) for which R is defined then
B4 If R(r(e1, ... ,en)) is known then
B5 CheckExpand(r(e1, ... ,en),R(r(e1, ... ,en)))
B6 Else If there exists a d-expression smaller than

r(e1, ... ,en) for which either (i) R is defined or (ii)
there exists a d-expression larger than it for which R
is defined then

B7
 Store(r(e1, ... ,en) R∅ expand(GetPositionsFromUser))

B8 CheckExpand(r(e1, ... ,en),
 R(r(e1, ... ,en)))

B9 Else V:=GetValuesFromUser(r(e1, ... ,en))
B10 For each d ∈ V
B11 Store(r(e1, ... ,en) R∅ d)

B12 If d is a new domain element then
B13 D := D ∪ {d}
B14 Build({d})
B15 Else CheckExpand(r(e1, ... ,en),d)

C1 Procedure CheckExpand(r(e1, ... ,en),Mapping)
C2 If Mapping = expand(Expansion_positions) then
C3 Build({r(d1, ... ,dn) | if i ∈ Expansion_positions

and ei is not minimal then di is a single level expansion
of ei, else di is ei})

Notes
• GetPositionsFromUser gets a non-empty set of integers from the user.
• GetValuesFromUser gets a set (possibly empty) of domain elements from the user.

Page 108 Designations

There are two situations in which a d-expression may be expanded. Firstly, the user may
decide to do this (line B9). Secondly, expansion may be necessary to maintain the
non-redundancy of the designation. The latter situation arises when there exists a
d-expression, smaller than the current target d-expression (selected at line B2), which
already has or inherits an expression-relationship (line B6). If such a smaller d-expression
exists it is necessary to expand the target d-expression (line B7) to prevent the smaller
d-expression having or inheriting multiple expression-relationships. In this situation the
GetPositionsFromUser routine prompts the user for argument positions to be
expanded. GetPositionsFromUser uses the target d-expression to suggest to the user
which argument positions need to be single level expanded. To do this, all d-expressions
that are smaller than the target d-expression, and which have or inherit an
expression-relationship, are examined. If the Nth argument in any such smaller
d-expression is smaller than the corresponding argument in the target d-expression, then
the Nth position is suggested for expansion. The rationale for this recommendation is that
if none of those positions are single level expanded, only d-expressions that must be
further expanded will be produced.

In each iteration of the repeat loop new domain elements, smaller than existing ones, may
be added to the domain. Depending on the point at which they are added it is possible for
d-expressions, that have such domain elements as arguments, to neither have nor inherit an
expression-relationship. Thus the repeat loop continues until no new domain elements are
added (line M5). At each iteration of the repeat loop it is necessary to restart the
examination of d-expressions from maximal ones so that existing expression-relation
elements, in particular those for which the image value is expand(...), are accounted
for.

Example
A trace of algorithm 4.13, building a designation of the 1st order language L[S]
described in section 1.4.1, is listed in appendix 1, section A1.1. The line numbers
from algorithm 4.13 are shown and the trace is indented to the recursion level.

4.7.1. Non-redundancy, Soundness and Completeness

It is important that the designations built using algorithm 4.13 should be suitable for use in
a semantic guidance system, using the SLE process for semantic checking. The properties
required are as follows. (i) The designation must be non-redundant. (ii) Every domain
element must be an interpretation value of at least one universe element. (iii) No unibase
element should be precluded from having interpretation values. These properties are
assured by the following theorems.

Designations Page 109

Theorem 4.14 - Building Non-Redundant Designations
Designations built by algorithm 4.13 are non-redundant.

The proof is covered in the discussion above, the critical points being :
• All d-expressions generated at line M4 remain maximal.
• The expression-relation is not defined for d-expressions that already have or inherit an

expression-relationship (line B3).
• Target d-expressions are broken down whenever a smaller d-expression already has or

inherits an expression-relationship (line B6).
QED

Theorem 4.15 - Building Sound DesignationsEvery element of a domain built by
algorithm 4.13 is an interpretation value of at least one unibase element.

The proof is by induction on the size of the domain. If the domain contains the single
element d, it must have been obtained at line B9 as the image of a 0 arity functor r. Then
d is an interpretation value of r. This establishes a base case. Assume that if the size of the
domain is less than n then every domain element is the interpretation value at least one
unibase element. Then if the size of the domain is n, let c be the latest element added to
the domain. The element c could have been obtained in one of three ways. (i) c was
obtained as in the base case and the same argument applies. (ii) c was obtained at line B9
as the image of a d-expression r(e1, ... ,en). Each ei is an element of the domain
as it existed at the time of the creation of r(e1, ... ,en) at line M4. At that time the
size of the domain was less than n. So by the induction hypothesis each ei is an
interpretation value at least one universe element, say ti. Then c is an interpretation value
of r(t1, ... ,tn). (iii) c was obtained at line B9 as an image element of a domain
element d. The element d was added to the domain at line B13. At the time when d was
added to the domain, the size of the domain was less than n. By the induction hypothesis d
is an interpretation value of at least one universe element, say t. Then c is an
interpretation value of t. QED

Theorem 4.16 - Building Complete Designations
No unibase element is precluded from having interpretation values in a designation built
using algorithm 4.13.

To show that no unibase element is precluded from having interpretation values, it is
necessary to show that for every unibase element, a d-expression equal to or larger than it
is at some point an element of the argument to Build. The d-expression represents the

Page 110 Designations

unibase element in terms of interpretation. The proof is by induction on the depth of
principal symbol nesting in unibase elements.

At the first iteration of the repeat loop, constants and propositional symbols, which are
unibase elements (and also d-expressions) of depth 0, are elements of the argument to
Build. This establishes a base case. Assume that for unibase elements of depth less than
n, d-expressions equal to or larger than them have have been elements of the argument to
Build. Let r(t1, ... ,tn) be a unibase element of depth n. Each ti is of depth less
than n, so by the induction hypothesis a d-expression equal to or larger than each ti has
been an element of the argument to Build. Let d1, ... ,dn be the maximal
interpretation values of the ti, if they exist. If any di does not exist then
r(t1, ... ,tn) is necessarily not interpreted and the theorem is complete. Otherwise,
in the iteration of the repeat loop after the last di is added to the domain, the d-expression
r(d1, ... ,dn) is an element of the argument to Build. The d-expression
r(d1, ... ,dn) is equal to or larger than r(t1, ... ,tn). Thus for every unibase
element, a d-expression equal to or larger than it is at some point an element of the
argument to Build. Therefore no unibase element is precluded from having interpretation
values in a designation built using algorithm 4.13. QED

4.7.2. Pragmatics of building designations

The specification of SRI structures has been seen to be a complex and for the user,
tiresome task. The interactive algorithm given above significantly simplifies the task,
absolving the user of the responsibility of keeping track of domain elements and
expression-relation elements. Experience using an implementation of the algorithm has
lead to some refinements which further simplify the task of building designations.

General Issues
There are a few general observations relevant to the task of building a designation, as
follows.
1. Mapping a d-expression to a non-minimal domain element, i.e., one that represents an

equivalence class, may prevent its effective use. It will probably be necessary to
define or inherit expression-relationships for d-expressions containing such a
non-minimal domain element. (These expression-relationships are required for
interpreting unibase elements that contain subexpressions whose smallest
interpretation value is the non-minimal domain element.) Then the
expression-relationships for smaller d-expressions, formed by replacing the
non-minimal domain element by smaller domain elements, must be inherited.

Designations Page 111

Therefore d-expressions that map to the smaller domain elements could map directly
to the non-minimal domain element and have the same effect.

2. In truth value and sort value interpretations, the range of the expression-relation for
d-predicates is disjoint from that for d-functions. Further, the expression-relation is
undefined for d-expressions with truth value arguments. It is therefore possible to
phase the building of a designation for truth value or sort value interpretation. The first
phase defines the expression-relation for d-functions, at the same time creating
non-truth value domain elements. The second phase defines the expression-relation for
d-predicates, creating truth value domain elements. This phased building process
allows the user to deal with the two issues separately.

3. It has been noted that algorithm 4.13 builds non-redundant expression-relations, hence
preventing a unibase element from being interpreted as multiple, semantically disjoint,
domain elements. This does not, however, prevent the user from relating a domain
element to multiple domain elements which are unrelated in the 'real world' semantics
modelled by the designation. If this is done then unibase elements that are interpreted
as the first domain element are also interpreted as those multiple, semantically
unrelated, domain elements. This is undesirable. It is the user's responsibility to ensure
that a domain element relates only to other domain elements which, in a semantic
sense, encompass it.

Standard Domain Elements and Automatic Expression-relation Definition
In the building of designations for truth value or sort value interpretation, several domain
elements regularly arise, either out of necessity or convenience. These standard domain
elements have standard uses. It is possible to tune the designation building process to take
this into account. From the users point of view, a particularly useful modification is the
possibility of automatically defining the expression-relation. Automatic definition is also
possible in cases besides those relating to standard domain elements.

Three standard domain elements are the truth values TRUE, FALSE and
UNKNOWN_TRUTH_VALUE, typically mapped to by d-predicates.
UNKNOWN_TRUTH_VALUE is a truth value that means one of TRUE or FALSE (but
not both). UNKNOWN_TRUTH_VALUE should not be confused with the equivalence
class of truth values, which would be represented by a 'class' domain element, such as
TRUTH_VALUES, to which all of TRUE, FALSE and UNKNOWN_TRUTH_VALUE
would be related. In both truth value and sort value interpretations, the expression-relation
is not defined for d-expressions which have any of these domain elements as arguments.
Such domain elements can therefore be ignored when building the maximal d-expressions
in line M4 of algorithm 4.13.

Page 112 Designations

As well as the UNKNOWN_TRUTH_VALUE, it is sometimes necessary to define an
UNKNOWN_DOMAIN_ELEMENT that is mapped to by d-functions. The
UNKNOWN_DOMAIN_ELEMENT represents a domain element whose exact identity is
not known. The definition of an expression-relation may be automated for d-expressions
which have the UNKNOWN_DOMAIN_ELEMENT as an argument. Any d-functions
containing UNKNOWN_DOMAIN_ELEMENT map to
UNKNOWN_DOMAIN_ELEMENT and d-predicates containing
UNKNOWN_DOMAIN_ELEMENT map to UNKNOWN_TRUTH_VALUE.

Equality is often used in the 1st order formulation of problems. The definition of an
expression-relation for equality d-predicates may be automated, under the assumption that
all universe elements that are interpreted as the same minimal domain element are equal.
To achieve this (i) equality d-predicates with the same non-minimal domain element in
both argument positions are automatically mapped to the value expand(1,2). This
causes the domain-element to expand to smaller, and eventually minimal, domain
elements, (ii) equality d-predicates with the same minimal domain element in both
argument positions are automatically mapped to TRUE, (iii) all other equality d-predicates
are automatically mapped to FALSE.

As indicated in section 3.1, sort-base elements are interpreted as one of TRUE or FALSE.
The definition of an expression-relation may be automated for sort-d-predicates. If the
predicate symbol and argument of a sort-d-predicate are the same domain element, then
the sort-d-predicate is mapped to TRUE. If the the predicate symbol is smaller than the
argument, or there is a domain element which is smaller than both the predicate symbol
and the argument, then the sort-d-predicate is mapped to expand(1). All other
sort-d-predicates are mapped to FALSE. Note that the case where the argument is smaller
than the predicate symbol does not arise.

In some interpretive structures, e.g., the truth value interpretations defined by
Wang [1985], a standard domain element is the 'meaningless' domain element/truth value
("unknown" in [Wang, 1985, p. 1203]). Such a domain element/truth value is used as the
image of d-expressions which are semantically meaningless. It is necessary to have such a
domain element in some interpretive structures because the universe- and base-relations
have to be complete functions. In designations there is no need for such a domain
element/truth value. Rather the expression-relation is simply undefined for meaningless
d-expressions. If such a domain element were to be used, then the definition of the
expression-relation could be automated for d-expressions that have the 'meaningless' value
as an argument. Such d-expressions would be automatically be mapped to the
'meaningless' domain element.

Designations Page 113

Rules of Thumb
This last section relates some handy rules of thumb which have been found to be effective
when using algorithm 4.13.
• If a d-expression requires multiple argument positions to be expanded, then the

positions should be expanded one at a time. If all the positions are expanded together,
then all the d-expressions formed by using all combinations of expanded arguments
must be considered. If the argument positions are expanded one at a time, this gives the
opportunity to map larger d-expressions to domain elements.

• To obtain the maximum effect from a semantic guidance system, the designation being
used should store as much semantic information as possible. This is achieved by
specifying finely grained equivalence classes and by defining the expression-relation
for smaller rather than larger d-expressions. This leads to a larger designation.

• In a truth value deletion system, a model that maximises the number of TRUE ground
instances of non-discarded literals in input clauses, will be the most effective. This
conclusion is also reached for HLR : "the best models for a given clause set are those
which make as many clauses true as possible" [Sandford, 1980, p. 203].

• To obtain maximum space saving from using a designation, coarsely grained
equivalence classes should be specified and the expression-relation should be defined
for larger rather than smaller d-expressions.

• If the 1st order language in use has no constants, dummy domain elements have to be
introduced to be used in the SLE process.

4.7.3. Flattening Designations

A designation, in which no d-expression maps to a non-minimal domain element, may be
mechanically converted to designation with an unordered domain. The domain of the
flattened designation has the minimal domain elements of the original designation as its
domain elements. Its expression-relation is obtained by (i) selecting from the original
designation those expression-relation elements that map d-expressions to (minimal)
domain elements and then (ii) replacing the d-expressions by minimal d-expressions, that
are smaller or equal in <R, in all possible ways. The relationships between unibase
elements and minimal domain elements are preserved by this process.

Theorem 4.17 - The Soundness and Completeness of Flattening
A minimal domain element is the interpretation value of a unibase element in a flattened
designation iff it is an interpretation value of the unibase element in the original
designation (in which no d-expression maps to a non-minimal domain element).

Page 114 Designations

Each unibase element is interpreted as a minimal domain element in the original
designation. There are three possible cases. (i) The unibase element is a functor of arity 0,
in which case the expression-relation maps the unibase element to the minimal domain
element. In the flattened designation this expression-relation element is retained. (ii) The
unibase element is interpreted as the minimal domain element because it is smaller than a
minimal d-expression that maps to the minimal domain element. In the flattened
designation this expression-relation element is also retained. (iii) The unibase element is
interpreted as the minimal domain element because it is smaller than a non-minimal
d-expression that maps to the minimal domain element. In this case there exists a minimal
d-expression that is larger than the unibase element and smaller than the non-minimal
d-expression. In the flattening process an expression-relation element, mapping the
minimal d-expression to the minimal domain element, forms part of the replacement for
the expression-relation element mapping the non-minimal d-expression to the minimal
domain element. Then the unibase element is still interpreted as the minimal domain
element, now because the unibase element is smaller than the minimal d-expression. QED

The SLE process does semantic checking slightly faster in designations with unordered
domains, as an ordered domain sometimes requires the expansion of a domain element to
smaller domain elements. Flattening, however, negates two of the basic advantages of
designations. (i) Space efficiency is lost. Although a flattened designation may have a
smaller domain than the original, it typically will have many more expression-relation
elements. (ii) The flattened designation is more complex than the original, thus making it
more difficult to comprehend and consistently modify. There is thus a compromise
between computational efficiency on one hand and space efficiency and comprehensibility
on the other. Experience with using designations indicates that the increased computational
efficiency does not warrant the losses incurred.

4.8. Conclusion

Designations are an improved SRI structure for interpreting 1st order languages. They
provide a pragmatic solution to problems which are often finessed in the context of
semantic guidance systems. Designations are specific to neither problem domain nor
semantic information type. Designations thus have a broad range of applicability. In
particular, designations may be used to store both truth value and sort value information
for any problem domain. The supply of semantic information from designations is well
suited to use by semantic guidance systems, and may also be used in a form of theory
resolution.

Designations Page 115

Along the four criterion axes for measuring the quality of interpretive structures,
designations provide the following results.
• Expressiveness : As designations are SRI structures, they inherit the expressiveness of

such structures. Semantic information is stored precisely in designations, with no
defaults taken (as, for example, in partition settings) or loss of information in the
interpretation process (e.g., use of false permissiveness). The use of a relation between
domain elements enhances the expressiveness of designations. It permits unibase
elements to be interpreted as multiple, totally ordered sequences of, domain elements.
This in turn allows direct specification of interpretations whose domains are naturally
ordered. The domain ordering imposed on the domains of designations has the desirable
union and intersection properties.

 Like most implementable interpretive structures, designations can store semantic

information only for interpretations with finite domains. Both Plaisted [1984] and
Wang [1985] have noted the advantages of an interpretive structure with a finite
domain, and both have proposed mechanisms for dealing with infinite domains. No
mechanism for dealing with infinite domains has been specifically designed for
designations, but both Plaisted's and Wang's mechanisms could be used .

• Space efficiency : Designations store semantic information in a space efficient manner.
This is achieved by the use of property inheritance. Designations thus overcome the
major weakness of SRI structures with unordered domains. The smaller size of
designations makes them easy to comprehend and consistently modify.

• Semantic checking capability : The SLE process, which can be used with designations,
is a computationally effective semantic checking mechanism. Its formalisation in this
thesis is beneficial. The SLE process avoids the search required by instantiation and
interpretation approaches, the size of which is proportional to both the number of
distinct variables in the unibase element being interpreted and the size of the set of
instantiating elements (typically infinite when instantiating from the universe).
Increased computational effectiveness may be obtained from the SLE process, at the
expense of increased space requirements and complexity, by flattening designations.

