

 ESCAR
 ESCAR
 ESCAR
 ESCAR
 ESCAR
 ESCAR

Practical Proof Checking
for Program Certification

Geoff Sutcliffe1, Ewen Denney2, Bernd Fischer2
1University of Miami

geoff@cs.miami.edu
2 USRA/RIACS, NASA Ames Research Center

{edenney,fisch}@email.arc.nasa.gov

Abstract

Program certification aims to provide explicit evidence that a program meets a specified
level of safety. This evidence must be independently reproducible and verifiable. We have
developed a system, based on theorem proving, that generates proofs that auto-generated
aerospace code adheres to a number of safety policies. For certification purposes, these
proofs need to be verified by a proof checker. Here, we describe and evaluate a semantic
derivation verification approach to proof checking. The evaluation is based on 109 safety
obligations that are attempted by EP and SPASS. Our system is able to verify 129 out of the
131 proofs found by the two provers. The majority of the proofs are checked completely in
less than 15 seconds wall clock time. This shows that the proof checking task arising from
a substantial prover application is practically tractable.

1 Introduction

Program certification tries to show that a given program achieves a certain level of quality,
safety, or security. Its result is a certificate, i.e., independently checkable evidence of the prop-
erties claimed. Certification approaches vary widely, ranging from code reviews to full formal
verification. The highest degree of confidence is achieved with approaches that are based on
formal methods, and use logic and theorem proving to construct the certificates.

Over the last few years we have developed, implemented, and evaluated a certification
approach that uses Hoare-style techniques to formally demonstrate the safety of aerospace
programs that are automatically generated from high-level specifications [WSF02a, WSF02b,
DFS04a, DFS04b, DFS05]. In that work, we have extended a code generator so that it simulta-
neously generates code and the detailed annotations, e.g., loop invariants, that enable fully au-
tomated safety proofs. A verification condition generator (VCG) processes the annotated code
and produces a set of safety obligations that are provable if and only if the code is safe. An auto-
mated theorem prover (ATP) discharges these obligations and its proofs serve as certificates; we
focus on automated—as opposed to interactive or (the auto-modes of) tactic-based—provers,
since we are aiming at a fully automated “push-button” tool.

For certification purposes, users and certification authorities like the FAA must be assured—
or better yet, given explicit evidence—that none of the individual tool components yield incor-
rect results and, hence, that the certificates are valid. The assurance can take a variety of different

1

forms, e.g., tool pedigree, code inspections, paper-and-pencil proofs, or result checking. In this
paper, we focus on automatically checking the correctness of the proofs generated by the ATP,
which are crucial elements in our certification chain.

Proof checking is of course not necessary if the applied ATP is known to be correct. How-
ever, program certification is a difficult task that requires substantial “deductive power”: the
longest proof found during experiments involved more than 8000 inference steps. Consequently,
simple “correct-by-inspection” theorem provers like leanTAP [BP95], or tactic-based provers
built on top of a trusted kernel like Isabelle [Pau89], are not powerful enough.1 Instead, we need
to employ high-performance ATPs, which use complicated calculi, elaborate data structures,
and optimized implementations. This makes formal verification of their correctness infeasible
[MSM00]. One could argue that these provers have been extensively validated by the theorem
proving community (e.g., the soundness checks required for participation in the CADE ATP
System Competition (CASC), [PSS02]), so that a formal verification is not necessary. However,
this argument by tool pedigree is weak. Most ATPs are under continuous development and sin-
gle versions are never subjected to enough validation to achieve sufficient “social validation.”2

Moreover, the validation is necessarily incomplete. There have been several published instances
of (unintentional) unsoundness in ATPs participating in the CASC, which have been detected
only afterwards [SS99, Sut00b, Sut05].

As an alternative to formally verifying or extensively validating the ATPs, they can be ex-
tended to generate sufficiently detailed proofs that can be independently verified by a proof
checker. The checker’s function is to verify that the ATP’s output is really a proof in the logical
system in use. There are several approaches to proof checking, including the syntactic valida-
tion of Otter proof steps by Ivy [MSM00], higher-order proof term reconstruction in Isabelle
[BN00], higher-order proof step checking in HOL [Won99], reducing proof checking to type
checking as in Coq [BC04], and semantic derivation verification [SB05]. Semantic derivation
verification has been used in this work. In semantic derivation verification, the required seman-
tic properties of each proof step are encoded in one or more proof check obligations (typically
an implication from the premises of the applied inference rule to its conclusion), which are then
discharged by trusted ATPs. This way, the trusted ATP verifies the proof output of the original
ATP. This approach is tractable because the correctness proof for each individual step in the
original proof is substantially easier than the original proof itself, and thus within reach of the
trusted ATP. For certification purposes, all proofs found by the trusted ATP become part of the
certificate that is delivered by the overall certification system.

This paper describes how a semantic derivation verifier has been used to check the proofs
that are found by ATPs for the safety obligations generated in the program certification process.
The success of ATPs in discharging the safety obligations has been described in [DFS04a].
The success of (trusted) ATPs in verifying the resultant proofs is demonstrated here. Section 2
provides the necessary background on the program certification process, and Section 3 describes
the semantic verification technique. Sections 4 and 5 provide empirical data that illustrate the
success of the approach. Section 6 concludes, and discusses directions for future work.

1See http://www.cl.cam.ac.uk/users/jeh1004/software/metis/performance.html for
benchmark data.

2The notable exception is Otter [McC03b], which has been essentially unchanged since 1996. However, previous
experiments have shown that its performance is not sufficient for discharging the safety obligations we generate
[DFS05].

2

2 Formal Program Certification

Formal program certification is based on the idea that the mathematical proof of some program
property can be regarded as an externally verifiable certificate of this property. It is a limited
variant of full program verification because it proves only individual properties and not the
complete behavior, but it uses the same underlying technology.

2.1 Safety Policies

Formal program certification ensures that a program complies with a given safety policy. This
is a formal characterization that the program does not “go wrong”, i.e., does not violate certain
conditions. A safety policy is defined by a set of Hoare-style inference rules and auxiliary
definitions. The formal basis of this approach is explored in [DF03].

Safety policies exist at two levels of granularity. Language-specific policies can be ex-
pressed in terms of the constructs of the underlying programming language itself. They are
sensible for any given program written in the language, regardless of the application domain.
Typical examples of language-specific policies are array-bounds safety (i.e., each access to an
array element to be within the specified upper and lower bounds of the array) and variable
initialization-before-use (i.e., each variable or individual array element has been assigned a de-
fined value before it is used). Various coding standards (e.g., restrictions on the use of loop
indices) also fall into this category. Domain-specific properties are, in contrast, specific to
a particular application domain and not applicable to all programs. These typically relate to
high-level concepts outside the language. In principle, they are independent of the target pro-
gramming language although, in practice, they tend to be be expressed in terms of program
fragments. A typical example is matrix symmetry which requires certain two-dimensional ar-
rays to be symmetric.

2.2 Generating Safety Obligations

For certification purposes, code must be annotated with information relevant to the selected
safety policy. The annotations contain local information in the form of logical pre- and post-
conditions and loop invariants, which is then propagated through the code. The fully annotated
code is then processed by a verification condition generator (VCG), which applies the rules of
the safety policy to the annotated code in order to generate the safety conditions. As usual,
the VCG works backwards through the code, and safety conditions are generated at each line.
Our VCG has been designed to be “correct-by-inspection”, i.e., to be sufficiently simple that
it is straightforward to see that it correctly implements the rules of the logic. Hence, the VCG
does not implement any optimizations, such as structure sharing on verification conditions or
even apply any simplifications. Consequently, the generated verification conditions tend to be
large and must be simplified. The more manageable simplified verification conditions can then
processed by an ATP.

2.3 Certifiable Program Synthesis

As usual in Hoare-based approaches, the annotation effort can quickly become overwhelming
and constitute a barrier for the adoption of the technique. This can be overcome by a certifiable
program synthesis system that automatically generates the code and the detailed annotations

3

from a high-level specification of the problem. The basic idea is to make the annotations part
of the code templates so that they can be instantiated and refined in parallel with the code frag-
ments. We have implemented this approach in two synthesis systems, AUTOFILTER [WS04],
which generates state estimation code based on the Kalman filter algorithm, and AUTOBAYES

[FS03], which generates statistical data analysis code.
Figure 1 shows the overall architecture of a certifiable program synthesis system. At its core

is the original synthesis system that generates code for a given specification. The core system
is extended for certification purposes (i.e., by the annotation templates), and augmented with a
VCG, a simplifier, an ATP, and a proof checker. These components are described in more detail
in [DF03, DFS04b, DFS04a].

code

theory

VCG simplifier ATP
checker

proof

domain

annotated code

trusted

untrusted

certifiable synthesis system

system

synthesis

certificate

proofsSVCsVCs

axioms / lemmas

certification

extension

proofs

rewrite

rules

spec.

problem

safety

policy

Figure 1: Certifiable program synthesis: System architecture

Similar to proof carrying code [NL98], the architecture distinguishes between trusted and
untrusted components, shown in Figure 1 in red (dark grey) and blue (light grey), respectively.
Components are called trusted—and must thus be correct—if any errors in them can compro-
mise the assurance provided by the overall system. Untrusted components, on the other hand,
are not crucial to the assurance because their results are double-checked by at least one trusted
component. In particular, the correctness of the certifiable program synthesis system does not
depend on the correctness of its two largest components: the original synthesis system (includ-
ing the certification extensions), and the ATP; instead, we need only trust the safety policy, the
VCG, and the proof checker.

3 Semantic Derivation Verification

The proofs produced by ATP systems can be considered more abstractly as derivations. For
our purposes, a derivation is a directed acyclic graph (DAG), whose leaf nodes are formulae
(possibly derived) from the input problem, whose interior nodes are formulae inferred from
parent formulae, and whose unique root node is the final derived formula. In semantic derivation
verification, the required semantic properties of each inference step in a derivation are encoded
in one or more proof check obligations. These are then discharged by trusted ATPs.

Derivation verification involves three notionally distinct phases. First, it is necessary to
check the overall structure of the derivation. This ensures that the ATP output actually is a
well-formed derivation DAG. Second, it is necessary to check that each leaf node is a formula

4

that occurs in, or is derived from, the input problem. This ensures that the ATP actually solves
the original problem. Third, it is necessary to check that each inferred formula has the required
semantic relationship to its parents. This finally ensures that the proof is correct. The required
semantic relationship of an inferred formula to its parents depends on the intent of the inference
rule used. Most commonly an inferred formula is intended to be a logical consequence of its
parents, but in other cases, e.g., Skolemization and splitting, the inferred formula has a weaker
relation to its parents. A comprehensive list of inferred formula statuses is given in [SZS04].
Consequently, there are different forms of proof check obligations; currently GDV distinguishes
between theorem obligations, satisfiability obligations, and leaf theorem obligations, which are
explained in more detail in the following sections.

The main advantage of semantic derivation verification over other approaches is that it de-
couples proof checking from proof search—any ATP can serve as the trusted system that checks
the output from the untrusted production system. Moreover, the approach is independent of the
particular inference rules used in the production ATP, and is also robust with respect to any
preprocessing of the input formulae that the production ATP might perform.

3.1 Logical Consequences and Relevance

The basic technique for verifying logical consequences is well known and quite simple. The
earliest use appears to have been in the in-house verifier for SPASS [WB+02]. For each infer-
ence of a logical consequence in a derivation, a theorem obligation is formed; this formalizes
that the inferred formula is a logical consequence of the parent formulae. If the inference rule
implements any theory (e.g., paramodulation implements most of equality theory), then the cor-
responding axioms of the theory are added as axioms of the obligation. The obligation is then
handed to the trusted ATP system. If the trusted system solves the problem (i.e., finds a proof),
the obligation has been discharged.

In practice (see Section 3.5), each attempt to discharge an obligation is constrained by a CPU
time limit. Thus the failure to prove a theorem obligation may be because it is actually invalid
(indicating a fault in the original derivation), or because the obligation is too hard for the trusted
ATP system to prove within the CPU time limit. In order to try to differentiate between these
two situations, if the trusted ATP system fails to prove a theorem obligation, GDV generates
a satisfiability obligation to show that the set consisting of the parents and the negation of the
inferred formula is satisfiable, which is then attempted by the trusted ATP. If this is successful
then it is known that the theorem obligation cannot be discharged.

The verification of logical consequences ensures the soundness of the inference steps, but
does not check for relevance. As a contradiction in first order logic entails everything, an
inference step with contradictory parents can soundly infer anything. An inference step with
contradictory parents can thus always be the last in a derivation. If it is required that an inference
step (that infers a formula other than a false formula) is not irrelevant, a satisfiability obligation
consisting of the parents of the inference must be discharged. This verification step should not be
implemented during conversion from FOF to CNF when there is a single parent formulae that is
(derived from) the negation of the conjecture—such parent formulae are correctly unsatisfiable
when the conjecture is a tautology.

Due to the semi-decidability of first order logic, satisfiability obligations cannot be guaran-
teed to be discharged. Three alternative techniques, described here in order of preference, may
be used to show satisfiability. First, a finite model of the axioms may be found using a model

5

generation system such as MACE [McC03a] or Paradox [CS03]. Second, a saturation of the
axioms may be found using a saturating ATP system such as SPASS or EP [Sch02b]. Third,
an attempt to show the axioms to be contradictory can be made using a refutation system. If
that succeeds then the satisfiability obligation cannot be discharged. If it fails it provides an
incomplete assurance that the formulae are satisfiable.

3.2 Splitting

Many contemporary ATPs that build refutations for CNF problems use splitting. Splitting re-
duces a CNF problem to one or more potentially easier problems by dividing a clause into two
subclauses. There are several variants of splitting that have been implemented in specific ATPs,
including explicit splitting as implemented in SPASS, and forms of pseudo-splitting as imple-
mented in Vampire [RV01] and E. Verification of splitting inferences requires several theorem
obligations to be discharged.

Explicit splitting takes a CNF problem S ∪ {L ∨ R}, in which L and R do not share any
variables, and replaces it by two subproblems S∪{L} and S∪{R}. If both the subproblems have
refutations (i.e., are unsatisfiable), then it is assured that the original problem is unsatisfiable.
To verify an explicit splitting step’s role in establishing the overall unsatisfiability of the original
problem clauses, a theorem obligation to prove ¬(L ∨ R) from {¬L,¬R} is discharged.

Pseudo-splitting takes a CNF problem S ∪ {L ∨ R}, in which L and R do not share any
variables, and replaces {L∨R} by either (i) {L∨t,¬t∨R}, or (ii) {L ∨ t1, R ∨ t2,¬t1 ∨ ¬t2},
where t and ti are new propositional symbols. Vampire implements pseudo-splitting by (i) and
E implements it by (ii). The replacement does not change the satisfiability of the clause set—
any model of the original clause set can be extended to a model of the modified clause set, and
any model of the modified clause set satisfies the original one [RV01, Sch02a]. The underlying
justification for pseudo-splitting is that it is equivalent to inferring logical consequences of the
split clause and new definitional axioms: for (i) t ⇔ ¬∀L, and for (ii) t1 ⇔ ¬∀L and
t2 ⇔ ¬∀R. Pseudo-splitting steps are verified by discharging theorem obligations that prove
each of the replacement clauses from the split clause and the new definitional axiom(s).

3.3 Leaf Formulae

The leaf formulae of a derivation must occur in or be derived from the original problem—
otherwise, the ATP solves a different problem. To verify this, leaf theorem obligations to prove
each leaf formula from the input formulae must be discharged. An advantage of the semantic
technique for verifying leaf formulae is that it is robust to some of the preprocessing inferences
that are performed by ATP systems. For example, Gandalf [Tam98] may factor and simplify
input clauses before storing them in its clause data structure. The leaves of refutations output
by Gandalf may thus be derived from input clauses, rather than directly being input clauses.
These leaves are logical consequences of the original input clauses, and can be verified using
this technique.

If the input problem is in FOF (i.e., first-order form including quantifiers, rather than CNF),
and the derivation is a CNF refutation, the leaf clauses may have been formed with the use
of Skolemization. Such leaf clauses are not logical consequences of the FOF input formulae.
Skolemization steps can be incompletely verified by discharging a theorem obligation to prove
the parent formula from the Skolemized formula. Although this is an incomplete verification

6

step (i.e., unsound Skolemization steps can pass this check), it catches simple “typographical”
errors and thus provides some additional assurance.

3.4 Structural Verification

All forms of proof checking also include, at least implicitly, some structural verification. Struc-
tural verification checks that inferences have been used correctly in the context of the overall
derivation.

For all derivations, two structural checks are necessary: First, the specified parents of each
inference step must exist in the derivation. When semantic verification is used to verify each in-
ference step then the formation of the obligation problems relies on the existence of the parents,
and thus performs this check. The check can also be done explicitly. Second, there must not be
any loops in the derivation. For derivations that claim to be CNF refutations, it is necessary to
also check that the empty clause has been derived.

For refutations that use explicit splitting, two further structural checks are necessary. First,
it is necessary to check that both subproblems have been refuted. Second, it is necessary to
check that L (R) and its descendants are not used in the refutation of the R (L) subproblem.
For refutations that use pseudo-splitting, a structural check is required to ensure that the “new
propositional symbols” really are new, and not used elsewhere in the refutation.

3.5 Implementation

The semantic verification techniques described here have been implemented in the GDV sys-
tem. GDV is implemented in C, using the JJParser library for input, output, and data structure
support. The inputs to GDV are a derivation in TPTP format [SZS04], the original problem in
TPTP format, a set of trusted ATPs to discharge the theorem obligations, and a CPU time limit
for the trusted ATPs for each obligation. SystemOnTPTP [Sut00a] is used to run the trusted
ATPs. Obligations that are successfully discharged are reported, and the output from the dis-
charging is optionally retained for later inspection. If an obligation cannot be discharged, or a
structural check fails, GDV reports the failure.

4 Experimental Setup

In [DFS05], we evaluate multiple ATPs on 366 safety obligations generated from the certifica-
tion of programs generated by the AUTOBAYES and AUTOFILTER program synthesis systems.
Of those 366 problems, 109 were selected for inclusion in the TPTP problem library [SS05],
the standard library of test problem for testing and evaluating ATPs. The 109 problems were
selected based on the results of evaluating several state-of-the-art ATPs against the problems,
and were selected so as to be “difficult”, i.e., with TPTP difficulty ratings strictly between 0.0
and 1.0 [SS01].

As a practical test and evaluation of the proof checking approach described in this paper,
we scrutinized the proofs generated for these 109 problems by the ATPs EP (Version 0.82)
[Sch02b]3 and SPASS (Version 2.1) [WB+02]. Both EP and SPASS work by converting the
axioms and the negated conjecture to CNF, and then using clausal reasoning to find a refutation.

3EP is a simple extension of E that produces explicit proofs.

7

The proofs output by EP include details of the FOF-to-CNF conversion, and the subsequent
CNF refutation. The proofs are natively output in TPTP format. The proofs output by SPASS
document the CNF refutation, but not the FOF-to-CNF conversion. The SPASS proofs are
natively in DFG format, which is translated to TPTP format prior to verification. Both systems
are based on the superposition calculus, but differ in the specific inference rules used. A notable
difference is EP’s use of pseudo-splitting and SPASS’s use of explicit splitting. Additionally,
the systems have quite different control heuristics. As a result the proofs produced by the two
systems have quite different characteristics.

For the verification of the EP proofs, GDV was configured to verify all aspects of each proof:
the derivation was structurally verified, leaves were verified as being (possibly derived) from the
input problem, all inferred formulae were semantically verified with relevance checking, and all
splitting steps were verified. For the verification of the SPASS proofs, GDV was configured to
verify selected aspects of each proof: leaves were not verified because SPASS does not docu-
ment the FOF to CNF conversion, all inferred formulae were semantically verified but without
relevance checking, all splitting steps were verified but the independence of the subproblems
was not verified in the larger proofs because of the computational complexity, and the deriva-
tion was structurally verified (with the exception of the splitting aspect just mentioned). The
trusted ATPs used were Otter 3.3 [McC03b] for discharging theorem obligations, Paradox 1.1
[CS03] for finding finite models, and SPASS 2.1 for finding saturations.4 The outputs from
Otter, Paradox, and SPASS were retained, and are available as part of any certificate. The veri-
fications were done on Intel P4 2.8GHz computers with 1GB RAM, and running the Linux 2.4
operating system. The CPU time limit for each discharge was 10s.

5 Experimental Results

Out of the 109 problems, EP can solve 48 and SPASS can solve 83, thus giving a total of 131
proofs to check. The 48 problems solved by EP are a subset of those solved by SPASS, but
the proofs are obviously different. Table 1 summarizes the results. The first column gives
the overall values for the verification of the EP proofs, including the verification of the steps
converting from FOF to CNF and the inferences in the refutation. The next two columns split
these values into the two parts. The final column gives the values for the verification of the
inferences in SPASS’s refutations. The last two columns are thus directly comparable. The
first row shows the number of problems solved out of the 109, and the second row shows how
many of those were verified by GDV with the checks described above. The next row gives
the numbers of theorem obligations that were generated for the verifications and discharged by
Otter. The next row gives the average number of theorem obligations per proof, and then the
next five rows give their distribution, thus giving an indication of the distribution of the proof
sizes. The next block of four rows gives the distribution of the CPU times taken by Otter to
discharge the theorem obligations. The final row gives the numbers of finite models found in
the relevance checking done for EP proofs.

The table shows that 46 of the 48 problems solved by EP were fully verified. Both failure
cases were caused by Otter’s inability to discharge obligations arising from steps in the FOF-
to-CNF conversion. In particular, the obligations to verify the step that negates the conjecture,

4Satisfiability tests, which employ saturation finding, are used only in the verification of leaves and relevance
checking. As these checks were not done for the SPASS proofs, this is not a case of SPASS checking itself.

8

EP EP-CNF EP-Ref SPASS
Problems solved 48 83
Proofs verified 46 83
Obligations discharged 590 309 281 19737
Average obligations / proof 12.8 6.7 6.1 273.8
Theorem obligations / proof
0 0 0 19 0
1-10 35 38 22 52
10-100 10 8 4 13
100-1000 1 0 1 12
> 1000 0 0 0 6
Discharge time / obligation
0.0-0.1s 208 123 85 19737
0.1-0.2s 362 172 190 0
0.2-0.3s 17 7 10 0
> 0.3s 3 3 0 0
Models found 361 140 221 -

Table 1: Proof Checking Results

which entails proving the negation of the negation from the original, could not be discharged.
All 83 of the SPASS proofs passed the verification checks chosen.

Most of the proofs require less than 10 obligations to be discharged, both for EP and SPASS.
However, SPASS produces some very large proofs that consequently require a very large num-
ber of obligations to be discharged; the largest proof resulted in 3493 theorem obligations. This
difference in distribution leads to a significant difference between the average numbers of obli-
gations that had to be discharged per problem. At the same time, all of the SPASS obligations
were discharged in almost no time. These figures indicate that SPASS proofs contain very many
small, easily verified steps, while EP proofs have slightly larger steps. Note that 19 of the EP
proofs were completed in the FOF-to-CNF conversion, and EP’s largest proof steps, requiring
the longest times for verification, over 0.3s, are within the FOF-to-CNF conversion. There is
some overhead starting Otter for each theorem obligation, and this dominates the wall clock
time taken (i.e., the time the user has to wait for a proof to be verified). It is thus preferable to
have fewer but harder theorem obligations to discharge, as offered by EP.

Of the 590 theorem obligations discharged for EP, 361 had the parents verified as satisfiable,
confirming the relevance of the parents to the inferred clause. The remaining 229 theorems were
not relevance checked because one of the parent clauses was derived from the negation of the
conjecture.

6 Conclusions and Future Work

In this paper, we have described and evaluated a semantic derivation verification approach to
proof checking. The evaluation, which is the main contribution of the paper, is based on 109
safety obligations arising in the certification of auto-generated aerospace code.

9

The results are encouraging. Our system is able to verify 129 out of the 131 proofs found by
EP and SPASS, showing that the proof checking task is practically tractable. The vast majority
of the proof check obligations are discharged in less than 0.1 seconds. The majority of the
proofs are checked completely in less than 15 seconds wall clock time, although some of the
longer proofs cannot be verified completely and even the partial checks can take more than five
minutes. Moreover, as a consequence of the substantial overheads our current implementation
incurs for intermediate format transformation steps, proof checking often requires more wall
clock time than the actual proof search. However, this is not a fundamental limitation and could
easily be changed by an optimized implementation.

There is still a lot of room for improvement. The verification of some trivial proof steps in
the FOF-to-CNF conversion failed. The corresponding obligations were of the form L |= ¬¬L,
where L is very large. The trusted ATP (i.e., Otter) does not recognize this form and produces a
very difficult CNF obligation. Using SPASS as the trusted ATP, however, solves this problem.
Similarly, some forms of structural verification are very expensive, in particular for the large
proofs found by SPASS. Moreover, the approach relies on the production ATP generating well
documented proofs. Currently, only EP satisfies this criterion. SPASS proofs are missing the
FOF-to-CNF conversion, and Vampire does not record the negation of the original goal, which
makes its proofs uncheckable. Finally, we have evaluated our techniques only for ATPs based
on the superposition calculus. Future work will thus be concerned with systems based on other
calculi, such as non-clausal resolution or model elimination.

Derivation verification does not provide absolute assurance. The biggest gap is the verifica-
tion of Skolemization steps, which are only satisfiability-preserving. While the full verification
of such steps (and clausification in general) requires further research and experimentation, the
partial verification provided here already gives some additional assurance. Other potential gaps
are that the construction of the proof check obligations is wrong, and that the trusted ATP con-
tains errors. Moreover, derivation verification as described here only addresses errors in the
proofs found by the ATPs but not any errors in the construction and, in particular, simplifica-
tion of the original verification conditions. However, similar techniques can also be applied to
double-check the rewrite engine and rules used for simplification.

Ultimately, however, in order to convince users of the validity of the overall certification
process, there needs to be some explicit linking or tracing between the logical entities and the
program being certified. In [DF05], we describe a browser which enables a two-way linking
between the verification conditions and the individual statements of the annotated program. We
are also developing an extension to the VCG which adds “semantic markup” to formulas in the
form of labels which explain their origin and meaning. The accumulated labels can then be
converted into text and used to interpret the generated verification conditions. We would like
to combine tracing, textual rendering, and proof checking into an integrated environment for
certification.

References

[BC04] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
EATCS, 2004.

10

[BN00] S. Berghofer and T. Nipkow. “Proof Terms for Simply Typed Higher Order Logic”. In
Theorem Proving in Higher Order Logics, pp. 38–52, 2000.

[BP95] B. Beckert and J. Posegga. “leanTAP : Lean Tableau-based Deduction”. J. Automated
Reasoning, 15(3):339–358, 1995.

[CS03] K. Claessen and N. Sorensson. “New Techniques that Improve MACE-style Finite
Model Finding”. In P. Baumgartner and C. Fermueller, (eds.), Proc. CADE-19 Workshop:
Model Computation - Principles, Algorithms, Applications, 2003.

[DF03] E. Denney and B. Fischer. “Correctness of Source-Level Safety Policies”. In K. Araki,
S. Gnesi, and D. Mandrioli, (eds.), Proc. FM 2003: Formal Methods, Lect. Notes Comp.
Sci. 2805, pp. 894–913. Springer, 2003.

[DF05] E. Denney and B. Fischer. “A Program Certification Assistant Based on Fully Auto-
mated Theorem Provers”. In Proc. Intl. Workshop on User Interfaces for Theorem Provers,
Electronic Notes in Theoretical Computer Science, 2005.

[DFS04a] E. Denney, B. Fischer, and J. Schumann. “Using Automated Theorem Provers to
Certify Auto-Generated Aerospace Software”. In M. Rusinowitch and D. Basin, (eds.), Proc.
2nd Intl. Joint Conf. Automated Reasoning, Lect. Notes Artificial Intelligence 3097, pp. 198–
212. Springer, 2004.

[DFS04b] E. Denney, B. Fischer, and J. Schumann. “An Empirical Evaluation of Automated
Theorem Provers in Software Certification”. In Proc. IJCAR 2004 Workshop on Empirically
Successful First Order Reasoning, 2004.

[DFS05] E. Denney, B. Fischer, and J. Schumann. “An Empirical Evaluation of Automated
Theorem Provers in Software Certification”. Intl. Journal of AI Tools, 2005. To appear.

[FS03] B. Fischer and J. Schumann. “AutoBayes: A System for Generating Data Analysis
Programs from Statistical Models”. J. Functional Programming, 13(3):483–508, May 2003.

[McC03a] W. McCune. Mace4 Reference Manual and Guide. Technical Report ANL/MCS-
TM-264, Argonne National Laboratory, Argonne, USA, 2003.

[McC03b] W. McCune. Otter 3.3 Reference Manual. Technical Report ANL/MSC-TM-263,
Argonne National Laboratory, Argonne, USA, 2003.

[MSM00] W. McCune and O. Shumsky-Matlin. “Ivy: A Preprocessor and Proof Checker for
First-Order Logic”. In M. Kaufmann, P. Manolios, and J. Strother Moore, (eds.), Computer-
Aided Reasoning: ACL2 Case Studies, Advances in Formal Methods 4, pp. 265–282. Kluwer
Academic Publishers, 2000.

