
Prolog-D-Linda : An Embedding of Linda in SICStus Prolog Page 1

The University Of Western Australia

Department Of Computer Science

Technical Report 91/7

Prolog-D-Linda : An Embedding of
Linda in SICStus Prolog

Geoff Sutcliffe and James Pinakis

Dep't of Computer Science, The University of Western Australia,
Nedlands, 6009, Western Australia

Email: geoff@cs.uwa.edu.au

ABSTRACT
This paper presents an embedding of the Linda parallel programming paradigm in Prolog,
resulting in a coarsely grained parallel Prolog. The work extends that reported in
[Sutcliffe and Pinakis, 1990]1. This embedding supports a distributed tuple space and a
control hierarchy that provides remote I/O facilities for client processes. As before, the
embedding uses unification and Prolog style deduction in the tuple space. Two applications of
Prolog-Linda are described.

1 To make this paper self contained it has been necessary to duplicate some of the information given in
[Sutcliffe and Pinakis, 1990].

Prolog-D-Linda : An Embedding of Linda in SICStus Prolog Page 2

1 Introduction

A categorisation of parallel Prolog systems may be made according to how the problem is
divided into parallel tasks. This task granularity can be divided into three categories :
unification parallelism, goal parallelism, and process parallelism:
• Unification parallelism introduces parallelism by performing parts of unification

operations in parallel. This form of parallelism has been used by Ito [1985].
• Goal parallelism encompasses AND-parallelism, OR-parallelism and

AND-OR-parallelism. Here subgoals of a single Prolog program are evaluated in parallel.
Examples in this category are GHC [Ueda, 1985], EPILOG [Wise, 1986], Parlog
[Gregory, 1987], the family of Concurrent Logic Programming languages
[Shapiro, 1987, 1989b], Strand [Foster and Taylor, 1989], and Andora [Haridi and
Janson, 1990].

• Process parallelism is that form of parallelism in which multiple sequential Prolog
programs execute in parallel, with some mechanism being provided for inter-process
communication. Examples are Delta-Prolog [Cunha, Ferreira, and Pereira, 1989],
CS-Prolog [Futo and Kacsuk, 1989], the Quintus Prolog multi-processing package
[Quintus, 1989], Prolog-1-Linda and Prolog-N-Linda [Sutcliffe and Pinakis, 1990],
Amoeba Prolog [Shizgal, 1990], PMS-Prolog [Wise, 1991a, Forthcoming], MB-Prolog
[Wise, 1991b], the SICStus Prolog multi-processing package [Forthcoming], and
Prolog-D-Linda.

Orthogonal to the task granularity, parallel Prolog systems may be categorised according to
how the parallel tasks are executed on the host computer. This execution granularity is often
influenced by the task granularity. The finest grain executes the tasks as light weight
processes within a single operating system level process. At the next level of granularity the
tasks are executed as distinct operating system level processes, but are restricted to a single
processor. In the coarsest granularity the tasks also execute as distinct operating system
processes, but the processes may be distributed over a network of processors. Combinations
across categories are possible. The network category is the only one which can harness more
computing power; the others simply provide conceptual parallelism.

Prolog-D-Linda (Prolog-Distributed-Linda) is an embedding of the Linda paradigm into an
existing Prolog system. The embedding supports a distributed tuple space, unification and
Prolog style deduction in the tuple space, and a control hierarchy that provides remote I/O
facilities for client processes.

The reader is presumed to be familiar with Prolog.

Prolog-D-Linda : An Embedding of Linda in SICStus Prolog Page 3

2 The Linda paradigm

Linda is a programming framework of language-independent operators. These operators may
be injected into the syntax of existing programming languages, such as Modula-II [Borrman,
Herdieckerhoff, and Klein, 1988], C [Berndt, 1989], LISP [Yuen and Wong, 1990],
Joyce [Pinakis and McDonald, 1991], and Russell [Butcher and Zedan, 1991], resulting in
new parallel programming languages. Linda permits cooperation between parallel processes
by controlling access to a shared data structure called the tuple space. The tuple space
contains ordered collections of data called tuples. Manipulation of the tuple space is possible
only by using the set of Linda operators.