• Specifiability : The specification of semantic information to be stored in a designation
has been made into a mechanical process by supplying an interactive algorithm. The
well organised 'question and answer' format of the algorithm is very effective for
obtaining the required semantic information from users. Some semantic information
can be specified automatically in the algorithm. The algorithm ensures that the
designation built is sound and complete. It appears that this is the first time that this
pragmatic aspect of specifying semantic information has been this thoroughly
considered.

Page 116 Designations

The work reported in this chapter means that an appropriate interpretive structure is now
available for use in a semantic guidance system, used to guide a host deduction system.
The next chapter describes such a combination.

Semantically Guided Linear Deduction Page 117

Chapter Five

Semantically Guided Linear Deduction

This chapter describes the Semantically Guided Linear Deduction system (SGLD). SGLD
is a semantically guided implementation of GLD. The implementation, in Prolog,
combines GLD with a semantic guidance system. Designations are used to store the
semantic information used. SGLD has some features that are not specified in GLD. These
features improve the real time performance of the implemented system without changing
the structure of the deductions or the search space. The performance of SGLD has been
investigated.

This chapter contains :
1. A description of the overall structure of SGLD.
2. A description of SGLD's semantic guidance system and related features.
3. A table illustrating the effects of using different combinations of search strategy and

designation in SGLD.
4. Performance results for a range of test problems and discussion thereof.
5. Concluding comments.

5.1. The Overall Structure

SGLD is a semantically guided implementation of GLD. Its semantic guidance system is a
combined system, incorporating the rightwards subchain system, sort value deletion and a
FALSE-preference strategy for centre chains. Designations are used to store the semantic
information used. The significance of SGLD is that it is (apparently) the first implemented
linear deduction system to employ semantic guidance. The only other linear system that
can use semantic information is SLM [Brown, 1974]. The only known implementation of
SLM [Tabada, 1992] does not exploit that facility.

SGLD has been implemented in Prolog. The implementation avoids the use of language
features that are specific to a particular Prolog interpreter, thus making it readily portable.

Page 118 Semantically Guided Linear Deduction

The original implementation in Arity Prolog [Arity, 1988] has been easily ported to both
muProlog [Naish, 1985] and SICStus Prolog [Carlsson & Widen, 1990].

5.1.1. Deduction Data Structures & Code

A central issue in the implementation of SGLD is its representation of input and centre
chains. The representation is a list of Prolog terms, each of which has a, b or c as its
functor. Each such term is called a link of the chain and, depending on its functor, is called
an A-, B- or C-link. The first argument of each link is a literal of the chain, and the functor
of the link indicates the class of the literal. A literal is represented by a unary Prolog term
whose argument is the atom of the literal. The functor of such a term is either ++ or --,
indicating the sign of the literal. These two functors are defined as prefix Prolog operators.
Atoms are simply Prolog terms. Information associated with each literal is stored in its
link. A-links contain an expected truth value and a scope value. B-links contain an
expected truth value. C-links contain an expected truth value and a list of scope A-literals.
This encapsulation of information in links permits easy manipulation of a literal and its
associated information.

Example
The literal ~lungs_ok(P) is represented by the Prolog term --lungs_ok(P).
An example of an A-link is a(--lungs_ok(P),any,0).

A problem is presented to SGLD as set of input clauses. The input clauses are supplied as
Prolog facts in a text file. The arguments of an input clause fact are (i) the clause's name,
(ii) its status, one of theorem, axiom, or hypothesis and (iii) a list of the constituent
literals. SGLD converts input clauses into input chains, which are stored as facts in the
Prolog database. The arguments of an input chain fact are (i) the number of links in the
chain (this improves the performance of unit extension and subsumption checking), (ii) the
chain's name, (iii) a list of the constituent links, (iv) the chain's status, one of theorem,
axiom, hypothesis, or lemma and (v) the origin of the chain. If an input chain is
converted from an input clause then the origin is input_clause. If an input chain is
formed in an A-truncation then its origin is a list of the deduction steps that led to its
formation, and its status is lemma. To convert an input clause to an input chain, each
literal of the input clause is placed into a B-link. The expected truth value in each such
B-link is FALSE if the B-literal is a negative sort-literal, TRUE if the B-literal is a positive
sort-literal, otherwise "any". The any value means any one of TRUE, FALSE or
UNKNOWN_TRUTH_VALUE. These expected truth values are updated after
linear-input subset analysis. The chain name and status are copied to the input chain from
the corresponding fields in the input clause. No reordering of literals or clauses is
performed in the conversion from input clauses to input chains.

Semantically Guided Linear Deduction Page 119

Example
The input clause :
 input_clause(life,hypothesis,

 [++heart_ok(P),

 ++lungs_ok(P),

 --alive(spouse_of(P))]).

is used to build the input chain :
 input_chain__(3,life,

 [b(++heart_ok(P),any),

 b(++lungs_ok(P),any),

 b(--alive(spouse_of(P)),any)],

 hypothesis,input_clause).

Centre chains in SGLD deductions are stored with the rightmost literal first in the chain.
This ordering provides easy access to the rightmost cell, to select a B-literal for the base
deduction operation of a deduction chunk.

Example
The centre chain :
 ~heart_ok(P) ~lungs_ok(P) 0 (~heart_ok(P))
 ~alive(spouse_of(P))

in which the A-literal is the only scope literal of the C-literal, is represented by the
Prolog list :
 [b(--alive(spouse_of(P)),false),

 c(--heart_ok(P),any,[--lungs_ok(P)]),

 a(--lungs_ok(P),any,0),

 b(--heart_ok(P),any)]

5.1.2. Designation Data Structures & Code

SGLD uses a named designation to store a sort value interpretation of the set of input
chains. SGLD's semantic checking mechanism uses the restricted SLE process to
interrogate the designation. Designations can be represented in one of two ways. The first
way is direct, consisting of the domain and the expression-relation elements of the
designation. This information is stored as facts in the Prolog database. These facts are used
as input data to an implementation of the restricted SLE process.

Page 120 Semantically Guided Linear Deduction

Example
The name of the example designation in section 4.4 (now named simpsons) is
stored as the fact :
 designation(simpsons).
The domain of simpsons is stored as the facts :
 domain_element(mr_s,simpsons).
 domain_element(mrs_s,simpsons).
 domain_element(person,simpsons).
 domain_element(false,simpsons).
 domain_element(true,simpsons).

The expression-relation of simpsons is stored as the single level expansion facts :
 sle(mr_s,homer,simpsons).
 sle(mrs_s,spouse_of(mr_s),simpsons).
 sle(mr_s,spouse_of(mrs_s),simpsons).
 sle(person,mr_s,simpsons).
 sle(person,mrs_s,simpsons).
 sle(true,heart_ok(person)).
 sle(true,lungs_ok(mr_s)).
 sle(false,lungs_ok(mrs_s)).
 sle(true,alive(person),simpsons).
 sle(true,person(person),simpsons).

The second representation compiles the domain and expression-relation elements into
Prolog code that implements the restricted SLE process directly. Expansions from
non-minimal domain elements to minimal domain elements are explicitly recorded, thus
immediately supplying the minimal domain elements which instantiate variables
(restricted SLE process, item (iv)). The compiled representation is significantly more
efficient than the direct representation.

Example
The designation simpsons compiles to the Prolog program listed in appendix 1,
section A1.2. This program implements the restricted SLE process for simpsons.
The entry point is expand_compiled__/3.

5.1.3. Starting an SGLD Deduction

Search Style
The search style is user specified. The user selects one of the following search styles :
literal-selected, literal-ordered, cell-selected or cell-ordered, as specified in section 2.3.3.

Semantically Guided Linear Deduction Page 121

Choice of Top Chain
SGLD uses the entire input set as the support set. The order in which the input chains are
used as top chains is thus, in general, determined by the search style of the deduction, as
specified in section 2.3.3. In SGLD, however, any input chains with the status theorem
are used before others. This allows the user to focus attention on certain input chains, e.g.,
input chains formed from the negation of the theorem to be proved. In the literal-ordered
and cell-ordered search styles, heuristic values of deduced chains are calculated to
determine the order in which input chains are used as top chains (see section 2.3.3). The
heuristic value of a chain is dependent on the expected truth values in its links (see section
5.2.1), which in turn are dependent on the linear-input subset analysis. Linear-input subset
analysis cannot take place until after the top chain is chosen. Therefore the heuristic values
calculated here are necessarily unaware of the expected truth values determined by
linear-input subset analysis.

Linear-Input Subset Analysis
SGLD employs LISS analysis to detect linear-input subdeductions. After a top chain has
been chosen the LISS of the input chains is extracted using an implementation of
algorithm 2.11. The LISS is recorded so as to be available throughout the deduction. As
well as its contribution to the truth value deletion system described below, the LISS is also
used to determine when reductions cannot be performed.

Initial Search Bound
SGLD supports two methods for setting the initial bound of its consecutively bounded
search. The default method is to use the length of the top chain. This is the minimum value
within which a refutation can be obtained - via a sequence of unit extension operations.
The user may override the default by explicitly specifying an initial bound.

5.2. Semantic Guidance

5.2.1. The Semantic Guidance System

The three components of SGLD's combined semantic guidance system (the rightwards
subchain system, sort value deletion and the FALSE-preference strategy) are implemented
directly within the GLD search guidance mechanisms. The expected truth values stored in
input chain links reflect the requirements of the deletion systems. The heuristic function
used in SGLD determines ETV-compatibility, as described in section 3.7.2. Integers are
used to represent ETV-compatibilities, a smaller value meaning a better
ETV-compatibility. Thus CorrectScore < GoodScore <OKScore <BadScore. Calculating

Page 122 Semantically Guided Linear Deduction

the ETV-compatibility of a centre chain requires finding the ground instances of the chain
in which no literal's interpretation value is incompatible with its expected truth value. For
literals, links and chains, such ground instances are called acceptable instances. If a centre
chain does not have an acceptable instance then the heuristic function fails to return an
ETV-compatibility value. The centre chain under consideration is then (naturally within
the Prolog implementation) rejected. The possibility of imposing the restrictions of the
deletion systems after the base operation of a deduction chunk, as well as at the end of
each chunk, has been tested. This option sometimes reduces the number of derivation
operations performed, but it is consistently of negative utility. A noteworthy feature of
SGLD's semantic guidance system is the way in which the three components have been
integrated into a coherent whole.

Sort Value Deletion
The sort value deletion system rejects centre chains that are not sort legal, as described in
section 3.6. The expected truth values for sort-literals are stored in their links when the
input chains are created. Sort value deletion occurs only when the designation supplied
contains sort value information. This is detected automatically.

Truth Value Deletion
The rightwards subchain system requires all rightwards subchains of the top literal in a
linear-input subdeduction to be interpreted as FALSE in all side chain models of the
subdeduction. This is as described in section 3.4. In SGLD a single side chain model is
used to interpret all rightwards subchains.

To implement the restriction of the rightwards subchain system, the expected truth values
in input chains' B-links are updated after the LISS analysis. Input chain B-links that
contain linear-input literals (linear-input B-links) have their expected truth values changed
to FALSE. This is as expected by the rightwards subchain system. If a linear-input literal
is also a positive sort-literal, then a conflict arises. The rightwards subchain system expects
the literal to be interpreted as FALSE and the sort value deletion system expects the literal
to be interpreted as TRUE. In this situation a warning is issued and the expected truth
value is set to FALSE.

The FALSE-Preference Strategy
In SGLD, the ETV-compatibility of a chain is found by estimating the minimum of the
chain's ground instances' ETV-compatibilities (see section 5.2.4). The function for
calculating the ETV-compatibility of a ground chain sums the ETV-compatibilities of the
A- and B-literals in the chain. The sum of the B-literals' ETV-compatibilities is a measure

Semantically Guided Linear Deduction Page 123

of the quality of the clause represented by the chain. The addition of the A-literals'
ETV-compatibilities moderates the sequence of extension operations performed. This
function also gives preference to shorter chains, in line with GLD's fewest-literals maxim.

5.2.2. Checking the Designation

It is important to ensure that the designation used in an SGLD deduction is a side chain
model of all possible linear-input subdeductions. Further, the effect of the
FALSE-preference strategy should be stronger if the designation is a side chain model of
the entire deduction. Thus, before any deduction operations are performed, the designation
is examined in these terms. Firstly, no input chain that may be a side chain in a linear-input
subdeduction may be interpreted as definitely FALSE in the designation (ground instances
that are interpreted as UNKNOWN_TRUTH_VALUE are considered acceptable).
Secondly, a warning is issued for every other input chain which is interpreted as definitely
FALSE in the designation. Such warnings are useful pointers to parts of the designation
that could be modified to improve the semantic guidance.

Example
In the input set S given in section 1.4.1, the input chain :
 ~heart_ok(P) lungs_ok(P)
is interpreted as FALSE by the designation simpsons. By changing the
expression-relation element :
 lungs_ok(mrs_s) R∅ FALSE

to :
 lungs_ok(mrs_s) R∅ TRUE

the input chain is interpreted as TRUE.

5.2.3. Semantic Chains

The deletion systems used in SGLD impose simultaneous deduction restrictions. In the
SGLD implementation the restrictions are operationally imposed and extra mechanisms
are employed to maintain deduction faithfulness. The difficulties of maintaining deduction
faithfulness in semantically guided deduction systems, and the failure of many
semantically guided deduction systems to support a satisfactory solution, are discussed by
Sandford [1980, p. 41]. SGLD employs two mechanisms for maintaining deduction
faithfulness in this context. Both mechanisms keep track of literals in ancestor centre
chains.

The first mechanism makes use of the A- and C-literals in centre chains. Every A- or
C-literal in a centre chain is (the complement of) a B-literal in an ancestor centre chain.

Page 124 Semantically Guided Linear Deduction

The A- and C-literals in a centre chain can therefore be used to retrospectively check the
expected truth values of their ancestor B-literals. This idea is built into the rightwards
subchain system which, by definition, checks A-literals when checking rightwards
subchains in linear-input subdeductions. In the SGLD implementation C-literals are also
given an expected truth value, opposite to that of their parent A-literals, and the C-literals
are also checked. Similarly, the sort value deletion system requires all A- and C-literals to
be sort legal. The examination of the A- and C-literals in a centre chain comes at no extra
cost, in the sense that those literals have to be maintained in the centre chain anyway. This
mechanism is effective while the A- and C-links remain in the centre chain. However,
upon their truncation the effect could be lost.

To prevent loss of deduction faithfulness when A- and C-links are truncated from a centre
chain, SGLD maintains a semantic chain in parallel with the centre chain. A- and C-links
which have been completely removed from the centre chain, i.e. truncated A-links that do
not lead to the insertion of a C-link and all truncated C-links, are placed into the semantic
chain. The semantic chain must remain acceptable throughout a deduction. If it becomes
unacceptable, then the corresponding centre chain is rejected. The semantic chain is an
auxiliary data structure maintained specifically to enforce deduction faithfulness. As is
stated in section 1.5, "The auxiliary data structures need keep only sufficient information
to detect violations and do not need to store a complete history of the deduction". In fact,
maintaining redundant information in such an auxiliary data structure decreases its utility.
This view is noted in the context of False Substitution Lists (FSLs) - "some mechanism for
reducing the size of FSL sets must be employed." [Sandford, 1980, p. 216]. The size of
SGLD's semantic chain is controlled by removing those links that contain acceptable
ground literals. Such literals will always remain acceptable. This principle could be
extended to remove links whose literals have an acceptable ground instance and also have
no variables in common with the centre chain. This extension has not been implemented
due to the high cost of determining if Prolog variables in the semantic chain also appear in
the centre chain. Semantic chains are more general than Sandford's False Substitution
Lists, in that they allow any truth value as an expected interpretation value for a stored
literal, not just FALSE.

5.2.4. Calculating ETV-compatibility

An acceptable instance of a chain is found by sequentially considering the links of the
chain and using the restricted SLE process to find an acceptable instance of each link's
literal. If at any stage there is no acceptable instance of the literal under consideration, the
system backtracks to find alternative acceptable instances of previous literals. All the
acceptable instances of a centre chain can be found by backtracking over all the acceptable

Semantically Guided Linear Deduction Page 125

instances of the literals in the chain. The ETV-compatibility of the chain itself can then be
calculated.

Example
The centre chain (in the SGLD representation) :
 [b(--alive(spouse_of(P)),false),

 c(--heart_ok(P),any,[--lungs_ok(P)]),

 a(--lungs_ok(P),any,0),

 b(--heart_ok(P),any)]

has an acceptable instance when interpreted using simpsons. It is :
 [b(--alive(spouse_of(mr_s)),false),

 c(--heart_ok(mr_s),any,[--lungs_ok(mr_s)]),

 a(--lungs_ok(mr_s),any,0),

 b(--heart_ok(mr_s),any)]

The ETV-compatibility value of this ground instance is
 CorrectScore + GoodScore + GoodScore
This value is obtained by summing the ETV-compatibilities of the A- and B-literals
in the instance. For example, the A-literal --lungs_ok(mr_s) in the instance has
an expected truth value of any. Examining the designation in section 4.4, it is seen
that lungs_ok(mr_s) is interpreted as TRUE. Thus --lungs_ok(mr_s) is
interpreted as FALSE. From TABLE 3.13 the literal is assigned the
ETV-compatibility value GoodScore. Similarly, the ETV-compatibilities of the two
B-literals in the acceptable instance are CorrectScore and GoodScore, respectively.