[NL98] G. C. Necula and P. Lee. “The Design and Implementation of a Certifying Compiler”.
In K. D. Cooper, (ed.), Proc. ACM Conf. Programming Language Design and Implementa-
tion 1998, pp. 333–344. ACM Press, 1998. Published as SIGPLAN Notices 33(5).

[Pau89] L. C. Paulson. “The Foundation of a Generic Theorem Prover”. Journal of Automated
Reasoning, 5(3):363–397, 1989.

11

[PSS02] F. J. Pelletier, G. Sutcliffe, and C. B. Suttner. “The Development of CASC”. AI
Communications, 15(2-3):79–90, 2002.

[RV01] A. Riazanov and A. Voronkov. “Splitting without Backtracking”. In B. Nebel, (ed.),
Proc. 17th Intl. Joint Conf. Artificial Intelligence, pp. 611–617. Morgan Kaufmann, 2001.

[SB05] G. Sutcliffe and D. Belfiore. “Semantic Derivation Verification”. In I. Russell and
Z. Markov, (eds.), Proc. 18th Florida Artificial Intelligence Research Symposium. AAAI
Press, 2005.

[Sch02a] S. Schulz. “A Comparison of Different Techniques for Grounding Near-Propositional
CNF Formulae”. In S. Haller and G. Simmons, (eds.), Proc. 15th Florida Artificial Intelli-
gence Research Symposium, pp. 72–76. AAAI Press, 2002.

[Sch02b] S. Schulz. “E: A Brainiac Theorem Prover”. AI Communications, 15(2-3):111–126,
2002.

[SS99] G. Sutcliffe and C. Suttner. “The CADE-15 ATP System Competition”. Journal of
Automated Reasoning, 23(1):1–23, 1999.

[SS01] G. Sutcliffe and C. Suttner. “Evaluating General Purpose Automated Theorem Proving
Systems”. Artificial Intelligence, 131(1-2):39–54, 2001.

[SS05] G. Sutcliffe and C. Suttner. The TPTP Problem Library. http://www.TPTP.org.

[Sut00a] G. Sutcliffe. “SystemOnTPTP”. In D. McAllester, (ed.), Proc. 17th Intl. Conf. Auto-
mated Deduction, Lect. Notes Artificial Intelligence 1831, pp. 406–410. Springer, 2000.

[Sut00b] G. Sutcliffe. “The CADE-16 ATP System Competition”. Journal of Automated Rea-
soning, 24(3):371–396, 2000.

[Sut05] G. Sutcliffe. “The IJCAR-2004 Automated Theorem Proving Competition”. AI Com-
munications, 18(1), 2005.

[SZS04] G. Sutcliffe, J. Zimmer, and S. Schulz. “TSTP Data-Exchange Formats for Auto-
mated Theorem Proving Tools”. In W. Zhang and V. Sorge, (eds.), Distributed Constraint
Problem Solving and Reasoning in Multi-Agent Systems, Frontiers in Artificial Intelligence
and Applications 112, pp. 201–215. IOS Press, 2004.

[Tam98] T. Tammet. “Towards Efficient Subsumption”. In C. Kirchner and H. Kirchner, (eds.),
Proc. 15th Intl. Conf. Automated Deduction, Lect. Notes Artificial Intelligence 1421, pp.
427–440. Springer, 1998.

[WB+02] C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobald, and D. Topic.
“SPASS Version 2.0”. In A. Voronkov, (ed.), Proc. 18th Intl. Conf. Automated Deduction,
Lect. Notes Artificial Intelligence 2392, pp. 275–279. Springer, 2002.

[Won99] W. Wong. “Validation of HOL Proofs by Proof Checking”. Formal Methods in System
Design: An International Journal, 14(2):193–212, March 1999.

[WS04] J. Whittle and J. Schumann. “Automating the Implementation of Kalman Filter Algo-
rithms”. ACM Transactions on Mathematical Software, 30(4):434–453, December 2004.

12

[WSF02a] M. Whalen, J. Schumann, and B. Fischer. “AutoBayes/CC — Combining Program
Synthesis with Automatic Code Certification (System Description)”. In A. Voronkov, (ed.),
Proc. 18th Intl. Conf. Automated Deduction, Lect. Notes Artificial Intelligence 2392, pp.
290–294. Springer, 2002.

[WSF02b] M. Whalen, J. Schumann, and B. Fischer. “Synthesizing Certified Code”. In L.-H.
Eriksson and P. A. Lindsay, (eds.), Proc. Intl. Symp. Formal Methods Europe 2002: Formal
Methods—Getting IT Right, Lect. Notes Comp. Sci. 2391, pp. 431–450. Springer, 2002.

13

Automated Theorem Proving for

Quality-checking Medical Guidelines∗

Arjen Hommersom, Peter Lucas, and Patrick van Bommel

Institute for Computing and Information Sciences

Radboud Universiteit Nijmegen

The Netherlands

{arjenh,peterl,pvb}@cs.ru.nl

Abstract

Requirements about the quality of medical guidelines can be represented using
schemata borrowed from the theory of abductive diagnosis, using temporal logic
to model the time-oriented aspects expressed in a guideline. Previously we have
shown that these requirements can be verified using interactive theorem proving
techniques [HLB04]. In this paper, we investigate how this approach can be mapped
to the facilities of a resolution-based theorem prover, otter, and a complementary
program that searches for finite models of first-order statements, mace-2. It is
shown that the reasoning that is required for checking the quality of a guideline can
be mapped to such fully automated theorem-proving facilities. The medical quality
of an actual guideline concerning diabetes mellitus 2 is investigated in this way.

1 Introduction

Health-care is becoming more and more complicated at an astonishing rate. On the one
hand, the number of different patient management options has risen considerably during
the last couple of decades, whereas, on the other hand, medical doctors are expected
to take decisions balancing benefits for the patient against financial costs. There is
a growing trend within the medical profession to believe that clinical decision-making
should be based as much as possible on sound scientific evidence; this has become
known as evidence-based medicine [Woo00]. Evidence-based medicine has given a major
impetus to the development of guidelines, documents offering a detailed description of
steps that must be taken and considerations that must be taken into account by health-
care professionals in managing a disease in a patient, to avoid substandard practices or
outcomes. Their general aim is to promote standards of medical care.

Researchers in artificial intelligence (AI) have picked up on these developments
[FD00, OMGM98], and some of them, for example in the Asgaard project [SMJ98],
are involved in the design of computer-oriented languages, tools and systems that sup-
port the design and deployment of medical guidelines. AI researchers see guidelines as

∗This work has been partially supported by the European Commission’s IST program, under contract

number IST-FP6-508794 Protocure II.

1

good real-world examples of highly structured, systematic documents that are amenable
to formalisation. Previously, it was shown that for reasoning about models of medical
knowledge, for example in the context of medical expert systems [Luc93], automated
reasoning techniques (e.g., [Rob65, WOLB84]) are a practical option.

There are two approaches to checking the quality of medical guidelines: (1) the
object-level approach amounts to translating a guideline to a formal language, such as
Asbru [SMJ98], and next applying techniques from program verification to the resulting
representation in establishing whether certain domain-specific properties hold; (2) the
meta-level approach, which consists of formalising general properties to which a guideline
should comply, and then investigating whether this is the case. Here we are concerned
with the meta-level approach to guideline-quality checking. For example, a good-quality
medical guideline regarding treatment of a disorder should preclude the prescription of
redundant drugs, or advise against the prescription of treatment that is less effective
than some alternative.

Such a meta-level approach corresponds to reasoning that occurs during the process
of designing medical guidelines and therefore such checks could be valuable. The design
of a guideline can be seen as a very complex process where formulation of knowledge
and construction of conclusions and corresponding recommendations are intermingled.
This makes it cumbersome to do interactive verification of hypotheses concerning the
optimal recommendation during the construction of such a guideline, because guide-
line developers do not generally have the necessary background in formal methods to
construct such proofs interactively. Automated theorem proving on a language could
therefore be potentially more useful for supporting the guideline development process.

The goal of the research described here was to establish how feasible it is to imple-
ment such meta-reasoning techniques in existing tools for automated deduction. We will
show that it is indeed possible to explore the route from informal medical knowledge
to a logical formalisation and automated verification. Previously, we have shown that
the theory of abductive diagnosis can be taken as a foundation for the formalisation
of quality criteria of a medical guideline [Luc03] and that these can be verified using
(interactive) program verification techniques [HLB04]. In this paper, we provide an
alternative to this approach by translating this formalism, a restricted part of tempo-
ral logic, to standard first order logic. We will show that, because of the restricted
language we used for the formalisation of the object knowledge, the translation is a
relatively simple fragment of first-order logic and is therefore amenable to automated
reasoning techniques.

The paper is organised as follows. In the next section, we start by explaining what
medical guidelines are, and a method for formalising guidelines by temporal logic is
briefly reviewed. In Section 3 the formalisation of guideline quality using a meta-level
scheme which comes from the theory of abductive diagnosis is described. The guideline
on the management of diabetes mellitus type 2 that has been used in the case study is
given attention in Section 4, and a formalisation of this is given as well. An approach to
checking the quality of this guideline using the deductive machinery offered by otter

and mace-2 is presented in Section 5. Finally, Section 6 discusses what has been
achieved, the advantages and limitations of this approach are brought into perspective
and future research plans are mentioned.

2

• Step 1: diet

• Step 2: if Quetelet Index (QI) ≤ 27, prescribe a sulfonylurea drug; otherwise,
prescribe a biguanide drug

• Step 3: combine a sulfonylurea drug and biguanide (replace one of these by a
α-glucosidase inhibitor if side-effects occur)

• Step 4: one of the following:

– oral antidiabetics and insulin

– only insulin

Figure 1: Tiny fragment of a clinical guideline on the management of diabetes mellitus
type 2. If one of the steps k = 1, 2, 3 is ineffective, the management moves to step k+1.

2 Preliminaries

2.1 The Design of Medical Guidelines

The design of a medical guideline is far from easy. Firstly, the gathering and classification
of the scientific evidence underlying and justifying the recommendations mentioned in
a guideline is time consuming, and requires considerable expertise in the medical field
concerned. Secondly, medical guidelines are very detailed. Making sure that all the
information contained in the guideline is complete for the guideline’s purpose, and based
on sound medical principles, is hard work. An example of a tiny portion of a guideline
is shown in Figure 1; it is part of the guideline for general practitioners about the
treatment of diabetes mellitus type 2. This guideline fragment is used in this paper as
a running example.

One way to use formal methods in the context of guidelines is to automatically verify
whether a medical guideline fulfills particular properties, such as whether it complies
with quality indicators as proposed by health-care professionals [MBtTvH02]. For ex-
ample, using particular patient assumptions such as that after treatment the levels of
a substance are dangerously high or low, it is possible to check whether this situation
does or does not violate the guideline. However, verifying the effects of treatment as
well as examining whether a developed medical guideline complies with global criteria,
such as that it avoids the prescription of redundant drugs, or the request of tests that
are superfluous, is difficult to impossible if only the guideline text is available. Thus,
the capability to check whether a guideline fulfills particular medical objectives may re-
quire the availability of more medical knowledge than is actually specified in a medical
guideline, i.e., background knowledge is required.

3

Table 1: Used temporal operators; t stands for a time instance.
Notation Interpretation Formal semantics

Hϕ ϕ has always been true in the past t � Hϕ⇔ ∀t′ < t : t′ � ϕ

Gϕ ϕ is true now and at all future times t � Gϕ⇔ ∀t′ ≥ t : t′ � ϕ

2.2 Using Temporal Logic for Guideline Representation

As medical management is a time-oriented process, diagnostic and treatment actions
described in guidelines are performed in a temporal setting. It has been shown previously
that the step-wise, possibly iterative, execution of a guideline, such as the example in
Figure 1, can be described precisely by means of temporal logic [MBtTvH02]. This is a
modal logic, where relationships between worlds in the usual possible-world semantics
of modal logic is understood as time order, i.e., formulae are interpreted in a temporal
structure F = (T, <, I). We will assume that the progression in time is linear, i.e.,
< is a strict linear order. For the representation of the medical knowledge involved
it appeared to be sufficient to use rather abstract temporal operators, as proposed in
literature [Luc03]. The language of standard logic, with equality and unique names
assumption, is augmented with the modal operators G, H, P, and F, where the temporal
semantics of the first two operators is defined in Table 1. The last two operators are
simply defined in terms of the first two operators:

� Pϕ↔ ¬H¬ϕ (some time in the past)

� Fϕ↔ ¬G¬ϕ (some time in the future)

This logic offers the right abstraction level to cope with the nature of the temporal
knowledge in medical guidelines required for our purposes. However, more fine-grained
temporal operators can be added if needed. For a full axiomatisation of this logic, see
Ref. [Tur85].

3 Application to Medical Knowledge

It is assumed that two types of knowledge are involved in detecting the violation of good
medical practice:

• Knowledge concerning the (patho)physiological mechanisms underlying the dis-
ease, and the way treatment influences these mechanisms. The knowledge involved
could be causal in nature, and is an example of object-knowledge.

• Knowledge concerning good practice in treatment selection; this is meta-knowledge.

Below we present some ideas on how such knowledge may be formalised using temporal
logic (cf. [Luc95] for earlier work).

We are interested in the prescription of drugs, taking into account their mode of
action. Abstracting from the dynamics of their pharmacokinetics, which are normally
modelled using differential equations, this can be formalised in logic as follows:

(G d ∧ r) → G(m1 ∧ · · · ∧mn)

4

where d is the name of a drug or possibly of a group of drugs indicated by a predicate
symbol (e.g. SU(x), where x is universally quantified and ‘SU’ stands for sulfonylurea
drugs, such as Tolbutamid), r is a (possibly negative or empty) requirement for the drug
to take effect, and mk is a mode of action, such as decrease of release of glucose from
the liver, which holds at all future times.

The modes of action mk can be combined, together with an intention n (achieving
normoglycaemia, i.e., normal blood glucose levels, for example), a particular patient
condition c, and requirements rj for the modes of action to be effective:

(Gmi1 ∧ · · · ∧ Gmim ∧ r1 ∧ · · · ∧ rp ∧ Hc) → Gn

In both formulas the antecedent is strong. For example, a drug should always be applied
to conclude that a certain mode of actions occurs. In a strict sense, this formulation is
unrealistic, but the idea is that the time points that the modalities refer to are finite and
refers to the relevant information about the patient’s disease. This imprecise information
is enough to be able to verify a number of quality criteria, which will be shown below.

Good practice medicine can then be formalised as follows. Let B be background
knowledge, T ⊆ {d1, . . . , dp} be a set of drugs, C a collection of patient conditions, R a
collection of requirements, and N a collection of intentions which the physician has to
achieve. A set of drugs T is a treatment according to the theory of abductive reasoning
if [Poo90, Luc97]:

(M1) B ∪ GT ∪ C ∪R 2 ⊥ (the drugs do not have contradictory effects), and

(M2) B ∪ GT ∪ C ∪ R � N (the drugs handle all the patient problems intended to be
managed)

If in addition to (1) and (2) condition

(M3) Oϕ(T) holds, where Oϕ is a meta-predicate standing for an optimality criterion
or combination of optimality criteria ϕ,

then the treatment is said to be in accordance with good-practice medicine. A typical
example of this is subset minimality O⊂:

O⊂(T) ≡ ∀T ′ ⊂ T : T ′ is not a treatment according to (1) and (2)

i.e., the minimum number of effective drugs are being prescribed. For example, if
{d1, d2, d3} is a treatment that satisfies condition (3) in addition to (1) and (2), then the
subsets {d1, d2}, {d2, d3}, {d1}, and so on, do not satisfy conditions (1) and (2). In the
context of abductive reasoning, subset minimality is often used in order to distinguish
between various solutions; it is also referred to in literature as Occam’s razor. Another
definition of the meta-predicate Oϕ is in terms of minimal cost Oc:

Oc(T) ≡ ∀T ′,with T ′ a treatment: c(T ′) ≥ c(T)

where c(T) =
∑

d∈T cost(d); combining the two definitions also makes sense. For ex-
ample, one could come up with a definition of O⊂,c that among two subset-minimal
treatments selects the one that is the cheapest in financial or ethical sense.

5

(2) Biguanides (BG)

(4) Insulin

(3) alpha−Glucosidase
inhibitors

(1) Sulfonylureas (SU)

Insulin

IntestinesLangerhans islets

Pancreas

Muscles

Liver

Figure 2: Summary of drugs and mechanisms controlling the blood level of glucose; −
− →: inhibition, · · · · · ·→: stimulation.

4 Management of Diabetes Mellitus Type 2

4.1 Diabetes Type 2 Background Knowledge

It is well known that diabetes type 2 is a very complicated disease. Here we focus on the
derangement of glucose metabolism in diabetic patients; however, even that is nontrivial.
To support non-expert medical doctors in the management of this complicated disease
in patients, access to a guideline is really essential.

One would expect that as this disorder is so complicated, the diabetes mellitus type
2 guideline is also complicated. This, however, is not the case, as may already be
apparent from the guideline fragment shown in Figure 1. This indicates that much of
the knowledge concerning diabetes mellitus type 2 is missing from the guideline, and
that without this background knowledge it will be impossible to spot the sort of flaws
we are after. Thus, the conclusion is that a deeper biological analysis is required, the
results of which are presented below.

Figure 2 summarises the most important mechanisms and drugs involved in the
control of the blood level of glucose. The protein hormone insulin, which is produced
by the B cells in the Langerhans islets of the pancreas, has the following major effects:

• it increases the uptake of glucose by the liver, where it is stored as glycogen, and
inhibits the release of glucose from the liver;

• it increases the uptake of glucose by insulin-dependent tissues, such as muscle and
adipose tissue.

6

At some stage in the natural history of diabetes mellitus type 2, the level of glucose in
the blood is too high (hyperglycaemia) due to the decreased production of insulin by
the B cells.

Treatment of diabetes type 2 consists of:

• Use of sulfonylurea (SU) drugs, such as tolbutamid. These drugs stimulate the B
cells in producing more insulin, and if the cells are not completely exhausted, the
hyperglycaemia can thus be reverted to normoglycaemia (normal blood glucose
levels).

• Use of biguanides (BG), such as metformin. These drugs inhibit the release of
glucose from the liver.

• Use of α-glucosidase inhibitors. These drugs inhibit (or delay) the absorption of
glucose from the intestines. We omit considering these drugs in the following, as
they are only prescribed when treatment side-effects occur.

• Injection of insulin. This is the ultimate, causal treatment.

The background knowledge concerning the (patho)physiology of the glucose metabolism
as summarised above is formalised using temporal logic, and kept as simple as possible.
The specification is denoted by BDM2:

(1) GDrug(insulin) → G(uptake(liver, glucose) = up ∧
uptake(peripheral-tissues, glucose) = up)

(2) G(uptake(liver, glucose) = up → release(liver, glucose) = down)

(3) (GDrug(SU) ∧ ¬capacity(B-cells, insulin) = exhausted) →
Gsecretion(B-cells, insulin) = up

(4) GDrug(BG) → Grelease(liver, glucose) = down

(5) (Gsecretion(B-cell, insulin) = up ∧
capacity(B-cells, insulin) = subnormal ∧
QI ≤ 27 ∧ H Condition(hyperglycaemia))
→ GCondition(normoglycaemia)

(6) (Grelease(liver, glucose) = down ∧
capacity(B-cells, insulin) = subnormal ∧
QI > 27 ∧ H Condition(hyperglycaemia))
→ GCondition(normoglycaemia)

(7) ((Grelease(liver, glucose) = down ∨
Guptake(peripheral-tissues, glucose) = up) ∧

capacity(B-cells, insulin) = nearly-exhausted ∧
Gsecretion(B-cells, insulin) = up ∧
HCondition(hyperglycaemia))
→ GCondition(normoglycaemia)

(8) (Guptake(liver, glucose) = up ∧
Guptake(peripheral-tissues, glucose) = up) ∧

7

capacity(B-cells, insulin) = exhausted ∧
HCondition(hyperglycaemia))
→ G(Condition(normoglycaemia) ∨ Condition(hypoglycaemia))

(9) (Condition(normoglycaemia) ⊕ Condition(hypoglycaemia) ⊕
Condition(hyperglycaemia)) ∧ ¬(Condition(normoglycaemia) ∧
Condition(hypoglycaemia) ∧ Condition(hyperglycaemia))

where ⊕ stands for the exclusive OR. Note that when the B-cells are exhausted, increased
uptake of glucose by the tissues may result not only in normoglycaemia but also in
hypoglycaemia (something not mentioned in the guideline).

4.2 Quality Check

As insulin can only be administered by injection, in contrast to the other drugs which
are normally taken orally, doctors prefer to delay prescribing insulin as long as possible.
Thus, the treatment part of the diabetes type 2 guideline mentions that one should start
with prescribing oral antidiabetics (SU or BG, cf. Figure 1). Two of these can also be
combined if taking only one has insufficient glucose-level lowering effect. If treatment
is still unsatisfactory, the guideline suggests to: (1) either add insulin, or (2) stop with
the oral antidiabetics entirely and to start with insulin.

The consequences of various treatment options were examined using the method
introduced in Section 3. Hypothetical patients for whom it is the intention to reach a
normal level of glucose in the blood (normoglycaemia) are considered, and treatment is
selected according to the guideline fragments given in Figure 1:

• Consider a patient with hyperglycaemia due to nearly exhausted B-cells:

BDM2 ∪ GT ∪ {capacity(B-cells, insulin) = nearly-exhausted} ∪

{H Condition(hyperglycaemia)} � GCondition(normoglycaemia)

holds for T = {Drug(SU),Drug(BG)}, which also satisfies the minimality condi-
tion O⊂(T).

• Prescription of treatment T = {Drug(SU),Drug(BG),Drug(insulin)} for a patient
with exhausted B-cells, as is suggested by the guideline, yields:

BDM2 ∪ GT ∪ {capacity(B-cells, insulin) = exhausted} ∪

{H Condition(hyperglycaemia)} �

G(Condition(normoglycaemia) ∨ Condition(hypoglycaemia))

In the last case, it appears that it is possible that a patient develops hypoglycaemia due
to treatment; if this possibility is excluded from axiom (8) in the background knowledge,
then the minimality condition O⊂(T), and also O⊂,c(T), do not hold since insulin by
itself is enough to reach normoglycaemia. In either case, good practice medicine is
violated, which is to prescribe as few drugs as possible, taking into account costs and
side-effects of drugs. Here, three drugs are prescribed whereas only two should have
been prescribed (BG and insulin, assuming that insulin alone is too costly), and the
possible occurrence of hypoglycaemia should have been prevented.

8

Searching for models

Refutation
Quality Criteria

Meta Knowledge

Object Knowledge

First Order Logic

Fragment ofFragment of

Temporal Logic

Figure 3: Translation of medical knowledge.

5 Automated Proving of Quality Requirements

As said in the introduction, we have explored the feasibility of using the automated
reasoning tools otter and mace-2 to check the quality of guidelines, in the sense as
described above.

5.1 Motivation for the Theorem Proving Facilities

One of the most important application areas of model finders and theorem provers
is program verification. Of course, with programs there is a clear beginning of the
execution, which makes it intuitive to think about properties that occur after the start
of the program. Therefore, it is not surprising much work has been done in the context
of model finding and theorem proving with only the future time modality. However, it is
more natural to model medical knowledge with past time operators, i.e., what happened
to the patient in the past. It is well-known that formulas with a past-time modality
can be mapped to a logical formula with only future time modalities such that both
formulas are equivalent for some initial state [Gab89]. However, the main drawback
to this approach is the fact that formulas will get much larger in size [Mar03] and as
a consequence become much harder to verify in a theorem prover designed for modal
logics.

For this reason, we have chosen to use an alternative approach which uses a relational
translation to map the temporal logic formulas to first-order logic. As primary tools we
use the resolution-based theorem prover otter and the finite model searcher mace-2,
which take first-order logic with equality as their input. There has been work done to im-
prove the speed of resolution-based theorem provers on modal formulas [AGHdR00], but
again, converse modalities such as the past-time operators are not considered. Nonethe-
less, we found that the general heuristics applicable to full first order logic are sufficient
for our task

To clarify our approach, see Figure 3. We will first give a definition for translating the
object knowledge to standard logic and then the translation of the meta-level knowledge
will follow.

9

5.2 Translation

5.2.1 Translation of Object Knowledge

We assume that the formalisation is in propositional temporal logic. We do this by
introducing a fresh proposition p for every equation that we find in the background
knowledge. For functions with two elements in the co-domain, we have p and ¬p and
for the capacity function with three elements in its co-domain, we add a proposition
px for each atom capacity(B-cells, insulin) = x and the appropriate axiomatisation such
that exactly one px holds. Technically this is not required, since we could extend the
translation below to full first-order temporal logic. In practice however, we would like to
avoid additional complexity from first-order formulas during the automated reasoning.

The relational translation (e.g., [Moo79, AGHdR00, SH03]) STt(ϕ), also referred to
as standard translation, translates a propositional temporal logical formula ϕ into a
formula in a first-order logic with a (time-indexed) unary predicate symbols P for every
propositional variable p and one binary predicate >. It is defined as follows, where t is
an individual variable:

STt(p) ⇔ P (t)
STt(¬ϕ) ⇔ ¬STt(ϕ)
STt(ϕ ∧ ψ) ⇔ STt(ϕ) ∧ STt(ψ)
STt(Gϕ) ⇔ ∀t′ : (t 6> t′ → STt′(ϕ))
STt(Hϕ) ⇔ ∀t′ : (t > t′ → STt′(ϕ))

Note that in our notation ∪ is sometimes used instead of a conjunction, so STt(Γ∪∆) is
defined as STt(Γ)∪ STt(∆). Note that the last two elements of the definition define the
meaning of the G modality and its converse, the H modality. For example, the formula
G(p→ Pp) translates to ∀t2(t 6> t2 → (P (t2) → ∃t3(t2 > t3 ∧ P (t3))). It is easy to show
that a formula in temporal logic is satisfiable if and only if its relational translation is.

In the literature a functional approach to translating modal logic has appeared as
well [Ohl88], which relies on a non-standard interpretation of modal logic and could be
taken as an alternative to this translation.

5.2.2 Translation of Meta-level Knowledge

Again, we consider the criteria for good practice medicine and make them suitable for
the automated reasoning tools. We say that a treatment T is a treatment complying
with requirements of good practice medicine iff:

(M1′) STt(B ∪ GT ∪C ∪R) 0 ⊥

(M2′) STt(B ∪ GT ∪C ∪R ∪ ¬N) ` ⊥

(M3′) ∀T ′ ⊂ T : T ′ is not a treatment according to (1) and (2)

It is easy to see that, because the relational translation preserves satisfiability, these
quality requirements are equivalent to their unprimed counterparts. To automate this
reasoning process we use mace-2 to verify (M1′), otter to verify (M2′), and (M3′)
can be seen as a combination of both for all subsets of the given treatment.

10

5.3 Proofs

In this subsection we will discuss the actual implementation in otter [McC03] and
some results by using various heuristics.

5.3.1 Resolution Strategies

The main advantage that one gains from using a standard theorem prover is the fact that
a whole range of different resolution rules are available. Note that Otter uses the set-
of-support strategy [WRC65] as a standard strategy. With this strategy the original set
of clauses is divided into a set-of-support and a usable set such that in every resolution
step at least one of the parent clauses has to be member of the set-of-support and each
resulting resolvent is added to the set-of-support.

Looking at the structure of the formulas in Section 4, one can see that formulas are
of the type p0 ∧ . . . ∧ pn → q, where p0 ∧ . . . ∧ pn and q are all positive literals. Hence,
we expect mostly negative literals in our clauses, which was exploited by using negative
hyperresolution in otter. With this strategy a clause with at least one positive literal
is resolved with a number of clauses which only contain negative literals (i.e., negative
clauses), provided that the resolvent is a negative clause. The parent clause with at least
one positive literal is called the nucleus, and the other, negative, clauses are referred to as
the satellites. Positive hyperresolution, which uses positive satellites and a nucleus with
at least one negative literal, was also tried. However, this did not result in successful
proofs, because the background knowledge contains few positive clauses.

5.3.2 Verification

The ordering predicate > that was introduced in Section 5.2.1 was defined by anti-
reflexivity, anti-symmetry, and transitivity. We did not find any cases where the axiom
of transitivity was required to construct the proof, which can be explained by the low
modal depth of our formulas. As a consequence, the axiom was omitted with the aim
to improve the speed of theorem proving.