2.1 Tuples

Tuples are collections of fields, of any arity. Every field has a data type drawn from the host
language. The type of a tuple is the cross product of the types of its fields. A field can be a
formal field or an actual field. A formal field has a type but no value, and can be thought of
as a variable that has not been assigned a value. The type of a formal field is the type of the
variable. A formal field is specified by the variable name preceded by a ?. An actual field has
both a type and a value. The type of an actual field is the type of its value. Example : if s1 is
a variable of type string containing the value "hello", and f1 is a variable of type
float, then (s1,9,?f1) is a tuple of arity 3. The first two fields are actual fields, the first
being of type string with value "hello", the second being of type integer with value
9. The third field is a formal field of type float. The type of the tuple is
string × integer × float.

The tuple space contains any number of tuples, and identical tuples may exist in the tuple
space. Processes communicate by inserting, removing and examining tuples in the tuple
space. Thus the tuple space is a shared data object. All processes having access to a tuple
space have access to all tuples in it.

2.2 Operations on tuples

The out operator inserts a tuple into the tuple space. Following the example above,
out(s1,9,?f1) inserts the tuple ("hello",9,?f1) into the tuple space.

The in operator removes a tuple from the tuple space. Its argument is a template against
which tuples are matched. A template matches a tuple if all corresponding fields match. Two
actual fields match if they have the same type and value. A formal field and an actual field
match if they have the same type. Two formal fields cannot match. If a match for a template
is found, the matched tuple is removed from the tuple space and formal fields in the template
are given the values of the corresponding actual fields in the tuple. For example, if i1 is an
integer variable, the operation in("hello",?i1,27.0) could remove the previously
inserted tuple from the tuple space. In addition to removing the tuple, the value 9 would be

Prolog-D-Linda : An Embedding of Linda in SICStus Prolog Page 4

assigned to the variable i1. If more than one tuple matches a template, only one is chosen. If
no matching tuple can be found in tuple space, in will block and wait for a matching tuple to
be inserted by an out operation.

The rd operation (pronounced read) is similar to in, but leaves the matched tuple in the
tuple space. rd is used for its binding and synchronization side-effects.

Two related operators are inp and rdp. These perform tasks equivalent to in and rd but
are non-blocking. Instead they return a boolean value which indicates the success of the
operation. Recent research [Leichter, 1989] argues against the use of these operators.

2.3 Process creation

The final operation provided by Linda is the eval operation. The eval operation is
syntactically similar to out except that a new process is created to evaluate each of the fields
in the tuple. When the evaluation of all fields has terminated, the tuple becomes an ordinary
tuple in the tuple space. For example, let sqrt be the square root function. The operation
eval("hello",sqrt(81),?f1) will create a new process to evaluate each of the
fields. The first and last fields evaluate trivially, but the second process will continue to
execute in parallel with others. When the process finally terminates, the tuple
("hello",9,?f1) will appear in the tuple space and can be manipulated in the usual
ways. While the sqrt process is executing the tuple is unavailable.

3 Prolog-Linda

Prolog-Linda implements the Linda tuple space as a collection of Prolog clauses in the Prolog
database. Both Prolog rules and facts can exist in the tuple space. The effect of rules in the
tuple space is discussed in section 5. Facts correspond almost directly to standard Linda
tuples. The necessity of a predicate symbol in a fact is analogous to requiring that the first
field of a tuple be an actual field with a string literal value, as enforced by some Linda
implementations [Leichter, 1989]. (This requirement does not reduce the generality of the
system.) Formals in tuples are implemented by unbound variables. As data in Prolog is
untyped (everything is a term) the data in Prolog-Linda's tuples is untyped.

The out operation adds tuples to the tuple space using Prolog's assertz database
operation, and the in operation removes tuples using retract. The rd operation
interrogates the tuple space simply by using Prolog's query mechanism. The tuple matching
method is thus generalised to Prolog's unification. As a consequence of this formals can
match and be extracted from the tuple space. Prolog-Linda's eval operation differs from that
of the original Linda paradigm. An eval operation is used to start a new Prolog environment
containing specified clauses and evaluating a specified Prolog query. The evaluation of the

Prolog-D-Linda : An Embedding of Linda in SICStus Prolog Page 5

query may of course cause a tuple to be inserted in the tuple space. This form of eval is
more general than the original, and can implement the original.