When designing SGLD, minimisation was chosen for calculating the ETV-compatibility of
a centre chain from its ground instances' ETV-compatibilities. In implementing SGLD,
however, it was decided that a search through all the acceptable instances of a centre chain
would make the semantic guidance system of negative utility. Thus instead of searching
for the minimum ETV-compatibility value, an estimate is obtained, as follows. Depending
on its expected truth value, a literal can be assigned up to three different
ETV-compatibility values as the system backtracks through alternative acceptable
instances. In the SGLD implementation the restricted SLE process is controlled so as to
look for acceptable instances of literals that are highly ETV-compatible, before less
ETV-compatible instances are considered. Once an acceptable instance of a centre chain
has been found, the ETV-compatibility value obtained is accepted and no further instances
of the centre chain are considered. As the links in the centre chain are considered from
right to left, this means that literals to the left in the centre chain may be assigned a
non-optimum ETV-compatibility value. Therefore the centre chain may be assigned a
non-optimum ETV-compatibility value. This inaccuracy has been considered to be
justified by the reduced effort required.

Page 126 Semantically Guided Linear Deduction

Example
The centre chain in the example above has a second acceptable instance :
 [b(--alive(spouse_of(mrs_s)),false),

 c(--heart_ok(mrs_s),any,[--lungs_ok(mrs_s)]),

 a(--lungs_ok(mrs_s),any,0),

 b(--heart_ok(mrs_s),any)]

with an ETV-compatibility value CorrectScore + BadScore + GoodScore. Thus the
ETV-compatibility of the original centre chain is
CorrectScore + GoodScore + GoodScore. However, if the second acceptable
instance is found before the first, then the non-optimum ETV-compatibility value
CorrectScore + BadScore + GoodScore would be assigned to the centre chain.

The possible ETV-compatibility values of a particular literal in a centre chain may change
as a deduction progresses, due to the instantiation of variables. For ground literals,
however, their ETV-compatibilities are constant. SGLD takes advantage of this by storing
the constant ETV-compatibility values within such literals' links. The heuristic function
then uses the stored values directly, rather than recalculating them.

5.2.5. Semantic Guidance of Equality Reasoning

In section 2.6 a method of embedding equality into GLD has been presented. The method
is based on the generation of equality-demand literals, which form part of the deduced
centre chains. If this embedding were to be incorporated into SGLD then the
equality-demand literals would contribute to the ETV-compatibility of centre chains. If an
equality-demand literal whose arguments are interpreted as unequal were generated, then a
bad ETV-compatibility value would be assigned to that literal. The quality of the centre
chain would therefore be reduced. Further, equality literals have the potential to be
linear-input objects, in which case equality-demand literals would have a FALSE expected
truth value. The rightwards subchain system would then reject centre chains containing
equality-demand literals whose arguments are interpreted differently.

5.3. The Effects of the Semantic Guidance System

Table 5.1, below, describes the general effects of the semantic guidance system in SGLD,
for various combinations of designation and search style. The designations considered are
(i) the null designation, which interprets every base element as every truth value, (ii) the
positive designation, which interprets all base elements as TRUE and (iii) domain specific
designations. The negative designation, which interprets all base elements as FALSE, is

Semantically Guided Linear Deduction Page 127

Desig'n Effects
Literal-selected Search Style

Null No effects
Positive Ensures that the rightwards subchains of top literals in linear-input

subdeductions are negative.
Domain
specific

Ensures that centre chains are sort legal and that the rightwards subchains of
top literals in linear-input subdeductions are FALSE.

Literal-ordered Search Style
Null Deduced chains are reordered by length.
Positive The effects of the positive designation in the literal-selected search style and

deduced chains are reordered with a preference for shorter chains with more
negative literals.

Domain
specific

The effects of a domain specific designation in the literal-selected search style
and deduced chains are reordered with a preference for chains which are more
ETV-compatible.

Cell-selected Search Style
Null A selection rule is used in non-compulsory extension and reduction operations.

The selection rule selects the B-literal whose successor set's shortest element is
the longest amongst all the successor sets.

Positive The effects of the positive designation in the literal-selected search style and a
selection rule is used in non-compulsory extension and reduction operations.
The selection rule selects the B-literal whose successor set's shortest and most
negative element is longest and least negative amongst all the successor sets.

Domain
specific

The effects of a domain specific designation in the literal-selected search style
and a selection rule is used in non-compulsory extension and reduction
operations. The selection rule selects the B-literal whose successor set's most
ETV-compatible element is the least ETV-compatible amongst all the
successor sets.

Cell-ordered Search Style
Null The combined effects of the null designation in the literal-ordered search style

and the null designation in the cell-selected search style.
Positive The combined effects of the positive designation in the literal-ordered search

style and the positive designation in the cell-selected search style.
Domain
specific

The combined effects of a domain specific designation in the literal-ordered
search style and the domain specific designation in the cell-selected search
style.

Page 128 Semantically Guided Linear Deduction

Table 5.1 - The Effects of Search Styles and Designationsnot considered in the table. The
effects of the negative designation correspond to those of the positive designation, but with
truth values and the signs of literals inverted.

The positive, negative and null designations have been used in SGLD's semantic guidance
system, to obtain performance figures for SGLD (see section 5.4.1). Table 5.1 shows that
the use of any of these designations forms, to all intents and purposes, a syntactic guidance
strategy. That is, SGLD runs without semantic guidance. The positive and negative
designations produce better results than the null designation. At the same time both the
positive and the negative designations can be implemented syntactically, thus very little
effort is required to calculate the ETV-compatibility of a centre chain. Therefore, in the
performance testing described in section 5.4.1, either the positive or negative designation
has been used provided that it is a side chain model of all possible linear-input
subdeductions. In the majority of cases the positive designation is acceptable. If the LISS
contains both positive and negative elements then neither the positive nor the negative
designation is a side chain model of all possible linear-input subdeductions. In these cases
the null designation is used. An alternative to using the null designation would be to build
a syntactically implementable model which is aware of the linear-input subset. Such a
model is possible if the LISS does not contain complementary elements. In such a model
LISS atoms are interpreted such that all LISS literals are interpreted as FALSE. All other
atoms may be given any interpretation. The implementation can be syntactic because all
literals with the same structure are treated equivalently by LISS analysis. The
interpretation value of an atom may therefore be specified in terms of its structure.

5.4. Performance

SGLD has been tested on 40 problems. The problems were selected such that they
represent a range of problem domains, such that semantic information can be specified for
as many problems as possible and such that performance figures from other deduction
systems are available for comparison purposes. Many of the problems chosen are from the
Wilson and Minker study [1976]. (The problem names used in the Wilson and Minker
study are noted in () brackets after the local problem names in Table 5.2.) Appendix 2
supplies statements of the problems and descriptions of the designations used with each.
All testing has been performed using the top chain length as the initial bound for the
consecutively bounded search.

Semantically Guided Linear Deduction Page 129

5.4.1. SGLD Without Semantic Guidance

The first phase of testing illustrates SGLD's performance without the benefit of semantic
guidance. A syntactic guidance system is implemented by using the positive, negative or
null designation with SGLD's semantic guidance system, as discussed in section 5.3. For
most of the problems the positive interpretation has been used so that shorter centre chains
with negative literals are preferred. For those problems where the positive designation is
not a side chain model of all possible linear-input subdeductions, either the null or
negative designation has been used. These cases are indicated with the designation name in
{} braces after the problem name. The results of these tests are given in Table 5.2.

Of the 40 test problems, 19 have been solved by SGLD using less than 100 deduction
operations (small problems), 11 using between 100 and 1000 deduction operations
(medium sized problems) and seven problems have required more than 1000 deduction
operations (large problems). There are three problems for which no refutation has been
found within the time limit imposed.

The results show that the literal-selected search style is the most effective. This search
style produces the best result in 16 small problems, six medium sized problems and three
large problems, i.e. it produces the best result in 25 of the 37 solved problems. The
literal-ordered search style performs more consistently across problem sizes, producing the
best result in three small problems, three medium sized problems and two large problems.
The cell-selected and cell-ordered search styles are the poorest performers. They produce
the best results in only a few problems. The cell-selected style produces the best result in a
single large problem, while the cell-ordered style produces the best result once in each of
the medium sized and large categories.

The literal-ordered search style is the most consistent performer. It produces the worst
result in only two problems, both of them large. The literal-selected search style produces
the worst result in three problems, one small and two medium sized. The cell-selected
search style produces the worst results in six small, three medium sized, and three large
problems. The cell-ordered search style produces the worst result most often, the
distribution being 12 small, six medium sized, and three large problems. It is noteworthy
that in most of the problems where the cell-ordered search style produces the worst result,
the cell-selected search style uses the same number of deduction operations. However, the
cell-ordered search style takes longer to perform those deduction operations. The extra
overhead comes from the ordering of alternative successor chains.

Page 130 Semantically Guided Linear Deduction

Problem S. H. LS LO CS CO Extremes
 Size Tm Size Tm Size Tm Size Tm Best W'st

ALGEBRA
Additive 01 (L&S 28) 13 H 664 23.9 687 26.9 998 36.8 998 37.2 LS CS
Additive 02 (L&S 29) 13 H 299 10.1 315 11.4 495 16.6 495 16.7 LS CO
Group 03 (Ch&Lee 3) 5 H 54 1.86 65 2.33 202 6.08 202 6.14 LS CO
Group 06 (Ch&Lee 6) 9 H 0 0 256 8.10 393 11.9 393 12.0 LO LS
Group 11 (Wos 8) 18 H 401 10.9 467 13.1 744 20.8 878 25.2 LS CO
Monoids 01 (Ch&Lee 2) 7 H 2263 73.2 2268 76.2 4554 157 4554 160 LS CO
Semi-group 01 (Ch&L 1) 4 H 7 0.26 11 0.41 20 0.65 20 0.67 LS CO
Semi-group 04 (Wos 5) 16 H 0 0 0 0 0 0 0 0 -- --
Sub-group 01 (Wos 12) 21 H 48 1.32 52 1.45 91 2.37 91 2.42 LS CS
Sub-group 02 (Wos 13) 22 H 88 2.35 101 2.75 206 5.15 206 5.26 LS CS
Sub-group 03 (Wos 14) 21 H 0 0 0 0 0 0 0 0 -- --
Sub-group 10 (L&S 26) 9 H 544 16.8 417 13.3 728 23.2 728 23.8 LO CO

ANALYSIS
IMV Theorem 18 N 2180 72.3 2178 76.0 1024 31.5 750 22.9 CO LS

NUMBER THEORY
Primes 01 (Ch&Lee 7) 7 N 27 0.57 35 0.72 44 0.90 44 0.93 LS CO
Primes 02 (Ch&Lee 8) 9 N 210 5.41 156 4.11 299 7.98 398 11.8 LO CO
Primes 03 (Ch&Lee 9) 8 N 28 0.91 33 1.02 56 1.44 56 1.45 LS CO
Primes 04 (L&S 17) 11 N 43 1.35 48 1.49 89 2.22 89 2.24 LS CO
Rec. func. 01 (L&S 41) 11 H 24 0.56 21 0.48 27 0.55 27 0.58 LO CO
Rec. func. 05 (L&S 68) 15 H 5 0.17 9 0.22 9 0.22 9 0.23 LS CO
Rec. func. 10 (L&S 76.1) 16 N 14 0.38 32 0.79 32 0.64 41 0.93 LS CO

SET THEORY
Naive Sets 02 (L&S 103) 14 N 66 1.97 81 2.24 136 3.75 135 3.83 LS CS
Naive Sets 03 (L&S 105) 14 N 31 0.81 45 1.10 52 1.32 56 1.40 LS CO
Naive Sets 04 (L&S 106) 14 N 31 0.81 45 1.10 52 1.31 56 1.40 LS CO
Naive Sets 06 (L&S 111) 14 N 35 0.92 45 1.13 69 1.59 65 1.51 LS CS
Naive Sets 08 (L&S 115) 21 N 82 2.05 91 2.14 200 4.38 170 3.50 LS CS

Legend
• S. - Number of input clauses in the problem.
• H. - Horn status, either H = Horn or N = non-Horn.
• LS - Literal-selected search style LO - Literal-ordered search style

 CS - Cell-selected search style CO - Cell-ordered search style
• Size - The number of deduction operations performed to find the refutation.
• Tm - The time taken in seconds, to at least three significant digits, to find the refutation. A pair of 0s

in the Size and Tm columns means that the system failed to find a refutation within an imposed time limit
of 2500 seconds.

• Extremes - Indicates the search styles that produce the best and worst results. The judgement is based

firstly on the number of deduction operations performed and secondly on the time taken.

Table 5.2a - SGLD Performance without Semantic Guidance - Maths Problems

Semantically Guided Linear Deduction Page 131

Problem S. H. LS LO CS CO Extremes
 Size Tm Size Tm Size Tm Size Tm Best W'st

PLANNING
Getting Bread 16 H 5453 1590 0 0 2562 932 0 0 CS ?O
Going 01 17 N 1383 58.5 1401 61.7 1093 44.4 1085 46.2 CO LO
Monkey & Banana 11 H 655 19.4 664 20.5 664 20.9 664 21.8 LO LS

PUZZLES
Aunt Agatha 12 N 51 1.40 53 1.43 74 1.85 74 1.91 LS CO
Borders 27 H 36 0.87 47 0.99 170 2.92 170 2.97 LS CO
Schubert's Steamroller 26 N 10.2k 374 10.2k 387 0 0 30.4k 1111 LS CS
Truth tellers & Liars 10 N 2141 73.3 1484 52.7 3014 107 2060 72.6 LO CS

MISCELLANEOUS
Blind Hand 2 (dbabhp) 14 N 1994 66.3 2031 69.7 2097 73.0 2098 72.5 LS CO
Blind Hand 3 10 N 0 0 0 0 0 0 0 0 -- --
Compute 2 (burstall) 19 H 111 3.45 133 4.07 177 5.27 177 5.46 LS CO
Compute 3 {null} 19 N 111 3.53 133 4.09 177 5.32 177 5.45 LS CO
Has Parts 2 8 N 106 3.32 68 2.13 141 4.84 81 2.61 LO CS
Latin Squares {negative} 16 N 293k 18.5k 168k 10.8k 298k 18.5k 298k 18.4k LO CS
Pigeon 4 22 N 344 11.0 348 11.1 548 17.0 518 16.1 LS CS
XOR 7 H 80 1.39 71 1.34 77 1.45 71 1.39 LO LS

Legend
• A value with a k suffix is in thousands of units.
• The limit of 2500 seconds was not imposed in the Latin Squares problem.
• A ? in the Extremes column is a wildcard. For example, ?O means LO and CO achieved the same worst

result.

Table 5.2b - SGLD Performance without Semantic Guidance - Other Problems

In summary, for small problems the literal-selected search style is the best, while the
literal-ordered style may be preferred for medium sized and large problems. The
cell-selected and cell-ordered search styles may be desirable only for (very) large
problems. This is a surprising result, as the literal-selected search style provides default
search guidance. The reason for its superiority has not been established, but the ordering of
the literals in the problems' clauses must be suited to its default search strategy.

In the course of testing SGLD without semantic guidance, an experiment was performed to
test the B-literal selection method of the cell-ordered (and hence the cell-selected) search
style. The selection method was changed to select the B-literal with the best successor set
rather than the worst. This improved the performance in some problems. Notably, the
change produced refutations of Semi-group 04 and Sub-group 03. On the other hand, the
results for some problems got significantly worse, e.g. the IMV theorem took 18243
operations in a time of 713 seconds. There is thus some potential to affect the performance
of GLD by slightly modifying the search strategy. It is unlikely that an optimum
configuration can be determined, as the best configuration will be different for different
problems. A deduction system that runs several configurations in parallel may produce the

Page 132 Semantically Guided Linear Deduction

best results. This approach has been taken in the Random Competition system
[Ertel, 1991].

5.4.2. A Comparison with Other Deduction Systems

SGLD's results have been compared with results from the Prolog Technology Theorem
Prover (PTTP) [Stickel, 1986b], SETHEO [Letz et al., 1992] and the Modified Problem
Reduction Format (MPRF) deduction system [Plaisted, 1988]. The comparison is made in
Table 5.3. As the implementation environments of the systems vary enormously, a
comparison of the times taken by the systems would be of little significance. Thus only the
numbers of deduction operations performed have been compared. There are, however, still
some factors that may distort the comparison :
• The SETHEO "without preprocessing" results have been used so that the input set sizes

are the same as for the other systems. These results are worse than those where the
input sets have been preprocessed. On the other hand, the best of SETHEO's six
reported results has been used.

• The MPRF results for the default (the better) configuration have been used.
• In many cases, the local versions of the problems list the clauses in a order different

from the originals. An examination of the original problems suggests that their clauses
have been arranged to the benefit of deduction systems. This suggestion concurs with
the comment in the previous section regarding the ordering of literals in clauses.
Changing the order of the clauses in the local versions of the problems may have
tainted SGLD's results. The PTTP, SETHEO and MPRF have used the original versions
of the problems.

• Finally, the measurements taken are in no way standardised. A more accurate
comparison of the systems would be possible if a standardised measure were available
and each system were run without inter-problem tuning.