We used otter to perform the two proofs which are instantiations of (M2′). First
we, again, consider a patient with hyperglycaemia due to nearly exhausted B-cells and
prove:

ST0(BDM2 ∪ GT ∪ {capacity(B-cells, insulin) = nearly-exhausted} ∪

{H Condition(hyperglycaemia)} ∪ {¬GCondition(normoglycaemia)}) ` ⊥

where T = {Drug(SU),Drug(BG)},
This property was proven with otter in 62 resolution steps with the use of the

negative hyperresolution strategy. As an example, we present a small snippet from the
proof of this property. We will use the same syntax as we used in the previous sections,
but each literal is augmented with a time-index. Note that g(x, y) = down is imple-
mented as a negative literal and functions f1 and f2 are Skolem functions introduced
by otter. Both Skolem functions map a time point to a later time points. Consider
the following clauses in the usable and set-of-support list. For example, assumption
(53) models the capacity of the B-cells, i.e., nearly exhausted at time t = 0 where the
property as shown above should be refuted:

11

2 capacity(B-cells, insulin, t0) 6= nearly-exhausted ∨
capacity(B-cells, insulin, t0) 6= exhausted

14 t0 6> f1(t0) ∨ capacity(B-cells, insulin, t0) = exhausted ∨ t0 > t1∨
secretion(B-cells, insulin, t1) = up

15 ¬Drug(SU) ∨ capacity(B-cells, insulin, t0) = exhausted ∨ t0 > t1∨
secretion(B-cells, insulin, t1) = up}

51 0 > t0 ∨ Drug(SU, t0)

53 capacity(B-cells, insulin, 0) = nearly-exhausted

Very early in the proof, otter deduces that if the capacity of insulin in B-cells is
nearly-exhausted, then it is not completely exhausted:

56 [neg hyper,53,2] capacity(B-cells, insulin, 0) 6= exhausted

Now we skip a part of the proof, which results in information about the relation between
the capacity of insulin and the secretion of insulin in B-cells for a certain time point:

517 [neg hyper,516,53] 0 6> f2(0)

765 [neg hyper,761,50,675] capacity(B-cells, insulin, f2(0)) 6= nearly-exhausted ∨
secretion(B-cells, insulin, f2(0)) = down

This information allows otter to quickly complete the proof, by combining it with the
information about the effects of a sulfonylurea drug:

766 [neg hyper,765,15,56,517] capacity(B-cells, insulin, f1(0)) 6= nearly-exhausted ∨
¬Drug(SU)

767 [neg hyper,765,14,56,517] capacity(B-cells, insulin, f1(0)) 6= nearly-exhausted ∨
0 6> f1(0)

after which (53) can be used as a nucleus to yield:

768 [neg hyper,767,53] 0 6> f1(0)

and consequently by taking (51) as a nucleus, we find that at time point 0 the capacity
of insulin is not nearly exhausted:

769 [neg hyper,768,51,766] capacity(B-cells, insulin, 0) 6= nearly-exhausted

This directly contradicts one of the assumptions and this results in an empty clause:

770 [binary,769.1,53.1] ⊥

Similarly, we could prove that given a treatment T = {Drug(SU),Drug(BG),Drug(insulin)}
for a patient with exhausted B-cells, as is suggested by the guideline, it follows that:

ST0(BDM2
∪ GT ∪ {capacity(B-cells, insulin) = exhausted} ∪

{HCondition(hyperglycaemia)} ∪

{¬(G(Condition(normoglycaemia) ∨ Condition(hypoglycaemia)))}) ` ⊥

The proof of otter is omitted, but a similar magnitude of complexity in the proof
can be observed, i.e., 52 resolution steps.

12

Weights Clauses (binary res) Clauses (negative hyper res)

(0, 1) 17729 6994
(1, 0) 13255 6805
(1, 1) 39444 7001

(1,−1) 13907 6836
(2,−2) 40548 7001
(2,−3) 16606 6805
(3,−4) 40356 7095
(3,−5) 27478 7001

Figure 4: Generated clauses to prove an instance of property M2′ depending on weights
(x, y) for the ordering relation on time.

5.3.3 Weighing the Clauses

In this section we consider the weighing facilities as offered by otter to improve the
performance. Consider the example from [AGHdR00]. Suppose we have the formula
G(p → Fp). Proving this satisfiable amounts to proving that the following two clauses
are satisfiable:

1. c > t1 ∨ ¬P (t1) ∨ t1 6> f(t1)

2. c > t2 ∨ ¬P (t2) ∨ P (f(t2))

The observation can be made, that although we have two possibilities to resolve
these two clauses, for example on the P literal, this is useless because the negative P
literal is only bound by the G-operator while the positive P literal comes from a formula
at a deeper modal depth under the F-operator. Suppose we resolve these two P literals,
which generates the clause:

c > f(t) ∨ f(t) 6> f(f(t)) ∨ c > t ∨ ¬P (t)

and with (2) again we have:

c > f(f(t)) ∨ f(f(t)) 6> f(f(f(t))) ∨ c > f(t) ∨ c > t ∨ ¬P (t)

etc.
So we can see that we can generate a lot of new clauses, but clearly these nestings

of the Skolem functions will not lead to a contradiction very quickly if the depth of the
modalities in the formulas that we have is small.

In otter the weight of the clauses determines which clauses are chosen from the
set-of-support and usable list to become parents in a resolution step. Clearly, because
the goal of resolution is to find an empty clause, lighter clauses are preferred. By default,
the weight of a clause is the sum of all occuring symbols (i.e., all symbols have weight
1), but as we have argued, the nesting of Skolem functions will not help to find such an
empty clauses. Therefore it can be of use to manually change the weight of the ordering
symbol, which is done in otter by a tuple (x, y) for each predicate, where x is multiplied
with sum of the weight of its arguments and is added to y to calculate the new weight

13

> : Condition(hyperglycaemia) :

| 0 1 0 1

--+---- -------

0 | F T T T

1 | F F

Figure 5: Snippet from a mace-2 generated model

of this predicate. For example, if x = 2 and y = −3, then x > y has a total weight of
2+2−3 = 1, while f(f(x)) > f(y) has a weight of 2∗3+2∗2−3 = 7. See Figure 4 where
we show results when we applied this for some small values for x and y for both binary
and negative hyperresolution. What these numbers tend to show (similar numbers were
gained from the other property) is that the total weight of the ordering predicate should
be smaller than the average weight of other, unary, predicates. Nonetheless, possibly
somewhat suprisingly, the factor x should not be raised too much, although in the case
of a negative hyperresolution strategy the effect is minimal. Furthermore, we can see
that combining the resolution strategies with a weighing strategy does help, but the
advantages are rather limited compared to the advantages of weighing in combination
with binary resolution.

5.4 Disproofs

mace-2 (Models And CounterExamples) [McC01] is a program that searches for small
finite models of first-order statements using a David-Putman-Loveland-Logemann de-
cision procedure [DP69, DLL62] as its core. Because of the relative simplicity of our
temporal formulas, it is to be expected that counterexamples can be found with very
few states. Hence, it can be expected that models are in the same magnitude as the
propositional case and this is indeed the case. In fact, the countermodels that mace-2

found consist of only 2 elements in the domain of the model.
The first property we check corresponds to checking if the background knowledge

augmented with a patient and a therapy is consistent, i.e., criterium (M1′). So, again
consider a patient with hyperglycaemia due to nearly exhausted B-cells. We have used
mace-2 to verify:

ST0(BDM2 ∪ G T ∪ {capacity(B-cells, insulin) = exhausted} ∪

{H Condition(hyperglycaemia)}) 0 ⊥

for T = {Drug(SU),Drug(BG),Drug(insulin)}. From this, of course, it follows that there
is a model if T = {Drug(SU),Drug(BG)} and consequently we have verified (M1′).

Similarly, we find that for all T ⊂ {Drug(SU),Drug(BG)}, it holds that:

ST0(BDM2 ∪ GT ∪ {capacity(B-cells, insulin) = nearly-exhausted} ∪

{H Condition(hyperglycaemia)} ∪ {¬GCondition(normoglycaemia)}) 0 ⊥

So indeed the conclusion is that the treatment complies with (M3′) and thus com-
plies with the criteria of good practice medicine. See for example Figure 5, which

14

contains a small sample of the output that mace-2 generated. The output is a first-
order model with two elements in the domain named ‘0’ and ‘1’ with an interpretation
of all predicates and functions to this domain. It shows that it is consistent with the
background knowledge to believe that the patient will continue to suffer from hyper-
glycaemia if one of the drugs is not applied. It is interesting to see that there is also a
smaller model where the size of the domain is 1 for this set of formulas.

Finally, consider the treatment T = {Drug(SU),Drug(BG),Drug(insulin)} for a pa-
tient with exhausted B-cells, and suppose we exclude the patient developing hypogly-
caemia, we can show that:

ST0(BDM2 ∪ GT ∪ {capacity(B-cells, insulin) = exhausted} ∪

{HCondition(hyperglycaemia)} ∪

{¬G(Condition(hyperglycaemia)} ∪ {¬G(Condition(hypoglycaemia)))}) 0 ⊥

But, it is possible to prove the same property if T = {Drug(insulin)} and thus (M3 ′)
does not hold in this case and as a consequence the guideline does not comply with the
quality requirements as discussed in the previous section.

6 Discussion

The quality of guideline design is for the largest part based on its compliance with spe-
cific treatment aims and global requirements. To this purpose, use was made of the
theory of abductive, diagnostic reasoning, i.e., we diagnosed potential problems with a
guideline using logical abduction [Luc97, Luc03, Poo90]. This is a meta-level character-
isation of the quality of a medical guideline. What was diagnosed were problems in the
relationship between medical knowledge, suggested treatment actions in the guideline
text and treatment effects; this is different from traditional abductive diagnosis, where
observed findings are explained in terms of diagnostic hypotheses. This method allows
us to examine fragments of a guideline and to prove properties of those fragments.

In earlier work [HLB04], where we used a tool for interactive program verification
named KIV [Rei95], we performed a similar exercise. The main advantage of using
interactive theorem proving is that the resulting proof is relatively elegant compared to
automated resolution-based solutions. This might be important if one wants to convince
the medical community that a guideline complies with their medical quality requirements
and to promote the implementation of such a guideline. However, to support the design
of guidelines, this argument is of less importance. Moreover, the work that needs to be
done to construct a proof in an interactive theorem prover would severely slow down
the development process as people with specialised knowledge are required.

Even though guideline developers might not be interested in inspecting the full proof
or disproof of a certain property, it is of importance for the process that if a certain
proof fails, they have a method to find out why the proof failed. Thus in our future work
we will focus on the question whether it is possible to give hints to guideline developers
on how to improve their guidelines. Furthermore, our quality requirements are far from
exhaustive and the last few years research has been done in this field (e.g. [FAB+04]).
Our aim will be to extend our current work with these new insights.

15

In this paper, we have made use of tools designed for automated reasoning to actu-
ally quality check a medical guideline using the theory of quality of guidelines developed
previously [Luc03]. This complements both the earlier work on object-level verification
of medical guidelines using the interactive theorem prover designed for program verifi-
cation KIV [MBtTvH02], but also our earlier work where we used KIV for meta-level
reasoning [HLB04].

References

[AGHdR00] C. Areces, R. Gennari, J. Heguiabehere, and M. de Rijke. Tree-based
Heuristics in Modal Theorem Proving. In Proceedings of the ECAI’2000,
Berlin, Germany, 2000.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A Machine Program for The-
orem Proving. Communications of the ACM, 5(7):394–397, 1962.

[DP69] M. Davis and H. Putman. A Computing Procedure for Quantification
Theory. Journal of the ACM, 7:201–215, 1969.

[FAB+04] J. Fox, A. Alabassi, E. Black, C. Hurt, and T. Rose. Modelling Clinical
Guidelines: a Corpus of Examples and a Tentative Ontology. In K. Kaiser,
S. Miksch, and S.W. Yu, editors, Computer-based Support for Clinical
Guidelines and Protocols. Proceedings of the Symposium on Computerized
Guidelines and Protocols (CGP 2004), volume 101 of Studies in Health
Technology and Informatics, pages 31–45, Amsterdam, 2004. IOS Press.

[FD00] J. Fox and S. Das. Safe and Sound: Artificial Intelligence in Hazardous
Applications. MIT Press, 2000.

[Gab89] D.M. Gabbay. The Declarative Past and Imperative Future: Executable
Temporal Logic for Interactive Systems. In H. Barringer, editor, Tempo-
ral Logic in Specification, volume 398 of LNCS, pages 409–448. Springer-
Verlag, Berlin, 1989.

[HLB04] A.J. Hommersom, P.J.F. Lucas, and M. Balser. Meta-level Verification of
the Quality of Medical Guidelines using Interactive Theorem Proving. In
J. J. Alferes and J. Leite, editors, JELIA’04, volume 3225 of LNAI, pages
654–666, Heidelberg, 2004. Springer-Verlag.

[Luc93] P.J.F. Lucas. The Representation of Medical Reasoning Models in
Resolution-based Theorem Provers. Artificial Intelligence in Medicine,
5:395–419, 1993.

[Luc95] P.J.F. Lucas. Logic Engineering in Medicine. The Knowledge Engineering
Review, 10(2):153–179, 1995.

[Luc97] P.J.F. Lucas. Symbolic Diagnosis and its Formalisation. The Knowledge
Engineering Review, 12(2):109–146, 1997.

16

[Luc03] P.J.F. Lucas. Quality Checking of Medical Guidelines through Logical
Abduction. In F. Coenen, A. Preece, and A.L. Mackintosh, editors, Pro-
ceedings of AI-2003 (Research and Developments in Intelligent Systems
XX), pages 309–321, London, 2003. Springer.

[Mar03] N. Markey. Temporal Logic with Past is Exponentially More Succinct.
EATCS Bulletin, 79:122–128, 2003.

[MBtTvH02] M. Marcos, M. Balser, A. ten Teije, and F. van Harmelen. From Informal
Knowledge to Formal Logic: a Realistic Case Study in Medical Protocols.
In Proceedings of the 12th EKAW-2002, 2002.

[McC01] W. McCune. MACE 2.0 Reference Manual and Guide. Tech. Memo
ANL/MCS-TM-249, Argonne National Laboratory, Argonne, IL, June
2001.

[McC03] W. McCune. Otter 3.3 Reference Manual. Tech. Memo ANL/MCS-TM-
263, Argonne National Laboratory, Argonne, IL, August 2003.

[Moo79] R.C. Moore. Reasoning about Knowledge and Action. PhD thesis, MIT,
1979.

[Ohl88] H.J. Ohlbach. A Resolution Calculus for Modal Logics. In E. Lusk and
R. Overbeek, editors, Proceedings CADE-88: International Conference
on Auomated Deduction, volume 310 of LNCS, pages 500–516. Springer-
Verlag, 1988.

[OMGM98] L. Ohno-Machado, J.H. Gennari, and S.N. Murphy. Guideline Interchange
Format: a Model for Representing Guidelines. Journal of the American
Medical Informatics Association, 5(4):357–372, 1998.

[Poo90] D. Poole. A Methodology for using a Default and Abductive Reasoning
System. International Journal of Intelligent System, 5(5):521–548, 1990.

[Rei95] W. Reif. The KIV Approach to Sftware Verification. In M. Broy and
S. Jähnichen, editors, KORSO: Methods, Languages, and Tools for the
Construction of Correct Software, volume 1009 of LNCS. Springer-Verlag,
Berlin, 1995.

[Rob65] J.A. Robinson. Automated Deduction with Hyperresolution. International
Journal of Computatational Mathematics, 1:23–41, 1965.

[SH03] R.A. Schmidt and U. Hustadt. Mechanised Reasoning and Model Gen-
eration for Extended Modal Logics. In H.C.M. de Swart, E. Orlowska,
G. Schmidt, and M. Roubens, editors, Theory and Applications of Rela-
tional Structures as Knowledge Instrument, volume 2929 of LNCS, pages
38–67. Springer, 2003.

[SMJ98] Y. Shahar, S. Miksch, and P. Johnson. The Asgaard Project: a task-
specific framework for the application and critiquing of time-oriented clin-
ical guidelines. Artificial Intelligence in Medicine, 14:29–51, 1998.

17

[Tur85] R. Turner. Logics for Artificial Intelligence. Ellis Horwood, Chichester,
1985.

[WOLB84] L. Wos, R. Overbeek, E. Lusk, and J. Boyle. Automated Reasoning: In-
troduction and Applications. Prentice-Hall, Englewood Cliffs, NJ, 1984.

[Woo00] S.H. Woolf. Evidence-based Medicine and Practice Guidelines: an
overview. Cancer Control, 7(4):362–367, 2000.

[WRC65] L. Wos, G. Robinson, and D. Carson. Efficiency and Completeness of the
Set of Support Strategy in Theorem Proving. ACM Journal, 12:536–541,
October 1965.

18

What First Order Theorem Provers Do For
Monodic Temporal Reasoning

Michael Fisher, Ullrich Hustadt, Boris Konev∗, and Alexei Lisitsa
Department of Computer Science
The University of Liverpool, UK

{M.Fisher,U.Hustadt,B.Konev,A.Lisitsa}@csc.liv.ac.uk

Abstract
Monodic temporal logic is the most general fragment of first-order temporal logic for

which sound and complete calculi have been developed so far, including resolution calculi.
One such resolution calculus has been implemented in the system TeMP using the first-
order theorem prover Vampire as a kernel for performing the main reasoning tasks of the
system. In this paper, we describe the calculus underlying TeMP, its implementation, and
our experiences with its application to the verification of parameterised cache coherence
protocols. We present some preliminary observations about the use of a first-order theorem
prover as kernel for a reasoning system for a more expressive logic.

1 Introduction

In [KDD+05] we have developed a sound and complete resolution calculus for monodic tempo-
ral logic—the most general known complete fragment of first-order temporal logic [HWZ00].
The calculus has been implemented in the system TeMP [HKRV04]. A distinctive feature of
our calculus is the possibility to implement its inference rules using first-order ordered resolu-
tion. For TeMP we currently use Vampire [RV02] for this purpose. In this paper we describe
our experiments with TeMP on a class of verification problems. While these verification efforts
are interesting per se, they also allow us to study the behaviour of Vampire on non-standard
problems—in the majority of cases the set of clauses fed to the Vampire kernel is satisfiable,
and we are interested in this set being saturated. We believe that the results of our experiments
and experience in complex temporal applications can encourage further research in the area of
first-order provers.

The structure of this paper is as follows. In Section 2 we recall the syntax and semantics
of first-order temporal logic over a linear flow of time, the definition of the monodic fragment
of first-order temporal logic and of the normal form that we use in our approach. In Section 3
we describe the ordered monodic fine-grained temporal resolution calculus. Section 4 presents
our approach to the implementation of this calculus in the system TeMP including the use that
we make of Vampire. Section 5 demonstrates an application of TeMP to a particular class
of verification problem, namely the verification of parameterised protocols, and states some
observations we made during our experiments concerning the use of a first-order theorem prover
as kernel of a theorem prover for a more expressive logic.

∗On leave from Steklov Institute of Mathematics at St.Petersburg

1

2 First-order temporal logic

First-Order Temporal Logic, FOTL, is an extension of classical first-order logic by temporal
operators for a discrete linear model of time (isomorphic to

�
, that is, the most commonly used

model of time). The signature of FOTL (without equality and function symbols) consists of a
countably infinite set of variables x0, x1, . . . , a countably infinite set of constants c0, c1, . . . , a
non-empty set of predicate symbols P , P0, . . . , each with a fixed arity ≥ 0, the propositional
operators >, ¬, ∨, the quantifiers ∃xi and ∀xi, and the temporal operators (‘always in the
future’), ♦ (‘eventually in the future’), h (‘at the next moment’), and U (‘until’). The set
of formulae of FOTL is defined as follows: > is a FOTL formula; if P is an n-ary predicate
symbol and t1, . . . , tn are variables or constants, then P (t1, . . . , tn) is an atomic FOTL formula;
if ϕ and ψ are FOTL formulae, then so are ¬ϕ, ϕ ∨ ψ, ∃xϕ, ∀xϕ, ϕ, ♦ϕ, hϕ, and ϕUψ.
We also use ⊥, ∧, and ⇒ as additional operators defined using >, ¬, and ∨. Free and bound
variables of a formula are defined in the standard way, as well as the notions of open and closed
formulae. Given a formula ϕ, we write ϕ(x1, . . . , xn) to indicate that all the free variables of ϕ
are among x1, . . . , xn. As usual, a literal is either an atomic formula or its negation.

Formulae of this logic are interpreted over structures M = (Dn, In)n∈ � that associate with
each element n of

�
, representing a moment in time, a first-order structure Mn = (Dn, In)

with its own non-empty domain Dn and interpretation In. An assignment a is a function from
the set of variables to

⋃
n∈ � Dn. The application of an assignment to terms is defined in the

standard way, in particular, a(c) = c for every constant c. The truth relation Mn |=a ϕ is
defined, only for those a such that a(x) ∈ Dn for every variable x, as follows:

Mn |=a >
Mn |=a P (t1, . . . , tn) iff (In(a(t1)), . . . , In(a(tn))) ∈ In(P)
Mn |=a ¬ϕ iff not Mn |=a ϕ

Mn |=a ϕ ∨ ψ iff Mn |=a ϕ or Mn |=a ψ

Mn |=a ∃xϕ iff Mn |=b ϕ for some assignment b that may differ from
a only in x and such that b(x) ∈ Dn

Mn |=a ∀xϕ iff Mn |=b ϕ for every assignment b that may differ from
a only in x and such that b(x) ∈ Dn

Mn |=a hϕ iff Mn+1 |=a ϕ

Mn |=a ♦ϕ iff there exists m ≥ n such that Mm |=a ϕ

Mn |=a ϕ iff for all m ≥ n, Mm |=a ϕ

Mn |=a ϕUψ iff there exists m ≥ n such that Mm |=a ψ and Mi |=
a ϕ

for every i, n ≤ i < m

In this paper we make the expanding domain assumption, that is, Dn ⊆ Dm if n < m, and we
assume that the interpretation of constants is rigid, that is, In(c) = Im(c) for all n,m ∈

�
.

The set of valid formulae of this logic is not recursively enumerable. However, the set of
valid monodic formulae is known to be finitely axiomatisable [WZ02]. A formula ϕ of FOTL is
called monodic if any subformula of ϕ of the form hψ, ψ, ♦ψ, or ψ1 Uψ2 contains at most
one free variable. For example, the formulae ∀x ∃yP (x, y) and ∀x P (x, c) are monodic,
while ∀x∀y(P (x, y) ⇒ P (x, y)) is not monodic.

Every monodic temporal formula can be transformed into an equi-satisfiable normal form,
called divided separated normal form (DSNF) [KDD+05].

2

Definition 1 A monodic temporal problem P in divided separated normal form (DSNF) is a
quadruple 〈U , I,S, E〉, where:

1. the universal part, U , and the initial part, I, are finite sets of first-order formulae;

2. the step part, S , is a finite set of step clauses of the form p ⇒ hq, where p and q are
propositions, and P (x) ⇒ hQ(x), where P and Q are unary predicate symbols and x
is a variable; and

3. the eventuality part, E , is a finite set of formulae of the form ♦L(x) (a non-ground even-
tuality clause) and ♦l (a ground eventuality clause), where l is a propositional literal and
L(x) is a unary non-ground literal with variable x as its only argument.

With each monodic temporal problem 〈U , I,S, E〉 we associate the FOTL formula I ∧ U ∧
∀xS ∧ ∀xE . When we talk about particular properties of a temporal problem (e.g., satisfi-

ability, validity, logical consequences, etc) we refer to properties of the associated formula. We
often refer to a set of formulae as a formula, in this case the formula represents the conjunction
of the formulae in the set.

The transformation to DSNF is based on a renaming and unwinding technique which sub-
stitutes non-atomic subformulae and replaces temporal operators by their fixed point definitions
as described, for example, in [FDP01]. A step in this transformation which is of relevance for
the results presented here is the following: We recursively rename each innermost open sub-
formula ξ(x), whose main connective is a temporal operator, by Pξ(x), where Pξ(x) is a new
unary predicate symbol, and rename each innermost closed subformula ζ, whose main connec-
tive is a temporal operator, by pζ , where pζ is a new propositional variable. In the terminology
of [HWZ00] Pξ(x) and pζ are called the surrogates of ξ(x) and ζ, respectively. Renaming in-
troduces formulae defining Pξ(x) and pζ of the following form (since we are only interested in
satisfiability, we use implications instead of equivalences for renaming positive occurrences of
subformulae, see also [NW01]):

(a) ∀x(Pξ(x) ⇒ ξ(x)) and (b) (pζ ⇒ ζ).

If the main connective of ξ(x) or ζ is either or U , then the formula will be replaced by its
fixed point definition. If the main connective of ξ(x) or ζ is either the hor ♦ operator, the
defining formula will further be simplified to obtain step or eventuality clauses.

Theorem 1 (see [DFK], Theorem 1) Any monodic first-order temporal formula can be trans-
formed into an equi-satisfiable monodic temporal problem in DSNF with at most a linear in-
crease in size of the problem.

In the next section we briefly recall the temporal resolution calculus first developed in [DFK03]
and later refined in [HKS05].

3 Monodic fine-grained temporal resolution

Our prover TeMP is based on ordered monodic fine-grained temporal resolution calculus, or-
dered fine-grained resolution for short, which we briefly describe in this section.

As is commonly the case for resolution calculi, the calculus operates on a clause normal
form, which we obtain by clausifying monodic temporal problems in DSNF normal form.

3

Definition 2 Let P = 〈U , I,S, E〉 be a monodic temporal problem. The clausification Cls(P)
of P is a quadruple 〈U ′, I ′,S ′, E ′〉 such that (i) U ′ is a set of clauses, called universal clauses,
obtained by clausification of U; (ii) I ′ is a set of clauses, called initial clauses, obtained by
clausification of I; (iii) S ′ is the smallest set of step clauses such that all step clauses from S are
in S ′ and for every non-ground step clause P (x) ⇒ hL(x) in S and every constant c occurring
P, the clause P (c) ⇒ hL(c) is in S ′; (iv) E ′ = E ∪{♦L(c) | ♦L(x) ∈ E , c is a constant in P}.

Example 1 Let P = 〈U , I,S, E〉 where U = {∃xQ(x)}, I = {P (c)}, S = {P (x) ⇒
hQ(x)}, and E = ∅. Then Cls(P) = 〈U ′, I ′,S ′, E〉 where U ′ = {Q(d)} with d a Skolem

constant, I ′ = {P (c)}, and S ′ = {P (x) ⇒ hQ(x), P (c) ⇒ hQ(c)}.

We consider initial and universal clauses as literal multisets, and step clauses as ordered pairs
of literal multisets. We assume basic knowledge of classical first-order resolution (see, for
example, [BG01, Lei97, CL71]).

During a derivation more general step clauses can be derived, which are of the form C ⇒
hD, where C is a conjunction of propositions, atoms of the form P (x) and ground formulae

of the form P (c), where P is a unary predicate symbol and c is a constant such that c occurs in
the input formula, D is a disjunction of arbitrary literals.

In [HKS05] we have refined the original fine-grained temporal resolution of [DFK03] by
restricting the applicability of our deduction rules based on an atom ordering and a selection
function in analogy to the refinement of first-order resolution [BG01]. We assume that we are
given an atom ordering �, that is, a total and well-founded ordering on ground first-order atoms
which is stable under substitution, and a selection function S which maps any first-order clause
C to a (possibly empty) subset of its negative literals. An atom ordering � is extended to literals
by (¬)A � (¬)B if A � B and ¬A � A. A literal L is called (strictly) maximal w.r.t. a clause
C if, and only if, there exists a ground substitution σ such that for all L′ ∈ C: Lσ � L′σ

(Lσ � L′σ). A literal L is eligible in a clause L∨C if either it is selected in L∨C, or no literal
is selected in C and L is maximal w.r.t. C.

The ordered monodic fine-grained temporal resolution calculus consists of the following
deduction rules (we assume that different premises and conclusions of the deduction rules have
no variables in common; variables may be renamed if necessary):

(1) First-order ordered resolution with selection between two universal clauses
C1 ∨A ¬B ∨ C2

(C1 ∨ C2)σ
,

if σ is the most general unifier ofA andB, Aσ is eligible in (C1∨A)σ, and ¬Bσ is eligible
in (¬B ∨ C2)σ.

(2) First-order ordered factoring with selection

C1 ∨A ∨B

(C1 ∨A)σ
,

if σ is the most general unifier of A and B, and Aσ is eligible in (C1 ∨A ∨B)σ.

(3) First-order ordered resolution with selection between an initial and a universal clause, be-
tween two initial clauses, and ordered factoring with selection on an initial clause. Defined
in analogy to the two deduction rules above with the only difference that the result is an
initial clause.

4

(4) Ordered fine-grained step resolution with selection.

C1 ⇒ h(D1 ∨A) C2 ⇒ h(D2 ∨ ¬B)

(C1 ∧ C2)σ ⇒ h(D1 ∨D2)σ
,

where C1 ⇒ h(D1 ∨ A) and C2 ⇒ h(D2 ∨ ¬B) are step clauses, σ is a most general
unifier of the literals A and B such that σ does not map variables from C1 or C2 into a
constant or a functional term (functional terms can be introduced by Skolemisation), Aσ is
eligible in (D1 ∨A)σ, and ¬Bσ is eligible in (D2 ∨ ¬B)σ.

C1 ⇒ h(D1 ∨ L) D2 ∨ ¬N

C1σ ⇒ h(D1 ∨D2)σ
,

where C1 ⇒ h(D1 ∨ L) is a step clause, D2 ∨ ¬N is a universal clause, and σ is a
most general unifier of the literals L and N such that σ does not map variables from C1

into a constant or a functional term, Nσ is eligible in (D2 ∨ ¬N)σ, and Lσ is eligible in
(D1 ∨ L)σ.

(5) Ordered right positive step factoring with selection.

C ⇒ h(D ∨A ∨B)

Cσ ⇒ h(D ∨A)σ
,

where σ is a most general unifier of the atoms A and B such that σ does not map variables
from C into a constant or a functional term, and Aσ is eligible in (D ∨A ∨B)σ.

(6) Clause conversion. A step clause of the form C ⇒ h⊥ is rewritten into the universal
clause ¬C.

(7) Eventuality resolution rule.