4 Implementation

Prolog-D-Linda has been implemented in SICStus Prolog [Carlsson, 1990]. SICStus Prolog
provides an interface for accessing functions coded in C, and this is used for process creation
and inter-process communication. Prolog-D-Linda runs on a network of Sun SPARC station-
1s running SunOS 4.1.1, and connected via an Ethernet. This environment provides access to
a shared file system via Sun's Network File System [Sandberg, 1985].

4.1 Overview

Prolog-D-Linda's tuple space and associated operations are implemented in server processes.
Multiple servers can be used, each being responsible for part of the tuple space. Linda
operations in client processes are translated into requests which are passed to an appropriate
server. Prolog-D-Linda is controlled by a single controller process, which must be associated
with a terminal device. The controller is responsible for : (i) starting and stopping the server
processes, (ii) for reading and displaying the terminal input and output of servers, and (iii) for
reading and displaying the terminal input and output of clients that are started via an eval
request.

A configuration file must be supplied to Prolog-D-Linda. The configuration file is in the form
of a Prolog program which specifies (i) the names of processors that will execute server
processes, (ii) the name of the server which will deal with eval requests, and (iii) how the
tuple space is to be partitioned amongst the servers. A sample configuration file is listed in
the appendix. Prolog-D-Linda is started by executing the controller, which reads the
configuration file to determine the names of the server processors. The names are stored in a
servers__/1 clause, whose argument is the list of processor names. When this clause has
been found, the controller uses the rexec() system call to start each of the servers.

Client processes may be started independently at a terminal, or via the eval primitive.
Clients consult the configuration file, and use the consulted clauses to determine how the
tuple space is partitioned amongst the servers. The tuple space partition information is in the
form of select_server__/2 clauses. The first argument returns the name of the server
processor that is responsible for the tuple that is supplied in the second argument. To
determine where to send a tuple space operation request, a client simply evaluates an
appropriate select_server__/2 goal.

One of the servers is designated to be the eval-server. In addition to processing tuple space
operation requests, the eval-server is responsible for processing all eval requests. The

Prolog-D-Linda : An Embedding of Linda in SICStus Prolog Page 6

eval-server starts new clients using an rexec() system call. The name of the eval-server is
stored in the configuration file as the argument of an eval_server__/1 clause.

4.2 Communication

Communication between the controller and servers, and between servers and clients, is via
internet domain stream sockets, as illustrated in Figure 1.

Controller

evaled Client Client

Eval-Server Server Server

Client and eval-server

standard I/O

Server's standard I/O

eval and tuple

requests and replies
Tuple requests

and replies
Tuple requests

and replies

Client

standard I/O

Figure 1 - The Prolog-D-Linda System

When a server is started its terminal input and output streams are connected to a file
descriptor in the controller. The descriptor is obtained from the rexec() system calls used
to start the server. Similarly, when a client is started by the eval-server, the client's terminal
input and output streams are connected to a file descriptor in the eval-server. As well as the
terminal I/O connection, every client establishes two further connections to each server. One
connection is used for sending Linda operation requests to the server, and the other is used for
receiving replies. The controller and servers monitor their input descriptors for incoming data,
and process incoming data as described below.

4.3 Linda primitives

The servers read Linda operation requests from the request connections opened by the clients.
The requests are serviced by evaluating them as Prolog queries. The requests are thus simply
queries on Prolog procedures which implement the required operations. The use of Prolog

Prolog-D-Linda : An Embedding of Linda in SICStus Prolog Page 7

evaluation to service requests is a general mechanism, and allows any query to be passed to a
server for evaluation.