SGLD's performance is comparable with that of the other systems. Although SGLD is the
best performer in only three of the 24 problems for which a result is available for all
systems, it is also the worst performer in only seven of the problems. The three problems
in which SGLD performs the best are all non-Horn problems. Of the seven problems in
which SGLD performs the worst, five are Horn problems. This suggests that SGLD is,
relative to the other three systems, more consistent in non-Horn problems. There are 11
non-Horn problems for which a result is available for all systems. SGLD produces the best
result in three of these and the worst in only two. Only the MPRF system performs better
in non-Horn problems, producing five best results and only one worst.

Semantically Guided Linear Deduction Page 133

Problem S. H. Deduction System Extremes
 SGLD PTTP Sethe

o
MPRF Best Worst

ALGEBRA
Additive 01 (L&S 28) 13 H 664 1322 105 1117 Sethe

o
PTTP

Additive 02 (L&S 29) 13 H 299 1322 105 1117 Sethe
o

PTTP

Group 03 (Ch&Lee 3) 5 H 54 206 35 29 MPRF PTTP
Group 06 (Ch&Lee 6) 9 H 256 26 36 157 PTTP SGLD
Group 11 (Wos 8) 18 H 401 200 21 4120 Sethe

o
MPRF

Monoids 01 (Ch&Lee 2) 7 H 2236 1589 987 259 MPRF SGLD
Semi-group 01 (Ch&L 1) 4 H 7 5 5 6 Sethe

o
SGLD

Semi-group 04 (Wos 5) 16 H 0 795 142 236
Sub-group 01 (Wos 12) 21 H 48 6 4 36 Sethe

o
SGLD

Sub-group 02 (Wos 13) 22 H 88 51 53 3969 PTTP MPRF
Sub-group 03 (Wos 14) 21 H 0 118 34 7208
Sub-group 10 (L&S 26) 9 H 417 34 45 199 PTTP SGLD

NUMBER THEORY
Primes 01 (Ch&Lee 7) 7 N 27 24 8 16 Sethe

o
SGLD

Primes 02 (Ch&Lee 8) 9 N 156 3104 99 64 MPRF PTTP
Primes 03 (Ch&Lee 9) 8 N 28 163 138 40 SGLD PTTP
Primes 04 (L&S 17) 11 N 43 175 1601 76 SGLD Sethe

o
Rec. func. 01 (L&S 41) 11 H 21 9 6 80 Sethe

o
MPRF

Rec. func. 05 (L&S 68) 15 H 5 2 13 291 PTTP MPRF
Rec. func. 10 (L&S 76.1) 16 N 14 8 4

SET THEORY
Naive Sets 02 (L&S 103) 14 N 66 1826 70 131 SGLD PTTP
Naive Sets 03 (L&S 105) 14 N 31 34 47 5 MPRF Sethe

o
Naive Sets 04 (L&S 106) 14 N 31 34 46 5 MPRF Sethe

o
Naive Sets 06 (L&S 111) 14 N 35 35 48 5 MPRF Sethe

o
Naive Sets 08 (L&S 115) 21 N 82 109 47 207 Sethe

o
MPRF

PUZZLES
Schubert's Steamroller 26 N 10.2k 2524 953

MISCELLANEOUS
Blind Hand 2 (dbabhp) 14 N 1994 1168 168 190 Sethe

o
SGLD

Compute 2 (burstall) 19 H 111 690 32 63 Sethe
o

PTTP

Has Parts 2 8 N 68 87 171 28 MPRF Sethe
o

Legend
• The figures record the number of deduction operations performed.
• Blank entries indicate that no results have been reported for that problem.
• The best and worst performer has been noted only when all four systems have reported a result.

Page 134 Semantically Guided Linear Deduction

Table 5.3 - Performance Comparison : SGLD vs PTTP, SETHEO and MPRF

5.4.3. SGLD With Semantic Guidance

The second phase of testing demonstrates the effects of semantic guidance in SGLD.
Domain specific semantic information has been specified for 20 of the problems listed in
Table 5.2, using an implementation of algorithm 4.13. Note that semantic information has
been specified separately for each problem, i.e., no designation is used for more than one
problem. The semantic information has been used by the semantic guidance system in
SGLD and the resultant performance figures are given in Table 5.4. No comparison has
been made with results produced by other semantically guided deduction systems due to
the absence of (results for) such systems. Thus the results that SGLD obtains with
semantic guidance can only be compared against those obtained without semantic
guidance.

It is not claimed that results like those shown in Table 5.4 can be produced for all
problems. Rather, the results illustrate what effects can be produced for problems that are
amenable to semantic guidance. It is these results that, in pragmatic terms, establish the
thesis of this research.

The results in Table 5.4 show that the literal-selected search style dominates when
semantic guidance is used. The literal-selected search style produces the best result in 15
of the 20 problems. The literal-ordered, cell-selected and cell-ordered search styles
produce the best results in only one, two and two problems, respectively. The
literal-selected search style also performs consistently when semantic guidance is used,
producing the worst result in only one problem. The cell selected search style benefits the
least from the addition of semantic guidance, producing the worst result in 10 of the 20
problems. The literal-ordered and cell-ordered style produce the worst results in three and
six problems respectively.

Of more importance than the relative performances of the search styles, Table 5.4
demonstrates that the addition of semantic guidance significantly improves SGLD's
performance. Comparing the best results with and without semantic guidance, there are
only two problems in which semantic guidance does not improve SGLD's performance.
They are Group 03 and Has Parts 2. In Has Parts 2 the literal-ordered and cell-ordered
search styles perform better without semantic guidance. In the other two search styles the
semantic guidance has improved performance. Finding a refutation for problem Group 03
has not been affected by the use of semantic guidance. It is noteworthy that Group 03 tries

Semantically Guided Linear Deduction Page 135

to establish a general lemma in group theory. As is noted in section 6.6, these types of
problems often appear indifferent to the use of semantic guidance. Another problem where
the effect of semantic guidance is marginal, is Pigeon 4. Here the literal-selected search
style performs the best both with and without semantic guidance. However, the difference
in performance is only in the time used. The use of semantic guidance does marginally
reduce the number of deduction operations performed in the literal-ordered and
cell-ordered search styles, for that problem.

Page 136 Semantically Guided Linear Deduction

Problem S. H. LS LO CS CO Extremes Best Non-SG
 Size Tm SDs Size Tm SDs Size Tm SDs Size Tm SDs Best W'st Size Tm By
Group 03 5 H 54 1.94 0 65 2.43 0 202 6.42 4 202 6.39 4 LS CS 54 1.86 LS
Group 06 9 H 76 2.55 3 79 2.68 3 70 2.11 2 70 2.09 2 CO LO 256 8.10 LO
Monoids 01 7 H 1264 47.5 113 1273 48.4 113 2801 107 417 2801 106 417 LS CS 2263 73.2 LS
Rec. Func. 10 16 N 6 0.30 1 10 0.40 2 19 0.52 2 19 0.50 2 LS CS 14 0.38 LS
Getting Bread D1 16 H 1655 112 683 1901 130 800 1391 58.5 946 1675 71.2 1162 CS LO 2562 932 CS
Getting Bread D2 16 H 1655 110 683 1901 129 800 1391 58.2 946 1675 71.5 1162 CS LO 2562 932 CS
Going 01 17 N 1383 80.6 0 877 47.2 0 1093 58.3 0 788 40.1 0 CO LS 1085 46.2 CO
Monkey & Banana D1 11 H 628 18.1 38 637 19.1 38 637 19.6 38 637 19.6 38 LS C? 664 20.5 LO
Monkey & Banana D2 11 H 115 3.09 23 124 3.45 26 124 3.50 26 124 3.53 26 LS CO 664 20.5 LO
Borders 27 H 9 0.24 4 20 0.37 7 116 1.71 34 116 1.67 34 LS CS 36 0.87 LS
Schubert's Steamroller
D1

26 N 3039 81.5 873 3087 84.4 890 8714 361 3132 8656 358 3110 LS CS 10.2k 374 LS

Schubert's Steamroller
D2

26 N 3039 90.4 873 3087 94.1 890 8714 394 3002 8656 383 2981 LS CS 10.2k 374 LS

Blind Hand 3 10 N 239 14.9 84 250 17.5 91 510 119 242 510 119 242 LS C? 0 0 --
Compute 2 D1 19 H 56 1.82 29 76 2.27 41 109 3.85 56 109 3.80 56 LS CS 111 3.45 LS
Compute 2 D2 19 H 56 1.84 29 76 2.32 41 109 3.85 56 109 3.90 56 LS CO 111 3.45 LS
Compute 3 19 N 56 1.90 29 76 2.39 41 109 4.01 56 109 4.06 56 LS CO 111 3.53 LS
Has Parts 2 8 N 83 4.42 22 83 4.53 22 101 6.24 24 101 6.25 24 LS CO 68 2.13 LO
Latin Squares 16 N 902k 70.5k 91k 144k 7978 10.5k 265k 14.4k 17.7k 264k 14.3k 17.6k LO CS 168k 10.8k LO
Pigeon 4 22 N 344 10.2 0 345 10.3 0 548 16.0 0 515 14.5 0 LS CS 344 11.0 LS
XOR 7 H 40 0.71 15 43 0.77 17 43 0.81 17 43 0.82 17 LS CO 71 1.34 LO

Legend
• SDs - The number of semantic deletions that occurred within the deduction.
• Best Non-SG - SGLD's best results without semantic guidance.

Table 5.4 - SGLD Performance with Semantic Guidance

Semantically Guided Linear Deduction Page 137

A direct comparison between SGLD's performance with and without semantic guidance is
made in Table 5.5, below. For each problem the result for the best performing search style
with semantic guidance is compared with the corresponding result without semantic
guidance. In 15 of the 20 problems listed, the best performing search style with semantic
guidance also performs the best without semantic guidance. Thus the comparison is fair in
these 15 problems. The five problems that witness a change in the best search style are
Group 06, the two versions of Monkey & Banana, Has Parts 2 and XOR. In the two
versions of Monkey & Banana and XOR, the literal-selected search style takes over from
the literal-ordered search style as the best performer when semantic guidance is added. In
these three cases the results without semantic guidance for these two search styles are
similar, and thus the comparison made in Table 5.5 is still meaningful. In Group 06 the
literal-ordered search style performs the best without semantic guidance, about 35% better
than the cell-ordered style. Thus the comparison for this problem is biased by that amount
towards semantic guidance. Similarly, in Has Parts 2 the bias is about 36%.

Problem S. H. Best SG Non-SG SG/N-SG
 Size Tm By Size Tm Size Tm
Group 03 5 H 54 1.94 LS 54 1.86 1.00 1.04
Group 06 9 H 70 2.09 CO 393 12.0 0.18 0.17
Monoids 01 7 H 1264 47.5 LS 2263 73.2 0.56 0.65
Rec. Func. 10 16 N 6 0.30 LS 14 0.38 0.43 0.78
Getting Bread D1 16 H 1391 58.5 CS 2562 932 0.54 0.06
Getting Bread D2 16 H 1391 58.2 CS 2562 932 0.54 0.06
Going 01 17 N 788 40.1 CO 1085 46.2 0.73 0.87
Monkey & Banana D1 11 H 628 18.1 LS 655 19.4 0.96 0.93
Monkey & Banana D2 11 H 115 3.09 LS 655 19.4 0.18 0.16
Borders 27 H 9 0.24 LS 36 0.87 0.25 0.28
Schubert's Steamroller
D1

26 N 3039 81.5 LS 10.2k 374 0.30 0.22

Schubert's Steamroller
D2

26 N 3039 90.4 LS 10.2k 374 0.30 0.24

Blind Hand 3 10 N 239 14.9 LS 0 0 0.00 0.00
Compute 2 D1 19 H 56 1.82 LS 111 3.45 0.50 0.53
Compute 2 D2 19 H 56 1.84 LS 111 3.45 0.50 0.53
Compute 3 19 N 56 1.90 LS 111 3.53 0.50 0.54
Has Parts 2 8 N 83 4.42 LS 106 3.32 1.22 1.33
Latin Squares 16 N 144k 7978 LO 168k 10.8k 0.86 0.74
Pigeon 4 22 N 344 10.2 LS 344 11.0 1.00 0.93
XOR 7 H 40 0.71 LS 80 1.39 0.50 0.51

Legend
• Best SG - The best result for SGLD with semantic guidance. The search style that produced the

result is noted in the "By" column.
• Non-SG - The results for SGLD without semantic guidance, for the search style in the "By"

column.
• SG/N-SG - The ratio of the results with semantic guidance to the results without semantic

guidance. Thus a value less than one indicates improved performance.

Table 5.5. - Summary of the Improved Performance due to Semantic Guidance

Page 138 Semantically Guided Linear Deduction

The last two columns in Table 5.5 clearly indicate the utility of using semantic guidance.
The average size ratio is 0.55 and the average time ratio is 0.53. The better time ratio is not
what is intuitively expected. In most applications of semantic guidance the overhead of
processing the semantic information would make the time ratio larger than the deduction
operations ratio. The cause of the anomaly in SGLD is the relatively large number of
lemmas that are created when semantic guidance is absent. Processing lemmas is fairly
slow in SGLD. In particular, adding lemmas to the input set means adding them to the
Prolog database. This is a relatively slow operation in Prolog.

The Effects of Semantic Deletion
An examination of the designations used in this testing reveals that there are 17 problems
that are affected by one or both of the rightwards subchain system and sort value deletion.
Of the 17, there are 10 problems which are affected by only the rightwards subchain
system. They are Group 06, Monoids 01, Rec. Func. 10, Getting Bread D2, Schubert's
Steamroller D2, Compute 2 D2, Compute 3, Has Parts 2, Latin Squares and XOR. It is
noteworthy that five of these are non-Horn problems for which truth value semantic
deletion has improved performance. This demonstrates the usefulness of linear-input
subset analysis and the rightwards subchain system.

Example
An example, illustrating the effects of the rightwards subchain system, is to be found
in appendix 1, section A1.3. The example traces the start of an SGLD deduction for
the Schubert's Steamroller problem, with the rightwards subchain system using the
second designation provided for that problem (see appendix 2). This example
corresponds to the lines labelled "Schubert's Steamroller D2" in tables 5.4 and 5.5.

There are six problems which are affected by both the rightwards subchain system and sort
value deletion. They are Getting Bread D1, Monkey & Banana D1 and D2, Borders, Blind
Hand 3 and Compute 2 D1. Schubert's Steamroller D1 is the only problem that is affected
solely by sort value deletion.

The large proportion of problems that are affected by semantic deletion is consistent with
the dominance of the literal-selected search style in these tests. The FALSE-preference
strategy has no effect in the literal-selected search style, so only semantic deletion can
improve its performance. In general, the results show that both the rightwards subchain
system and sort value deletion play an important role in improving the performance of
SGLD. The effort of combining these two forms of semantic deletion into a sort&truth
value deletion system is warranted.

Although semantic deletion has been found to usually improve the performance of SGLD,
some pathological cases have been found in which semantic deletion degrades

Semantically Guided Linear Deduction Page 139

performance. The cause of this behaviour is the effect of lemmas within the consecutively
bounded search. When performing a deduction without semantic deletion, SGLD searches
portions of the search space which are not reached when semantic deletion is active. In
such searches lemmas may be generated, even though a refutation cannot be found. Then,
upon entering a portion of the search space that does contain a refutation, the lemmas are
used in finding a refutation within the current search bound. In deductions guided by
semantic deletion the lemmas are not created and the equivalent deduction must be done
on the path to a refutation. This can cause the search bound to be exceeded, resulting in
another iteration of the consecutively bounded search being necessary.

In some problems, particularly simpler ones, semantic deletion of a centre chain only
slightly preempts a natural termination of that branch of the search. As a semantically
deleted centre chain cannot lead to a refutation this is not surprising. In these cases the
search subtree under such a centre chain is small. Depending on the size of the subtree it
may be of greater utility to allow the search to terminate naturally. In complex problems
such search subtrees are typically large, and semantic deletion is most likely to be of
utility.

The Effect of the FALSE-Preference Strategy
It is hard to accurately judge the effect of the FALSE-preference strategy in SGLD from
the results, as the semantic deletion effects overawe those of the FALSE-preference
strategy. There are two problems in which the effect of the FALSE-preference strategy can
be observed. They are Going 01 and Pigeon 4. In Going 01 the FALSE-preference strategy
makes a significant improvement. In Pigeon 4 the FALSE-preference strategy marginally
reduces the number of derivation operations performed. Some effort has been expended
trying to find more problems in which the FALSE-preference strategy has a distinct effect.
These efforts have been unsuccessful.

In the light of the above, the question that arises naturally is whether or not the
FALSE-preference strategy is in fact appropriate. In an effort to answer this question, a
TRUE-preference strategy has been investigated. Limited experimentation with the
TRUE-preference strategy has indicated that it degrades the performance of SGLD. Thus
the FALSE-preference strategy appears to be 'in the right direction'. However, further
development may be necessary. The following observation suggests one possible
development. Literals that are TRUE in side chain models of a deduction are likely to be
reduced against. The FALSE-preference strategy avoids centre chains that contain TRUE
literals. If all refutations of an input set contain a reduction operation (not unlikely in
non-Horn problems), then the FALSE-preference strategy may guide the host deduction
system away from refutations. Further analysis of the input set, in the style of linear-input

Page 140 Semantically Guided Linear Deduction

subset analysis, may be possible to determine for which literals a FALSE-preference
should be shown.