∀x(A1(x) ⇒ h(B1(x))) . . . ∀x(An(x) ⇒ h(Bn(x))) ♦L(x)

∀x
∧n

i=1
¬Ai(x)

(♦U
res

) ,

where ∀x(Ai(x)⇒ hBi(x)) are complex combinations of step clauses, called full merged
step clauses [KDD+05], such that for all i ∈ {1, . . . , n}, the loop side conditions ∀x(U ∧
Bi(x) ⇒ ¬L(x)) and ∀x(U ∧ Bi(x) ⇒

∨n
j=1

(Aj(x))), with U being the current set of all
universal clauses, are both valid.

(8) Ground eventuality resolution rule.

A1 ⇒ hB1 . . . An ⇒ hBn ♦l∧n
i=1

¬Ai
(♦U

res
) ,

where Ai ⇒ hBi are merged derived step clauses such that the loop side conditions U ∧
Bi |= ¬l and U ∧ Bi |=

∨n
j=1

Aj for all i ∈ {1, . . . , n} are both valid.

Rules (1) to (6), also called rules of fine-grained step resolution, are either identical or closely
related to the deduction rules of ordered first-order resolution with selection, a fact that we will
exploit in our implementation.

In contrast, rules (7) and (8) are much more complex, as they require not just one or two
premises, but an indeterminate (though finite) number of premises which have to satisfy certain
conditions. To find premises suitable for an application of the eventuality resolution rule, we

5

Function FG-BFS
Input: A set S of universal and step clauses, saturated by fine-grained resolution, and an eventual-

ity clause ♦L(x) ∈ E .
Output: A formula H(x) with at most one free variable.
Method: 1. Let H0(x) = >; N0 = ∅; i = 0.

2. Let Si+1 = {P (cl) ⇒ gM(cl) | original P (x) ⇒ gM(x) ∈ S} ∪ {> ⇒
g(¬Hi(c

l) ∨ L(cl))} ∪ S. Apply the rules of fine-grained step resolution except
the clause conversion rule to Si+1. If we obtain a contradiction, then return the
loop > (in this case ∀x¬L(x) is implied by the universal part).
Otherwise let Ni+1 = {Cj ⇒ g⊥}k

j=1 be the set of all new final clauses in the
saturation of Si+1.

3. If Ni+1 = ∅, return ⊥; else let Hi+1(x) =
∨k

j=1
Cj{c

l → x}.
4. If ∀x(Hi(x) ⇒ Hi+1(x)) return Hi+1(x).
5. i = i+ 1; goto 2.

Note: The constant cl is a fresh constant used for loop search only

Figure 1: Breadth-first search using fine-grained step resolution.

use a particular algorithm, called FG-BFS (for fine-grained breadth-first search) shown in Fig. 1.
This algorithm internally uses the deduction rules (1) to (5), and, in general, termination of the
algorithm is not guaranteed.

Let ordered fine-grained resolution with selection be the calculus consisting of the rules (1)
to (6) above, together with the ground and non-ground eventuality resolution rules (7) and (8),
restricted to loops found by the FG-BFS algorithm. We denote this calculus by I

S,�

FG . The cal-
culus can be extended by standard first-order redundancy elimination rules as well as analogous
rules for step clauses.

Note that for ordered fine-grained step resolution with selection, the ordering and selec-
tion function only influence which literals on the right-hand side of an implication are eligible,
literals on the left-hand side are not taken into account.

Theorem 2 ([HKS05]) Ordered fine-grained resolution with selection is sound and complete
for monodic temporal problems over expanding domains.

4 Implementation

The deduction rules of ordered fine-grained step resolution are close enough to classical first-
order resolution to allow us to use state of the art first-order resolution provers to provide an
implementation of our calculus.

Let S be a temporal problem in clausal form. For every k-ary predicate, P , occurring in S,
we introduce a new (k + 1)-ary predicate P̃ . We will also use the constant 0 (representing the
initial moment in time), and unary function symbols s (representing the successor function on
time) and h, which we assume not to occur in S. Let φ be a first-order formula in the vocabulary
of S. We denote by [φ]T the result of replacing all occurrences of predicates in φ by their “tilded”
counterparts with T as the first argument (e.g. P (x, y) is replaced with P̃ (T, x, y)). The term
T will either be the constant 0 or the variable t (intuitively, t represents a moment in time). The
variable t is assumed to be universally quantified.

6

Now, in order to realise fine-grained step resolution by means of classical first-order resolu-
tion, we define a set of first-order clauses FO(S) as follows.

• For every initial clause C from S, the clause [C]0 is in FO(S).

• For every universal clause D from S, the clause [D]t is in FO(S).

• For every step clause p ⇒ hq from S, the clause ¬p̃(t) ∨ q̃(s(t)) is in FO(S), and for
every step clause P (x) ⇒ hQ(x), the clause ¬P̃ (t, x) ∨ Q̃(s(t), h(x)) is in FO(S).

The key insight is that fine-grained step resolution on S, including (implicitly) the clause con-
version rule, can be realised using classical ordered first-order resolution with selection (see,
e.g. [BG01]) on FO(S). For universal and initial resolution and factoring rules, rules (1) to
(3), this is obvious. For step resolution and (step) factoring, rules (4) and (5) we observe that
if a clause contains a next-state literal, i.e. a literal whose first argument starts with the func-
tion symbol s, a factoring or resolution inference can only be performed on such a literal. This
requirement can be enforced by an appropriate atom ordering. Note that all rules performing
inferences on step clauses impose the restriction on unifiers (such as σ) that σ does not map
variables occurring in the left side of a step clause into a constant or a functional term. On
first-order clauses, this restriction is enforced by the function symbol h introduced by FO:
Each temporal literal hQ(x) is mapped by FO to Q̃(s(t), h(x)), and the function symbol h
“shields” the variable x from being instantiated by a constant or functional term. No explicit
clause conversion rule, rule (6), is required for the translated clauses.

Note that standard redundancy deletion mechanisms, such as subsumption and tautology
deletion, are also compatible with fine-grained step resolution (for details see [KDD+05]). Note
further that the first-order clause ¬P̃ (t, x) ∨ Q̃(s(t), h(x)) from FO(S) does not subsume the
clause ¬P̃ (t, c)∨ Q̃(s(t), c) stemming from the clausification as introduced in Definition 2. We
need clauses of the form ¬P̃ (t, c) ∨ Q̃(s(t), c) for the calculus to be complete [KDD+05].

As for the eventuality resolution rule and ground eventuality resolution rule, rules (7)
and (8), we find the merged clauses required by means of the FG-BFS algorithm. The only
difficulty in implementing the algorithm in Fig. 1 using first-order ordered resolution with se-
lection is that in step (2) of the algorithm, the rules of fine-grained step resolution are applied
with the exception of the clause conversion rule, rule (6). As no explicit clause conversion rule
is required on FO(S), this restriction cannot be enforced by disabling one of the deduction
rules. Instead we use a variant FOBFS of FO which has the desired effect. Let Si+1 be a
monodic temporal problem in clausified form as defined in step (2) of the FG-BFS algorithm.
Then FOBFS(Si+1) is defined as follows:

• For every universal clause D in Si+1, the clause [D]t is in FOBFS(Si+1).

• For every ground step clause p ⇒ hl in Si+1, the clause ¬p̃(0) ∨ l̃(s(t)) is in
FOBFS(Si+1), and for every non-ground step clause P (x) ⇒ hM(x) in Si+1, the
clause ¬P̃ (0, x) ∨ M̃(s(t), h(x)) is in FOBFS(Si+1).

Recall that initial clauses do not contribute to loop search, so we do not include their translation
into FOBFS(Si+1). Again, the motivation for FOBFS is that of saturation of Si+1 under the
rules of fine-grained step resolution except that the clause conversion rule corresponds to the sat-
uration of FOBFS(Si+1) under ordered first-order resolution as described above. In particular,

7

Initial clause set

Saturation under first-order,
initial, and step resolution

Contra-
diction?

yes

Unsatisfiable no
Do for all eventuality clauses

FG
-B

FS

Clause set construction

Saturation under first-order
and step resolution

Loop
found?

no

yes

(Ground) eventuality resolution

New
clause?

yes no

Satisfiable

Vampire
Saturation under ordered
first-order resolution

Figure 2: Main loop of TeMP

clauses consisting only of literals whose first argument is ‘0’ in the saturation of FOBFS(Si+1)
correspond to final clauses (up to negation). Using this criterion it is straightforward to extract
those clauses from the saturation of FOBFS(Si+1) to form the set Ni+1 which is the outcome
of step (2) of the FG-BFS algorithm and to proceed with step (3).

The logical consequence check in step (4) of the FG-BFS algorithm is again delegated to a
first-order prover: for every Ci(x) ∈ Hi(x) we form a new clause set Ci ∧ ¬Hi+1(x); if all the
resulting sets are unsatisfiable, ∀x(Hi(x) ⇒ Hi+1(x)) is valid.

Note that it is straightforward to see whether a clause in FO(S) is the result of translating an
initial, a universal, or a (non-)ground step clause. This makes it possible to compute FOBFS(S)
from FO(S) instead of from S. Also, the conclusion of an application of one of the eventuality
resolution rules can directly be computed as a set of first-order clauses of the appropriate form.
Thus, there is no need to ever translate clauses in FO(S) back to DSNF clauses. Instead, after
translating the input given to TeMP once using FO, we can continue to operate with first-order
clauses. In addition, we use the set-of-support strategy since the set S is already saturated and
only inferences between clauses in Si+1 − S and S need to be performed.

In our implementation, we extend the propositional temporal prover, TRP++ [HK03], to
deal with monodic formulae. The main procedure, depicted in Fig. 2, of our implementation of
this calculus consists of a loop where at each iteration (i) the set of temporal clauses is saturated
under applications of the rules of fine-grained step resolution, that is, rules (1) to (6), and (ii)
then for every eventuality clause in the clause set, an attempt is made to find a set of premises

8

for an application of the (ground) eventuality resolution rule. If we find such a set, the set of
clauses representing the conclusion of the application of the rule is added to the current set of
clauses and the resulting set is saturated under application of the step resolution rules (this helps
to identify whether the conclusion of the eventuality resolution rule is redundant or not). We
have two control strategies concerning how to explore eventualities in loop search: either we go
through them one by one regardless of whether a loop is found and application of the (ground)
eventuality resolution rule derives new non-redundant clauses (a sort of breadth-first strategy) or
we enter the next iteration of the main loop as soon as a loop is found for which an application
of the (ground) eventuality resolution rule results in new non-redundant clauses (a sort of depth-
first strategy). Fig. 2 illustrates the breadth-first strategy. The main loop terminates if the empty
clause is derived, indicating that the initial set of clauses is unsatisfiable, or if no new clauses
have been derived during the last iteration of the main loop, which in the absence of the empty
clause indicates that the initial set of clauses is satisfiable.

The task of saturating clause sets with classical resolution simulating step resolution is del-
egated to the Vampire kernel [RV02], which is linked to the whole system as a C++ library.
TeMP communicates with the Vampire kernel in a direct way via the kernel API, thus avoiding
expensive textual communication. For temporal reasoning (loop search using FG-BFS, ground
eventuality resolution and eventuality resolution rules), we use our own data structures, which
are efficient enough for our purposes, and there is a special module in TeMP which rewrites
TeMP’s own data structures to, and from, Vampire data structures. While there is a little
overhead stemming from rewriting, such an architecture opens up the possibility of replacing
Vampire with any other first-order theorem prover (supporting ordered resolution with selec-
tion). Note, however, that minor adjustments have been made in the functionality of Vampire to
accommodate step resolution: a special mode for literal selection has been introduced such that
in a clause containing a next-state literal only next-state literals can be selected. At the moment,
the result of a previous saturation step, augmented with the result of an eventuality resolution
application, is resubmitted to the Vampire kernel, although no inferences are performed be-
tween the clauses from the already saturated part. This is only a temporary solution, and in
the future we hope Vampire will support incremental input in order to reduce communication
overhead.

5 Case studies

In this section we demonstrate an application of TeMP to the automatic verification of parame-
terised cache coherence protocols. These protocols play an important role in models of shared-
memory multiprocessor systems. Usually, in such systems, every individual processor has its
own private cache memory; the processor uses the cache to hold local copies of main memory
blocks (for details, see, for example, [Han93]). While reducing the access time, this approach
poses the problem of cache consistency, whereby one has to ensure that the copies of the same
memory block in the caches of different processors are consistent. Such data consistency can
be provided by cache coherence protocols, which typically operate as follows: every processor
is equipped with a finite state control, which reacts to the read and write requests. Abstract-
ing from the low-level implementation details of read, write and synchronisation primitives, one
may model cache coherence protocols as families of identical finite state machines together with
a primitive form of communication: if one automaton makes a transition (an action) a, then it

9

. . . M

S

I

R

W

WR

W

W

T

T

M

S

I

R

W

WR

W

W

T

T

M

S

I

R

W

WR

W

W

T

T

M

S

I

R

W

WR

W

W

T

T

M

S

I

R

W

WR

W

W

T

T

M

S

I

R

W

WR

W

W

T

T

M

S

I

R

W

WR

W

W

T

T

M

S

I

R

W

WR

W

W

T

T M

S

I

R

W

WR

W

W

T

T

M

S

I

R

W

WR

W

W

T

T

M

S

I

R

W

WR

W

W

T

T . . .

Figure 3: A family of identical automata for the MSI Cache Coherence Protocol

is required that all other automata simultaneously make a complementary transition (reaction)
ā [Del00, Del03].

We refer to this model as the communicating broadcast automata model, and to correspond-
ing protocols as communicating broadcast automata protocols.

The following types of correctness conditions (safety for data consistency [Han93]) are most
common for communicating broadcast automata protocols.

Non Co-occurrence of states: some local states q1, q2 should not appear in the any global
state.

At most one: a local state q can appear at most once, that is, be a state of at most one processor,
in any global state.

We illustrate this model on a particular example, namely, the MSI protocol (the name originates
from the names of three states of the protocol, Modified, Shared, Invalid, respectively). Possible
actions are R (for read), W (for write), and T (for local τ -transition). We present the protocol
by the transition relation of the finite state machine below and give its graphical representation
in Fig. 3; for the clarity of presentation we omit reaction loops, in particular, T loops around
every vertex.

τ(I,W) = M τ(I,R) = S

τ(I,W) = I τ(I,R) = I τ(I, T) = I

τ(S,W) = M τ(S, T) = S

τ(S,W) = I τ(S,R) = S τ(S, T) = S

τ(M,T) = M

τ(M,W) = I τ(M,R) = S τ(M,T) = M

Notice that transition function τ is a partial one and it is not defined, for example, on the pair
(s, r). In the beginning of time, all automata are in the state I .

The correctness conditions for this protocol are:

• Non Co-occurrence condition for the states M and S; and

10

• At most one condition for the state M .

Following [FL03] we now give the temporal specification of the MSI protocol and its correctness
conditions in the syntax of TeMP. The syntax of TeMP is an extension of the TPTP1 syntax
with temporal formulae. In what follows, ![X]p(X) stands for ∀xP (x), ?[X]p(X) stands
for ∃xP (x), operators ˜, &, |, and -> stand for ¬, ∧, ∨, and →, respectively; next, always,
and sometime stand for h, , and ♦, respectively. The idea of our encoding of the protocol
can be explained as follows. For every state of the protocol we introduce an unary predicate
symbol: m for M , s for S and i for I . The elements of the (abstract) domain of a temporal
model represent automata. An automaton represented by an element s is in a particular state,
say M if, and only if, corresponding predicate m holds on s. We introduce one more unary
predicate a, where a(s) holds if, and only if, an automaton represented by s is active and
performs some action. Further unary predicates w, r, and t denote actions that can be executed
by an automaton. Only the active automaton can perform an action, all other automata perform
a simultaneous reaction.

For example, the formula

∀x(a(x) ∧ i(x) ⇒ (w(x) ∨ r(x)) ∧ ∀x((i(x)) ∧ w(x) ⇒ hm(x))

expresses that in the state I both reading and writing actions are possible, and τ(I,W) = M

and
∀x(m(x) ∧ ¬w(x) ∧ ∃yw(y) ⇒ hi(x))

describes the reaction on this writing action of an automaton in the state M . Note that the
reaction is expressed as ¬w(x) ∧ ∃yw(y).

In the original representation, [FL03], equality is used to express the fact that only one
automaton can be active at any time. Equality destroys the completeness of the monodic frag-
ment [WZ02]. So, in [FLK05] we suggested replacing equality with the congruence relation
giving an incomplete, but correct, verification procedure. It is well-known that resolution on
congruence axioms tends to cause the generation of too many (mostly unnecessary) clauses,
and resolution is the heart of our temporal prover. Therefore, we apply the prover to even
weaker problems where not all of the congruence axioms are included. We express the fact that
no more than one instance of the automaton is active at any time saying that, if two instances of
the automaton, x and y, are active at the same time, they are in the same state and perform the
same action.

Summing up the considerations above, the temporal specification of the MSI protocol,
SPMSI is characterised by the following formula.

![X]i(X) &
%%%%%%%%%% Initially all automata are in the state I

always(![X](i(X) | m(X) | s(X))) &
%%%%%%%%%% Every automaton at every moment of time is in the one of
%%%%%%%%%% the possible states

always(˜?[X]((m(X) & i(X)) | (m(X) & s(X)) | s(X) & i(X))) &
%%%%%%%%%%% Automata states are mutually excluded

1http://www.cs.miami.edu/∼tptp

11

always(?[X]a(X) & ![X,Y](a(X) & a(Y) -> ((i(X) & i(Y)) |
(m(X) & m(Y)) |
(s(X) & s(Y))))) &

%%%%%%%%%% If two automata are simultaneously active then they both
%%%%%%%%%% are in the same state.

always(˜?[X] ((w(X) & r(X)) | (w(X) & t(X)) | (r(X) & t(X)))) &
%%%%%%%%%% Actions are mutually excluded

always(![X,Y](a(X) & a(Y) -> (((w(X) & w(Y)) | (˜w(X) & ˜w(Y))) &
((r(X) & r(Y)) | (˜r(X) & ˜r(Y))) &
((t(X) & t(Y)) | (˜t(X) & ˜t(Y)))

))) &
%%%%%%%%%% An automaton cannot do different actions at the same time

always(![X]((w(X) | r(X) | t(X)) -> a(X))) &
%%%%%%%%%% W, R, T are actions

always(![X] (i(X) & a(X) -> (w(X) | r(X)))) &
%%%%%%%%%% The only actions available for an active automaton in
%%%%%%%%%% the state I are W and R

always(![X] (s(X) & a(X) -> (w(X) | t(X)))) &
%%%%%%%%%% The only actions available for an active automaton in
%%%%%%%%%% the state S are W and T

always(![X] (m(X) & a(X) -> t(X))) &
%%%%%%%%%% The only action available for an active automaton in
%%%%%%%%%% the state M is T

always(![X] (i(X) & w(X) -> next m(X)) &
![X] (i(X) & r(X) -> next s(X)) &
![X] (s(X) & w(X) -> next m(X)) &
![X] (s(X) & t(X) -> next s(X)) &
![X] (m(X) & t(X) -> next m(X)) &

%%%%%%%%%% Results of the action

![X] ((i(X) & ˜w(X) & ?[Y]w(Y)) -> next i(X)) &

![X] ((i(X) & ˜r(X) & ?[Y]r(Y)) -> next i(X)) &
![X] ((i(X) & ˜t(X) & ?[Y]t(Y)) -> next i(X)) &

![X] ((s(X) & ˜w(X) & ?[Y]w(Y)) -> next i(X)) &
![X] ((s(X) & ˜r(X) & ?[Y]r(Y)) -> next s(X)) &
![X] ((s(X) & ˜t(X) & ?[Y]t(Y)) -> next s(X)) &

12

Property Total Vampire Generated Subsumed
time called clauses clauses

MSI prop.1 10.272s 15 219892 185870
MSI prop.2 33.054s 48 849143 797765
Synapse N+1 prop. 1 0.472s 12 16490 11938
Synapse N+1 prop. 2 0.663s 14 21204 15874

Figure 4: TeMP performance on MSI and Synapse N+1

![X] ((m(X) & ˜w(X) & ?[Y]w(Y)) -> next i(X)) &
![X] ((m(X) & ˜r(X) & ?[Y]r(Y)) -> next s(X)) &
![X] ((m(X) & ˜t(X) & ?[Y]t(Y)) -> next m(X))

%%%%%%%%% Result of the re-action. An automaton performs a re-action
%%%%%%%%% iff it does not do an action, but somebody else does.

)

The negation of the Non co-occurrence condition is given by the following formula

sometime (?[X](m(X)) & ?[Y](s(Y)))

while the (Skolemised) negation of the At most one condition is expressed by

q(c) & ˜q(d) & sometime (m(c) & m(d))

Notice that the “fresh” predicate q is introduced to ensure that constants c and d are interpreted
by different elements of the domain.

We apply TeMP to the conjunction of the protocol specification and the negation of one of
the correctness conditions; if the resulting set is unsatisfiable, the protocol satisfies the condition.

This approach to the verification of parameterised protocols was successfully applied to a
number of protocols that are basically described by finite automata. It takes only a few sec-
onds to verify on a desktop computer both the Non co occurrence of states and the At most
one properties for the MSI protocol. The same is true for the Synapse N+1 protocols given
in [Del03]. Fig. 4 contains some statistical data concerning the performance of TeMP (and calls
to Vampire) on the MSI and Synapse N+1 protocols.

However, of particular interest is a wider class of parameterised communicating broadcast
automata protocols where global conditions are allowed. The corresponding parameterised
model with global conditions is introduced in [Del03]. The basic model of broadcasting au-
tomata is extended to include conditional actions of the form P → σ. A transition S, σ, S ′ is
allowed only if the global state S satisfies P . For example, P may express the fact that in the
global state there is an automaton in a specified local state. We have translated the Illinois cache
coherence protocol [PP84], which uses global conditions, into the the syntax of TeMP, but have
met practical difficulties in running the prover on the result of the translation: the prover ran out
of computing resources.

We can extract the first-order problems given to Vampire in TPTP syntax; we tried SPASS
and E on those problems, and none of these systems terminated within reasonable time. (Note
however that neither SPASS nor E support the special selection strategy needed for our imple-
mentation as described in Section 4, so even if one of those provers terminated that would not

13

help TeMP immediately, but we could consider replacing Vampire with one of those provers,
of course.)

There are some interesting points which can be observed from our experiments.

– Our prover relies on Vampire’s capability to saturate a set of first-order clauses efficiently.
The Vampire kernel is called several times, as illustrated by the statistics in Fig. 4, and only
one (the last) call might be on an unsatisfiable set of clauses.

– The atom ordering and literal selection function used dramatically influences Vampire’s per-
formance on satisfiable clauses. In particular, we only managed to prove both correctness
conditions for MSI when we used a literal selection strategy different from what the kernel
suggests by default.

– Further experiments with Mace showed that the satisfiable problems have very simple, two
element models, which can be found in very little time. Our prover would benefit from a form
of semantic resolution based on the properties of these simple models.

However, we are also not in a position that we just need to detect satisfiability of a clause set.
In particular, in the FG-BFS algorithm we need to deduce all final clauses derivable from a
given clause set, not just detect whether the given clause set is satisfiable.

– When the prover does not terminate, we see that the memory consumption grows very slowly
which suggests that with current strategies, Vampire generates and immediately subsumes a
very large amount of clauses.

So, on the one hand we benefit from very efficient subsumption algorithms. On the other, a
strategy which could reduce the number of subsumed clauses that are derived would be even
more beneficial.

6 Conclusions

Over the past four decades, theory, engineering, and practice of building automated first-order
theorem provers reached a mature state, and a number of powerful implementations are avail-
able at the moment. The success of those implementations allows one to use a tool originally
developed for first-order logic as an integral part of a prover for a different, more complex logic.

Based on verification case studies, we performed experiments with our system. One imme-
diate observation is that while the available first-order provers feature extremely efficient infer-
ence engines, their default strategies aim mainly at unsatisfiable clause sets. When the saturation
of a set of satisfiable clauses is needed, extra fine-tuning is required. The relatively degraded
performance on satisfiable clause sets is somewhat surprising because the ‘problematic’ clause
sets we have encountered have very simple models. Partly, such behaviour of first-order provers
can be possibly explained by the format of the CASC competition.

For this first case study we have deliberately chosen a problem with a known solution. To
compete with other known approaches capable to solve those problems, such as the one based
on integer vector reachability utilised in [Del03], we have to fine-tune our temporal resolution
engine. However, we expect that the main advantage of our method is the ability to reason about
a wider class of systems, such as protocols with asynchronous communication, which seem to
be outside of the scope of the integer vector reachability method, but which can still be modelled
via the first-order temporal approach. We see verification of asynchronous communication as

14

the most promising direction for future work. This needs, however, a deeper insight into first-
order resolution provers and will undoubtedly require new saturation strategies for satisfiable
problems.

We are planning to continue our work on TeMP and, in particular, build a pool of possible
strategies aimed at the kind of first-order problems stemming from our applications. We believe
that this research will be beneficial for both the temporal reasoning and the first-order theorem
proving community.

References

[BG01] L. Bachmair and H. Ganzinger. Resolution theorem proving. In Robinson and
Voronkov [RV01], chapter 2, pages 19–99.

[CL71] C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, New York, 1971.

[Del00] G. Delzanno. Automatic verification of parametrized cache coherence protocols.
In Proc. CAV 2000, volume 1855 of LNCS, pages 53–68. Springer, 2000.

[Del03] G. Delzanno. Constraint-based verification of parametrized cache coherence pro-
tocols. Formal Methods in System Design, 23(3):257–301, 2003.

[DFK] A. Degtyarev, M. Fisher, and B. Konev. Monodic temporal resolution. ACM Trans-
actions on Computational Logic. To appear.

[DFK03] A. Degtyarev, M. Fisher, and B. Konev. Monodic temporal resolution. In Proc.
CADE-19, volume 2741 of LNAI, pages 397–411. Springer, 2003.

[FDP01] M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution. ACM Transactions
on Computational Logic, 2(1):12–56, 2001.

[FL03] M. Fisher and A. Lisitsa. Deductive verification of cache coherence protocols. In
Proc. AVOCS 2003, pages 117–186, 2003.

[FLK05] M. Fisher, A. Lisitsa, and B. Konev. Practical infinite-state verification with tempo-
ral reasoning. In Proceedings of the NATO advance research workshop Verification
of infinite-state systems with applications to security VISSAS 2005, 2005.

[Han93] J. Handy. The Cache Memory Book. Academic Press, 1993.

[HK03] U. Hustadt and B. Konev. TRP++ 2.0: A temporal resolution prover. In Proc.
CADE-19, volume 2741 of LNAI, pages 274–278. Springer, 2003.

[HKRV04] U. Hustadt, B. Konev, A. Riazanov, and A. Voronkov. TeMP: A temporal monodic
prover. In Proc. IJCAR 2004, volume 3097 of LNAI, pages 326–330. Springer,
2004.

[HKS05] U. Hustadt, B. Konev, and R. Schmidt. Deciding monodic fragments by temporal
resolution. In Proc. CADE-20. Springer, 2005. To appear.

15

[HWZ00] I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable fragments of first-order
temporal logics. Annals of Pure and Applied Logic, 106:85–134, 2000.

[KDD+05] B. Konev, A. Degtyarev, C. Dixon, M. Fisher, and U. Hustadt. Mechanising first-
order temporal resolution. Information and Computation, 199(1–2):55–86, 2005.

[Lei97] Alexander Leitsch. The Resolution Calculus. Springer, 1997.

[NW01] A. Nonnengart and Ch. Weidenbach. Computing small clause normal forms. In
Robinson and Voronkov [RV01], chapter 6, pages 335–370.

[PP84] M. Papamarcos and J. Patel. A low overhead coherence solution for multiprocessors
with private cache memries. In Proc. 11th International Symposium on Computer
Architecture, pages 348–354. IEEE, 1984.

[RV01] A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning. Else-
vier, 2001.

[RV02] A. Riazanov and A. Voronkov. The design and implementation of Vampire. AI
Communications, 15(2-3):91–110, 2002.

[WZ02] F. Wolter and M. Zakharyaschev. Axiomatizing the monodic fragment of first-order
temporal logic. Annals of Pure and Applied logic, 118:133–145, 2002.

16

MPTP 0.2: Design, Implementation, and First

Cross-verification Experiments

Josef Urban
Dept. of Theoretical Computer Science

Charles University
Malostranské nám. 2/25, Praha, Czech Republic

urban@kti.ms.mff.cuni.cz

Abstract

This is a report about development and preliminary testing of the second version
of the MPTP (Mizar Problems for Theorem Proving) system. The goal of this
project is to make the large formal Mizar Mathematical Library (MML) available
to current first-order automated theorem provers (ATPs).

This version of MPTP switches to a generic extended TPTP syntax that adds
term-dependent sorts and abstract (Fraenkel) terms to TPTP. We describe these
extensions and explain how they are transformed by MPTP to standard TPTP
syntax using relativization of sorts and de-anonymization of abstract terms. The
system is now based solely on the newly available native XML format of Mizar
articles, which is directly transformed using XSLT to the extended TPTP syntax, so
no special-purpose MPTP exporter based on the Mizar implementation is necessary.
This also makes export of full Mizar proofs much easier, and we discuss the TPTP
syntax extensions for their encoding.

One of the goals of MPTP is ATP cross-verification of the Mizar library. The
prerequisite for this is the cross-verification of the simplest Mizar inference steps.
The feasibility of this has been tested on a small initial part (ca. 40.000 problems)
of the library. The methodology and results of this test are described here.