Prolog-D-Linda's eval operation takes three arguments : the name of a processor on which
to execute the client, a Prolog goal, and a list of Prolog source file names. When the
eval-server receives an eval request, it starts the new client by rexecing a SICStus Prolog
saved state, on the specified processor. (The shared file system provides transparent access to
files on remote processors.) The saved state has the client running so that it immediately
consults the configuration file and opens the request and reply connections to the servers.
In the interim, the eval-server places a tuple of the form
<client processor>(<the goal>,<the source files>) into its tuple space.
The client ins this tuple, consults the source files, and evaluates the goal. On completion
of the goal the client closes the connections and terminates.

Tuple space rd requests received by servers are implemented by evaluating the requested
tuple template as a Prolog goal, and in requests attempt to retract the requested tuple
template. When an in or rd request is satisfied, the tuple template, with variables
instantiated, is sent back to the requesting client on the reply connection. If a server is unable
to satisfy an in or rd request, the request is placed on a global wait queue in the server, to
wait for an appropriate tuple to be outed. Tuple space out requests are implemented by
assertzing the supplied tuple into the server's database. After the assertz, all requests
on the wait queue are re-evaluated. The inp and rdp operations return the atom fail to the
requesting client if the request cannot be immediately satisfied. This is used in the client to
cause the operation to fail.

4.4 Terminal I/O

The terminal output of servers is read by the controller, off the descriptors obtained from its
rexec() calls. The output is displayed on the controller's terminal, prefixed by the
descriptor number from which it was read. This number uniquely identifies the server from
which the output originated. Input to be sent to a server is entered at the controller's terminal,
prefixed by the descriptor number which identifies the server (the descriptor number is
obtained from previous output from that server). The controller strips the descriptor number
from the input and forwards the remainder of the input to the server, on that descriptor.

The terminal output of clients which have been started via an eval request, is read by the
eval-server, off the descriptors obtained from its rexec() calls. The output is forwarded to
the controller by writing the output to the eval-servers terminal output. The forwarded output
is prefixed by the descriptor number from which it was read. The output is received by the
controller and displayed on its terminal in the manner described above. Output from clients is
therefore displayed with two prefixed descriptor numbers : firstly the descriptor number upon
which it arrived at the controller (the descriptor number that identifies the eval-server), and
secondly the descriptor number upon which it arrived at the eval-server. These numbers

Prolog-D-Linda : An Embedding of Linda in SICStus Prolog Page 8

uniquely identify the client from which the output originated. Input to be sent to a client is
entered at the controller's terminal, prefixed by the two descriptor numbers which identify the
client (the descriptor numbers are obtained from previous output from that client). The
controller strips the first descriptor number from the input and forwards the remainder of the
input to the eval-server, on that descriptor. The eval-server strips the second descriptor
number from its input and forwards the remainder to the client, on that descriptor.

This I/O hierarchy permits all clients to be interactive, even though they may not be
associated with a terminal device. If there is to be a lot of such client I/O, then the system can
be configured so that the eval-server is not responsible for any part of the tuple space, i.e. the
eval-server only deals with eval requests and client I/O. The I/O hierarchy is also used to
halt the system. If the keyword halt. is entered at the controller's terminal, halt. is
written to all servers' terminal inputs. When a server reads the halt. message, it
immediately closes all open descriptors and terminates. After writing to all the servers, the
controller closes all its open descriptors and terminates.

5 Deductive tuple spaces

The Linda tuple space and associated operations are very similar to a standard concurrent
access relational database system. The in and out operations effect database updates, and
the rd operation effects database queries. The difference is that the Linda paradigm is viewed
as providing communication between, and synchronization of, parallel processes, whereas a
relational database is viewed only as storing data. Much research has been done on the
generalisation of relational database to deductive database, in Prolog. Lloyd [1987] gives a
good summary of this work. It is a logical step to extend the Prolog-Linda tuple space to a
deductive tuple space. By allowing rules as well as facts to be added to and removed from
the tuple space, the tuple space becomes deductive. Tuple space rd and rdp requests may be
satisfied by facts, or using rules. Rules are evaluated using normal Prolog deduction,
including backtracking. If a deductive tuple space is used it is necessary for all the required
tuples (rules and facts) to be stored in the same partition of the tuple space, i.e. in one server.