5.5. Conclusion

This chapter has described the implementation and testing of SGLD - the combination of
GLD, a semantic guidance system and designations. The contribution made by this chapter
is to illustrate the effects that semantic guidance can have in a linear deduction system.

The main value of implementing SGLD is that the implementation has facilitated
evaluation of GLD, the semantic guidance system, designations and their combination.
The following are the conclusions :
• GLD is an effective deduction system. Without the aid of semantic guidance its

performance is comparable with that of other well regarded deduction systems.
• The rightwards subchain system and sort value deletion can significantly improve the

performance of SGLD.
• The FALSE-preference strategy may require further development.
• Designations are well suited to the task of supplying semantic to semantic guidance

systems. The (implementation of the) designation building algorithm has been
particularly useful.

• The combination of GLD, the semantic guidance system and designations, forms a
coherently integrated deduction system.

SGLD's Prolog implementation is believed to be, as Prolog implementations go, fairly
efficient. A more efficient implementation of SGLD could be achieved by compiling the
input set to a Prolog program which implements SGLD deductions from the input set. This
is the approach taken in the MPRF system. An even faster implementation could be
achieved by compiling to an executable form, as is done in the PTTP.

All of the features in SGLD have been developed cognisant of each other and this has
made their combination into a coherent whole possible. An interesting feature of the
implementation is the use of an auxiliary data structure - the semantic chain - to maintain
deduction faithfulness. This has facilitated an efficient implementation of the semantic
guidance system. The admissibility restrictions in GLD are operation restrictions, so the
issue of deduction faithfulness does not arise there. However, if those restrictions were to
be extended to be deduction restrictions, a second auxiliary data structure - a 'syntactic
chain' - could be used. As the current admissibility restrictions already have retrospective
effect, the amount of information that would have to be stored in such a data structure
would be fairly small.

Semantically Guided Linear Deduction Page 141

Conclusion Page 143

Chapter Six

Conclusion

This chapter reviews the outcomes of this research. SGLD has combined GLD, a semantic
guidance system and designations, to form a unique deduction system. The components of
SGLD are individually of interest and their combination into SGLD has confirmed the
thesis of this research. Areas worthy of further investigation have also been noted.

This chapter contains :
1. An overview of the work done.
2. Discussion of GLD.
3. Discussion of the semantic guidance systems developed.
4. Discussion of designations.
5. Discussion of SGLD.
6. Concluding comments.

6.1. Overview

The research described in the preceding chapters started with the thesis given in chapter 1 :

Semantic guidance can be used to improve the performance of a linear
deduction system.

It is noted there that four subobjectives would contribute to establishing this thesis. They
are as follows. (i) To develop a host deduction system. (ii) To develop a semantic guidance
system for the host deduction system. (iii) To develop an interpretive structure for storing
the semantic information used by the semantic guidance system. (iv) To combine the
deduction system, semantic guidance system and the interpretive structure into a coherent
whole. Each of these subobjectives has been satisfied. (i) The host deduction system
developed is GLD. (ii) Several semantics guidance systems, most notably combined
semantic guidance, have been developed for GLD. (iii) Designations store the semantic

Page 144 Conclusion

information used. (iv) GLD, a combined semantic guidance system and designations, have
been combined into SGLD.

6.2. GLD

Although GLD has been designed as a platform for using and testing semantic guidance in
linear deduction systems, it also has features that make it an interesting deduction system
in its own right.

The most significant idea associated with GLD is linear-input subset analysis. The
important consequence of linear-input subset analysis is that a truth value deletion system -
the rightwards subchain system - can be used in (the linear-input) parts of GLD
deductions. A secondary payoff of the analysis is that the reduction operation can be
explicitly ignored in linear-input subdeductions. A small number of non-Horn problems
with non-trivial linear-input subsets have been identified in this research. It would be
desirable to find a large number of such problems, as this would further establish the
pragmatic importance of linear-input subset analysis.

There are four noteworthy features within GLD. Firstly, GLD has explicit search guidance
mechanisms and an explicit entry point for the incorporation of guidance systems. As a
result, the potential for search guidance in GLD is higher than in previous comparable
systems. Secondly, GLD employs deduction chunks. Thirdly, GLD's combined
lemma/C-literal mechanism improves upon previous mechanisms for reusing deduced
information. The combined lemma/C-literal mechanism can be used in chain format linear
deduction systems other than GLD and is thus a useful, general, development. Finally, the
extended admissibility restrictions imposed in GLD are important in terms pruning the
search tree. The admissibility restrictions are operational ones, but have a fairly high level
of retrospective and prospective effect. As is noted in section 5.5, the extension of the
admissibility restrictions to a deductional nature is possible.

The embedding of equality into GLD has been examined superficially. The basic approach
appears to have potential, particularly as it is naturally controlled by GLD's search
guidance mechanisms. Its full development, evaluation and exploitation, are areas for
further research.

The dynamic definition of GLD contrasts with the presentations of many other systems.
This form of definition makes exact implementation possible. With an exact
implementation, it is possible to examine closely the intrinsic properties of GLD. Such
examination could of course lead to further improvements.

Conclusion Page 145

6.3. Semantic Guidance

Eight semantic guidance systems have been defined in this research. Three are specifically
for linear-input deduction systems. The remaining five have been designed with linear
deduction systems in mind, but can also be used with other deduction formats. A useful
feature of the definitions of these guidance systems, is that implementational issues have
been considered. This means that they can be implemented and used without further
inquiry being necessary.

The rightwards subchain truth value deletion system is the most important of the guidance
systems developed. The rightwards subchain system is complete for linear deduction
systems. As truth value deletion has previously been considered incompatible with linear
deduction, the rightwards subchain system is a significant development. Building on the
rightwards subchain system, a coherent suite of semantic guidance systems has emerged.
With the reformulation of sort value deletion into the same terms as truth value deletion
and the tempering of truth value deletion into the FALSE-preference strategy, it has been
possible to formulate new semantic guidance systems which are widely applicable. As the
use of semantic guidance has been seen to be a neglected area, these developments are of
interest and use.

There is potential to further develop combined semantic guidance systems. At least three
questions need to be addressed. (i) Is it possible to make the preference for FALSE literals
more selective? (This is the most important of these three questions.) The results presented
in chapter 5 indicate that further tuning of the FALSE-preference strategy may be
necessary. As discussed in section 5.4.3, it may not always be appropriate to avoid centre
chains that contain TRUE literals. (ii) How may ETV-compatibility levels should be
available to be assigned to ground literals, and what values should be assigned to each of
the levels? This research uses four of the eight possible levels and the integer values used
in SGLD are based on rough empirical evidence. (iii) What ETV-compatibility functions
are appropriate for determining the ETV-compatibility of a chain and of its ground
instances? Minimisation and summation have been used in SGLD, but other functions may
produce better results.

Plaisted [1990b] has suggested another way of semantically guiding the reduction
operation. The positive refinement for Model Elimination style deduction systems
[Plaisted 1990b] shows that it is necessary to reduce only against A-literals that are
interpreted as FALSE. The effect of imposing such a restriction is worth investigating.

Page 146 Conclusion

Finally, it is known that multiple truth value interpretations can be used for truth value
deletion in linear-input deductions [Brown, 1973]. It should be possible to extend the
semantic guidance systems developed in this research to use multiple interpretations. This
is also an area for further research.

6.4. Designations

The development of designations has been motivated by the complexity and volume of
semantic information used by semantic guidance systems. An important feature of
designations, that makes them superior to existing SRI structures, is their use of property
inheritance. Designations are also capable of storing more complex semantic information
than standard SRI structures. This added capability is due to the relationship (rather than a
mapping) between domain elements. This latter facility has, however, been used in only a
minority of the designations built in the course of this research. Another important feature
of designations is their compatibility with the SLE process.

The designation building algorithm is probably the unsung hero of this research. It has
been indispensable for the specification of the designations used with SGLD. The
algorithm makes it possible for a user to concentrate on the accurate and appropriate
supply of semantic information, without having to be concerned about the completeness
and soundness of the interpretations built.

Two topics for further research are evident in this area. (i) This research supplies (in
section 4.7.2) only very rough indications of what properties make an interpretation
effective in a semantic guidance system. Accurate analysis of interpretations' properties, in
terms of semantic guidance, is needed. (ii) Only a low level of automation has been
achieved in the specification of designations. Further automation, using techniques such as
those mentioned in section 3.2, would be desirable.

6.5. SGLD

SGLD has been developed to test the thesis of this research, and it has been successful in
this task. The basic capability of GLD has been illustrated in performance testing without
semantic guidance. The positive effects of the rightwards subchain system and sort value
deletion have been demonstrated in the performance testing with semantic guidance. This
testing also indicated the potential of the FALSE-preference strategy. Designations have
shown themselves to be effective for storing semantic information. The prime feature of

Conclusion Page 147

SGLD is its combined semantic guidance system. The consistent use of the same semantic
information in all of its components has resulted in coherent guidance of SGLD's search.

It is worth considering the quality of SGLD as a whole. Plaisted [1990a] gives four criteria
for evaluating deduction systems. They are (in essence) :
1. Does the system support back chaining with reuse of deduced information?
2. Does the system use a genuine support strategy, that concentrates on chains deduced

from the negation of the conclusion to be proved?
3. Does the system permit the use of semantic information to reject redundant deduced

chains?
4. Is the use of resolution well controlled during back chaining?

To these questions, SGLD provides the following answers :
1. For the first part, linear deduction systems are, by definition, back chaining systems.

For the second part, the lemma/C-literal mechanism in SGLD implements the reuse of
deduced information.

2. SGLD's preference for input chains whose status is theorem, allows the user to
ensure that a genuine support strategy is used.

3. The rightwards subchain and sort value deletion systems, in SGLD's semantic guidance
system, reject redundant deduced chains.

4. The use of resolution is intrinsically well controlled in linear deduction systems. SGLD
improves on this via its compulsory operations and admissibility checking. The four
search styles provide different ways of directing SGLD's search for a refutation.

These answers indicate that SGLD is (or at least should be) a high quality deduction
system. It is hard to make any overall comparisons between SGLD and other deduction
systems, due to the absence of other deduction systems which which make such extensive
use of semantic guidance. Possibly the only valid comparison that can be made is with
Sandford's Hereditary Lock Resolution (HLR) [1980] (see section 3.2.1). HLR appears to
be the best semantically guided deduction system to date, with a strong theoretical basis
for its semantic guidance. In terms of Plaisted's four criteria, HLR is not a back chaining
system, nor does it use a genuine support strategy. It does use semantic deletion and, as a
version of lock resolution, has a well controlled use of resolution. A similarity between
SGLD and HLR is the use of an auxiliary data structure to maintain deduction faithfulness
of the semantic guidance restrictions.

Beyond the potential for faster implementation, as mentioned in section 5.5, future work
on SGLD will certainly arise out of any changes to GLD, the semantic guidance system, or
designations. It would also be interesting to investigate to what extent a single designation

Page 148 Conclusion

can be used to guide deductions for multiple input sets. For a single designation to be used
with multiple input sets, the semantic information stored would have to be fairly general.
This may make the semantic guidance systems less effective.

6.6. Conclusion

The ideas and results presented in the preceding chapters show that the thesis of this
research holds. Semantic guidance can be used to improve the performance of a linear
deduction system. Only two issues remain slightly open in this regard. Firstly, it would be
desirable to uncover a large group of non-Horn problems which have non-trivial
linear-input subsets. This would more firmly establish the pragmatic importance of
linear-input subset analysis and the rightwards subchain system. Secondly, the
FALSE-preference strategy may need further tuning.

The outcomes of this research have the potential to contribute to other deduction systems.
The FALSE-preference strategy, sort&truth value deletion and combined semantic
guidance, are generally applicable semantic guidance mechanisms. Designations (and the
algorithm for building them) make it far easier to use these and other semantic guidance
systems in appropriate host deduction systems.

Beyond the specific areas for further research mentioned in the earlier sections of this
chapter, two general issues have stood out as warranting further attention, as follows.
(i) Although complete truth value deletion systems now exist for linear and linear-input
deduction systems, use of these systems has indicated that they have effect only in some
types of problems. For example, truth value deletion appears to be ineffective when
proving general lemmas from the axioms of a problem domain. On the other hand, truth
value deletion appears particularly effective in problems that have some special
hypotheses. Some theoretical analysis should reveal generic problem types for which truth
value deletion is (and is not) appropriate. (ii) The technique of proof by analogy to a proof
in the semantic domain needs to be developed. Some work has been done in this area
[Plaisted, 1981, 1984]. However, when compared to its potential, this approach to
semantic guidance appears to have been neglected. This thought has been voiced by
others, e.g. "Somehow intelligent machines (including reasoners) must make use of
analogy ..." [Bledsoe & Hodges, 1988, p. 517]. The domain based approach described in
chapter 3 could form a starting point for research in this area.

References Page 149

References

Anderson R. and Bledsoe W.W. (1970), A Linear Format for Resolution with Merging and
a New Technique for Establishing Completeness, In Journal of the ACM 17(3),
ACM Press, New York, NY, 525-534.

Andrews P.B. (1968), Resolution with Merging, In Journal of the ACM 15(3), ACM Press,
New York, NY, 367-381.

Arity Corporation (1988), The Arity/Prolog Language Reference Manual, Arity
Corporation, Concord, MA.

Astrachan O.L., and Stickel M.E. (1992), Caching and Lemmaizing in Model Elimination
Theorem Provers, In Kapur, D. (Ed.), Proceedings of the 11th International
Conference on Automated Deduction (Saratoga Springs, NY, 1992), (Lecture Notes
in Artificial Intelligence 607), Springer-Verlag, New York, NY, 224-238.

Ballantyne A.M. and Bennett W. (1973), Graphing Methods for Topological Proofs,
Research Report ATP 7, Department of Computer Science, University of Texas at
Austin, Austin, TX.

Ballantyne A.M., and Bledsoe W.W. (1977), Automatic Proofs of Theorems in Analysis
Using Nonstandard Techniques, In Journal of the ACM 24(3), ACM Press, New
York, NY, 353-374.

Ballantyne A.M. and Bledsoe W.W. (1982), On generating and using examples in proof
discovery, In Hayes J.E., Michie D. (Ed.), Machine Intelligence 10, Ellis-Horwood,
Chichester, England, 3-39.

Bibel W. (1987), Automated Theorem Proving, Vieweg & Sohn, Braunschweig, Germany.

Bledsoe W.W. (1983), Using examples to generate instantiations of set variables, In Bundy
A. (Ed.), Proceedings of the 8th International Joint Conference on Artificial
Intelligence (Karlsruhe, Germany, 1983), International Joint Conferences on
Artificial Intelligence Inc, Los Altos, CA, 892-901.

Bledsoe W.W. (1986), Some Thoughts on Proof Discovery, In Proceedings of the 3rd
Symposium on Logic Programming (Salt Lake City, UT, 1986), IEEE Computer
Society Press, Washington, DC, 2-10.

Bledsoe W.W. and Henschen L.J. (1985), An Overview of Automated Reasoning : What is
Automated Theorem Proving?, In Journal of Automated Reasoning 1(1), Kluwer
Academic Publishers, Dordrecht, The Netherlands, 5-48.

Page 150 References

Bledsoe W.W. and Hodges R. (1988), A Survey of Automated Deduction, In Schrobe H.E.
(Ed.), Exploring Artificial Intelligence : Survey Talks from the National Conferences
on Artificial Intelligence, Morgan Kaufmann, San Mateo, CA, 483-543.

Bledsoe W.W. (1992), Personal Correspondence.

Boyer R.S. (1971), Locking : a restriction of resolution, PhD Thesis, University of Texas
at Austin, Austin, TX.

Brown F.M. (1973), The Use of Several Models as a Refinement of Resolution with sets of
Horn Clauses, Internal Memo #63, Department of Artificial Intelligence, University
of Edinburgh, Edinburgh, Scotland.

Brown F.M. (1974), SLM, Internal Memo #72, Department of Artificial Intelligence,
University of Edinburgh, Edinburgh, Scotland.

Bundy A. (1983), The Computer Modelling of Mathematical Reasoning, Academic Press,
London, England.

Bundy A. (1984), A Generalized Interval Package and Its Use for Semantic Checking, In
ACM Transactions on Mathematical Systems 10(4), ACM Press, New York, NY,
397-409.

Bundy A. (1987), Personal Correspondence.

Bundy A., Byrd L., Luger G., Mellish C., Milne R. and Palmer M. (1979), Solving
Mechanics Problems Using Meta-level Inference, In Proceedings of the 6th
International Joint Conference on Artificial Intelligence (Tokyo, Japan, 1979),
International Joint Conferences on Artificial Intelligence Inc, Los Altos, CA, 1017-
1027.

Carlsson M. and Widen J. (1990), SICStus Prolog User's Manual, R88007C, Swedish
Institute of Computer Science, Kista, Sweden.

Chang C-L. (1970), The Unit Proof and the Input Proof in Theorem Proving, In Journal of
the ACM 17(4), ACM Press, New York, NY, 698-707.

Chang C-L. (1972), The Decomposition Principle for Theorem Proving Systems, In
Proceedings of the 10th Annual Allerton Conference on Circuit and System Theory
(Urbana, IL, 1972), The Conference, Urbana, IL, 20-28.

Chang C-L. and Lee R.C-T. (1973), Symbolic Logic and Mechanical Theorem Proving,
Academic Press, New York, NY.