1 Introduction

1.1 Mizar

Mizar [Rud92, RT99, MR04] is a formal Jaskowski-style [Jas34, Pel99] mathematical
language and a proof checker for that language. There are two important features that
distinguish Mizar from other proof assistants [Wie03]:

• It is essentially a first-order system (based on set theory).

• It focuses on the development of the large Mizar Mathematical Library (MML)
which (as of May 2005) contains more than 900 formal articles from various fields
of mathematics.1

1See http://mizar.uwb.edu.pl/JFM/mmlident.html or http://merak.pb.bialystok.pl/ for con-
tents of MML

1

Following is an example of the Mizar language, It is the Mizar proof of the theorem
COMPLEX1:2 (second theorem in article COMPLEX1 [Byl90]):

theorem Th2:

for a, b being real number holds

a^2 + b^2 = 0 iff a = 0 & b = 0

proof

let a, b be real number;

thus a^2 + b^2 = 0 implies a = 0 & b = 0

proof assume

A1: a^2 + b^2 = 0;

A2: 0 <= a^2 & 0 <= b^2 by SQUARE_1:72;

assume a <> 0 or b <> 0;

then a^2 <> 0 or b^2 <> 0 by SQUARE_1:73;

then 0 + 0 < a^2 + b^2 by A2,REAL_1:67;

hence contradiction by A1;

end;

assume a = 0 & b = 0;

hence thesis by SQUARE_1:60;

end;

This article cannot fully explain Mizar (see the above given references), we will just
point out several Mizar features on this example.

• The language uses types (like ‘‘real number’’ above). Since Mizar is based on
set theory, the types however do not play any “foundational” role in the system
(as is the case e.g. for HOL and many other higher-order systems). The best
way to think of Mizar types is to treat them just as normal first-order predicates,
for which some facts are obvious to the Mizar checker (and thus can be used to
decrease the verbosity of formalization, and for early error checking very similar
to the standard order-sorted type systems [GM92]). These “obvious” facts include
e.g. the widening hierarchy, or the non-emptiness of extensions of these predicates.
All such “special” facts obviously have to be proved when the types are defined.

• The Jaskowski-style natural-deduction proofs are steered by the implicit thesis,
which is in the beginning equal to the proposition that is being proved. This the-
sis is reduced by various Reasoning Items, like ‘‘let’’ (Universal-introduction),
‘‘assume’’ (Implication-introduction) and ‘‘thus’’, ‘‘hence’’ (explicit justi-
fication of (a part of) the thesis). The proof is finished when the thesis is reduced
to verum.

• The keyword ‘‘by’’ followed by labels (e.g. by A2,REAL 1:67;) introduces Sim-
ple Justifications. Mizar has a limited fast refutational prover [Wie00, NB04],
which is used to discharge the proof obligations which are already sufficiently sim-
ple. The labels refer to the propositions from which the current formula should fol-
low. Labels like REAL 1:67 denote the globally available Mizar theorems (imported
from other articles), while other labels (like ‘‘A2’’) refer to “local” propositions,
previously proved or assumed inside the current proof.

• Similarly, functors, constants and predicates can also be defined either globally
(like + and =), or locally in the proof (like the local constants ‘‘a’’ and ‘‘b’’

2

introduced by the ‘‘let’’ keyword). Obviously, all the local constructs can only
be used in their proper scope.

1.2 The goals of MPTP, ILF

There are several goals of the MPTP (Mizar Problems for Theorem Proving) project, de-
scribed in more detail in [Urb04]. In short, the cooperation of modern ATP systems with
large libraries of formalized mathematics is good both for ATPs (large number of testing
problems, optimization on various mathematical domains, dealing with large knowledge
bases, etc.), and for the formalization efforts (proof assistance, cross-verification, auto-
mated theory refactorings, etc.). Such cooperation is also the best candidate for merging
the deductive (e.g. ATP) and inductive (e.g. machine learning) methods of Artificial
Intelligence, because mathematics is (by definition) the most deductively developed sci-
ence, and once we have sufficient amount of such data, inductive methods can be applied
too.

MPTP has been much inspired by the Mizar-part of the large ILF project [DW97,
Dah98], which (unfortunately) stopped in 1998 without finishing the Mizar-to-ATP
export. Thanks to ILF, hundreds of ATP problems extracted from several untyped
Mizar articles have been for several years already included in the standard TPTP [SS98]
library.

1.3 First MPTP version

The first version of MPTP has already been used for initial exploration of the usability of
ATP systems on the Mizar Mathematical Library (MML), and of the benefits of assisting
deductive tools with trained inductive advisors [Urb04]. The first important number
obtained is the 41 % ATP success rate on reproving about 30.000 MML theorems from
high-level hints2 taken from corresponding MML proofs. The second important number
is that in about 35 % of these cases (i.e., about every seventh MML theorem), relevant
high-level hints sufficient for a successful ATP proof can be selected fully automatically
by an independent Bayesian advisor [CCRR99] trained on previous MML proofs.

It was the primary goal of the first MPTP version to make these initial measurements
possible in order to get some real feedback about the feasibility of (inductively assisted)
ATP over a very large body of formalized mathematics. No such hard evidence had
been previously known, which sometimes lead to overly pessimistic views on such a
project. Many shortcuts and simplifications were therefore taken in the first MPTP
version, naming at least the following:

• Mizar formulas were directly exported to the DFG [HKW96] syntax used by the
SPASS [Wei01] system. SPASS seemed to perform best on MPTP problems, prob-
ably because of its handling of sort theories. SPASS also has a built-in efficient
clausifier [NW01], which the other efficient provers like E [Sch02] and Vampire
[RV02] did not have.

• This particularly meant that one concrete method of handling sorts (encoding
as predicates) was chosen for the export, yielding standard (untyped) first-order

2precisely: other Mizar theorems and definitions used in the proofs; see [Urb04] for details

3

formulas, from which the original type information could not be recovered and
used for different encodings.

• Mizar proofs were not exported. Only the lists of MML references (theorems and
definitions) used for proof of each MML theorem were remembered for re-creation
of ATP problems. The proof structure and internal lemmas were forgotten.

• Such lists of MML references are in about 80 percent (27,449 out of 33,527) of
theorem proofs sufficient as high-level hints for reproving - i.e. the Mizar proofs
use only these MML references and some implicit (background) facts like type
hierarchy, arithmetical evaluations, etc. In the Mizar proofs of the remaining ca
20 percent (6078) of theorems, Mizar schemes3 and top-level non-theorem lemmas4

were used. These two kinds of propositions were completely ignored, making these
theorems not eligible for ATP reproving.

• The export of Mizar structure types was incomplete (some axioms were missing),
abstract terms were translated incorrectly. Both these shortcuts were justified by
the low frequency of such Mizar constructs.

Many of these simplifications however made further experiments with MPTP difficult
or impossible. The lack of proof structure prevents measurements of ATP success rate
on all internal proof lemmas, and experiments with unfolding lemmas with their own
proofs. Additionally, even if only several abstract terms were translated incorrectly,
during such proof unfoldings they could spread much wider. All this negatively affects
the possibility of full ATP cross-verification of MML. For such cross-verification it will
often be necessary to follow the structure of Mizar proofs, and use the internal lemmas
as hints for an ATP proof. The working objectives of further versions of MPTP should
therefore be:

• the correctness of translation of even the least frequent Mizar constructs

• complete export of Mizar proofs

• a sufficiently generic (i.e. rich) format allowing different handling of e.g. Mizar
sorts, but implementing some default transformations for systems that are not
specialized in such areas

1.4 Structure of this article

The rest of this article describes the current implementation of MPTP 0.2, and the first
experiments done with it. Section 2 shortly introduces the general XML-based solution
taken for complete export of MML for other systems. Section 3 explains how the Mizar
types and abstract terms are handled in MPTP 0.2, suggests extensions to the TPTP
standard for their encoding, and shows how these extensions are transformed to the
standard first-order TPTP format by MPTP. Translation of the parts of MML proofs
which are needed for the experiments described here is also explained, and we sketch

3Mizar schemes are second-order theorems parametrized by functions or predicates.
4Vast majority of Mizar propositions proved on the top-level (i.e. not inside proof of other proposi-

tion) are in Mizar exported as theorems reusable in other articles. This is however not mandatory.

4

the overall algorithm used for producing ATP problems from MML problems. In section
4 several such experiments are described, all dealing with the reproving of the Mizar
Simple Justifications. The influence of a better encoding of the abstract terms on the
success rate of ATP systems is measured there. 48 articles where the translation is now
believed to be complete are used for an attempt to reprove 100 percent of the ca 18,000
Simple Justifications contained in them. Again a machine learning method is used to
make the small number of hard problems easier, and all but 67 problems are reproved.

2 XML-ization of Mizar

The most demanding objective among those mentioned above is the complete export of
Mizar proofs. By a complete proof export we should mean at least two things:

• complete export of the Mizar proofs into a format that can be easily processed by
other systems (e.g. MPTP)

• supplying functions that can generate ATP problems corresponding to parts of
these proofs

This task was previously dealt with in the ILF project [DW97, Dah98], and at least
the first requirement was completely solved there by having a special-purpose Mizar-
to-Prolog exporter (by Czeslaw Bylinski), translating Mizar articles to a Prolog syntax.
An obvious solution to the first requirement would therefore be an update of the ILF
exporter. Several issues appeared when considering such solution:

• The ILF exporter was not a standard and maintained part of Mizar, and due to
the fast development of Mizar in recent years, it became quite outdated and would
require a complete rewrite.

• Several other systems working with the exported Mizar articles have appeared
in the recent years: MMLQuery [BR03], MoMM [Urb05b], MizarMode [Urb05a,
BU04], and also MPTP. Each of these systems used its own special-purpose ex-
porting tool for doing very similar things. Each of these exporters were in different
state of up-to-dateness. The natural solution to this situation would be just one
well-maintained generic exporter.

• The old internal format used by Mizar itself was designed long ago, when mem-
ory and storage were expensive, and it was quite hard to extend for new Mizar
constructs and utilities. A new extensible and richer format would be useful for
Mizar itself.

All these issues resulted in quite a large reimplementation of Mizar described in [Urb05c].
Mizar started to use XML5 natively as its internal format produced during parsing.
This format was significantly extended, and it now contains a very complete seman-
tically disambiguated form of a Mizar article (even with some ATP-important items,
like definitional expansions, which were missing in the ILF exporter). Because of the
completeness of this format, and thanks to the wide-spread availability of XML parsers,

5See http://lipa.ms.mff.cuni.cz/~urban/Mizar.html for specification of the Mizar XML format.

5

the need for special-purpose Mizar exporters and the problem of their maintenance were
thus largely eliminated. The whole Mizar internal library (items reusable in other arti-
cles) is now distributed in this format, and complete articles are translated to it just by
running the Mizar verifier.

The format still has to be space-economical to keep the Mizar verification times ac-
ceptable, so in its native form it avoids redundant information that can be easily recov-
ered by postprocessing. A simple postprocessing XSLT stylesheet is therefore available6

for creating very rich equivalents. This stylesheet adds absolute MML addresses to the
resources used in the article, adds explicit proof levels to proof items, etc. Articles in
such rich format are already suitable for a number of data-mining and presentational
tasks, some examples are given in [Urb05c]. The new MPTP implementation also starts
with this rich Mizar XML format as its input.

3 Export to Prolog and TPTP

The rich XML format of Mizar articles can be directly loaded into many Prolog (and
other) systems, and processed as a tree structure. However the first processing step is the
transformation to a TPTP-like [SS98] format, which is done by quite a straightforward
processing of the XML tree. The XSLT7 language (declarative functional language with
lazy-evaluation) has been designed exactly for such purposes. So the whole MizarXML-
to-TPTP transformation8 is now written in about 700 lines of XSLTXT9. It provides
all the Mizar-to-ATP translation functionalities (see [Urb04, Urb03]) done earlier by a
special purpose exporter based on the Mizar implementation (called fo tool in the first
MPTP version). The most important changes and additions are mentioned below.

3.1 Syntax for Mizar types

One of the largest tasks of any Mizar-to-ATP export is dealing with the Mizar term-
dependent types (i.e. types parametrized by terms). A more formal description of
this type system is given in [Urb05b], where the axioms of Mizar-like Horn theory
and Mizar-like Horn theory with attributes are stated. The following example (written
already in the extended TPTP syntax) of matrix multiplication illustrates the usage of
term-dependent types:10

![K:integer,A:matrix(K),B:matrix(K)]:

sort(matrix_multiply(K,A,B), matrix(K)).

This means that such matrix multiplication is well-defined only for two square ma-
trices of dimension K, and its result is also a K matrix. This definition has obvious

6http://kti.ms.mff.cuni.cz/cgi-bin/viewcvs.cgi/xsl4mizar/addabsrefs.xsltxt?view=

markup
7http://www.w3.org/TR/xslt
8http://kti.ms.mff.cuni.cz/cgi-bin/viewcvs.cgi/xsl4mizar/mizpl.xsltxt?view=markup
9http://www.zanthan.com/ajm/xsltxt/ - this is a compact syntax for XSLT stylesheets

10It is standard in Mizar to speak about types, while it is standard in TPTP to speak about sorts. We
try to stick to the proper word in these two contexts, however these two words are completely equivalent
in this article.

6

generalization for M×N and N×P matrices, with the result having the type M×P ma-
trix. Semantically, the Mizar types are predicates, and the simplest translation method
translates N-ary type symbols into (N + 1)-ary predicate symbol, and relativizes by
such predicates (this means implication for universal quantification and conjunction for
existential). For the above given example, the result (written in the standard TPTP
notation) would be:

![K,A,B]: (integer(K) & matrix(K,A) & matrix(K,B))

=> matrix(K, matrix_multiply(K,A,B)) .

There are good reasons, why the MPTP formulas should keep the sorted syntax, and
not use some direct translation of types as in the first MPTP version:

• There are alternative methods of type translation. E.g. [Dah98] suggests alterna-
tive inclusion-operator encoding of types.

• Various MPTP problem-generating stages (e.g. signature filtering) can take ad-
vantage of the knowledge that something is a type, and handle it differently from
normal predicates.

• If the sorted syntax extensions to TPTP become standardized, some provers may
eventually implement their own sort optimizations, and work directly with formu-
las in the extended syntax.

The current version of the TPTP-like dependent sort syntax used by MPTP is a result
of discussions with Geoff Sutcliffe. It extends the quantification part of TPTP formulas,
adds the special sort/2 predicate for explicit expressing of sortedness, and introduces the
sort/0 formula kind for formulas encoding the sort hierarchy. The sorted quantifications
now have following syntax (see also the matrix multiplication example above):

<quantified formula> ::= <quantifier> <sorted variables> : <literal formula>

<sorted variables> ::= [<variable> : <sort specification>

<rest of sorted variables>*]

<sort specification> ::= <and-not formula>

Here and-not formula is a formula consisting of a conjunction of literals, that does
not contain the sort/2 predicate11. Other logical connectives could be allowed, however
Mizar does not use them currently for types. An example of more advanced sorted
quantification is e.g.:

! [G : (~ finite & graph), W1 : walk(G), W2 : subwalk(W1)]

Note that the syntax does not allow mixing sorted and unsorted quantifications. This
is because e.g.:

! [I,K : integer]

has ambiguous interpretation as either

11All this is true if no abstract terms (see below) are present. Since abstract terms contain formulas,
such definitions would become more complicated.

7

! [I : integer, K : integer]

or

! [I : $true , K : integer]

Therefore all MPTP quantifications are now sorted, and if a sort is not supplied, it
has to be expressed using the $true/0 atom. This atom is handled specially when the
sort relativization is done, i.e. instead of $true(I) the sort is translated just to $true.
This is a bit similar to Mizar, where the types have to be always specified, and if no
particular type is wanted, the default type set must be used. The Mizar type set has
no semantic content (everything is set in Mizar), so it is directly transformed to $true

by our translation. Original unsorted TPTP quantifications like

! [I,J,K]

are currently not used, just for simplicity reasons.
The special Prolog sort/2 predicate is used for expressing sortedness inside formulas,

it is a TPTP equivalent of the Mizar (and ILF) is/2 predicate. Its syntax is following
(again, see the matrix example above):

<sorted atom> ::= sort(<term>,<sort specification>)

Here <sort specification> is defined as above. This Prolog predicate again has to
be treated specially by MPTP when creating ATP problems (see the example above
encoding the result type of matrix multiplication).

3.2 Sort handling in MPTP

The initial problem-generating functions only implement the predicate encoding of sorts.
The following fragment of Prolog code does the translation.12 As mentioned above, sort
declarations with arity N are transformed into predicates with arity N + 1. Those in
universal quantifications imply (relativize) the propositions, while existential must hold
simultaneously (in conjunction) with the propositions that they quantify.

% return the list of quantified variables and conjunction of predicates

sort_transform_qlist([],[],$true).

sort_transform_qlist([X:S],[X],S1):- sort_transform(sort(X,S),S1).

sort_transform_qlist([(X:S)|T],[X|Qvars1],S1 & Preds1):-

sort_transform(sort(X,S),S1),

sort_transform_qlist(T,Qvars1,Preds1).

% end of term traversal

sort_transform(X,X):- atomic(X); var(X).

% relativization

sort_transform(! Svars : Y, ! Qvars : (Preds => Y1)):-

sort_transform_qlist(Svars,Qvars,Preds),

sort_transform(Y,Y1).

12Again, this is for formulas without abstract terms. Abstract terms are removed before sort trans-
formations take place.

8

sort_transform(? Svars : Y, ? Qvars : (Preds & Y1)):-

sort_transform_qlist(Svars,Qvars,Preds),

sort_transform(Y,Y1).

% sort/2 predicate translation

sort_transform(sort(X,Y1 & Y2),Z1 & Z2):-

sort_transform(sort(X,Y1),Z1),

sort_transform(sort(X,Y2),Z2).

sort_transform(sort(X,~Y),~Z):- sort_transform(sort(X,Y),Z).

sort_transform(sort(_,$true),$true).

sort_transform(sort(_,$false),$false).

sort_transform(sort(X,Y),Z):- Y =.. [F|Args], Z =.. [F,X|Args].

% term traversal

sort_transform(X1,X2):-

X1 =.. [H1|T1], maplist(sort_transform,T1,T2), X2 =.. [H1|T2].

3.3 Abstract terms

Abstract (or Fraenkel) terms are set-theoretical abbreviations for unique objects guaran-
teed by the Replacement and Comprehension axioms of ZFC. In Mizar they are written
using the following syntax:

{ N + M where M,N is Integer : N < M }

The reasons for extending TPTP to handle abstract terms are very similar to those
given for the sorted syntax. After some discussion with Geoff Sutcliffe, the special all/3
Prolog predicate was chosen for the encoding. Its syntax is following:

<abstract term> ::= all(<sorted variables>,<term>,<literal formula>)

For instance:

all([M:Integer,N:Integer], plus(N,M), less(N,M))

As noted above, the existence of abstract terms is guaranteed in set theory by the
Comprehension axiom (“all members of some set satisfying some predicate form a set”)
and the Replacement axiom (“image of a set under a function is again a set”). Their
uniqueness is guaranteed by the Extensionality axiom (“two sets are equal if they contain
the same elements”). Note that Comprehension requires the quantified variables to be
already members of some set, this is a method of preventing Russel’s paradox used by
set theory. Mizar checks this requirement by looking at the types of quantified variables,
i.e. in the above example it has to know that Integer is a small type, i.e. a type whose
extension is a set. More ingenious methods of checking correctness of abstract terms
syntactically have been recently suggested by Arnon Avron [Avr04]. No such syntactic
check is now used for the extended TPTP syntax, this is left to the formula providers,
and possibly to the ATP systems that will implement this syntactic extension.

Abstract terms are very similar to lambda terms, which are sometimes called anony-
mous functions. Therefore we now call the process of removing abstract terms deanonymiza-
tion. It is very similar to skolemization, and this is another reason why this syntactic
extension could eventually become handled by standard ATP clausifiers, or even dealt

9

with in calculi which implement delayed transformation to normal forms (e.g. tableaux
or [GS03]). It means that we introduce a new functor symbol, corresponding to the
abstract term in the following way:

![X]:(in(X,all_0_xx) <=> ?[N:Integer,M:Integer]:(X = plus(N,M) & less(N,M))).

Here all 0 xx/0 is the newly introduced “fraenkel” functor for the abstract term given
above, the first number in it (0) is its arity and the second number (xx) just a serial
numbering of such symbols with the same arity13. Obviously fraenkel functors with
nonzero arity can arise if their context includes quantified variables, this is similar to
skolemization. The predicate in/2 (set-theoretic membership) would have to be reserved
for this purpose too in TPTP.

As with skolemization, a lot of optimizing steps can be done during deanonymiza-
tion. If one abstract term is used twice, only one fraenkel functor is necessary. This has
the additional advantage that the equality of such terms is obvious, while for different
fraenkel functors the Extensionality axiom has to be used to find out that they encode
the same term. Since the deanonymization algorithm is likely to include more such
optimizations in the future, it has been split into two independent parts. The first part
just collects the abstract terms from formulas together with their contexts, and replaces
them by new Prolog variables. This collecting has to be quite careful, because abstract
terms can (and do) appear at any position where normal terms are allowed, i.e. also
inside sort specifications or inside other abstract terms. After this part, various opti-
mizations can be done on the collected abstract terms and finally the fraenkel functors
are introduced, their definitions created, and the new Prolog variables are instantiated
with the corresponding fraenkel functors.

3.4 Export of proofs

The full translation of proofs from XML to TPTP is still work in progress at the moment,
however a part which is sufficiently large for initial reproving experiments described be-
low has already been translated. The Mizar proofs consist of various reasoning items
implementing various Jaskowski-style natural deduction steps. A proof starts with a
thesis equal to the formula that is being proved, and various Skeleton items (e.g. as-
suming the antecedent of a thesis which is an implication) are used to modify the thesis.
The proof is successful when the thesis is reduced to verum. The Skeleton items operate
on the thesis, and they must correspond to the current structure of the thesis when
they are used. This is checked by a simple part of the Mizar verifier called Reasoner.
The Auxiliary items (e.g. proving some useful lemma) do not operate on the thesis,
and they can be intermixed with the Skeleton items freely in the proofs. Many items
(both skeleton and auxiliary) require a justification. Such justification can be either a
full subproof, or a Simple Justification saying that the current proposition “easily fol-
lows” from several other propositions. The phrase “easily follows” refers to the limited
Mizar refutational prover. The initial goal of the translation was to make it sufficiently
complete for reproving these Simple Justifications. For this the following information
had to be translated to TPTP:

13This format of fraenkel functors was chosen after discussion with Geoff Sutcliffe and Stephan Schulz,
who uses similar numbering scheme for skolem symbols.

10

• All the propositions introduced by the various reasoning items, together with their
justifications.

• Information about the constants, functors and predicates that are created locally
inside proofs. This includes information about their types, and their definitions.

We do not mention the translation of the globally available Mizar constructs (e.g. func-
tors, predicates, theorems, definitions, etc.) that are also needed for this, because their
handling is very similar to the first MPTP version.

3.4.1 Export of propositions

Even though propositions can be introduced by various reasoning items, their separate
translation is easy, because all are tagged with the <Proposition> tag in the Mizar
XML format14 The TPTP syntax used for encoding Mizar propositions is following:

<proposition> ::= fof(<proposition name>,<type>,

<fol formula>,<source>,<mptp info>).

<proposition name> ::= e<serial number> {_ <proof level>}

% serial number on the current proof level

<serial number> ::= <unsigned integer>

% encodes path to the current proof block

<proof level> ::= <unsigned integer> {_ <proof level>}

<type> ::= lemma-derived | unknown

<source> ::= file(<name of article>, <proposition name>)

<mptp info> ::= mptp_info(<serial number>,[{<proof level>}],

proposition(<line>,<column>,<mizar number>)

{, inference(mizar_by,[],[{ <reference names> }]) })

<reference names>::= <reference name> {, <reference names>}

<reference name> ::= <proposition name> | <theorem name> | <definition name>

<theorem name> ::= t<unsigned integer>_<name of article>

<definition name> ::= d<unsigned integer>_<name of article>

<name of article> ::= <lower word>

% original line and column in the mizar article

<line> ::= <unsigned integer>

<column> ::= <unsigned integer>

% original mizar numbering of propositions

<mizar number> ::= <unsigned integer>

For instance:

fof(e3_17_1,lemma-derived,

(k3_xcmplx_0(c2_17,1) =

k3_xcmplx_0(c3_17,k3_xcmplx_0(c1_17,k5_xcmplx_0(c1_17)))),

file(xreal_1,e3_17_1),

mptp_info(3,[17,1],proposition(591,26,0),

inference(mizar_by,[],[e2_17_1,e1_17,d7_xcmplx_0]))).

encodes the Mizar proposition proved on line 591 of article XREAL 1:

then a*1=b*(c*c") by A2,XCMPLX_0:def 7;

14The Mizar Iterative equalities and Diffuse statements actually create propositions too, and they are
handled very similarly by MPTP, but for simplicity we do not consider them here.

11

Some more changes will be probably done to this encoding, we may eventually include
the kind of reasoning item which introduced the proposition, or add the article back-
ground theory (containing e.g. the sort information) explicitly to the inference, so it
would like:

inference(mizar_by,[],[e2_17_1,e1_17,d7_xcmplx_0,theory(xreal_1)]).

3.4.2 Export of local constants

Local constants can be introduced by several reasoning items of the Jaskowski-style
proofs. Each has assigned a type, and sometimes they are defined as being equal to
some other term. This is typically used when some term is proved to have some non-
obvious type, and we want the Mizar checker to remember that typing. Since the checker
first does congruence closure of all ground terms, such equalities actually can be used
to provide multiple types for terms when necessary. The numbering of local constants
is again according to the proof level and their serial number on their proof level. The
syntax would be similar to that of propositions, we just give an example here:

fof(dt_c6_16,sort,sort(c6_16,m1_subset_1(k1_numbers)),

file(xreal_1,c6_16),mptp_info(6,[16],constant(reconsider,type))).

fof(de_c6_16,definition,(c6_16 = c3_16),

file(xreal_1,c6_16),mptp_info(6,[16],constant(reconsider,equality))).

The first clause expresses the type of the local constant, while the second expresses its
definitional equality to another term. Similar descriptions are used for local functors
and predicates.

3.5 Problem creation

The creation of reproving problems corresponding to Simple Justifications is done in the
following steps:

1. Collect the references mentioned in the inference slot of the Mizar-proved propo-
sition.

2. Collect all symbols from the proposition and its references.

3. In a fixpoint manner, add the background theory formulas for these symbols (e.g.
sort formulas, formulas expressing properties like reflexivity or antisymmetry, etc.).

4. Create fraenkel functors for all formulas obtained in the previous step, replace by
them all the abstract terms appearing there, and add the formulas defining the
fraenkel functors.

5. If a fraenkel functor was introduced, add the Extensionality axiom.

6. Do the sort relativization of all formulas.

All this is now done in about 500 lines of Prolog code15. The switch from Perl to (SWI)
Prolog was necessitated mainly by the need to implement the functions for deanonymiza-
tion and sort relativization. From the implementational point of view, having all parts

15This code is going to be quite unstable for some time, since other problem creating functions are
being added. One version is available at http://kti.mff.cuni.cz/~urban/MPTP/utils.pl

12

of MPTP encoded by one Prolog fof/5 predicate makes problem creation quite slow.
SWI Prolog allows simple indexing on four arguments, and if in the fixpoint computa-
tion some formula is searched for by the contents of its mptp info slot, a sequential scan
is used by SWI. Since tens of thousands of formulas are typically loaded, this is very
inefficient. This is a price for trying to be TPTP-compatible, but it can obviously be
helped by additional indexings. Such indexes are now available for the formula kinds
used most frequently in the fixpoint computation, however generation of 100 problems
can still take about 1 minute on 3GHz Pentium 4. Additional profiling and indexing
will be needed, since the number of Mizar Simple Justifications is almost 600.000.

4 Initial reproving experiments

4.1 Reproving Simple Justifications in 100 initial articles

For the initial experiments with reproving the Simple Justifications only the first 100
Mizar articles were selected. About 40.000 reproving problems can be generated from
these articles. The E prover version 0.82 was used, and only with 10 second timelimit
due to limited resources. On the other hand, the hardware was a cluster of dual Intel
Xeons 3.06 GHz with 2GB RAM each, which offsets a bit the low timelimit. The
following table shows the results of this experiment: The success rate is 81 %. The

proved completion found timeout total

31286 780 6661 38727

Table 1: Results of the reproving experiment on 100 articles

algorithm for adding the background theory to the reproving problems is now very
complete, and we believe that the only remaining source of the 780 completions are
the arithmetical evaluations done by the Mizar checker. Another advantage of having
the MPTP implemented in Prolog is that we can attempt to mimic these evaluations
when the background theory is added, and that will probably be done in near future.
Another possibility is to explore the newly available handling of arithmetics in several
ATP systems, and map the Mizar arithmetical symbols to their counterparts in those
systems. These arithmetical evaluations are now quite frequent in Mizar, it is quite
likely that they are also responsible for a lot of the timeouts.