A deductive tuple space greatly increases the capabilities of the tuple space, but not without
some penalty. The first problem is the increased possibility of a bottleneck on the execution
of the client, as the server must spend time evaluating deductive rds. The second problem,
which is an extreme case of the first, is the danger of the server entering an infinite deduction.
Client requests will not be evaluated, in particular requests that may terminate the infinite
deduction. Clients that make in or rd requests will be blocked indefinitely. A solution to this
second problem is to restrict the nature of the deductive database to be
hierarchical [Lloyd, 1987]. Despite the problems associated with a deductive tuple space,
such a model provides facilities that are not available from a standard tuple space. Two
examples are described here.

Prolog-D-Linda : An Embedding of Linda in SICStus Prolog Page 9

• In Linda it is awkward to simultaneously rd tuples of two different signatures. A method
suggested in [Leichter, 1989] requires the outing process to know that the tuples will be
requested in this way. A deductive tuple space provides a direct solution :

 make_switch(Tuple1,Tuple2):-
 out((switch(Tuple1):-Tuple1)),
 out((switch(Tuple2):-Tuple2)),
 %----Wait for Tuple1 or Tuple2 to be outed
 rd(switch(Which)).
 %----Which contains the outed tuple

• A deductive tuple space has the potential for extreme space saving. There are indeed some

groups of tuples that can only be finitely stored in a deductive manner. For example :

 recognise_even:-
 out((even(Negative):-Negative < 0,!,fail)),
 out(even(0)),
 out((even(Number):-Number_less_2 is Number-2,
 even(Number_less_2))).

 would effectively place all tuples even(X) into the tuple space, where X is an even

natural number.

6 Applications

6.1 Automated deduction

Prolog-Linda has been used to implement a distributed automated deduction system
[Sutcliffe, 1991]. The deduction system, called GLD||UR, has two deduction components,
which execute as separate client processes. One component runs a chain format linear
deduction system and the other a UR-deduction system. Lemmas created in each of the
deduction components are passed to the other component, via the tuple space. An extended
version of GLD||UR, in which the lemmas created are distributed via a separate 'lemma
control' component has also been developed. The speed-ups obtained in GLD||UR are largely
due to cross-fertilisation between the deduction components. The implementation of
GLD||UR is highly modular, and new deduction or other components can easily be added to
the system.

6.2 Genetic Algorithms

Prolog-Linda has been used to implement a genetic algorithm, in which multiple clients
access and update the solution pool in parallel. Each candidate solution is stored as a tuple
containing the solution and its objective value. Each client process repeatedly (i) rds two

Prolog-D-Linda : An Embedding of Linda in SICStus Prolog Page 10

parent solution tuples from the tuple space, (ii) performs a crossover to produce two child
solutions, (iii) for each child, ins a 'sucker' solution chosen at random, (iv) outs the child
solution if e(SuckerObjective - ChildObjective)/T > random([0,1)), otherwise outs the sucker. (I.e.
if the child has a better objective value than the sucker, then the child is always outed; if the
child has a worse objective value, then the child may still be saved by virtue of the Boltzman
distribution, with temperature T.) Some variants of this algorithm have also been
implemented. It is the iterative nature of this genetic algorithm that permits it to be
parallelised. Similar work has been done by Ackley [1987] and Robertson [1987].

7 Conclusion

Prolog-D-Linda is a truly distributed logic programming environment. This distribution
allows applications to take advantage of the added computing power available, as well as to
be structured in a parallel fashion. The parallelism obtained is acknowledged to be coarse. In
the context of parallel Prolog architectures, it has been argued that "exploiting as much fine
grain parallelism as possible may be a flawed strategy; any gains through increased
parallelism are wasted due to communication overheads" [Wise, 1991b, p 2].

The distribution of the tuple space in Prolog-D-Linda makes it superior to its predecessors.
As the partitioning is user controlled, it is possible to tune the use of the tuple space so that
bottlenecks are avoided. The introduction of a deductive tuple space is a significant
enhancement to the capabilities of the Linda paradigm. A deductive tuple space provides
direct solutions to problems that were previously difficult or impossible. The only system that
provides features similar to Prolog-D-Linda, is the SICStus Prolog multi-processing package.
As this product has only just been released, little is known about it. Email exchange with its
author indicates that it is based on the Linda paradigm, and distributes clients over a network
of processors. Nothing is known about its tuple space organisation.