Cohn A.G. (1987), A More Expressive Formulation of Many Sorted Logic, In Journal of
Automated Reasoning 3(2), Kluwer Academic Publishers, Dordrecht, The
Netherlands, 113-200.

References Page 151

Delgrande J.P. and Mylopolous J. (1986), Knowledge Representation : Features of
Knowledge, In Bibel W., Jorrand Ph (Eds.), In Fundamentals of Artificial
Intelligence : An Advanced Course, (Lecture Notes in Computer Science 232),
Springer-Verlag, New York, NY, 3-36.

Digricoli V.J. (1979), Automatic Deduction and Equality, In Martin A.L. (Ed.),
Proceedings of the Annual Conference of the ACM (Detroit, MI, 1979), ACM Press,
New York, NY, 240-250.

Dougherty D.J. and Johann P. (1990), An Improved General E-Unification Method, In
Stickel M. (Ed.), Proceedings of the 10th International Conference on Automated
Deduction (Kaiserslautern, Germany, 1990), (Lecture Notes in Artificial Intelligence
449), Springer-Verlag, New York, NY, 261-275.

Enderton H.B. (1972), A Mathematical Introduction to Logic, Academic Press, New York,
NY.

Ertel W. (1991), Random Competition: A Simple, but Efficient Method for Parallelizing
Inference Systems, In Kanal L.N., Suttner C. B. (Eds.), Informal Proceedings of
PPAI-91, International Workshop on Parallel Processing for Artificial Intelligence
(Sydney, Australia, 1991), International Joint Conferences on Artificial Intelligence
Inc, Sydney, Australia, 36-39.

Fleisig S., Loveland D.W., Smiley A.K. and Yarmush D.L. (1974), An Implementation of
the Model Elimination Proof Procedure, In Journal of the ACM 21(1), ACM Press,
New York, NY, 124-139.

Fruhwirth T.W. (1989), A Type Language for Prolog and its Application to Type
Inference, In Martelli A., Valle G. (Eds.), Computational Intelligence 1, Elsevier
Science Publishers, Amsterdam, The Netherlands, 29-41.

Gallier J. and Snyder W. (1989), Complete Sets of Transformations for General E-
Unification, In Theoretical Computer Science 67(2,3), North-Holland, Amsterdam,
The Netherlands, 203-260.

Gelerneter H. (1963), Realisation of a Geometry-Theorem Proving Machine, In
Feigenbaum E.A., Feldman J (Eds.), Computers and Thought, McGraw-Hill, New
York, NY, 134-152.

Gelerneter H., Hansen J.R. and Loveland D.W. (1963), Empirical Explorations of the
Geometry-Theorem Proving Machine, In Feigenbaum E.A., Feldman J (Eds.),
Computers and Thought, McGraw-Hill, New York, NY, 153-163.

Page 152 References

Ginsberg M.L. and Geddis D.F. (1991), Is there any Need for Domain-Dependent Control
Information?, In Dean T., McKeown K. (Eds.), AAAI-91, Proceedings of the 9th
National Conference on Artificial Intelligence (Asilomar, CA, 1991), AAAI
Press/MIT Press, Menlo Park, CA, 452-457.

Hayes P.J. (1971), A Logic of Actions, In Meltzer B., Michie D. (Eds.), Machine
Intelligence 6, Edinburgh University Press, Edinburgh, Scotland, 495-520.

Henschen L.J. (1972), N-Sorted Logic for Automatic Theorem-Proving in Higher Order
Logic, In Proceedings of the Annual Conference of the ACM (Boston, MA, 1972),
ACM Press, New York, NY, 71-81.

Henschen L.J. (1976), Semantic Resolution for Horn Sets, In IEEE Transactions on
Computers C-25(8), IEEE Computer Society Press, Washington, DC, 816-822.

Henschen L.J. and Wos L. (1974), Unit Refutations and Horn Sets, In Journal of the ACM
21(4), ACM Press, New York, NY, 590-605.

Irani K.B. and Shin D.G. (1985), A Many-Sorted Resolution based on an Extension of a
First-Order Language, In Joshi A. (Ed.), Proceedings of the 9th International Joint
Conference on Artificial Intelligence (Los Angeles, CA, 1985), International Joint
Conferences on Artificial Intelligence Inc, Los Altos, CA, 1175-1177.

Jaffar J. and Lassez J-L. (1987), Constraint Logic Programming, In Proceedings of the
Annual ACM Symposium on Principles of Programming Languages (Munich,
Germany, 1987), ACM Press, Baltimore, MD, 0-15.

Kim M.W. (1986), On Automatically Generating and Using Examples in a Computational
Logic System, The University of Texas at Austin, Austin, TX.

Knuth D.E. and Bendix P.B. (1970), Simple word problems in universal algebras, In Leech
J. (Ed.), Computational Problems in Abstract Algebras, Pergamon Press, 263-297.

Korf R.E. (1985), Depth-First Iterative Deepening: An Optimal Admissible Tree Search,
In Artificial Intelligence 27, Elsevier Science, Amsterdam, The Netherlands, 97-109.

Kornfield W.A. (1983), Equality for Prolog, In Joshi A. (Ed.), Proceedings of the 9th
International Joint Conference on Artificial Intelligence (Los Angeles, CA, 1983),
International Joint Conferences on Artificial Intelligence Inc, Los Altos, CA, 514-
519.

Kowalski R.A. (1970), Studies in the Completeness and Efficiency of Theorem-Proving by
Resolution, PhD Thesis, University of Edinburgh, Edinburgh, Scotland.

Kowalski R.A. and Hayes P.J. (1969), Semantic Trees in Automatic Theorem Proving, In
Meltzer B., Michie D. (Eds.), Machine Intelligence 4, Edinburgh University Press,
Edinburgh, Scotland, 87-101.

References Page 153

Kowalski R.A. and Kuehner D. (1971), Linear Resolution with Selection Function, In
Artificial Intelligence 2, Elsevier Science, Amsterdam, The Netherlands, 227-260.

Kuehner D. (1972), Some Special Purpose Resolution Systems, In Meltzer B., Michie D
(Eds.), Machine Intelligence 7, Edinburgh University Press, Edinburgh, Scotland,
117-128.

Lawrence J.D. and Starkey J.D. (1974), Experimental tests of resolution based theorem-
proving strategies., Technical Report, Computer Science Department, Washington
State University, Pullman, WA.

Letz R., Schumann J., Bayerl S. and Bibel W. (1992), SETHEO: A High-Performance
Theorem Prover, In Journal of Automated Reasoning 8(2), Kluwer Academic
Publishers, Dordrecht, The Netherlands, 183-212.

Lloyd J.W. (1984), Foundations of logic programming, Springer-Verlag, New York, NY.

Loveland D.W. (1968), Mechanical Theorem Proving by Model Elimination, In Journal of
the ACM 15(2), ACM Press, New York, NY, 236-251.

Loveland D.W. (1969a), A Simplified Format for the Model Elimination Theorem-Proving
Procedure, In Journal of the ACM 16(3), ACM Press, New York, NY, 349-363.

Loveland D.W. (1969b), Theorem-provers Combining Model Elimination and Resolution,
In Meltzer B., Michie D. (Eds.), Machine Intelligence 4, Edinburgh University Press,
Edinburgh, Scotland, 73-86.

Loveland D.W. (1970), A Linear Format for Resolution, In Laudet M. et al. (Eds.),
Proceedings of the IRIA Symposium on Automatic Demonstration (Versailles,
France, 1968), Springer-Verlag, New York, NY, 147-162.

Loveland D.W. (1972), A Unifying View of Some Linear Herbrand Procedures, In Journal
of the ACM 19(2), ACM Press, New York, NY, 366-384.

Loveland D.W. (1978), Automated Theorem Proving : a logical basis, Elsevier Science,
Amsterdam, The Netherlands.

Luckham D. (1968), Some Tree-paring Strategies for Theorem Proving, In Michie D.
(Ed.), Machine Intelligence 3, Edinburgh University Press, Edinburgh, Scotland, 95-
112.

Luckham D. (1970), Refinement Theorems in Resolution Theory, In Laudet M. et al.
(Eds.), Proceedings of the Symposium on Automatic Demonstration (Versailles,
France, 1968), Springer-Verlag, New York, NY, 163-190.

Lusk E. and Overbeek R. (1985), Non-Horn Problems, In Journal of Automated Reasoning
1(1), Kluwer Academic Publishers, Dordrecht, The Netherlands, 103-114.

Page 154 References

Manna Z. and Waldinger R. (1985), Special Relations in Automated Deduction, Internal
Report STAN-CS-85-1051, Department of Computer Science, Stanford University,
Stanford, CA.

Manthey R. and Bry F. (1988), SATCHMO: a theorem prover implemented in Prolog, In
Lusk E., Overbeek R. (Eds.), Proceedings of the 9th International Conference on
Automated Deduction (Argonne, IL, 1988), (Lecture Notes in Computer Science
310), Springer-Verlag, New York, NY, 415-434.

McCune W.W. (1990), Skolem Functions and Equality in Automated Deduction, In
Dietterich T., Swartout W. (Eds.), Proceedings of the 8th National Conference on
Artificial Intelligence (Boston, MA, 1990), American Association for Artificial
Intelligence / MIT Press, Menlo Park, CA, 246-252.

McCune W.W. and Henschen L.J. (1983), Semantic Paramodulation for Horn Sets, In
Bundy A. (Ed.), Proceedings of the 8th International Joint Conference on Artificial
Intelligence (Karlsruhe, Germany, 1983), International Joint Conferences on
Artificial Intelligence Inc., Los Altos, CA, 902-908.

McRobbie M.A., Meyer R.K. and Thistlewaite P.B. (1988), Towards Efficient
"Knowledge-Based" Automated Theorem Proving for Non-Standard Logics, In Lusk
E., Overbeek R. (Eds.), Proceedings of the 9th International Conference on
Automated Deduction (Argonne, IL, 1988), (Lecture Notes in Computer Science
310), Springer-Verlag, New York, NY, 197-217.

Meltzer B. (1966), Theorem-proving for computers: Some results on resolution and
renaming, In The Computer Journal 8, The British Computer Society, London,
England, 341-343.

Michie D., Ross R. and Shannan G.J. (1972), G-deduction, In Meltzer B., Michie D.
(Eds.), Machine Intelligence 7, Edinburgh University Press, Edinburgh, Scotland,
141-165.

Minker J. and Zanon G. (1982), An Extension to Linear Resolution with Selection
Function, In Information Processing Letters 14(4), Elsevier Science, Amsterdam,
The Netherlands, 191-194.

Morris J.B. (1969), E-Resolution: Extension of Resolution to include the equality relation,
In Walker D.E., Norton L.M. (Eds.), Proceedings of the 1st International Joint
Conference on Artificial Intelligence (Washington, DC, 1969), Mitre Corp., Bedford,
MA, 287-294.

Mycroft A. and O'Keefe R.A. (1984), A Polymorphic Type System for Prolog, In Artificial
Intelligence 23, Elsevier Science, Amsterdam, The Netherlands, 295-307.

References Page 155

Naish L. (1985), muProlog 3.2 Reference Manual, Technical Report 85/11, Department of
Computer Science, University of Melbourne, Melbourne, Australia.

Naish L. (1986), Negation and Control in Prolog, (Lecture Notes in Computer Science
238), Springer-Verlag, New York, NY.

Nevins A.J. (1975), Plane Geometry Theorem Proving Using Forward Chaining, In
Artificial Intelligence 6, Elsevier Science, Amsterdam, The Netherlands, 1-23.

Newell A. and Simon H.A. (1976), Computer Science as Empirical Inquiry : Symbols and
Search, In Communications of the ACM 19(3), ACM Press, New York, NY,
113-126.

Nie X. and Plaisted D.A. (1990), A Complete Semantic Back Chaining Proof System, In
Stickel M. (Ed.), Proceedings of the 10th International Conference on Automated
Deduction (Kaiserslautern, Germany, 1990), (Lecture Notes in Artificial Intelligence
449), Springer-Verlag, New York, NY, 16-27.

Nilsson N.J. (1971), Problem-Solving Methods in Artificial Intelligence, McGraw-Hill,
New York, NY.

Overbeek R., McCharen J. and Wos L. (1976), Complexity and Related Enhancements for
Automated Theorem-Proving Programs, In Computers and Mathematics with
Applications 2, Pergamon Press, England, 1-16.

Pastre D. (1978), Automatic Theorem Proving in Set Theory, In Artificial Intelligence 10,
Elsevier Science, Amsterdam, The Netherlands, 1-27.

Pelletier F.J. (1986), Seventy-five Problems for Testing Automatic Theorem Provers, In
Journal of Automated Reasoning 2(2), Kluwer Academic Publishers, Dordrecht, The
Netherlands, 191-216.

Plaisted D.A. (1981), Theorem Proving with Abstraction, In Artificial Intelligence 16,
Elsevier Science, Amsterdam, The Netherlands, 47-108.

Plaisted D.A. (1982), A Simplified Problem Reduction Format, In Artificial Intelligence
18, Elsevier Science, Amsterdam, The Netherlands, 227-261.

Plaisted D.A. (1984), Using Examples, Case Analysis and Dependency Graphs in
Theorem Proving, In Shostak R.E. (Ed.), Proceedings of the 7th International
Conference on Automated Deduction (Napa, CA, 1984), (Lecture Notes in Computer
Science 170), Springer-Verlag, New York, NY, 356-374.

Plaisted D.A. (1988), Non-Horn Clause Logic Programming Without Contrapositives, In
Journal of Automated Reasoning 4(3), Kluwer Academic Publishers, Dordrecht, The
Netherlands, 287-325.

Page 156 References

Plaisted D.A. (1990a), Mechanical Theorem Proving, In Banerji R.B. (Ed.), Formal
Techniques in Artificial Intelligence, A Sourcebook, Elsevier Science, Amsterdam,
The Netherlands, 269-320.

Plaisted D.A. (1990b), A Sequent-Style Model Elimination Strategy and a Positive
Refinement, In Journal of Automated Reasoning 6(4), Kluwer Academic Publishers,
Dordrecht, The Netherlands, 389-402.

Plaisted D.A. (1991), Implementation of the Modified Problem Reduction Format
Theorem Prover, Computer Program, Department of Computer Science, University
of North Carolina, Chapel Hill, NC.

Plotkin G.D. (1972), Building-in Equational Theories, In Meltzer B., Michie D. (Eds.),
Machine Intelligence 7, Edinburgh University Press, Edinburgh, Scotland, 73-91.

Pollack M.E. (1991), The Use of Plans, In Mylopolous J., Reiter R. (Eds.), Proceedings of
the 12th International Joint Conference on Artificial Intelligence (Sydney, Australia,
1991), International Joint Conferences on Artificial Intelligence Inc., Los Altos, CA,
Computers and Thought Lecture.

Popplestone R.J. (Unpublished), Freddy, things and sets.

Raphael B. (1969), Some Results about Proof by Resolution, In SIGART 14, ACM Press,
New York, NY, 22-25.

Reiter R. (1971), Two Results on Ordering for Resolution with Merging and Linear
Format, In Journal of the ACM 18(4), ACM Press, New York, NY, 630-646.

Reiter R. (1973), A Semantically Guided Deduction System for Automatic Theorem
Proving, In Proceedings of the 3rd International Joint Conference on Artificial
Intelligence (Stanford, CA, 1973), Stanford Research Institute, Menlo Park, CA, 41-
46.

Ringwood G.A. (1988), SLD: A Folk Acronym, In Moss C. (Ed.), Logic Programming
Newsletter 2(1), Association for Logic Programming, London, England, 5-7.

Robinson G.A. and Wos L. (1969), Completeness of Paramodulation, In Journal of
Symbolic Logic 34, Association for Symbolic Logic Inc., Providence, RI, 159-160.

Robinson J.A. (1963), Theorem Proving on the Computer, In J. ACM 10(2), ACM Press,
New York, NY, 163-174.

Robinson J.A. (1965a), A Machine-Oriented Logic Based on the Resolution Principle, In
Journal of the ACM 12(1), ACM Press, New York, NY, 23-41.

Robinson J.A. (1965b), Automatic Deduction with Hyper-resolution, In International
Journal of Computer Mathematics 1, Gordon and Breach, London, England, 227-
234.

References Page 157

Robinson J.A. (1969), Mechanizing Higher-Order Logic, In Meltzer B., Michie D. (Eds.),
Machine Intelligence 4, Edinburgh University Press, Edinburgh, Scotland, 151-170.

Sandford D.M. (1977), Formal Specification of Models for Semantic Theorem Proving
Strategies, SOSAP-TR-32, Department of Computer Science, Rutgers, The State
University of New Jersey, New Brunswick, NJ.

Sandford D.M. (1980), Using Sophisticated Models in Resolution Theorem Proving,
(Lecture Notes in Computer Science 90), Springer-Verlag, New York, NY.

Schmidt-Schauss M. (1985), A Many-Sorted Calculus with Polymorphic Functions Based
on Resolution and Paramodulation, In Joshi A. (Ed.), Proceedings of the 9th
International Joint Conference on Artificial Intelligence (Los Angeles, CA, 1985),
International Joint Conferences on Artificial Intelligence Inc, Los Altos, CA, 1162-
1168.

Schmidt-Schauss M. (1988), Computational Aspects of an Order-Sorted Logic with Term
Declarations, Doctoral Dissertation, University of Kaiserslautern, Kaiserslautern,
Germany.