4.2 Evaluation of the encoding of abstract terms

There are 1477 problems containing abstract terms among the ca 40,000 problems ex-
tracted from the initial 100 articles. As mentioned above, the simplest encoding creates
a new fraenkel functor for each term appearing in the problem. This is likely to be often
inefficient, since an abstract term can be used more than once in the problem, and the
only way how to find out that the corresponding different fraenkel functors are equal is
through the Extensionality axiom. The definitions of such “different” fraenkel functors
are however almost the same, and a clever clausifier should be able to discover this simi-
larity. After the first simplest implementation, a more advanced version recognizing the
same abstract terms was written, and performance on these two kinds of translations

13

could be compared. The SPASS 2.1. prover was used in addition to E prover, since its
clausifier is probably still the best available. The following table shows the results of
the experiments run on the same hardware as above with 30s timelimit:

description proved completion found timeout total

E, no optimization 1019 0 458 1477

E, with optimization 1143 0 334 1477

SPASS, no optimization 1098 9 370 1477

SPASS, optimization 1203 9 265 1477

Table 2: Results of the experiment with different encoding of abstract terms

For both provers, encoding the same abstract terms by the same fraenkel functor
has helped quite significantly. The improvement is 124 problems (8.4 percent of the
total 1477 problems) for E, and 105 problems (7.1 percent) for SPASS. SPASS performs
significantly better on these problems, which is probably partially caused by its handling
of sort theories, and also by its optimizing clausifier. The lower increase in the SPASS
performance on the optimized encoding might be caused exactly by the capability of its
clausifier to discover similarities in the fraenkel functor definitions that encode the same
term in the simple encoding.

4.3 Reproving Simple Justifications in 48 articles without numbers

The Mizar checker used for proving the Simple Justifications is quite simple, and it
should not pose serious difficulties to current ATP systems. This seems to be generally
true, since the average user time reported by E on the 40,000 problems which did not
time out in the first experiment is 0.26 s. In the last experiment so far, a hard attempt to
prove all the Simple Justifications from 48 of the initial 100 articles which do not contain
any arithmetical evaluations was conducted. The usage of arithmetical evaluations has
to be switched on in Mizar by special directives, so articles without these directives
should be fully reprovable (and specifically no completions should be found), if the
translation (and Mizar) is correctly implemented.

First, the E prover was run with 4s timelimit on all the 18429 problems extracted
from the 48 articles. It solved 17022 of them (92 percent) within the timelimit, and
found no completion. On the remaining unsolved 1407 problems, the SPASS prover
was run with 60s timelimit. SPASS solved 940 of these harder problems, leaving 467
problems unsolved, no completion was found. The combined success rate at the moment
was 97.5 percent. However running both SPASS and E with higher timelimits on the
remaining 467 problems helped only very little. An overview of the hard problems has
indicated, that in many of them the background theory (formulas encoding the type
information, various properties of functors and predicates, nonemptiness of types, etc.)
has grown quite large, and causes the provers to delay the right inferences. Since we
now add only as little background as possible, changes to the algorithm described in
3.5 can already cause incompleteness. So instead of such changes, a general machine
learning solution (very similar to that used in [Urb04]) was taken:

The proofs of the 17962 solved problems were analysed and the background for-
mulas used in them remembered for each problem, together with the global symbols

14

(i.e. excluding the local constants, etc.) appearing in it. Typically, only a few (up
to ten) background formulas are needed for these Simple Justification problems, and
they are very much correlated to the problem signature. The SNoW system (a multi-
class Bayesian classifier [CCRR99]) was trained on these examples to associate the most
promising background formulas with the symbol signature. The background formulas
of the remaining 467 hard problems were then filtered by this trained advisor. In the
first pass, only three most relevant (as judged by the advisor) background formulas
were allowed, and in the second pass the number was raised to six. Such specifications
are therefore potentially incomplete, however if contradiction can be found in them, it
should be much faster than for the complete specifications. This turned out to be very
efficient: After running E on the problems created in the first pass, only 69 problems
were unsolved, and the solutions was typically found very quickly (below 1s). The sec-
ond pass left 75 problems unsolved, only two successes were added to the results of
the first pass. We are therefore left with 67 out of the 18429 problems (this is ca 0.4
percent) that are not yet proved before submitting the final version of this articles. This
number is low enough, to try manual optimizations if necessary, however these problems
will more likely be used for suggesting other automated techniques that will make their
solution simpler, and obviously also for the analysis of the correctness of the MPTP and
Mizar systems.

5 Conclusion and future work

Some of the working objectives set for MPTP in the introduction have been already
quite fulfilled. The export of abstract terms is now correct, even though it could be more
optimized. To the best of our knowledge, there are no other incorrectly translated Mizar
constructs left. The extended TPTP format already allows recognition and different
translations of both the abstract terms and the dependent sorts. The Mizar proofs are
now completely exported into XML, but the export from XML to TPTP is only partial
yet. Such export however turns out to be quite easy, and the estimate is that it will be
done on another couple of hundred lines of XSLTXT.

The more demanding part is actually choosing the TPTP encoding in the right way.
E.g. the initial TPTP suggestions for sort syntax did not consider the dependent case,
and it is still a question whether the syntax introduced by MPTP will be acceptable.
Similar problems are with other parts of TPTP. E.g. “sort” will probably be allowed
as a TPTP user type of the sort hierarchy formulas, however a sort hierarchy formula
can be both a definition or a theorem, which are other TPTP user types. We will
have to add to TPTP the derivation rules for the Jaskowski-style natural deduction.
Some inspiration for this can be taken from the E-prover’s clausifier, which already has
names for the clausification steps. The clausification steps also escape from the simple
refutational-proving setting.

Another line of work is the cross-verification. The last experiment documents well
the interplay between cross-verification and proving new things expressed in the MPTP
language. While cross-verification is useful per se, and for all kinds of MPTP (and
Mizar) debugging, the information (here the necessary background formulas) obtained
from successful proof attempts can be used as a guidance for proving new problems,

15

or problems which are too hard to prove in the default way. The inductive aspect, i.e.
the possibility to learn from tens of thousands of problems expressed consistently in the
same language, has turned out to be a decisive help for the set of hardest problems.

Many other experiments made available by MPTP are planned, see [Urb04] for a
more detailed enumeration of the possibilities. One short-term goal is the inclusion of
more of the MPTP problems into the TPTP library.

6 Acknowledgments

As already mentioned, Geoff Sutcliffe has had quite a big influence on the current
encoding of various MPTP constructs in TPTP. Stephan Schulz has also participated
in some of these discussions, and helped with setting up the E prover. The ILF project
still serves as a very good example for many Mizar-to-ATP issues. The people involved
in the Mizar part of ILF were mainly Ingo Dahn, Christoph Wernhard and Czeslaw
Bylinski. The XML-ization of Mizar underlying this MPTP version was thoroughly
discussed within the Mizar team, and helped by Czeslaw Bylinski. The first version of
this article has been largely modified after many suggestions from the ESCAR reviewers.
Thanks for all their suggestions and help.

This work was partially supported by the Charles University research grants (205-
03/2060985, 205-10/203336). The resources for the reproving experiments were provided
by the Czech METACentrum supercomputing project.

References

[ABT04] Andrea Asperti, Grzegorz Bancerek, and Andrzej Trybulec, editors. Math-
ematical Knowledge Management, Third International Conference, MKM
2004, Bialowieza, Poland, September 19-21, 2004, Proceedings, volume 3119
of Lecture Notes in Computer Science. Springer, 2004.

[Avr04] Arnon Avron. Formalizing set theory as it is actually used. In Asperti et al.
[ABT04], pages 32–43.

[BR03] Grzegorz Bancerek and Piotr Rudnicki. Information retrieval in MML. In
MKM, volume 2594 of Lecture Notes in Computer Science, pages 119–132.
Springer, 2003.

[BU04] Grzegorz Bancerek and Josef Urban. Integrated semantic browsing of the
Mizar Mathematical Library for authoring Mizar articles. In Asperti et al.
[ABT04], pages 44–57.

[Byl90] Czeslaw Bylinski. The complex numbers. Formalized Mathematics, 2(2),
1990.

[CCRR99] A. J. Carlson, C. M. Cumby, J. L. Rosen, and D. Roth. Snow user’s guide.
Technical Report UIUC-DCS-R-99-210, UIUC, 1999.

[Dah98] Ingo Dahn. Interpretation of a Mizar-like logic in first-order logic. In FTP
(LNCS Selection), pages 137–151, 1998.

16

[DW97] Ingo Dahn and Christoph Wernhard. First order proof problems extracted
from an article in the MIZAR Mathematical Library. In Maria Paola
Bonacina and Ulrich Furbach, editors, Int. Workshop on First-Order The-
orem Proving (FTP’97), RISC-Linz Report Series No. 97-50, pages 58–62.
Johannes Kepler Universität, Linz (Austria), 1997.

[GM92] Joseph A. Goguen and José Meseguer. Order-sorted algebra i: Equational
deduction for multiple inheritance, overloading, exceptions and partial op-
erations. Theor. Comput. Sci., 105(2):217–273, 1992.

[GS03] Harald Ganzinger and Jürgen Stuber. Superposition with equivalence rea-
soning and delayed clause normal form transformation. In CADE, pages
335–349, 2003.

[HKW96] R. Hähnle, M. Kerber, and C. Weidenbach. Common syntax of the
DFGSchwerpunktprogramm deduction. Technical Report TR 10/96,
Fakultät für Informatik, Universität Karlsruhe, Karlsruhe, Germany, 1996.

[Jas34] S. Jaskowski. On the rules of suppositions. Studia Logica, 1, 1934.

[MR04] Roman Matuszewski and Piotr Rudnicki. Mizar: the first 30 years. In
Grzegorz Bancerek, editor, MKM Workshop on 30 Years of Mizar, 2004.

[NB04] Adam Naumowicz and Czeslaw Bylinski. Improving mizar texts with prop-
erties and requirements. In Asperti et al. [ABT04], pages 290–301.

[NW01] A. Nonnengart and C. Weidenbach. Handbook of Automated Reasoning,
volume I, chapter Computing small clause normal forms., pages 335–367.
Elsevier and MIT Press, 2001.

[Pel99] F. J. Pelletier. A brief history of natural deduction. History and Philosophy
of Logic, 20:1 – 31, 1999.

[RT99] Piotr Rudnicki and Andrzej Trybulec. On equivalents of well-foundedness.
J. Autom. Reasoning, 23(3-4):197–234, 1999.

[Rud92] P. Rudnicki. An overview of the Mizar project. In 1992 Workshop on Types
for Proofs and Programs, pages 311–332. Chalmers University of Technology,
Bastad, 1992.

[RV02] Alexandre Riazanov and Andrei Voronkov. The design and implementation
of VAMPIRE. Journal of AI Communications, 15(2-3):91–110, 2002.

[Sch02] S. Schulz. E – a brainiac theorem prover. Journal of AI Communications,
15(2-3):111–126, 2002.

[SS98] G. Sutcliffe and C.B. Suttner. The TPTP problem library: CNF release
v1.2.1. Journal of Automated Reasoning, 21(2):177–203, 1998.

[Urb03] Josef Urban. Translating Mizar for first order theorem provers. In MKM,
volume 2594 of Lecture Notes in Computer Science, pages 203–215. Springer,
2003.

17

[Urb04] Josef Urban. MPTP - motivation, implementation, first experiments. Jour-
nal of Automated Reasoning, 33(3-4):319–339, 2004.

[Urb05a] Josef Urban. MizarMode - an integrated proof assistance tool for the Mizar
way of formalizing mathematics. Journal of Applied Logic, 2005. forthcom-
ing, available online at http://ktiml.mff.cuni.cz/∼urban/mizmode.ps.

[Urb05b] Josef Urban. MoMM - fast interreduction and retrieval in large
libraries of formalized mathematics. International Journal on Ar-
tificial Intelligence Tools, 2005. forthcoming, available online at
http://ktiml.mff.cuni.cz/∼urban/MoMM/momm.ps.

[Urb05c] Josef Urban. XML-izing Mizar: making semantic processing and pre-
sentation of MML easy. submitted to MKM 2005, available online at
http://ktiml.mff.cuni.cz/∼urban/mizxml.ps, 2005.

[Wei01] C. Weidenbach. Handbook of Automated Reasoning, volume II, chapter
SPASS: Combining Superposition, Sorts and Splitting, pages 1965–2013. El-
sevier and MIT Press, 2001.

[Wie00] Freek Wiedijk. CHECKER - notes on the basic inference step in Mizar.
available at http://www.cs.kun.nl/∼freek/mizar/by.dvi, 2000.

[Wie03] Freek Wiedijk. Comparing mathematical provers. In MKM, volume 2594 of
Lecture Notes in Computer Science, pages 188–202. Springer, 2003.

18

The Arrival of Automated Reasoning

Larry Wos,1

M. Spinks2

1Mathematics and Computer Science Division

Argonne National Laboratory, Argonne, IL 60439

wos@mcs.anl.gov
2Department of Philosophy

La Trobe University, Bundoora, Vic 3083 Australia

mspinksau@yahoo.com.au

Abstract

For some, the object of automated reasoning is the design and implementation
of a program that offers sufficient power to enable one to contribute new and sig-
nificant results to mathematics and to logic, as well as elsewhere. One measure of
success rests with the number and quality of the results obtained with the assis-
tance of the program in focus. A less obvious measure (heavily in focus here) rests
with the ability of a novice, in the domain under investigation, to make significant
contributions to one or more fields of science by relying heavily on a given reasoning
program. For example, if one who is totally unfamiliar with the area of study but
skilled in automated reasoning can discover with an automated reasoning program
impressive proofs, previously unknown axiom dependencies, and far more, then the
field of automated reasoning has indeed arrived. This article details such—how one
novice, with much experience with W. McCune’s program OTTER but no knowl-
edge of the domains under investigation, obtained startling results in the study of
areas of logic that include the BCSK logic and various extensions of that logic.
Among those results was the discovery of a variety weaker than has been studied
from what we know, a variety that appears to merit serious study, as, for example,
does the study of semigroups when compared with that of the study of groups. A
quite different result concerns the discovery of a most unexpected dependency in
two extensions of the BCSK logic.

1 Setting the Stage

When a researcher, who is a master of some field, uses an automated reasoning program
and finds a proof of a significant theorem in said field, applause is more than appropriate.
That success contributes to the mystique of automated reasoning, providing yet one
more bit of evidence that substantial progress has occurred. Evidence of this type exists
that includes studies of K. Kunen [Kun92], D. Phillips [Phi], and J. Belinfante [Bel01].
An expert, if the program in use provides the appropriate means, can give advice,
make enlightened conjectures, and otherwise restrict and direct the program’s attack
in a manner that sharply increases the likelihood of success. For example, through
the use of R. Veroff’s hints strategy [Ver96] or with the resonance strategy [Wos95],

1

one can guide the program toward or away from paths of reasoning. In addition, the
researcher can restrict the program’s attack by instructing it to avoid certain lemmas
and certain types of term (through the use of demodulation) and, most effective, block
the program (with the set of support strategy [WRC65]) from applying inference rules to
sets of hypotheses whose consideration could bury the program in irrelevant conclusions.
Sometimes a paper results, stating clearly that automated reasoning played an important
role, perhaps a vital role. Even better is the case when the paper is published in a journal
devoted to mathematics or to logic rather than to automated reasoning.

In contrast, one might consider the case in which a novice, an amateur, in the field
of study in focus makes important discoveries by relying on a reasoning program. (By a
novice is meant one who knows nothing of the area under investigation, but one who may
know much about automated reasoning.) If the discoveries include impressive proofs,
previously unknown axiom dependencies, and far more, a landmark has been reached,
one that predicts greatness for the future of automated reasoning. This article offers
a story of such discoveries, a story of a novice studying the BCSK logic, as well as
extensions of that logic, with absolutely no knowledge of the fields under study.

At this point, we briefly provide some of the underlying formalism. Recall from
[BP94] that the fixedpoint discriminator on a set A is the function f : A3 → A defined
for all a, b, c in A by

f(a, b, c) = c if a = b

1 otherwise

for some element 1 ∈ A. The element 1 is called the discriminating element. The
fixedpoint discriminator arises naturally in algebraic logic as a generalization of the
ternary discriminator; see, for instance, [BP94].

The generic fixedpoint discriminator variety, in symbols FPD1, is the variety gen-
erated by the class of all algebras 〈A; f, 1〉 of type 〈3, 0〉, where f is the fixedpoint
discriminator on A and 1 is a nullary operation, the range of which is the discriminating
element of f . The 1-assertional logic of FPD1, in symbols S(FPD1, 1), is the conse-
quence relation from sets of terms to terms determined by the equivalence Γ|−S(FPD1,1)φ

if and only if ψ = 1 : ψ ∈ Γ |=FPD1
φ. Since FPD1 is a variety |−S(FPD1,1) and is

both finitary and substitution invariant, and hence is a deductive system in the sense of
Blok and Pigozzi [BP99], our interest in BCSK logic stems from the observation, made
in [BSV], that it is formula equivalent to S(FPD1, 1).

The following nine axioms, for the BCSK logic, initiated the study, where the func-
tions i and j denote strong and weak implication, respectively.

P(i(x,i(y,x))). % A1

P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))). % A2

P(i(i(i(x,y),x),x)). % A3

P(i(x,j(y,x))). % A4

P(i(j(x,j(y,z)),j(j(x,y),j(x,z)))). % A5

P(i(j(x,j(y,z)),j(y,j(x,z)))). % A6

P(i(j(j(x,y),x),x)). % A7

P(i(j(i(x,y),y),j(i(y,x),x))). % A8

P(j(i(x,y),j(x,y))). % A9

2

The nature of the contributions in focus here strongly suggests that automated reasoning
has indeed arrived.

Detailed is the adventure that began with a set of axioms and target theorems
in logic, a collaboration of one expert in that logic with another expert in automated
reasoning—but truly a novice in the logic—and some hard-to-find proofs mostly supplied
by Veroff using his powerful sketches [Ver01] approach. (More generally, an individual
knowing essentially nothing about a field to be studied—but having much knowledge
and experience with a reasoning program in hand—can make significant contributions
to that field. Further, if the corresponding logical formulation is available, one who is a
novice in logic or mathematics can fearlessly seek one valuable proof after another with
the expectation of some or much success by relying on a program that offers a variety
of strategy. At the other end of the spectrum, one who possesses substantial knowledge
of the field to be studied but knows little of automated reasoning can also succeed.) A
novice in the field under study has the advantage of not being trapped by knowledge of
how one typically proceeds (perhaps, implicitly, must proceed) and can, therefore, follow
paths not previously explored. The automated reasoning program has this advantage,
for it knows nothing of any field and lacks bias or orientation—such a program is indeed
a novice. For example, one can instruct the program to totally avoid some type of term
or some lemma that the literature suggests must be relied upon. Such instruction can
lead to most satisfying and wondrous discoveries. Well demonstrated here is the current
state of automated reasoning in that, eventually, (as one learns here) startling results
were obtained.

Our objective was to find “short” proofs, and seeking that objective led to marvelous
and unexpected discoveries, which is the basis of the story to unfold. Not surprising,
especially to the person familiar with the new book Automated Reasoning and the Dis-

covery of Missing and Elegant Proofs [WP03] and the strategies and methodologies it
offers, a number of short proofs were in fact completed. More pertinent to this arti-
cle, unknown axiom dependencies were found, a new concept was formulated—proof

dependence—and a variety was unearthed that may merit serious study. In particular,
by way of a foretaste, of the nine axioms that prompted the original study, two were
proved to be dependent, A3 and A6. These two axioms as well as A7 were shown to be
totally avoidable (even as deduced formulas) for completion of the proofs being sought,
which revealed a promising weaker variety to consider. This variety is axiomatized with
axioms 1, 2, 4, 5, 8, and 9.

When one is introduced to some field of mathematics or logic, one is typically pre-
sented with a set of axioms from which the theorems are deducible. And that is how
this story begins, with nine axioms of the BCSK logic. A glance at the set of axioms
(of the area in focus) often does not readily reveal which, if any, are dependent on the
remaining. For example, if one is introduced to group theory with the axiom set con-
sisting of associativity of product, the existence of a two-sided identity element e, and,
with respect to the identity, a two-sided inverse, one might not immediately see that
dependencies exist among the given five axioms. But, they are present. Indeed, the
axioms of right inverse and right identity are each dependent on the remaining three;
equally, those of left inverse and left identity are dependent.

The proofs of the cited dependencies are well within reach of various automated
reasoning programs or well within reach of the unaided researcher. With W. McCune’s

3

program OTTER, one can simply negate the axiom to be proved dependent, place the
negation in the passive list, place the other axioms in the initial set of support list, and
seek (when the notation is equational) with the inference rule paramodulation a proof
by contradiction, which, at least for group theory, will be in hand almost at once.

Rather than the deducibility from the remaining axioms, the key focus for this article
about dependence is that, at least axiomatically, the dependent item is not needed (in
the input). However, a dependent axiom might still be required to complete one or more
proofs of interest, needed at the deduced level. Here, as one learns, we are concerned
with items that are not needed even at the deduced level, a topic that is featured as
we introduce the notion of proof dependent. For a foretaste of what is to come, we
note that the total avoidance of some thought-to-be indispensable lemma when seeking
to complete a proof of a theorem of substantial interest can be challenging. Because
of the nature of dependence and the importance of axioms, to totally avoid the use of
an independent axiom may be far more challenging and, if successful, may mark the
beginning of a study of a weaker variety (field), as in the case of the study of groups
versus semigroups. Further, when compared with avoiding the use of some lemma,
more interest may rest with the total avoidance of some axiom; after all, axioms are not
typically thought of as lemmas.

The axiom in focus need not be a dependent axiom. For example, we might begin
with a three-axiom system consisting of independent axioms and seek proofs in which
one of the three is selected to be avoided. If we find such proofs, for each of the
corresponding theorems, we say we have established proof dependence, because we have
shown the selected item to be unnecessary. (The term proof dependent is intended to
suggest to one that its establishment for a particular formula or equation depends on
finding an appropriate proof.) When the selected item is an independent axiom and
we are, nevertheless, able to prove one significant theorem after another without its
participation (at the deduced level)—proof dependence is present—then we might be
in the presence of a weaker theory that merits study. For a well-known situation, one
need only consider group theory and its weakening to that of the theory of semigroups,
where certain group-theory axioms are dropped. In this article, by offering proofs that
totally avoid the use of a key independent axiom (A7), we offer a theory (that might
merit study) weaker than the BCSK logic. For extensions of that logic, we found and
offer proofs in which A7 is totally avoided, as well as a proof of its dependence that was
indeed unexpected. These proofs provide powerful evidence that automated reasoning
has arrived and that one with little or no knowledge can find treasure.

A second example, relevant to proof dependency, nicely illustrates one of the limiting
points. Let us consider a logic in which condensed detachment is the only rule of
inference such that the logic is studied in terms of a single axiom A. Let F denote the
formula obtained by applying condensed detachment to two copies of A. Every proof
of length greater than or equal to 1 in this study must have as its first step F. In
other words for proofs of nonzero length, one cannot dispense with F. Therefore, F is
never proof dependent (because it is always needed), regardless of the theorem under
consideration when its proof requires at least one deduced step for its completion.

Hilbert himself might have been interested in proof dependence. Indeed, many of us
learned as students of the famous 1900 lecture by Hilbert in Paris, a talk in which he
offered twenty-three problems for study. As it turns out, a twenty-fourth problem exists,

4

one he said in his notes that he did not have time to adequately formulate for the Paris
lecture. (For that find, thanks goes to R. Thiele [TW02] and his thorough examination
of Hilbert’s notebooks.) That problem focuses on finding simpler proofs. A proof can be
simplified in many ways, including shortening, removing a messy formula or equation,
or avoiding some type of term. Also, pertinent to this article, a proof can be simplified
by avoiding in all senses some axiom; if said axiom is independent, so much the better
and more intriguing. We have a 30-step proof for the dependence of the fifth of the
five Lukasiewicz axioms for his infinite-valued sentential calculus that is simpler than
the original Meredith proof in various ways. For example, it is shorter, and, surprising
to many, it avoids the use of any double-negation terms, terms of the form n(n(t)) for
some term t. (The book citeWos2003b, offers the 30-step proof and many others of its
type and features in detail various refinement methodologies. The book also offers open
questions and challenges, in Chapter 7, that readers may find interesting.)

In the spirit of Hilbert’s twenty-fourth problem is finding a proof that relies on fewer
axioms than that in hand. If, for example, one has a proof P of a theorem T that relies
on a set of axioms that include dependent axioms, and if one removes the dependent
axioms to produce a set S of independent axioms, then there must exist a proof Q from
S of the theorem T . The proof Q is simpler than the proof P in an axiomatic sense.

Of course, the absence of a dependent axiom in a set of hypotheses says nothing
about its absence in a proof obtained from the so-called smaller (independent) axiom
set. In this article, offered is methodology for finding proofs in which the dependent
axioms not only are avoided as hypotheses but also are absent among the deduced steps
of the proof, are, therefore, proof dependent. The inference rule or rules being employed
are taken into account. This article details how such proof-dependent items were found
with substantial aid from OTTER. The method that is given is extended to finding
proof-dependent items even when the axiom in focus is in fact independent. When
one finds that an independent axiom is proof dependent for a number of interesting
theorems, then (as noted) the variety obtained by its omission may merit serious study.
Proofs that avoid reliance on independent axioms might indeed have been of interest to
Hilbert for they are simpler in an important way.

Finally, good fortune, occurring during the search (in the spirit of the new Hilbert
problem) for short proofs, takes center stage as the experiments are discussed that led
to the discovery of certain dependencies among the original nine axioms that in turn
provided the wellspring for the study reported here. Here the article offers proofs that
establish proof dependence for various axioms of the BCSK logic, as well as for some of
its extensions. These proofs support the position that a weaker logic, obtained by the
omission of the axiom A7, might offer unexpected power and interest.

2 A Wellspring for Ideas

The entire article came into being because of an attempt to find pleasing proofs for the
following three theses (theorems), each given in its negated form.

-P(i(i(A,B),j(A,B))) | $ANS(THESIS_1).

-P(j(i(A,B),i(j(B,C),j(A,C)))) | $ANS(THESIS_2).

-P(j(i(B,C),i(j(A,B),j(A,C)))) | $ANS(THESIS_3).

5

The study was based on the nine axioms (for the BCSK logic that were given in Section
1) as hypotheses. (One might find interesting the fact that the first three axioms serve
well for a complete system for the implicational fragment of intuitionistic logic.) Rather
than seeking first proofs—three were in hand from Veroff—the object was to find shorter
proofs, perhaps far shorter. Because of the nature of the first thesis, namely, it plays
the role of a key lemma in a paper under consideration [BSV], the goal was to prove
it by itself. The other main goal was to find a short proof of the join of the other two
theses, 2 and 3.

Of the aspects of the approach to proof refinement with respect to length, two
were prominent. First, we used ancestor subsumption, which causes the program to
compare pairs of paths to a conclusion, preferring the shorter derivation. Second, we
used demodulation to block steps of a proof, one at a time, to prevent their participation.
(Demodulation is typically used for simplification and canonicalization.) By blocking
the use of some given step, the program is forced to seek other paths to a proof—and it
often is a most effective move to make when seeking shorter proofs.

3 Consequences of the Refinement Phase

As we made progress in finding ever shorter proofs, one of them was of particular note.
Specifically, it failed to rely on A3 as a hypotheses. In other words, we had a proof from
a smaller set of axioms, a set in which A3 was omitted.

The next move was to remove A3 from the axioms (by commenting it out in the
initial set of support list). Somewhat later, we had in hand an even shorter proof, one
with a most unexpected property. This proof relied on A3—as a deduced step. OTTER
thus had established A3 to be dependent on the remaining eight of the nine original
axioms. Now one sees why, near the close of Section 1, a reference was made to the
discovery by good fortune of axiom dependencies.

Because we had found a satisfying proof in which A3 was not relied upon as an
axiom, but was relied upon as a deduced step, we decided to seek a proof that totally
avoided its presence—and the concept of proof dependent was born. The approach
chosen, which succeeded, was to block, by demodulating unwanted new conclusions to
“junk”, the retention of A3 when and if it was deduced. OTTER later found a 14-step
proof (which we give) of the dependency of A3, a proof relying on but six of the nine
original axioms, omitting A3 (of course) but also omitting A6 and A7.

Stimulated by the discovery of a dependency within the original set of nine axioms,
we sought to find other dependencies, focusing on A6 perhaps because of its position
within the axiom set. In particular, A3 is the third of the given axioms concerned
exclusively with the function i, and A6 is the third of those concerned almost exclusively
with the function j. Again, our approach was to comment out A6 in the input, and
we found appropriate proofs. We thus knew that A6 was not needed, at the axiomatic
level, to find proofs of the three given theses. Eventually, we had a nice proof of the
first of the three theses in which neither A3 nor A6 was used as an axiom. In that proof
A3 was not present as a deduced step, but A6 was.

We paused before resuming the main journey to seek a nice proof of the dependence
of A6 on seven of the nine original axioms, with A3 not participating. OTTER found

6

one, a proof of length 27 (not given here) relying (as was the case for A3) on but six of
the nine original axioms, omitting totally the use of A3, A6, and A7.

We therefore resumed the main journey, seeking a proof in which A6 was totally
avoided, again relying on demodulating unwanted formulas to junk. The various at-
tempts failed, which (in effect) brings us to the methodology that was promised for this
article.