The Prolog-D-Linda embedding of Linda in Prolog is very natural : the pattern matching and
database features of Prolog have been used directly in the embedding; garbage collection and
hashing in the tuple space are provided free by the Prolog implementation; the
implementation of formals in tuples is direct; the specification of how the tuple space is to be
partitioned is done as a Prolog program. This naturalness contrasts with the FCP(↑)
implementation described by Shapiro [1989a].

8 References

Ackley D.H., A Connectionist Machine for Genetic Hillclimbing, Kluwer Academic
Publishers, Dordrecht, The Netherlands, (1987).

Berndt D.J., C-Linda Reference Manual, Version 2.0, Scientific Computing Associates Inc.,
New Haven, (1989).

Prolog-D-Linda : An Embedding of Linda in SICStus Prolog Page 11

Borrmann L., Herdieckerhoff M., and Klein A., Tuple Space Integrated into Modula-2,
Implementation of the Linda Concept on a Hierarchical Multiprocessor, In Jesshope,
Reinartz, Ed., Proceedings of CONPAR '88 (1988), Cambridge University Press,
Cambridge, England, (1988), 1-8.

Butcher P., and Zedan H., Lucinda - An Overview, In ACM SIGPLAN Notices 28(8), ACM
Press, New York, NY, (1991), 90-100.

Carlsson M., and Widen J., SICStus Prolog 0.7 User's Manual, R88007C, Swedish Institute
of Computer Science, Kista, Sweden, (1990).

Cunha J.C., Ferreira M.C., and Pereira L.M., Programming in Delta Prolog, In Levi G.,
Martelli M., Ed., Proceedings of the 6th International Conference on Logic
Programming (Lisbon, Portugal, 1989), MIT Press, Cambridge, MA, (1989), 487-502.

Foster I., and Taylor S., Strand: A Practical Parallel Programming Tool, In Lusk E.L.,
Overbeek R. A., Ed., Proceedings of the 1989 North American Conference on Logic
Programming (Cleveland, OH, 1989), MIT Press, Cambridge, MA, (1989), 497-512.

Futo I., and Kacsuk P., CS-Prolog on Multitransputer Systems, In Microprocessors and
Microsystems 13(2), IPC Science and Technology Press, Guildford, England, (1989),
103-112.

Gregory S., Parallel Logic Programming in PARLOG, Addison-Wesley, Reading, MA,
(1987).

Haridi S., and Janson S., Kernel Andorra Prolog and its Computational Model, In Warren
D.H.D., Ed., Proceedings of the 7th International Conference on Logic Programming
(Jerusalem, Israel, 1990), MIT Press, Cambridge, MA, (1990), 31-46.

Ito N., Data-flow based Execution Mechanism of Parallel and Concurrent Prolog, In New
Generation Computing 3, Springer-Verlag, New York, NY, (1985), 15-41.

Leichter J.S., Shared Tuple Memories, Shared Memories, Buses and LAN's - Linda
Implementations Across the Spectrum of Connectivity, Ph.D. Thesis, Yale University,
Yale, CT, (1989).

Lloyd J.W., Foundations of Logic Programming, 2nd Edition, Springer-Verlag, New York,
NY, (1987).

Pinakis J., and McDonald C., The Inclusion of the Linda Tuple Space Operations in a Pascal-
based Concurrent Language, In Gupta G., Lions J., Ed., Proceedings of the 14th
Australian Computer Science Conference (Kensington, Australia, 1991), Department of
Computer Science, University of New South Wales, Kensington, Australia, (1991),
45.1-45.11.

Quintus Computer Systems Inc., Quintus Prolog Multiprocessing Package, Quintus Prolog
version 1.0 Manual, Quintus Computer Systems Inc., (1989).

Prolog-D-Linda : An Embedding of Linda in SICStus Prolog Page 12

Robertson G., Parallel Implementation of Genetic Algorithms in a Classifier System, In Davis
L., Ed., Genetic Algorithms and Simulated Annealing, Research Notes in Artificial
Intelligence Pitman Publishing, London, England, (1987), 129-140.