Schumann J., Letz R. and Kurfess F. (1990), High Performance Theorem Provers :
Efficient Implementation and Parallelisation, In Stickel M. (Ed.), Proceedings of the
10th International Conference on Automated Deduction (Kaiserslautern, Germany,
1990), (Lecture Notes in Artificial Intelligence 449), Springer-Verlag, New York,
NY, Tutorial Session.

Shin D.G. and Irani K.B. (1984), Knowledge Representation using an extension of a
Many-Sorted Language, In Proceedings of the 1st Conference on Artificial
Intelligence Applications (Denver, CO, 1984), IEEE Computer Society Press, Silver
Spring, MD, 404-409.

Shostak R.E. (1976), Refutation Graphs, In Artificial Intelligence 7, Elsevier Science,
Amsterdam, The Netherlands, 51-64.

Slagle J.R. (1965), A Proposed Preference Strategy using Sufficiency Resolution for
Answering Questions, UCRL-14361, Lawrence Radiation Laboratory, Livermore,
CA.

Slagle J.R. (1967), Automatic Theorem Proving with Renamable and Semantic Resolution,
In Journal of the ACM 14(4), ACM Press, New York, NY, 687-697.

Slagle J.R. (1972), Automatic Theorem Proving with Built-in Theories Including Equality,
Partial Ordering and Sets., In Journal of the ACM 19(1), ACM Press, New York,
NY, 120-135.

Page 158 References

Slagle J.R. (1974), Automated theorem-proving for theories with simplifiers,
commutativity and associativity, In Journal of the ACM 21(4), ACM Press, New
York, NY, 622-642.

Stickel M.E. (1985), Automated Deduction by Theory Resolution, In Journal of
Automated Reasoning 1(4), Kluwer Academic Publishers, Dordrecht, The
Netherlands, 333-356.

Stickel M.E. (1986a), An Introduction to Automated Reasoning, In Bibel W., Jorrand Ph.
(Eds.), Fundamentals of Artificial Intelligence, (Lecture Notes in Computer Science
232), Springer-Verlag, New York, NY, 75-131.

Stickel M.E. (1986b), A Prolog Technology Theorem Prover: Implementation by an
Extended Prolog Compiler, In Siekmann J.H. (Ed.), Proceedings of the 8th
International Conference on Automated Deduction (Oxford, England, 1986),
(Lecture Notes in Computer Science 230), Springer-Verlag, New York, NY, 573-
587.

Stickel M.E. (1990), A Prolog Technology Theorem Prover, In Stickel M. (Ed.),
Proceedings of the 10th International Conference on Automated Deduction
(Kaiserslautern, Germany, 1990), (Lecture Notes in Artificial Intelligence 449),
Springer-Verlag, New York, NY, 673-674.

Stickel M.E. and Tyson W.M. (1985), An Analysis of Consecutively Bounded Depth-First
Search with Applications in Automated Deduction, In Joshi A. (Ed.), Proceedings of
the 9th International Joint Conference on Artificial Intelligence (Los Angeles, CA,
1985), International Joint Conferences on Artificial Intelligence Inc., Los Altos, CA,
1073-1075.

Sutcliffe G. (1987), Single Interpretation, Domain Based, Semantic Checking, Research
Report 87/9, Department of Computer Science, The University of Western Australia,
Perth, Australia.

Sutcliffe G. (1989), Complete Linear Derivation Systems for General Clauses, In Wos L.
(Ed.), Association for Automated Reasoning Newsletter (13), Association for
Automated Reasoning, Argonne, Il, 3-4.

Sutcliffe G. (1992), Linear-Input Subset Analysis, In Kapur D. (Ed.), Proceedings of the
11th International Conference on Automated Deduction (Saratoga Springs, NY,
1992), Springer-Verlag, New York, NY.

Sutcliffe G. and Tabada W. (1991), Compulsory Reduction in Linear Derivation Systems,
In Bibel W. (Ed.), Artificial Intelligence (Letters to the Editor) 50, Elsevier Science,
Amsterdam, The Netherlands, 131-132.

References Page 159

Tabada W. and Sutcliffe G. (1990), An Analysis of the Selective Linear Model Inference
System, Research Report 90/2, Department of Computer Studies, Western Australian
College of Advanced Education, Perth, Australia.

Tabada W. (1992), An Analysis and Implementation of Linear Derivation Strategies, MSc
Thesis, Department of Computer Science, Edith Cowan University, Perth, Australia.

Tarver M. (1990), An Examination of the Prolog Technology Theorem Prover, In
Stickel M. (Ed.), Proceedings of the 10th International Conference on Automated
Deduction (Kaiserslautern, Germany, 1990), (Lecture Notes in Artificial Intelligence
449), Springer-Verlag, New York, NY, 322-335.

Wakayama T. and Payne T.H. (1990), Case-Free Programs: An Abstraction of Definite
Horn Programs, In Stickel M. (Ed.), Proceedings of the 10th International
Conference on Automated Deduction (Kaiserslautern, Germany, 1990), (Lecture
Notes in Artificial Intelligence 449), Springer-Verlag, New York, NY, 87-101.

Walther C. (1983), A Many-Sorted Calculus Based on Resolution and Paramodulation, In
Bundy A. (Ed.), Proceedings of the 8th International Joint Conference on Artificial
Intelligence (Karlsruhe, Germany, 1983), International Joint Conferences on
Artificial Intelligence Inc, Los Altos, CA, 882-891.

Walther C. (1984), A Mechanical Solution of Schubert's Steamroller by Many-Sorted
Resolution, In Proceedings of the National Conference on Artificial Intelligence
(Austin, TX, 1984), American Association for Artificial Intelligence, Los Altos, CA,
330-334.

Walther C. (1985), Unification in Many-Sorted Theories, In O'Shea T. (Ed.), Advances in
Artificial Intelligence, Proceedings of the European Conference on Artificial
Intelligence (Pisa, Italy, 1984), Elsevier Science, Amsterdam, The Netherlands, 383-
393.

Wang T-C. (1985), Designing examples for semantically guided hierarchical deduction, In
Joshi A. (Ed.), Proceedings of the 9th International Joint Conference on Artificial
Intelligence (Los Angeles, CA, 1985), International Joint Conferences on Artificial
Intelligence Inc, Los Altos, CA, 1201-1207.

Wang T-C and Bledsoe W.W. (1987), Hierarchical Deduction, In Journal of Automated
Reasoning 3(1), Kluwer Academic Publishers, Dordrecht, The Netherlands, 35-77.

Wilson G.A. and Minker J. (1976), Resolution, Refinements and Search Strategies: A
Comparative Study, In IEEE Transactions on Computers C-25(8), IEEE Computer
Society Press, Washington, DC, 782-801.

Page 160 References

Winker S. (1982), Generation and Verification of Finite Models and Counterexamples
Using an Automated Theorem Prover Answering Two Open Questions, In Journal of
the ACM 29(2), ACM Press, New York, NY, 273-284.

Winston P.H. (1984), Artificial Intelligence, Addison-Wesley, Reading, MA.

Wos L. (~1965), Unpublished notes, Argonne National Laboratory, Argonne, IL.

Wos L. (1988), Automated Reasoning - 33 Basic Research Problems, Prentice-Hall,
Englewood Cliffs, New Jersey.

Wos L., Carson D. and Robinson G.A. (1964), The Unit Preference Strategy in Theorem
Proving, In Proceedings of the AFIPS 1964 Fall Joint Computer Conference (San
Francisco, CA, 1964), Spartan Books, Baltimore, MD, 615-621.

Wos L., Robinson G.A. and Carson D.F. (1965), Efficiency and Completeness of the Set
of Support Strategy in Theorem Proving, In Journal of the ACM 12(4), ACM Press,
New York, NY, 536-541.

Wos L., Verhoff R., Smith B. and McCune W. (1984), The Linked Inference Principle, II:
The User's Viewpoint, In Shostak R.E. (Ed.), Proceedings of the 7th International
Conference on Automated Deduction (Napa, CA, 1984), (Lecture Notes in Computer
Science 170), Springer-Verlag, New York, NY, 316-332.

Yates R.A., Raphael B. and Hart T.P. (1970), Resolution Graphs, In Artificial Intelligence
1, Elsevier Science, Amsterdam, The Netherlands, 247-256.

Zamov N.K. and Sharonov V.I. (1969), On a class of strategies which can be used to prove
theorems by the resolution principle (In Russian), In Issled, po konstruktivnoye
matematikye i matematicheskoie logikye III(16), National Lending Library Russian
Translating Program 5857, Boston Spa, England, 54-64.

Examples Page 161

Appendix One

Examples

This appendix holds examples that are too bulky to be retained in the main text.

A1.1. Trace of Algorithm 4.13

M2 D = {}
M4 Build({homer})
B2 Instance = homer
B9 {mr_s} = GetValuesFromUser(homer)
B11 homer R∅ mr_s

B13 D = {mr_s}
B14 Build({mr_s})
B2 Instance = mr_s
B9 {person} = GetValuesFromUser(mr_s)
B11 mr_s R∅ person

B13 D = {mr_s, person}
B14 Build({person})
B2 Instance = person
B9 {} = GetValuesFromUser(person)
M4 Build({spouse_of(person), heart_ok(person),

lungs_ok(person), alive(person)})
B2 Instance = spouse_of(person)
B9 {expand(1)} = GetValuesFromUser(spouse_of(person))
B11 spouse_of(person) R∅ expand(1)

B15 CheckExpand(spouse_of(person),expand(1))
C3 Build({spouse_of(mr_s)})
B2 Instance = spouse_of(mr_s)
B9 {mrs_s} = GetValuesFromUser(spouse_of(mr_s))
B11 spouse_of(mr_s) R∅ mrs_s

B13 D = {mr_s, person, mrs_s}
B14 Build({mrs_s})
B2 Instance = mrs_s
B9 {person} = GetValuesFromUser(mrs_s)

Page 162 Examples

B11 mrs_s R∅ person

B15 CheckExpand(mrs_s,person)
B2 Instance = heart_ok(person)
B9 {TRUE} = GetValuesFromUser(heart_ok(person))
B11 heart_ok(person) R∅ TRUE

B13 D = {mr_s, person, mrs_s, TRUE}
B14 Build({TRUE})
B2 Instance = TRUE
B9 {} = GetValuesFromUser(TRUE)
B2 Instance = lungs_ok(person)
B9 {expand(1)} = GetValuesFromUser(lungs_ok(person))
B11 lungs_ok(person) R∅ expand(1)

B15 CheckExpand(lungs_ok(person),expand(1))
C3 Build({lungs_ok(mr_s), lungs_ok(mrs_s)})
B2 Instance = lungs_ok(mr_s)
B9 {TRUE} = GetValuesFromUser(lungs_ok(mr_s))
B11 lungs_ok(mr_s) R∅ TRUE

B15 CheckExpand(lungs_ok(mr_s),TRUE)
B2 Instance = lungs_ok(mrs_s)
B9 {FALSE} = GetValuesFromUser(lungs_ok(mrs_s))
B11 lungs_ok(mrs_s) R∅ FALSE

B13 D = {mr_s, person, mrs_s, TRUE, FALSE}
B14 Build({FALSE})
B2 Instance = FALSE
B9 {} = GetValuesFromUser(FALSE)
B2 Instance = alive(person)
B9 {TRUE} = GetValuesFromUser(alive(person))
B11 alive(person) R∅ TRUE

B15 CheckExpand(alive(person),TRUE)
M4 Build({spouse_of(person), spouse_of(TRUE),

spouse_of(FALSE), heart_ok(person), heart_ok(TRUE),
heart_ok(FALSE), lungs_ok(person), lungs_ok(TRUE),
lungs_ok(FALSE), alive(person), alive(TRUE),
alive(FALSE)})

B2 Instance = spouse_of(person)
B5 CheckExpand(spouse_of(person),expand(1))
C3 Build({spouse_of(mr_s),spouse_of(mrs_s))})
B2 Instance = spouse_of(mr_s)
B5 CheckExpand(spouse_of(mr_s),mrs_s)
B2 Instance = spouse_of(mrs_s)
B9 {mr_s} = GetValuesFromUser(spouse_of(mrs_s))
B11 spouse_of(mrs_s) R∅ mr_s

B15 CheckExpand(spouse_of(mrs_s),mr_s)

Examples Page 163

B2 Instance = spouse_of(TRUE)
B9 {} = GetValuesFromUser(spouse_of(TRUE))
B2 Instance = spouse_of(FALSE)
B9 {} = GetValuesFromUser(spouse_of(FALSE))
B2 Instance = heart_ok(person)
B5 CheckExpand(heart_ok(person),TRUE)
B2 Instance = heart_ok(TRUE)
B9 {} = GetValuesFromUser(heart_ok(TRUE))
B2 Instance = heart_ok(FALSE)
B9 {} = GetValuesFromUser(heart_ok(FALSE))
B2 Instance = lungs_ok(person)
B5 CheckExpand(heart_ok(person),expand(1))
C3 Build({lungs_ok(mr_s), lungs_ok(mrs_s)})
B2 Instance = lungs_ok(mr_s)
B5 CheckExpand(lungs_ok(mr_s),TRUE)
B2 Instance = lungs_ok(mrs_s)
B5 CheckExpand(lungs_ok(mrs_s),FALSE)
B2 Instance = lungs_ok(TRUE)
B9 {} = GetValuesFromUser(lungs_ok(TRUE))
B2 Instance = lungs_ok(FALSE)
B9 {} = GetValuesFromUser(lungs_ok(FALSE))
B2 Instance = alive(person)
B5 CheckExpand(alive(person),TRUE)
B2 Instance = alive(TRUE)
B9 {} = GetValuesFromUser(alive(TRUE))
B2 Instance = alive(FALSE)
B9 {} = GetValuesFromUser(alive(FALSE))

Page 164 Examples

A1.2. The Compiled Version of Designation simpsons

/*--
*/

designation(simpsons).
compiled__(simpsons).
/*--

*/
domain_element(mr_s,simpsons).
domain_element(mrs_s,simpsons).
domain_element(person,simpsons).
domain_element(false,simpsons).
domain_element(true,simpsons).
/*--

*/
expand_in_domain__(mr_s,mr_s,simpsons).
expand_to_minimal_in_domain__(mr_s,mr_s,simpsons).
expand_in_domain__(mrs_s,mrs_s,simpsons).
expand_to_minimal_in_domain__(mrs_s,mrs_s,simpsons).
expand_in_domain__(person,person,simpsons).
expand_in_domain__(person,mr_s,simpsons).
expand_to_minimal_in_domain__(person,mr_s,simpsons).
expand_in_domain__(person,mrs_s,simpsons).
expand_to_minimal_in_domain__(person,mrs_s,simpsons).
expand_in_domain__(false,false,simpsons).
expand_to_minimal_in_domain__(false,false,simpsons).
expand_in_domain__(true,true,simpsons).
expand_to_minimal_in_domain__(true,true,simpsons).
/*--

*/
expand_to_term__(mr_s,homer,simpsons).

expand_to_term__(person,mr_s,simpsons).

expand_to_term__(person,mrs_s,simpsons).

expand_to_term__(mrs_s,spouse_of(P),simpsons):-
 expand_compiled__(mr_s,P,simpsons).
expand_to_term__(mr_s,spouse_of(P),simpsons):-
 expand_compiled__(mrs_s,P,simpsons).

Examples Page 165

expand_to_term__(true,heart_ok(P),simpsons):-
 expand_compiled__(person,P,simpsons).

expand_to_term__(true,lungs_ok(P),simpsons):-
 expand_compiled__(mr_s,P,simpsons).
expand_to_term__(false,lungs_ok(P),simpsons):-
 expand_compiled__(mrs_s,P,simpsons).

expand_to_term__(true,alive(P),simpsons):-
 expand_compiled__(person,P,simpsons).

expand_to_term__(true,person(P),simpsons):-
 expand_compiled__(person,P,simpsons).
/*--

*/
expand_compiled__(Domain_element,Term,Designation_name):-
 var(Term),
 !,
 expand_to_minimal_in_domain__(Domain_element,Term,
Designation_name).

expand_compiled__(Domain_element,Term,Designation_name):-
 domain_element(Term,Designation_name),
 !,
 expand_in_domain__(Domain_element,Term,Designation_name)

.

expand_compiled__(Domain_element,Term,Designation_name):-
 expand_in_domain__(Domain_element,Expanded_domain_elemen

t,
Designation_name),
 expand_to_term__(Expanded_domain_element,Term,
Designation_name).
/*--

*/

Page 166 Examples

A1.3. The Effects of the Rightwards Subchain System

To illustrate the effects of the rightwards subchain system, the first part of an SGLD
deduction, for the Schubert's Steamroller problem (see appendix 2), is given below. The
input chains used in this example (a subset of the input chains for Schubert's Steamroller)
are as follows.

input_chain__(2,

 [b(++animal(Wolf),true), b(--wolf(Wolf),false)],

 wolf_is_an_animal, axiom, input_clause).

input_chain__(1,

 [b(++wolf(a_wolf),true)],

 there_is_a_wolf, axiom, input_clause).

input_chain__(1,

 [b(++grain(a_grain),true)],

 there_is_a_grain, axiom, input_clause).

input_chain__(8,

 [b(++eats(Animal,Plant),unknown),

 b(++eats(Animal,SmallAnimal),unknown),

 b(--animal(Animal),false), b(--plant(Plant),false),

 b(--animal(SmallAnimal),false),

 b(--plant(OtherPlant),false),

 b(--much_smaller(SmallAnimal,Animal),false),

 b(--eats(SmallAnimal,OtherPlant),unknown)],

 eating_habits, axiom, input_clause).

input_chain__(5,

 [b(--animal(Animal),false),b(--

animal(GrainEater),false),

 b(--grain(Grain),false), b(--eats(Animal,GrainEater),

 unknown), b(--eats(GrainEater,Grain),unknown)],

 prove_the_animal_exists, theorem, input_clause).