To put all in perspective, a review is in order. OTTER had succeeded in completing
satisfying short proofs of the dependency of both A3 and A6 on the remaining seven
axioms of the nine that prompted the study. We had a proof in which A3 participated
in no way, A6 was not relied upon as an axiom, but A6 was present as a deduced step.
Further, all attempts at completing a proof in which A6 was totally absent and all of the
other given conditions were met had failed—with the numerous standard approaches we
take.

We were thus forced to depart from our usual practice, that of paying little or
no attention (in the vast majority of studies) to the actual proofs themselves. More
precisely, our typical approach does not call for a close examination of a completed
proof, in detail or as a whole. Instead, we rely on years of experimentation for a feel
for which options and which values, if assigned to parameters, are likely to enable the
program to complete a given assignment. In other words, we have found that the
reading of a proof usually sheds little or no light on how one might proceed to refine
it. Instead, such a reading can play a role in the formulation of new strategies and new
methodologies that apply to many areas.

The so-to-speak forced inspection of the proof in hand that was the focus of attention
showed that A6 was used as a parent for only one formula that followed its derivation.
In that none of the standard approaches had enabled OTTER to find the sought-after
proof, the obvious conjecture asserts that a number of steps greater than 1 might be
needed to obtain the child of A6, where the formula A6 was not allowed to participate.
Indeed, intuitively, removing one of the two parents of a deduced conclusion, especially
when the removed parent is itself a deduced conclusion late in a proof—in the case under
discussion, the 46th step in a 53-step proof—can cause havoc. Our choice was to invoke
the use of the command set(sos queue) to cause OTTER to conduct a breadth-first
search for a proof of the child of A6. We placed in the initial set of support (in addition
to the axioms A1, A2 A4, A5, A7, A8, and A9) the first 45 deduced steps of the proof in
hand up to but not including A6. The target, negated and placed in list(passive), was
the child of A6. (The approach we took is indeed reminiscent of the cramming strategy
[Wos03], a strategy that enables the program to force or cram formulas in the initial set
of support into the desired proof.) Just for total clarity, with almost certainty, additional
deduced steps would be needed. After a thorough level-saturation search through level
1, at level 2 the desired proof of the child of A6 was completed, a proof of length 2.

We pause briefly to note that the approach just given would have merited use even if
A6 had been the parent of more than one formula that followed its derivation. Iteration
would be the way to proceed. One would proceed as we did but now with the negation
of the first child of A6 placed in list(passive) with the goal of obtaining the needed
proof that culminates with the derivation of the first child and without allowing A6 to
participate in any manner. Then one would amend further the list(sos) with the new
proof steps (that led to the derivation of the first child of A6 without A6 participating),

7

as well as proof steps of the original proof preceding the second child and not dependent
on A6, and used as target the second child, placing its negation in list(passive), now
with the goal of deriving the second child and with the given constraints. One would
proceed in this manner, gathering proof steps along the way, until the last child of A6
was proved. Of course, the method we are presenting is useful when the goal is to avoid
any unwanted formula or equation and replace its role by other formulas or equations,
whether establishing proof dependence is the intention or not.

We had the components that almost guaranteed we could complete a proof that
avoided the use of A3 and A6 as axioms and, more important in the context of proof
dependence, avoided the use of those two formulas even as deduced steps. To enable
OTTER to return the proof of interest, we placed in the initial set of support the original
nine axioms but with A3 and A6 commented out. In list(passive), we still placed the
negation of thesis 1 and, for monitoring purposes, the negations, respectively, of thesis 2
and thesis 3. In list(usable), we placed the two rules for condensed detachment, one for
the function i and one for the function j, and the negation of the join of theses 2 and
3. To ensure that both A3 and A6 would not participate in any proof, we included the
following.

list(demodulators).

(P(i(i(i(x,y),x),x)) = junk). % A3

(P(i(j(x,j(y,z)),j(y,j(x,z)))) = junk). % A6

(i(x,junk) = junk).

(i(junk,x) = junk).

(j(x,junk) = junk).

(j(junk,x) = junk).

(P(junk) = $T).

end_of_list.

The crucial move directed OTTER to the proof we expected it to find, a proof
quite like that which relied on both A6 as a deduced clause and exactly one of its
children. Throughout the experiments, we had relied upon the use of resonators to
direct the program’s search for one or more proofs. A resonator [Wos95] is a formula or
an equation that does not itself take on the value true or false. Instead, its functional
pattern is the key, where all variables within a resonator are treated as indistinguishable
from each other, just denoting that a variable occurs in the corresponding position, and
where the value assigned to a resonator reflects its conjecture importance (the smaller
the value, the higher the priority given to similar deduced items). For the resonators
intended to guide the program to the expected goal, we used the set that had led to the
proof relying on A6, and, to enable the program to find the newer proof (not depending
on A6) of the child of A6, we included the two resonators that corresponded to the proof
found with level saturation.

As expected, OTTER was successful, and we had established both A3 and A6 proof
dependent and, of course, not relying on either at the axiomatic level. We immediately
attempted to further prune the original nine with regard to axiom dependencies and,
more relevant to this article, seek proofs establishing additional proof dependence than
that in hand. We did not expect that A1, A2, A4, or A5 would extend what we had in
hand so far, in part because they appeared to be vital. However, A7 did look promising.

8

Therefore, we began a study with A7 commented out, as well as A3 and A6 not accessible
as axioms or as deduced formulas.

The capture was quickly made: we had proofs in which neither A3 nor A6 nor A7
was present, as an axiom or as a deduced formula. We therefore turned to an attempt
to prove A7 dependent on but six of the nine axioms. The experiment failed. Z. Ernst
came to the rescue—or perhaps rescue is the wrong word in that we would have preferred
A7 to be dependent—finding the following three-element model (with Mace4; see the
Web www.mcs.anl.gov/AR/mace4) showing that A7 is in fact independent of the six.

-------- Model 1 at 0.01 seconds --------

a : 1

b : 2

i :

| 0 1 2

--+------

0 | 0 1 2

1 | 0 0 2

2 | 0 1 0

j :

| 0 1 2

--+------

0 | 0 1 2

1 | 0 0 2

2 | 0 0 0

P :

0 1 2

1 0 0

-------- end of model --------

Nevertheless, we now had in hand an example of an extension of the original concept
of proof dependence in that we had considered an independent axiom. Specifically,
although A7 is in fact independent, we had in hand proofs establishing each of A3, A6,
and A7 to be proof dependent, with A3, A6, and A7 absent from the axiom system. We
were thus ready for a serious effort at proof refinement in the context of length, within
the given constraints, seeking “short” proofs of thesis 1, the join of theses 2 and 3, the
dependence of A3, and the dependence of A6.

9

4 Pleasing Proofs

Our main effort in the context of proof refinement was aimed at proof shortening;
shorter proofs are usually more pleasing than longer. As noted earlier, of the various
aspects that can be brought to bear, two played the key role: ancestor subsumption
and demodulation (to block the retention of conclusions one classes as unwanted). In
particular, we took each proof in hand and instructed OTTER to block its steps one
at a time, forcing it to seek a somewhat different proof, occasionally a sharply different
proof. One might immediately conjecture that a direct attack on finding shorter proofs
is in order, some type of exhaustive search, for example. The task cannot be so subtle,
or can it?

Of course, one would prefer applying an algorithm that simply seeks and finds the
shortest proof that exists for any given theorem and given axiom set. Studies of more
than a decade prove (to me) that such an algorithm in many, many cases does not exist.
Further, an unexpected obstacle (illustrating the cited subtlety) exists when seeking a
proof shorter than that in hand. The following aphorism (found in some books and
papers) nicely captures the obstacle. “Shorter subproofs do not necessarily a shorter
total proof make.” For the curious, how can this aphorism hold? An example is in
order.

Let us consider a proof of, say, 20 steps in which the tenth step is proved by using
steps 6 through 9. In other words, the length of the subproof concluding with step 10
is five. Now let us assume that OTTER or some person finds a proof of 10 that relies
on 6a and 8a, a proof of length three. With ancestor subsumption in use, the program
will prefer this second derivation because its length is three rather than five. A program
or a person might then attempt to complete a proof relying on the three-step shorter
subproof, with the expectation that the total proof (of step 20) will clearly be shorter.
Such may not occur, for example, in the event that steps 6 through 9 play a vital role
in the twenty-step proof. If a proof is completed that uses the cited three steps (of the
shorter subproof), the resulting proof may have length at least 22—and far worse may
occur.

Our efforts were indeed rewarded, as seen with the following proofs.
The given proofs are the shortest, for their respective conclusions, we have been able

to complete. (For the curious, we note that the inference rule regarding the function i

can be dispensed with; it is a derived inference rule. Its inclusion enables the program
to find shorter proofs. In the presence of A1, A2, A4, A5, A8, and A9, OTTER finds
a two-step proof showing that the corresponding clause is dependent. With the cited
axiom system and the derived inference rule present, OTTER finds a 14-step proof
showing A3 to be dependent; when the derived inference rule is removed, the best proof
we have found has length 20.)

A 14-Step Proof of the Dependency of A3

----- Otter 3.3d, April 2004 -----

The process was started by wos on jaguar.mcs.anl.gov,

Thu May 27 10:43:03 2004

The command was "otter". The process ID is 31886.

----> UNIT CONFLICT at 0.02 sec ----> 150 [binary,149.1,17.1] $ANS(a3).

10

Length of proof is 14. Level of proof is 10.

---------------- PROOF ----------------

6 [] -P(i(x,y)) | -P(x) | P(y).

7 [] -P(j(x,y)) | -P(x) | P(y).

9 [] P(i(x,i(y,x))).

10 [] P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))).

11 [] P(i(x,j(y,x))).

12 [] P(i(j(x,j(y,z)),j(j(x,y),j(x,z)))).

13 [] P(i(j(i(x,y),y),j(i(y,x),x))).

14 [] P(j(i(x,y),j(x,y))).

17 [] -P(i(i(i(a1,a2),a1),a1)) | $ANS(a3).

24 [hyper,6,9,9] P(i(x,i(y,i(z,y)))).

38 [hyper,6,10,10] P(i(i(i(x,i(y,z)),i(x,y)),i(i(x,i(y,z)),i(x,z)))).

40 [hyper,6,10,24] P(i(i(x,y),i(x,i(z,y)))).

41 [hyper,6,10,9] P(i(i(x,y),i(x,x))).

46 [hyper,7,14,40] P(j(i(x,y),i(x,i(z,y)))).

58 [hyper,6,38,41] P(i(i(x,i(x,y)),i(x,y))).

97 [hyper,7,14,58] P(j(i(x,i(x,y)),i(x,y))).

115 [hyper,6,13,97] P(j(i(i(x,y),x),x)).

120 [hyper,6,11,115] P(j(x,j(i(i(y,z),y),y))).

124 [hyper,6,12,120] P(j(j(x,i(i(y,z),y)),j(x,y))).

129 [hyper,7,124,46] P(j(i(i(i(x,y),z),y),i(x,y))).

138 [hyper,7,124,129] P(j(i(i(i(i(x,y),x),z),x),x)).

144 [hyper,6,13,138] P(j(i(x,i(i(i(x,y),x),z)),i(i(i(x,y),x),z))).

149 [hyper,7,144,9] P(i(i(i(x,y),x),x)).

5 Extending the Logic

At this point, one might ask about the power of the abbreviated axiom set consisting
of A1, A2, A4, A5, A8, and A9. For example, with A3 and A6 and A7 omitted, can we
prove significant theorems when the logic is extended by adjoining yet another axiom
of interest or by adjoining a set of axioms focusing on different functions? Obviously,
the omission of both A3 and A6 presents no problem at the axiomatic level in that
they have been proved dependent on the set consisting of A1, A2, A4, A5, A8, and A9.
However, as noted, A7 is independent of that set. Further, perhaps A3 or A6 or both
will be needed at the deduced level, and A7 will be needed at the axiomatic level or at
the deduced level.

With the following formula, A10, we have such an extended logic, BCSK+.

P(i(j(j(x,y),y),j(j(y,x),x))). % A10

An interesting theorem to prove is captured, in its negated form, with the following
clause; the formula to be proved is equivalent to A10, and the proof found by OTTER
avoids totally A3, A6, and A7.

11

-P(i(j(A,B),i(A,B))) | $ANS(thm).

To complete proof of the equivalence, OTTER found an 18-step proof that deduces A10
from the following formula in clause notation, and, again, a proof completely free of
reliance on A3, A6, and A7.

P(i(j(x,y),i(x,y))).

An appropriate move to test the power of the abbreviated axiom system, now con-
sisting of seven axioms with the cited addition of A10, is to give OTTER an input file
whose initial set of support consists of the seven axioms. The demodulator list contains
equalities that, respectively, block the retention of A3, A6, and A7 if and when each is
deduced. After all, for example, A7 might now be dependent on the seven-axiom sys-
tem. From Veroff, we had in hand a 42-step proof of the theorem under consideration to
initiate the study, a proof that does depend on the three axioms we intended to avoid,
(at both the axiomatic and deduced levels). The original goal was to shorten that proof.
More pertinent from the viewpoint of this article, we sought to find a proof establishing
each of A3, A6, and A7 to be proof dependent simultaneously.

All went smoothly, with the discovery of a 23-step proof. In examining the proof, we
observed that the added axiom, A10, is used but once. This observation caused us to
ask about the independence of A7 in this extended logic. After all, perhaps the use of
the added axiom (A10) leads to a proof of the dependence of A7. Therefore, we turned
after a short time to studying this possible dependence. Is A7 independent or dependent
in the extended logic? The effort paid off: OTTER found a proof of dependence, the
following in which both A3 and A6 are totally absent.

A 24-Step Proof of the Dependence of A7

----- Otter 3.3g-work, Jan 2005 -----

The process was started by wos on jaguar.mcs.anl.gov,

Tue Mar 8 16:10:03 2005

The command was "otter". The process ID is 4337.

----> UNIT CONFLICT at 0.13 sec ----> 679 [binary,678.1,17.1] $ANS(a7).

Length of proof is 24. Level of proof is 11.

---------------- PROOF ----------------

1 [] -P(i(x,y)) | -P(x) | P(y).

2 [] -P(j(x,y)) | -P(x) | P(y).

5 [] P(i(x,i(y,x))).

6 [] P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))).

7 [] P(i(x,j(y,x))).

8 [] P(i(j(x,j(y,z)),j(j(x,y),j(x,z)))).

9 [] P(i(j(i(x,y),y),j(i(y,x),x))).

10 [] P(j(i(x,y),j(x,y))).

11 [] P(i(j(j(x,y),y),j(j(y,x),x))).

17 [] -P(i(j(j(a1,a2),a1),a1)) | $ANS(a7).

12

57 [hyper,1,6,6] P(i(i(i(x,i(y,z)),i(x,y)),i(i(x,i(y,z)),i(x,z)))).

58 [hyper,1,5,6] P(i(x,i(i(y,i(z,u)),i(i(y,z),i(y,u))))).

59 [hyper,1,6,5] P(i(i(x,y),i(x,x))).

61 [hyper,1,5,7] P(i(x,i(y,j(z,y)))).

69 [hyper,2,10,5] P(j(x,i(y,x))).

80 [hyper,1,6,58] P(i(i(x,i(y,i(z,u))),i(x,i(i(y,z),i(y,u))))).

83 [hyper,1,57,59] P(i(i(x,i(x,y)),i(x,y))).

93 [hyper,1,7,69] P(j(x,j(y,i(z,y)))).

124 [hyper,1,80,5] P(i(i(x,y),i(i(z,x),i(z,y)))).

127 [hyper,2,10,83] P(j(i(x,i(x,y)),i(x,y))).

136 [hyper,1,8,93] P(j(j(x,y),j(x,i(z,y)))).

188 [hyper,1,6,124] P(i(i(i(x,y),i(z,x)),i(i(x,y),i(z,y)))).

198 [hyper,1,9,127] P(j(i(i(x,y),x),x)).

288 [hyper,1,188,61] P(i(i(j(x,y),z),i(y,z))).

344 [hyper,1,288,11] P(i(x,j(j(x,y),y))).

395 [hyper,2,10,344] P(j(x,j(j(x,y),y))).

398 [hyper,1,124,344] P(i(i(x,y),i(x,j(j(y,z),z)))).

550 [hyper,1,8,395] P(j(j(x,j(x,y)),j(x,y))).

564 [hyper,1,398,288] P(i(i(j(x,y),z),j(j(i(y,z),u),u))).

615 [hyper,1,11,550] P(j(j(j(x,y),x),x)).

618 [hyper,2,198,564] P(j(j(i(x,y),x),x)).

632 [hyper,2,136,615] P(j(j(j(x,y),x),i(z,x))).

650 [hyper,1,11,618] P(j(j(x,i(x,y)),i(x,y))).

678 [hyper,2,650,632] P(i(j(j(x,y),x),x)).

A second and more intriguing extension of the original logic, SBPC, was studied with
the goal of determining the need, at the deduced level, of A3, A6, and A7. For the study,
we began again with the now so-to-speak famous six axiom system, that consisting of
A1, A2, A4, A5, A8, and A9, and adjoined the following six axioms (expressed in clause
notation), where the function a denotes logical and and the function o denotes logical
or.

P(j(x,o(x,y))). % A11

P(i(y,o(x,y))). % A12

P(j(j(x,z),j(j(y,z),j(o(x,y),z)))). % A13

P(i(a(x,y),x)). % A14

P(j(a(x,y),y)). % A15

P(i(i(x,y),i(i(x,z),i(x,a(y,z))))). % A16

In this extended logic, we attempted to find proofs, preferably short ones, of the following
four theorems, each given in its negated form, and, as one might predict, we sought
proofs in which A3, A6, and A7 are totally absent.

-P(j(i(A,B),i(o(A,C),o(B,C)))) | $ANS(1).

-P(j(i(A,B),i(o(C,A),o(C,B)))) | $ANS(2).

-P(j(i(A,B),j(i(B,A),i(a(A,C),a(B,C))))) | $ANS(3).

-P(j(i(A,B),i(a(C,A),a(C,B)))) | $ANS(4).

13

We began the study of the four theorems with proofs supplied by Veroff, obtained by
him using his powerful technique called sketches. Perhaps because of the goal of finding
appropriate proofs, four of them, establishing proof dependence for the three unwanted
axioms, we were unable to complete the studies until we relied on a 92-step proof that
deduced (without using A3 in any way) a (former) child of A3. In other words, the earlier
studies of proof dependence came into play, enabling us (and OTTER) to overcome an
obstacle. Success eventually was the result. OTTER returned a 53-step proof of the
first of the four theorems, a 64-step proof of the second, a 104-step proof of the third
and a 99-step proof of the fourth. Many experiments were required, as well as much use
of refinement methodology detailed in the book [WP03]. The last significant reductions
in proof length (of the proofs of the third and fourth theorems) were obtained by heavy
reliance on cramming. Briefly, OTTER was given proofs of steps near the end of the
proofs in hand and asked to (in effect) force their proof steps into (we hoped) shorter
proofs of the targets.

The discovery that A7 is dependent in the BCSK+ logic (obtained by adding A10
to the original nine axioms, then removing any use of A3 and A6) led us to consider the
possibility that that formula is dependent in this second extension of the BCSK logic.
Indeed, would it not be more than piquant to find that A7 is independent in the original
study and then find it dependent in two extensions of the logic? And, as the following
proof shows—the shortest so far discovered—that is exactly what was found.

A 35-Step Proof of the Dependence of A7 in a Second Extension

----- Otter 3.3g-work, Jan 2005 -----

The process was started by wos on theorem.mcs.anl.gov,

Sun Mar 20 12:31:56 2005

The command was "otter". The process ID is 20352.

----> UNIT CONFLICT at 0.09 sec ----> 904 [binary,903.1,24.1] $ANS(a7).

Length of proof is 35. Level of proof is 20.

---------------- PROOF ----------------

10 [] -P(i(x,y)) | -P(x) | P(y).

11 [] -P(j(x,y)) | -P(x) | P(y).

12 [] P(i(x,i(y,x))).

13 [] P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))).

14 [] P(i(x,j(y,x))).

15 [] P(i(j(x,j(y,z)),j(j(x,y),j(x,z)))).

16 [] P(i(j(i(x,y),y),j(i(y,x),x))).

17 [] P(j(i(x,y),j(x,y))).

18 [] P(j(x,o(x,y))).

19 [] P(i(y,o(x,y))).

20 [] P(j(j(x,z),j(j(y,z),j(o(x,y),z)))).

24 [] -P(i(j(j(a1,a2),a1),a1)) | $ANS(a7).

130 [hyper,10,13,13] P(i(i(i(x,i(y,z)),i(x,y)),i(i(x,i(y,z)),i(x,z)))).

14

133 [hyper,10,12,14] P(i(x,i(y,j(z,y)))).

135 [hyper,10,12,15] P(i(x,i(j(y,j(z,u)),j(j(y,z),j(y,u))))).

138 [hyper,11,17,16] P(j(j(i(x,y),y),j(i(y,x),x))).

139 [hyper,11,17,15] P(j(j(x,j(y,z)),j(j(x,y),j(x,z)))).

140 [hyper,11,17,14] P(j(x,j(y,x))).

142 [hyper,11,17,12] P(j(x,i(y,x))).

180 [hyper,10,130,133] P(i(i(x,i(j(y,x),z)),i(x,z))).

197 [hyper,11,140,140] P(j(x,j(y,j(z,y)))).

244 [hyper,10,180,135] P(i(j(x,y),j(j(z,x),j(z,y)))).

285 [hyper,11,17,244] P(j(j(x,y),j(j(z,x),j(z,y)))).

290 [hyper,10,244,142] P(j(j(x,y),j(x,i(z,y)))).

298 [hyper,10,15,285] P(j(j(j(x,y),j(z,x)),j(j(x,y),j(z,y)))).

347 [hyper,11,298,197] P(j(j(j(x,y),z),j(y,z))).

362 [hyper,11,285,347] P(j(j(x,j(j(y,z),u)),j(x,j(z,u)))).

371 [hyper,11,347,138] P(j(x,j(i(x,y),y))).

416 [hyper,11,362,139] P(j(j(x,j(y,z)),j(y,j(x,z)))).

449 [hyper,11,285,371] P(j(j(x,y),j(x,j(i(y,z),z)))).

488 [hyper,11,416,416] P(j(x,j(j(y,j(x,z)),j(y,z)))).

506 [hyper,11,416,138] P(j(i(x,y),j(j(i(y,x),x),y))).

559 [hyper,11,449,18] P(j(x,j(i(o(x,y),z),z))).

584 [hyper,11,139,488] P(j(j(x,j(y,j(x,z))),j(x,j(y,z)))).

603 [hyper,11,506,19] P(j(j(i(o(x,y),y),y),o(x,y))).

604 [hyper,11,506,14] P(j(j(i(j(x,y),y),y),j(x,y))).

657 [hyper,11,584,559] P(j(x,j(i(o(x,y),j(x,z)),z))).

681 [hyper,11,416,657] P(j(i(o(x,y),j(x,z)),j(x,z))).

698 [hyper,11,603,681] P(o(x,j(x,y))).

709 [hyper,11,488,698] P(j(j(x,j(o(y,j(y,z)),u)),j(x,u))).

727 [hyper,11,709,140] P(j(x,x)).

738 [hyper,11,20,727] P(j(j(x,y),j(o(y,x),y))).

767 [hyper,11,709,738] P(j(j(j(x,y),x),x)).

814 [hyper,11,285,767] P(j(j(x,j(j(y,z),y)),j(x,y))).

845 [hyper,11,814,604] P(j(j(i(j(j(x,y),x),x),x),x)).

851 [hyper,11,814,290] P(j(j(j(i(x,y),z),y),i(x,y))).

903 [hyper,11,851,845] P(i(j(j(x,y),x),x)).

For the curious, the first study yielded a 39-step proof, a proof that the usual methods
were unable to improve upon. However, with a most unsophisticated form of cramming,
the given 35-step proof was found. In particular, rather than relying on a subproof
of one of the late steps, OTTER was merely given the first 34 steps of the 39-step
proof and told to apply level saturation. In other words, no attention was paid to the
possible presence of steps among the thirty-four that were not used in the proof of the
thirty-fourth step.

15

6 Summary

In this article, we have extended the notion of axiom dependence to one of proof de-

pendence. Briefly, a formula or equation is proof dependent if it can be dispensed with,
even as a deduced item; in other words there exists at least one proof that shows the
item to be totally unnecessary. The new term, proof dependent, was chosen because
of the nature of a dependent axiom, namely, one that is unnecessary at the so-called
input level (from the viewpoint of automated reasoning). We have given methodology
for finding an appropriate proof, one that completely avoids the use of some selected
item, even when the item is in fact an independent axiom.

We have included various proofs discovered with indispensable aid from McCune’s
OTTER, the shortest proofs that we could discover, given the conditions to be satisfied.
Such conditions included total avoidance of one or more items. Among our successes
was the discovery of various axiom dependencies. In two of the three logics we studied,
both extensions of the BCSK logic, we found (most unexpectedly) that a key axiom,
A7, is dependent, although it is independent among the axioms for BCSK.

Acknowledgments

*This work was supported in part by the Mathematical, Information, and Computa-
tional Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract W-31-109-Eng-
38.

References

[Bel01] J. Belinfante. Computer assisted proofs in set theory, 2001. Web site
http://www.math.gatech.edu/∼belinfan/research/autoreas/index.html.

[BP94] W. J. Blok and D. Pigozzi. On the structure of varieties with equationally
definable principal congruences III. Algebra Universalis, 32:545–608, 1994.

[BP99] W. J. Blok and D. Pigozzi. Algebraisable logics. Mem. Amer. Math. Soc.,
77, 1999.

[BSV] R. J. Bignall, M. Spinks, and R. Veroff. On the assertional logics of the generic
pointed discriminator and generic pointed fixedpoint discriminator varieties.
Preprint, 2003.

[Kun92] K. Kunen. Single axioms for groups. J. Automated Reasoning, 9:291–308,
1992.

[Phi] J. D. Phillips. Private Communication, Argonne Workshop on Automated
Reasoning and Deduction (AWARD), 2003.

[TW02] R. Thiele and L. Wos. Hilbert’s twenty-fourth problem. J. Automated Rea-

soning, 29(1):67–89, 2002.

16

[Ver96] R. Veroff. Using hints to increase the effectiveness of an automated reasoning
program: Case studies. J. Automated Reasoning, 16(3):223–239, 1996.

[Ver01] R. Veroff. Solving open questions and other challenge problems using proof
sketches. J. Automated Reasoning, 27(2):175–199, 2001.

[Wos95] L. Wos. The resonance strategy. Computers and Mathematics with Applica-

tions, 29(2):133–178, 1995.

[Wos03] L. Wos. The strategy of cramming. J. Automated Reasoning, 30(2):179–204,
2003.

[WP03] L. Wos and G. W. Pieper. Automated Reasoning and the Discovery of Missing

and Elegant Proofs. Rinton Press, Paramus, N.J., 2003.

[WRC65] L. Wos, G. Robinson, and D. Carson. Efficiency and completeness of the set
of support strategy in theorem proving. J. ACM, 12:536–541, 1965.

17

Tau: A Web-Deployed Hybrid Prover for First-Order Logic

with Identity,

with Optional Inductive Proof

Jay Halcomb, Randall R. Schulz
H&S Information Systems

http://hsinfosystems.com

mailto:hsis@hsinfosystems.com

April 29, 2005

Abstract

We outline Tau, a practical and extensible hybrid theorem prover for first-order
predicate calculus with identity. Tau is flexible and user-configurable, accepts the
KIF Language, is implemented in Java, and has multiple user interfaces. Tau com-
bines rule-based problem rewriting with Model Elimination, uses Brand’s Modifica-
tion Method to implement identity, and accepts user-configurable heuristic search
to speed the search for proofs. Tau optionally implements mathematical induction.
Formulas are input and output in KIF or infix FOPC, and other external forms
can be added. Tau can be operated from a Web interface or from a command-line
interface. Tau is implemented entirely in Java and can run on any system for which
a current Java Virtual Machine is available.

Keywords: automated theorem proving (ATP), first-order logic (FOL), hybrid
prover, Knowledge Interchange Format (KIF), web-based, interactive, model elimi-
nation (ME), resolution, rewriting, Java.

1 Introduction: How Tau Works

Consider the remarks of [Bachmair and Ganzinger, 1998] in the Handbook of Auto-
mated Reasoning, “Resolution Theorem Proving”:

“It has been pointed out that a weakness of resolution is its lack of goal ori-
entation. Simplification and clause elimination based on redundancy helps ameliorate
the problem, but one might also consider possible combinations of resolution with such
goal-oriented methods as the sequent calculus or semantic tableaux. Semantic tableaux
and variants thereof, including the Davis-Putnam method, model elimination and SL-
resolution can be viewed as tree-like theorem proving process in which the limits of the
individual branches are saturated under (ordered) resolution with selection. This view
may serve as a basis for further investigations of the combination problem.”
P. 94, Vol. 1, emphasis added.

1

http://hsinfosystems.com
mailto:hsis@hsinfosystems.com

Figure 1: Initial Tau Screen

That was the spirit with which we approached the Tau project. It is perhaps as
difficult to induce a computer to ‘reason logically’ as it is to induce a human to do so,
but with the Tau theorem prover and knowledge base (eventually we hope Tau to be
a formal theory repository), we are aiming to produce the first interactive, easy-to-use,
and comprehensive prover of its kind on the Internet. Tau is sound and theoretically
complete for the First Order Predicate Calculus with Identity – a phrase which can
cover a multitude of sins, due to the general undecidability of FOPC. Tau’s syntax is
full FOPC with sentential constants, relation symbols, function symbols, complex terms,
and identity.