Sandberg R., The Design and Implementation of the Sun Network File System, In
Proceedings of the USENIX Association Conference (Portland, OR, 1985), USENIX
Association, El Cerrito, CA, (1985), 119-130.

Shapiro E., Concurrent Prolog: A Progress Report, In Bibel W., Jorrand P., Ed.,
Fundamentals of Artificial Intelligence, Springer-Verlag, New York, NY, (1987), 277-
313.

Shapiro E., Technical Correspondence, In Communications of the ACM 32(10), ACM Press,
New York, NY, (1989a), 1244-1258.

Shapiro E., The Family of Concurrent Logic Programming Languages, In Computing Surveys
21(3), ACM Press, New York, NY, (1989b), 412-510.

Shizgal I., The Amoeba-Prolog System, In The Computer Journal 33(6), Cambridge
University Press, England, (1990), 508-517.

Sutcliffe G., and Pinakis J., Prolog-Linda - An Embedding of Linda in muProlog, In Tsang
C.P., Ed., Proceedings of AI'90 - the 4th Australian Conference on Artificial
Intelligence (Perth, Australia, 1990), World Scientific, Singapore, (1990), 331-340.

Sutcliffe G., A Parallel Linear and UR-Derivation System, In Kanal L., Ed., Informal
Proceedings of PPAI-91, International Workshop on Parallel Processing for Artificial
Intelligence (Sydney, Australia, 1991), International Joint Conferences on Artificial
Intelligence, Inc., Sydney, Australia, (1991), 211-215.

Ueda K., Guarded Horn Clauses, In Wada E., Ed., Proceedings of Logic Programming '85 -
The 4th Japanese Conference on Logic Programming (Tokyo, Japan, 1985), (Goos G.,
Hartmanis J., Ed., Lecture Notes in Computer Science 221), Springer-Verlag, New
York, NY, (1986), 168-179.

Wise M.J., Prolog Multiprocessors, Prentice-Hall, Englewood Cliffs, NJ, (1986).

Wise M.J., Introduction to PMS-Prolog: A Distributed Coarse-Grain-Parallel Prolog with
Processes, Modules and Streams, In Kanal L., Ed., Informal Proceedings of PPAI-91,
International Workshop on Parallel Processing for Artificial Intelligence (Sydney,
Australia, 1991), International Joint Conferences on Artificial Intelligence, Inc.,
Sydney, Australia, (1991a), 222-228.

Wise M.J., MB-Prolog: A Distributed Prolog with Communication via Message-Brokers,
Wise M.J., Distributed at Parallel Processing for AI Workshop, IJCAI'91, (1991b).

Wise M.J., Jones D.G., and Hintz T., PMS-Prolog: A Distributed Coarse-Grain Parallel
Prolog with Processes, Modules and Streams, In Kacsuk P., Wise M. J., Ed.,
Distributed Prolog, John Wiley, (Forthcoming),

Prolog-D-Linda : An Embedding of Linda in SICStus Prolog Page 13

Yuen C.K., and Wong W.F., BaLinda Lisp: A Parallel Lisp Dialect for Biddle with the
Concurrent Facilities of Linda, Technical Report TRA1/ 90, Department of Information
Systems and Computer Science, National University of Singapore, Kent Ridge,
Singapore, (1990).

Appendix

Listed below is a sample Prolog-D-linda configuration file. The configuration specifies two
servers - bison and budgie, of which bison is nominated as the eval-server. The tuple
space is partitioned so that bison maintains tuples of arity 0 and 1, and budgie maintains
all other tuples.
/*----The tuple space is partitioned between two processors */
servers__([bison,budgie]).

/*----bison does the eval requests */
eval_server(bison).

/*----bison maintains tuple with 1 or 0 arguments */
select_server__(bison,Tuple):-
 functor(Tuple,_,Arity),
 Arity =< 1.

/*----budgie maintains all other tuples */
select_server__(budgie,Tuple):-
 functor(Tuple,_,Arity),
 Arity >= 2.