The chain prove_the_animal_exists is chosen as the top chain, due to its
theorem status. The LISS of the complete input set is then extracted. It is {~bird/1,
~caterpillar/1, ~fox/1, ~snail/1, ~wolf/1, ~animal/1, ~grain/1, ~plant/1,
~much_smaller/2}. The trace below shows the activity of SGLD using the
literal-selected search style, with an initial depth bound of 10. The rightwards subchain

Examples Page 167

system is used to guide the search, using the second designation provided for this problem
(see appendix 2). Note that the deduction is shown in the standard chain format, rather
than the SGLD internal representation which reverses the order of the centre chains.

~eats(GrainEater,Grain) ~eats(Animal,GrainEater) ~grain(Grai

n)

 ~animal(GrainEater) ~animal(Animal)
• Extends with wolf_is_an_animal to produce :
~eats(GrainEater,Grain) ~eats(Animal,GrainEater)
 ~grain(Grain) ~animal(GrainEater) ~animal(Animal) 0

 ~wolf(Animal)

• Extends with there_is_a_wolf to produce :
~eats(GrainEater,Grain) ~eats(a_wolf,GrainEater) ~grain(Grai

n)
 ~animal(GrainEater) ~animal(a_wolf) 0 ~wolf(a_wolf) 0

• Truncates twice to produce :
~eats(GrainEater,Grain) ~eats(a_wolf,GrainEater) ~grain(Grai

n)

 ~animal(GrainEater)
• The lemma wolf(a_wolf) is produced and subsumed.
• The lemma animal(a_wolf) is added to the input set.

• Extends with the lemma animal(a_wolf) to produce :
~eats(a_wolf,Grain) ~eats(a_wolf,a_wolf) ~grain(Grain)
 ~animal(a_wolf) 0

• Truncates to produce :
~eats(a_wolf,Grain) ~eats(a_wolf,a_wolf) ~grain(Grain)

• The lemma animal(a_wolf) is produced and subsumed.
• Extends with there_is_a_grain to produce :
~eats(a_wolf,a_grain) ~eats(a_wolf,a_wolf) ~grain(a_grain)

0
• Truncates to produce :
~eats(a_wolf,a_grain) ~eats(a_wolf,a_wolf)

• The lemma grain(a_grain) is produced and subsumed.
• Extends with eating_habits to produce :

Page 168 Examples

~eats(a_wolf,a_grain) ~eats(a_wolf,a_wolf) 0

 eats(a_wolf,SmallAnimal) ~animal(a_wolf) ~plant(a_wolf)

 ~animal(SmallAnimal) ~plant(OtherPlant)

 ~much_smaller(SmallAnimal,a_wolf)

 ~eats(SmallAnimal,OtherPlant)
• Unit subsumed extends with the lemma animal(a_wolf) to produce :
~eats(a_wolf,a_grain) ~eats(a_wolf,a_wolf) 0

 eats(a_wolf,SmallAnimal) ~plant(a_wolf)

 ~animal(SmallAnimal) ~plant(OtherPlant)

 ~much_smaller(SmallAnimal,a_wolf)

 ~eats(SmallAnimal,OtherPlant)
• The literal ~plant(a_wolf) has an expected truth value FALSE, because it will

become the top literal of a linear-input subdeduction (see the expected truth value field
of the literal in the input chain eating_habits). As a result, this centre chain is
rejected by the rightwards subchain system. Without the semantic deletion, a significant
amount of useless deduction takes place, to remove the literals to the right of
~plant(a_wolf). Only after this wasted effort is it discovered that
~plant(a_wolf) cannot be removed. The alternative, of extending on the second
literal of eating_habits, is then tried. This produces :

~eats(a_wolf,a_grain) ~eats(a_wolf,a_wolf) 0

 eats(a_wolf,Plant) ~animal(a_wolf) ~plant(Plant)

 ~animal(a_wolf) ~plant(OtherPlant)

 ~much_smaller(a_wolf,a_wolf) ~eats(a_wolf,OtherPlant)
• The literal ~much_smaller(a_wolf,a_wolf) has an expected truth value

FALSE. As a result, this centre chain is rejected by the rightwards subchain system.
Without the semantic deletion, useless deduction again ensues before alternatives, at the
fourth step of the deduction, are considered.

Test Problems and Designations Page 169

Appendix Two

Test Problems and Designations

This appendix contains the statements of the test problems used to test SGLD and
descriptions of the designations used for testing SGLD's semantic guidance system.

Additive Algebra 01 (Algebra)
Demonstrates the associativity of addition in a form symmetric to that given in the axioms.
Problem 28 in [Lawrence & Starkey, 1974]. Obtained from the SPRFN problem set
[Plaisted, 1991].

Additive Algebra 02 (Algebra)
(a-b)+c = a+(c-b). Problem 29 in [Lawrence & Starkey, 1974]. Obtained from the SPRFN
problem set [Plaisted, 1991].

Group Theory 03 (Algebra)
In a group the left identity is also a right identity. Problem 3 in [Chang, 1970].
Designation : An Abelian group with four elements (including the identity).

Group Theory 06 (Algebra)
If S is a non-empty subset of a group such that if x, y belong to S then x⋅y-1 belongs to S,
then S contains x-1 whenever it contains x. Problem 6 in [Chang, 1970].
Designation : An Abelian group with four elements (including the identity).

Group Theory 11 (Algebra)
In a group, the inverse of an inverse is the original. Problem 8 in [Wos, ~1965]. Obtained
from the SPRFN problem set [Plaisted, 1991].

Monoids 01 (Algebra)
In an associative system with an identity element, if the square of every element is the
identity, the system is commutative. Problem 2 in [Chang, 1970].
Designation : An Abelian group with four elements (including the identity).

Page 170 Test Problems and Designations

Semi-Groups 01 (Algebra)
In an associative system with left and right solutions, there is a right identity element.
Problem 1 in [Chang, 1970].

Semi-Groups 04 (Algebra)
In a semi-group with left inverses and left identity, every element has a right inverse.
Problem 5 in [Wos, ~1965]. Obtained from the SPRFN problem set [Plaisted, 1991].

Subgroups 01 (Algebra)
A sub-group has an identity. Problem 12 in [Wos, ~1965]. Obtained from the SPRFN
problem set [Plaisted, 1991].

Subgroups 02 (Algebra)
In a subgroup, there is an identity and its the same as for the group. Problem 13 in
[Wos, ~1965]. Obtained from the SPRFN problem set [Plaisted, 1991].

Subgroups 03 (Algebra)
A subgroup is closed under inverse. Problem 14 in [Wos, ~1965]. Obtained from the
SPRFN problem set [Plaisted, 1991].

Subgroups 10 (Algebra)
A subgroup is closed under inverse. This is a cut down version with only the required
axioms supplied. Problem 26 in [Lawrence & Starkey, 1974]. Obtained from the SPRFN
problem set [Plaisted, 1991].

Intermediate Value Theorem (Analysis)
The mean value theorem in analysis. If a function f is continuous in a real closed interval
[a,b], where f(a)≤0 and 0≤f(b), then there exists X such that f(X) = 0. Problem 2 in [Wang
& Bledsoe, 1987]. This version of the Intermediate Value Theorem is the 1st order logic
version. To prove the real version of the Intermediate Value Theorem, using the least
upper bound axiom, it is necessary to instantiate a set variable. Once that variable has been
instantiated by a particular value then one obtains this 1st order logic version. The real
version of the theorem was proved by Ballantyne and Bledsoe [1977], by finding a suitable
value for the set variable and then proving this resulting 1st order logic version. (This
detail of the origin of the Intermediate Value Theorem has been provided by Bledsoe
[1992].)

Prime Numbers 01 (Number Theory)
If a is a prime and a = b2/c2, then a divides b. Problem 7 in [Chang, 1970].

Test Problems and Designations Page 171

Prime Numbers 02 (Number Theory)
Any number greater than 1 has a prime divisor. Problem 8 in [Chang, 1970].

Prime Numbers 03 (Number Theory)
There exist infinitely many primes. This a cut down version with only the required clauses
supplied. Problem 9 in [Chang, 1970].

Prime Numbers 04 (Number Theory)
There exist infinitely many primes. Problem 17 in [Lawrence & Starkey, 1974]. Obtained
from the SPRFN problem set [Plaisted, 1991].

Recursive Functions 01 (Number Theory)
Symmetry of equality can be derived. Problem 41 in [Lawrence & Starkey, 1974].
Obtained from the SPRFN problem set [Plaisted, 1991].

Recursive Functions 05 (Number Theory)
Zero is less than all successor numbers. Based on problem 68 in [Lawrence &
Starkey, 1974]. The surplus transitivity axiom has been deleted and the transitivity of less
has been added. Original obtained from the SPRFN problem set [Plaisted, 1991].

Recursive Functions 10 (Number Theory)
If a<b then not b<a. Based on problem 76.1 in [Lawrence & Starkey, 1974]. Original
obtained from the SPRFN problem set [Plaisted, 1991].
Designation : The normal semantics of natural numbers, with a mapped to 1 and b to 2.

Naive Set Theory 02 (Set Theory)
The union of a set with itself is equal to the set itself. Problem 103 in [Lawrence &
Starkey, 1974]. Obtained from the SPRFN problem set [Plaisted, 1991].

Naive Set Theory 03 (Set Theory)
A set is a subset of the union of itself with itself. Problem 105 in [Lawrence &
Starkey, 1974]. Obtained from the SPRFN problem set [Plaisted, 1991].

Naive Set Theory 04 (Set Theory)
A set is a subset of the union of itself and another set. Problem 106 in [Lawrence &
Starkey, 1974]. Obtained from the SPRFN problem set [Plaisted, 1991].

Page 172 Test Problems and Designations

Naive Set Theory 06 (Set Theory)
If the intersection of two sets is the first of the two sets, then the first is a subset of the
second. Problem 111 in [Lawrence & Starkey, 1974]. Obtained from the SPRFN problem
set [Plaisted, 1991].

Naive Set Theory 08 (Set Theory)
The difference of two sets contains no members of the subtracted set. Problem 115 in
[Lawrence & Starkey, 1974]. Obtained from the SPRFN problem set [Plaisted, 1991].

Getting Bread (Planning)
The problem is to drive from Cheyenne, Wyoming to Des Moines, Iowa, buying a loaf of
bread on the way. A portion of the road map is expressed in clause form. The allowable
actions are to drive from a city to a neighbouring city, to buy a loaf of bread at a city and
to wait in a city for one unit of time. Buying a loaf of bread takes one unit of time and
driving to a neighbouring city takes two units of time. A problem in [Plaisted, 1981].
Designation 1 : Knows the adjacency of towns. Knows that it is stupid to go the wrong
way, to buy more than one loaf, or to wait anywhere. These actions are mapped to FALSE.
Bread can be bought anywhere. The sorts of the various objects and the argument sorts of
the predicates are also known.
Designation 2 : Designation 1, but with no knowledge of sorts. Meaningless universe and
base elements which are not interpreted by designation 1, are interpreted as "meaningless"
and FALSE respectively.

Getting There 1 (Planning)
The problem is to travel from one place to another. Certain paths are passable at different
times of the year, so a conditional plan must be generated. Either all situations are cold or
all situations are warm. There is a river which may be crossed only in winter when it is
covered with ice and a mountain range that may be crossed only in summer. The problem
is to get from city F to city A. Problem 5.7 in [Plaisted, 1982].
Designation : It is meaningless to travel from a place if you are not there and no-one
travels in circles (mapped to FALSE). The travel modes are limited to those in the clauses.

Monkey and Banana (Planning)
The state space representation of the Monkey and Bananas problem, as formulated in the
SPRFN problem set [Plaisted, 1991].
Designation 1 : Knows the sorts of the various objects and the argument sorts of the
predicates. Also knows that the monkey must be on the ladder to get the bananas.
Designation 2 : Designation 1 extended to know that the ladder must be at the same
location as the bananas.

Test Problems and Designations Page 173

Aunt Agatha (Puzzle)
A slight variant of the version of this problem given by Manthey and Bry [1988, p. 430].
The problem is described in [Pelletier, 1986, p. 206] : Someone who lives in Dreadsbury
Mansion killed Aunt Agatha. Agatha, the butler and Charles live in Dreadsbury Mansion
and are the only people who live therein. A killer always hates his victim and is never
richer than his victim. Charles hates no one that Aunt Agatha hates. Agatha hates everyone
except the butler. The butler hates everyone not richer than Aunt Agatha. The butler hates
everyone Aunt Agatha hates. No one hates everyone. Agatha is not the butler. Therefore :
Agatha killed herself.

Borders (Puzzle)
There is a database of assertions about various countries and oceans and their
relationships. Find which ocean borders on African and Asian countries. Problem 5.6 in
[Plaisted, 1982]
Designation 1 : The designation reflects the real geography of the situation. Sorts are
known.

Schubert's Steamroller (Puzzle)
Wolves, foxes, birds, caterpillars and snails are animals and there are some of each of
them. Also there are some grains and grains are plants. Every animal either likes to eat all
plants or all animals much smaller than itself that like to eat some plants. Caterpillars and
snails are much smaller than birds, which are much smaller than foxes, which in turn are
much smaller than wolves. Wolves do not like to eat foxes or grains, while birds like to eat
caterpillars but not snails. Caterpillars and snails like to eat some plants. Therefore there is
an animal that likes to eat a grain-eating animal. Problem 47 in [Pelletier, 1986]
Designation 1 : Knows about sorts. Knows that only animals eat and that only two animals
can be compared in size. Meaningless sort literals, eats literals and much_smaller
literals are not interpreted. Meaningful eats literals are all interpreted as
UNKNOWN_TRUTH_VALUE.
Designation 2 : Same as designation 1, but meaningless sort literals, eats literals and
much_smaller literals are interpreted as FALSE. Should give results similar to
designation 1, as LISS analysis detects the problems with sort literals and
much_smaller literals.

Truthtellers and the Liars (Puzzle)
On a certain island the inhabitants are partitioned into those who always tell the truth and
those who always lie. I landed on the island and met three inhabitants A, B and C. I asked
A, 'Are you a truthteller or a liar?' He mumbled something which I couldn't make out. I

Page 174 Test Problems and Designations

asked B what A had said. B replied, 'A said he was a liar'. C then volunteered, 'Don't
believe B, he's lying!' What can you tell about A, B and C? A problem in [Lusk &
Overbeek, 1985].

Blind Hand 2 (Miscellaneous)
A version of Popplestone's [1970] Blind Hand Problem. Problem DBABHP in [Michie,
Ross, & Shannan, 1972].

Blind Hand 3 (Miscellaneous)
A variant of Blind Hand 2, obtained by excluding clauses regarding hand movement.
Designation : The object is initially here, being held. The object is then dropped, picked
up again and taken there.

Computing 2 (Miscellaneous)
A computing state space, with eight states - P1 to P8. P1 leads to P3 via P2. There is a
branch at P3 such that the following state is either P4 or P6. P6 leads to P8, which has a
loop back to P3, while P4 leads to termination. The problem is to show that there is a loop
in the computation, passing through P3. Problem BURSTALL in [Reboh, Raphael, Yates,
Kling, & Verlarde, 1972]. Obtained from the SPRFN problem set [Plaisted, 1991].
Designation 1 : The designation knows the layout of the state space and which states can
be reached from which others. It also knows the argument sorts for all predicates and
functions.
Designation 2 : Designation 1, but with no knowledge of sorts. Meaningless universe and
base elements which are not interpreted by designation 1, are interpreted as "meaningless"
and FALSE respectively.

Computing 3 (Miscellaneous)
A variant of Computing 2, obtained by considering failure in the state space, rather than
success.
Designation : The designation knows the layout of the state space and which states can be
reached from which others.

Has Parts 2 (Miscellaneous)
Shows that the boy John has ten fingers. Problem HASPARTS-T2 in [Reboh et al., 1972].
Obtained from the SPRFN problem set [Plaisted, 1991].
Designation : The normal semantics of human anatomy. The designation knows about the
sorts involved, but due to the clauses' structures this does not affect deductions.

Test Problems and Designations Page 175

Latin Squares (Miscellaneous)
The inconstructability of a Graeco-Latin Square for t=0 in 4t + 2. A problem in
[Robinson, 1963].
Designation : The 'non-square' in which the Greek and Latin layers are identical.

Pigeon 4 (Miscellaneous)
Suppose there are N holes and (N + 1) objects to put in the holes. Every object is in a hole
and no hole contains more than one object. The representation of this situation produces an
inconsistent set of clauses. Problem 72 in [Pelletier, 1986].
Designation : The Nth pigeon is placed in the Nth hole. The (N+1)th pigeon is left out.

XOR evaluation (Miscellaneous)
The evaluation of exclusive OR represented in clausal form, the goal being to evaluate
((((T^F)^F)^T)^T), where ^ represents exclusive OR. Problem 5.1 in [Plaisted, 1982].
Designation : The usual semantics of exclusive OR. Everything is meaningful in this
designation.