What you can presently do with Tau: test the FOL validity of symbolic formulas;
test the FOL validity of formal arguments (derive a conclusion from premises); normalize
formulas – command line interface only at this time;construct a formal FOPC theory and
make deductions from it. Examples already constructed include: theorems in Presburger
and Peano arithmetic, both with and without mathematical induction; theorems in the
theory of commutative ordered fields; theorems in graph theory.

Tau’s initial screen is shown in Figure 1. Use of Tau is quite simple: well-formed
formulas of KIF can be typed or pasted into the browser window. Then (after perhaps
selecting an option check box) press ‘Prove’.

Tau is written in the Java programming language ([Sun Microsystems]). Its Web in-
terface uses the Tomcat servlet container ([Apache Jakarta Project]). The user interface
of the browser version of Tau is implemented in HTML and CSS using a forms-based
submission. The primary proof procedure employed by Tau is Loveland’s well-known
Model Elimination algorithm ([Loveland, 1968], [Loveland, 1969], and [Loveland, 1978])

2

Figure 2: An Example of Rewriting

augmented with a selectable variety of search algorithms, including heuristic search
guided by a user-supplied heuristic ranking function.

Prior to submission to the Model Elimination algorithm, problems are optionally
subjected to a process of rewriting, in which the original conclusion is rewritten into
logically equivalent formulas that are more tractable. The rewriting process is recursive
in the sense that the result of a rewriting may itself be rewritten further. When the
problem submitted includes use of the identity predicate, the Model Elimination prover
stage applies the necessary transformations, using a variant of Brand’s Modification
Method [Brand, 1975].

Tau is intended for experimentation and educational use. Tau can be used as a proof
assistant and as a teaching aid.

Note: The URLs for test cases mentioned in this paper refer to a shared, commercial
Internet hosting server with limited computational resources. As a result, problems run
slowly there. Full performance of Tau can be witnessed on a dedicated host. Interested
parties should contact the authors at their email address for access to this host. Also,
note that in some test cases we have not sought to supply the shortest proof (from
fewest premises), but we have tested the prover’s ‘discernment’ by supplying unneeded
premises.

3

Tau proofs are based upon proof-by-contradiction using a linear restriction of reso-
lution invented by Loveland called Model Elimination. Tau’s implementation of Model
Elimination also incorporates (by default) the so-called Set-of-Support restriction, in
which the contradiction sought in the indirect proof must exist between the negated
conclusion and the premises or within the negated conclusion itself. Tau proof displays,
being based upon proof-by-contradiction using a resolution (Model Elimination) strat-
egy, are not informative in the way a natural deduction style of presentation is. We
intend later to expose in a more natural way some N.D. proof structure, and to provide
further aid to using Tau as a semi-automated proof assistant. We do presently display
some of the initial rewriting techniques used (see Figure 2).

Tau can prove either valid theorems or arguments. Other examples with which to
try Tau are at the URLs:

T260 http://www.hsinfosystems.com/taujay/doc/samples/tests/T260.jsp

T265 http://www.hsinfosystems.com/taujay/doc/samples/tests/T265.jsp

T327 http://www.hsinfosystems.com/taujay/doc/samples/tests/T327.jsp

HOH http://www.hsinfosystems.com/taujay/doc/samples/HeadOfAHorse.jsp

AssocAdd http:
//www.hsinfosystems.com/taujay/doc/samples/PrA.web/AssocAdd.html

We’ve been using theorems from [Kalish and Montague, 1964], (through the chapter
on identity) for many of our basic tests. The entire test directory (containing over 250
tests) is at:
http://www.hsinfosystems.com/taujay/doc/samples/testsJSP.html.

2 Tau and the KIF Language

Typical KIF looks like:

(<=>
(exists ?Y
(and
(forall ?X (<=> (f ?X) (= ?X ?Y)))
(g ?Y)))

(and
(exists ?Y
(forall ?X (<=> (f ?X) (= ?X ?Y))))

(forall ?X (=> (f ?X) (g ?X)))))

You can run a Tau proof of this theorem by clicking ‘Prove’ at:

http://www.hsinfosystems.com/taujay/doc/samples/tests/T324.jsp

4

http://www.hsinfosystems.com/taujay/doc/samples/tests/T260.jsp
http://www.hsinfosystems.com/taujay/doc/samples/tests/T265.jsp
http://www.hsinfosystems.com/taujay/doc/samples/tests/T327.jsp
http://www.hsinfosystems.com/taujay/doc/samples/HeadOfAHorse.jsp
http://www.hsinfosystems.com/taujay/doc/samples/PrA.web/AssocAdd.html
http://www.hsinfosystems.com/taujay/doc/samples/PrA.web/AssocAdd.html
http://www.hsinfosystems.com/taujay/doc/samples/testsJSP.html.
http://www.hsinfosystems.com/taujay/doc/samples/tests/T324.jsp

After running that test you will see the trace of Tau’s proof of the theorem. That
page will show a verbose trace of Tau’s actions in proving this theorem, displaying how
the theorem was broken down into sub-proofs and how the formulas were rewritten and
normalized to facilitate the proof. More concise proof display options are also available
from running Tau in a command line mode.

KIF (Knowledge Interchange Format) is essentially a parenthesized prefix version of
common first-order logical notation, which largely emanates from environs of Stanford
University; KIF is also a part of the ISO (International Organization for Standard-
ization) [Common Logic Standard] effort. Being a prefix form, it is efficient for many
computer applications and for that reason we adopted KIF as Tau’s first internal lan-
guage. Tau also has an infix syntax which is consistent with typical conventions used in
ASCII computer settings. Both of these concrete syntaxes are intended for situations
where no special logic symbols are available. Our architecture admits unlimited addi-
tional concrete syntaxes, including those which include proper mathematical and logical
symbology such as TeX or MathML; we intend to incorporate graphical notations and
I/O into Tau.

Tau accepts both a prefix version of FOL, called KIF (Knowledge Interchange For-
mat), and a related infix form of FOL. Tau KIF is a Lisp-like, S-Expression prefix syntax
based on the KIF 3 standard. Details of KIF 3 are available at the Knowledge In-
terchange Format home page, http://ksl-web.stanford.edu/knowledge-sharing/
kif/. An HTML conversion of the TeX original from the preceding page is here:
http://logic.stanford.edu/kif/Hypertext/kif-manual.html.

Variables in KIF are preceded by a ‘?’; individual constants, predicates, relations,
and functions may be a single alphabetic character or a string of such. Computer
generated individual constants appearing in our proofs are preceded by a ‘$’.

For further details, please see:

Knowledge Interchange Format (KIF) An HTML conversion of the TeX original
from the preceding page http://www-ksl.stanford.edu/knowledge-sharing/
kif/

Knowledge Interchange Format, dpAns http://logic.stanford.edu/kif/dpans.
html

Knowledge Interchange Format http://logic.stanford.edu/kif/specification.
html

3 The Logical Theory of Tau

The Tau prover is essentially an indirect prover that proves formulas by establishing the
mutual unsatisfiability of the set of clauses that result from the Skolemized form of the
original input problem’s formulas with the conclusion to prove first negated.

Before Skolemization, clausalization and the application of Model Elimination, the
conclusion is subject to a process of rule-driven rewriting that replaces the original
conclusion with other more tractable but (collectively) equivalent conclusions, each of

5

http://ksl-web.stanford.edu/knowledge-sharing/kif/
http://ksl-web.stanford.edu/knowledge-sharing/kif/
http://logic.stanford.edu/kif/Hypertext/kif-manual.html.
http://www-ksl.stanford.edu/knowledge-sharing/kif/
http://www-ksl.stanford.edu/knowledge-sharing/kif/
http://logic.stanford.edu/kif/dpans.html
http://logic.stanford.edu/kif/dpans.html
http://logic.stanford.edu/kif/specification.html
http://logic.stanford.edu/kif/specification.html

which is proved independently. The result of any given rewriting is itself subject to
rewriting.

This recursive decomposition process produces a tree of sub-proofs. Both conjunctive
(all sub-proofs produced by a given rewriting must succeed) and disjunctive (only one
of a rewriting’s sub-proof need succeed) sub-proof combination rules are allowed. The
system can optionally compute estimates of the proof complexity of each resulting sub-
proof and then order the attempts to prove them so as to conclude the overall proof
successfully (or fail) in the shortest time.

For some types of problems we have also implemented a direct instantiation method
and an optional incremental satisfiability checker (based upon Davis-Putnam-Loveland);
see [Hooker, 1993] and [Hooker, 1993a].

Tau is based on: reductio ad absurdum, or contradiction testing; normalization (see,
e.g., [Baaz et al, 2002], and also see [Nonnengart and Weidenbach, 2002]); our version
of Brand transformations (see, e.g.,[Brand, 1975], and [Degtyarev and Voronkov, 1999],
“Equality reasoning in sequent-based calculi”), to implement identity rewriting strate-
gies.

Tau’s use of a Model Elimination technique in conjunction with selection heuristics
and proof strategizing helps overcome some of the difficulties resulting from a lack of
goal-directedness.

Our primary emphasis is on the logical soundness of the proof method and the in-
tegrity of the software design. Principally via the command line interface we have a good
deal of control and flexibility in choosing proof strategies, and over the presentations
and annotations, and we are adding these options judiciously to the browser interface.

4 Algorithms

4.1 Resolution

Resolution proof was introduced in [Robinson, 1965] and [Robinson, 1971]; the well-
known [Chang and Lee, 1973] gave resolution further impetus. However, the resolution
method requires considerable augmentation by efficient search techniques to be of prac-
tical use.

4.2 Model Elimination and Proof Search

The Model Elimination technique was introduced in [Loveland, 1968], [Loveland, 1969],
and [Loveland, 1978], and is theoretically sound and complete. Interest in it was more
lately revived with Stickel’s work on the theorem prover PTTP, e.g. [Stickel, 1984]. Tau
uses a version of Model Elimination with refinements to handle certain completeness
issues which may arise from an uncareful application of search techniques; for example,
the Inoue problem (see below). In this regard, Tau also offers multiple search strategies,
with selection heuristics (clausal weighting).

As with all automated theorem proving, search plays a central role. Tau’s implemen-
tation of the Model Elimination procedure implements these kinds of search: breadth-
first search, depth-first search, heuristic search, and modified search. In all cases, a
user-specified depth-cutoff is applied.

6

Breadth-first search is guaranteed to find the shortest proof possible for the problem,
but will typically examine far too many clauses in the process of finding that shortest
proof. Breadth-first search also tends to consume excessive amounts of primary storage
holding clauses at the frontier of the proof search tree.

Depth-first search requires the least amount of storage and depends strongly on the
depth cutoff to prevent its becoming trapped in unbounded sub-trees of the proof tree.

Heuristic search is the default and almost always produces the best overall results.
Each clause in the set of clauses produced by the conclusion and each clause (or chain, in
Loveland’s terminology) that arises by successful applications of the Model Elimination
inference operations is evaluated by a user-specified heuristic function whose purpose is
to estimate the distance from the specified clause to a successful proof (i.e., an empty
clause). Pending clauses, those that occupy the current frontier of the Model Elimination
proof search tree, are held in a priority queue that is ordered by the aforementioned
heuristic function. At each cycle of the Model Elimination proof search, the clause with
the lowest heuristic value (i.e., the one deemed closest to yielding a successful proof) is
chosen for processing.

Modified search, as described in [Chang and Lee, 1973], is an option for any of the
three basic proof search procedures mentioned above. Model Elimination includes three
kinds of inference operation: Factorization, Reduction and Extension. Factorization
and Reduction operate on single clauses, while Extension operates on pairs of clauses.
Modified search differs from basic search only with respect to the pairs of clauses that
participate in the Extension operation. Instead of computing all of the Extension oper-
ations possible for a given clause as a single operation, all potential Extension side (or
auxiliary) clauses are determined and each of the resulting center-clause / side-clause
Extension pairs are scheduled independently. This allows for a more refined heuris-
tic to be computed than is possible if only the center clause is examined, because the
heuristic function has access to both the center and the side clauses. Factorization is
itself optional at the user’s discretion. In most cases, modified search produces better
performance than basic search.

4.3 Heuristic Search

Under heuristic proof search, the choice of which clause or clause pair to expand next
is governed by the value produced by the heuristic function. At any time during the
ongoing search for a Model Elimination proof, the frontier of the proof tree is held
in a priority queue which is ordered by the value produced by the heuristic function.
Each cycle of the proof search consists of removing from the priority queue and then
expanding the lowest-valued clause or clause pair (when modified search is in effect).

The primitive heuristic functions, one for single-clause tree nodes and one for ex-
tension clause pair nodes, are defined by the user and take the form of a simple linear
function combining any of a variety of built-in parameters describing the clause or clause
pair. The function is specified in a Lisp-like S-Expression that includes decimal numeric
constants and the names of the clause / clause-pair parameter functions following one of
the target keywords node, pair, center or side combined using any of the four arithmetic
operators.

7

Single Clause Parameter Functions

nLiterals The number of literals, framed or unframed, in the clause

nFLiterals The number of framed literals in the clause

nUFLiterals The number of unframed literals in the clause

nIdentity The number of identity literals in the clause

nIdentityIF The number of unframed identity literals

termDepth The maximum depth of nesting of complex terms

termDepthIF The maximum depth of nesting of complex terms in unframed literals

termVolume The total number of symbols in the clause

nVars The number of distinct variables in the clause

nVarsIF The number of distinct variables in unframed literals

depth The depth of the clause in the proof search tree

Extension Pair Parameter Functions

nLiterals The sum of the number of literals, framed or unframed, in each clause

nFLiterals The sum of the number of framed literals in each clause

nUFLiterals The sum of the number of unframed literals in each clause

nIdentity The sum of the number of identity literals in the each clause

nIdentityIF The sum of the number of unframed identity literals in each clause

termDepth The maximum depth of nesting of complex terms in either clause

termDepthIF The maximum depth of nesting of complex terms in the unframed lit-
erals of each clause

termVolume The sum of the total number of symbols in each clause

termVolumeIF The sum of the total number of symbols in unframed literals in each
clause

nVars The sum of the number of distinct variables in each clause

nVarsIF The sum of the number of distinct variables in unframed literals of each clause

depth The depth of the center clause in the proof search tree

As described above, the clause pair functions are applied to both clauses in the
extension clause pair. When desired, these functions can instead be applied to the
center or side clause alone. Examples: fewest literals first, (node nLiterals); literal
count + maximum term nesting depth without regard for the kind of proof tree node
(single clause or extension clause pair), (+ (node nLiterals) (node termDepth)). Note
that framed literals are also known as A literals and unframed literals as B literals.

8

4.4 Brand Transformations

Brand transformations are rewrites of standard clausal forms which contain identities.
There is a transformation corresponding to the transitivity of identity, and one to the
symmetry of identity. These transformations were introduced in [Brand, 1975]; they
are further discussed in [Degtyarev and Voronkov, 1999]. Apart from Brand’s flattening
transform, which supplies the substitutivity of identity and is applied unconditionally
to problems that include application of the identity predicate, the transitivity and sym-
metry properties of identity may be supplied either by introducing the pertinent axioms
as additional premises or by the application of the corresponding Brand transformation.

4.5 Martelli and Montanari

Resolution theorem proving and all its derivatives and variants rely heavily on the use
of unification between first-order expressions. The efficiency of the unifier bears heav-
ily on the overall speed of the prover. In addition to the classic recursive “mesh”
unification algorithm presented in many texts, papers and books, Tau implements
the efficient unification algorithm discussed in [Martelli and Montanari, 1977] and in
[Martelli and Montanari, 1982]. This unification algorithm treats the expressions to be
unified, any number of them, as a system of simultaneous equations and solves that sys-
tem. It is folklore that the Martelli and Montanari algorithm, although providing the
best theoretical complexity result, is not always the best algorithm in practice due to
the overloading of handling complex data structure. With Tau, we have found that with
some problems M&M has substantially improved typical and worst-case complexity by
comparison with the classical mesh unification algorithm; i.e., there are problems that
generate terms whose structure tips the balance of net run-time cost in favor of M&M.
In fact, we use the mesh unifier by default (because measurement confirmed this folk-
lore), but the advantage is small and while we have not confirmed the claim generally,
we believe there are problems that produce term structures for which it is true. There
are also optimization techniques (low-level programming, not algorithmic) that could
yet close the gap for the majority of problems and make M&M the overall winner. The
biggest problem is the large number of very short-lived set data structures produced
when executing the M&M algorithm. If we can cut the overhead of their generation and
reclamation, we hope to see M&M to surpass the mesh unifier.

4.6 Stillman’s Subsumption Algorithm

Another time-consuming operation for resolution-based theorem provers is computing
clause subsumption. In addition to the classic subsumption algorithm described in
[Chang and Lee, 1973], Tau implements the better-performing subsumption algorithm
invented by Stillman and described in [Gottlob and Leitsch, 1985].

9

5 Computational Results

The notion of an empirically successful theorem prover is difficult to define, and has
a problematic history. As with human provers, it is not clear or uncontroversial ex-
actly what to count as virtue in a prover. Is it: speed, some idea of completeness or
comprehensiveness, ease of use, subtlety and originality, or some other factor, or some
combination of these? In a practical sense, the idea is one of instrumental virtue, and
thus relative to the various conceptions of good use of logic. The TPTP (Thousands
of Problems for Theorem Provers) Problem Library, however, is now providing a more
uniform basis for assessments; http://www.cs.miami.edu/∼tptp/.

We have begun testing Tau on the TPTP library, which provides a large and chal-
lenging repository of benchmarks for provers. TPTP provides tools for translation of
TPTP problems into KIF, but due to Tau’s preference for FOF over CNF forms, its
treatment of identities, and its rewrite strategies, in some cases further aligning of the
TPTP tests is necessary before a reasonably full and fair comparison can be made. To
date, using the automatic translation tools, we have translated the Geo (geometry) set
of problems, with a solution rate of about one-third. For illustration, a proof trace,
showing the ME proof steps, is given below of TPTP (Number Theory) NUM016-1, the
intended interpretation of which is that there exist infinitely many prime numbers. This
is followed by sample statistics of a run of this problem. [Note: some of the run time
includes initial invocation of the prover when run in the shell mode.]

Root:
{ (not (prime ?X));

(not (less a ?X));
(less (factorial_plus_one a) ?X) }

Extend:
{ (not (less ?X-2 ?Y-3));

(not (less ?Y-3 ?X-2)) }
[?Y-3 -> (factorial_plus_one a), ?X -> ?X-2]

Clause:
{ (not (prime ?X-2));

(not (less a ?X-2));
[(less (factorial_plus_one a) ?X-2)];

(not (less ?X-2 (factorial_plus_one a))) }
Reduce: [?X-2 -> (factorial_plus_one a)]

Clause:
{ (not (prime (factorial_plus_one a)));

(not (less a (factorial_plus_one a))) }
Extend:
{ (not (divides ?X-4y (factorial_plus_one ?Y-4z)));

(less ?Y-4z ?X-4y) }
[?Y-4z -> a, ?X-4y -> (factorial_plus_one a)]

10

http://www.cs.miami.edu/~tptp/

Clause:
{ (not (prime (factorial_plus_one a)));

[(not (less a (factorial_plus_one a)))];
(not (divides (factorial_plus_one a)

(factorial_plus_one a))) }
Extend:
{ (divides ?X-6f ?X-6f) }
[?X-6f -> (factorial_plus_one a)]

Clause:
{ (not (prime (factorial_plus_one a))) }
Extend:
{ (prime ?X-71);

(divides (prime_divisor ?X-71) ?X-71) }
[?X-71 -> (factorial_plus_one a)]

Clause:
{ [(not (prime (factorial_plus_one a)))];

(divides (prime_divisor (factorial_plus_one a))
(factorial_plus_one a)) }

Extend:
{ (not (divides ?X-77 ?Y-78));

(not (less ?Y-78 ?X-77)) }
[?X-77 -> (prime_divisor (factorial_plus_one a)),

?Y-78 -> (factorial_plus_one a)]

Clause:
{ [(not (prime (factorial_plus_one a)))];

[(divides (prime_divisor (factorial_plus_one a))
(factorial_plus_one a))];

(not (less (factorial_plus_one a)
(prime_divisor (factorial_plus_one a)))) }

Extend:
{ (not (prime ?X-8c));

(not (less a ?X-8c));
(less (factorial_plus_one a) ?X-8c) }

[?X-8c -> (prime_divisor (factorial_plus_one a))]

Clause:
{ [(not (prime (factorial_plus_one a)))];

[(divides (prime_divisor (factorial_plus_one a))
(factorial_plus_one a))];

[(not (less (factorial_plus_one a)
(prime_divisor (factorial_plus_one a))))];

(not (prime (prime_divisor (factorial_plus_one a))));
(not (less a (prime_divisor (factorial_plus_one a)))) }

11

Extend:
{ (not (divides ?X-r5 (factorial_plus_one ?Y-r6)));

(less ?Y-r6 ?X-r5) }
[?Y-r6 -> a, ?X-r5 -> (prime_divisor (factorial_plus_one a))]

Clause:
{ [(not (prime (factorial_plus_one a)))];

[(divides (prime_divisor (factorial_plus_one a))
(factorial_plus_one a))];

[(not (less (factorial_plus_one a)
(prime_divisor (factorial_plus_one a))))];

(not (prime (prime_divisor (factorial_plus_one a)))) }
Extend:
{ (prime ?X-1cx);

(prime (prime_divisor ?X-1cx)) }
[?X-1cx -> (factorial_plus_one a)]

Clause:
{ }

Step Stats: elapsedTime=0.364; cpuTime=0.0; steps=9; roots=1; inputs=12; horn-
Inputs=9; definiteInputs=6; generalInputs=3; factors=0; premiseLiterals=19; rootLit-
erals=3; generated=349; predicates=3; functions=2; constants=1; skFunctions=0; skCon-
stants=0; expanded=348; derivations=348; factorizations=0; reductions=4; extensions=345;
symIDUnif=0; outOrder=1.0; maxQueue=472; nResidual=468; nTooDeep=0; nUnac-
ceptable=9; nXUnacceptable=0; nSubsumed=0; nVacuous=0; proofLength=9

Proof Stats: proved=1; elapsedTime=0.364; cpuTime=0.0; subproofs=1; suc-
cesses=1; steps=9; roots=1; inputs=12; hornInputs=9; definiteInputs=6; generalIn-
puts=3; factors=0; premiseLiterals=19; rootLiterals=3; generated=349; predicates=3;
functions=2; constants=1; skFunctions=0; skConstants=0; expanded=348; derivations=348;
factorizations=0; reductions=4; extensions=345; symIDUnif=0; outOrder=1.0; maxQueue=472;
nResidual=468; nTooDeep=0; nUnacceptable=9; nXUnacceptable=0; nSubsumed=0;
nVacuous=0; proofLength=9

Elapsed: 0m2s; User: 0m1.7s; System: 0m0.1s

Our work with TPTP has just begun. We will not be so rash as to claim that Tau
surpasses any of the well-known provers, such as Otter, Setheo, Meteor, Protein, or
Snark, but initial tests indicate that Tau behaves respectably on a variety of TPTP
problems. However, that may be, we shall give below more sample Tau statistics, after
a discussion of some various types of problems.

5.1 Logic Theorems

There are at present 78 logical theorems available for testing in the Tau browser, derived
from [Kalish and Montague, 1964] and [Montague, Kalish, and Mar, 1980].

12

A simple theorem which caused an incompleteness problem for some older resolution
style provers was posed in [Inoue, 1992].

(=> (and
(forall ?X (or (not (Q ?X)) (P ?X) (P a))
(not (P B))
(Q B))

(P a))

Tau handles such problems easily; a test run can be made at http://hsinfosystems.
com/taujay/doc/samples/tests/In001.jsp.

The ‘Los theorem’ was considered a surprise in the early days of theorem proving,
as no one seems to have thought it intuitive, and it was discovered first by a theorem
prover. The theorem is:

(=> (and
(forall (?X ?Y ?Z) (=> and (P ?X ?Y) (P ?Y ?Z)) (P ?X ?Z))
(forall (?X ?Y ?Z)(=> (and (Q ?X ?Y) (Q ?Y ?Z)) (Q ?X ?Z)))
(forall (?X ?Y)(=> (Q ?X ?Y) (Q ?Y ?X)))
(forall (?X ?Y) (or (P ?X ?Y)(Q ?X ?Y))))
(or (forall (?X ?Y) (P ?X ?Y)) (forall (?X ?Y)(Q ?X ?Y))))

Tau also handles this problem easily; a test run can be seen at http://hsinfosystems.
com/taujay/doc/samples/tests/Los001.jsp.

5.2 Identity Problems

As you have seen, Tau solves a variety of identity tests. However, there are two theorems
involving identity from [Montague, Kalish, and Mar, 1980] which Tau has not yet been
able to prove (except in simplified form) are T328 and T329:

T328
(forall (?A ?B ?C)
(=>
(and (=> (exists ?Z (forall ?X (<=> (f ?X) (= ?X ?Z))))(f ?A))

(=> (not (exists ?Z (forall ?X (<=> (f ?X) (= ?X ?Z))))) (= ?A ?C))
(=> (exists ?Z (forall ?Y (<=> (f ?Y) (= ?Y ?Z)))) (f ?B))
(=> (not (exists ?Z (forall ?Y (<=> (f ?Y) (= ?Y ?Z))))) (= ?B ?C)))

(= ?A ?B)))

T329
(forall (?A ?B ?C)
(=>
(and (=> (exists ?Y (forall ?X (<=> (f ?X) (= ?X ?Y)))) (f ?A))

(=> (not (exists ?Y (forall ?X (<=> (f ?X) (= ?X ?Y))))) (= ?A ?C))
(=> (exists ?Y (forall ?X (<=> (g ?X) (= ?X ?Y)))) (g ?B))
(=> (not (exists ?Y (forall ?X (<=> (g ?X) (= ?X ?Y))))) (= ?B ?C))
(forall ?X (<=> (f ?X) (g ?X))))

(= ?A ?B)))

13

http://hsinfosystems.com/taujay/doc/samples/tests/In001.jsp
http://hsinfosystems.com/taujay/doc/samples/tests/In001.jsp
http://hsinfosystems.com/taujay/doc/samples/tests/Los001.jsp
http://hsinfosystems.com/taujay/doc/samples/tests/Los001.jsp

There are particularly interesting problems for intelligent automation, because a hu-
man proof would naturally employ (after instantiation) the lemmas which the premises
intuitively reveal, as in .e.g. T328, (and (=¿ phi (f a)) (=¿ (not phi) a=c) (=¿ phi (f b))
(=¿ (not phi) (= b c))), together with the knowledge that :- (or phi (not phi)), in order
to reach the conclusion expeditiously. Tau’s ME strategy, however, becomes swamped
with these problems when run under its normal limits. The adoption of a named sub-
formula / rewriting strategy, together with an intelligent lemmaization scheme is clearly
called for in such cases, and we are now working on adding lemmaization to Tau.

See [Bachmair and Ganzinger, 1998] for more discussion of identity handling in the-
orem provers.

5.3 Theory of a Successor, Presburger and Peano Arithmetic

We denote the theory of a successor, Succ. It is a subtheory of Peano Arithmetic,
expressed in KIF by:

(forall ?X (not (= 0 (succ ?X))))
(forall ?X (forall ?Y (=> (= (succ ?X) (succ ?Y)) (= ?X ?Y))))

Tau tests in the theory Succ are at:
http://www.hsinfosystems.com/taujay/doc/samples/testsJSP.html#Succ

Note that to prove even the simple (forall ?X (not (= ?X (succ ?X)))) requires the
use of mathematical induction, discussed in the next section.

Presburger Arithmetic axioms (the theory PrA), is also a subtheory of Peano arith-
metic, lacking multiplication; it is decidable, but already has difficult computational
complexity. It is expressed in KIF by the axioms:

(forall ?X (not (= 0 (succ ?X))))
(forall ?X (forall ?Y (=> (= (succ ?X) (succ ?Y)) (= ?X ?Y))))
(forall ?X (= (+ ?X 0) ?X))
(forall ?X (forall ?Y (= (+ ?X (succ ?Y)) (succ (+ ?X ?Y)))))

Tau tests in the theory PrA are at:
http://www.hsinfosystems.com/taujay/doc/samples/testsJSP.html#Presburger

Peano Arithmetic adds the multiplication axioms:

(forall ?X (forall ?Y (= (* 0 ?X) 0)))
(forall ?X (forall ?Y (= (* ?X (succ ?Y)) (+ (* ?X ?Y) ?X))))

Tau tests in simple Peano Arithmetic are at:
http://www.hsinfosystems.com/taujay/doc/samples/testsJSP.html#Enderton
and tests using induction at:
http://www.hsinfosystems.com/taujay/doc/samples/testsJSP.html#PAI.
Combinations and reductions of these sets of axioms (PA, PrA, and Succ), together

with the introduction of definitions give us other theories, which we will denote below,
while presenting some sample axioms of each theory. Each of these theories may also be
extended by the use of induction. Some of the theories involve only ‘succ’, some involve
addition and multiplication also. There are various courses possible with extension

14

http://www.hsinfosystems.com/taujay/doc/samples/testsJSP.html#Succ
http://www.hsinfosystems.com/taujay/doc/samples/testsJSP.html#Presburger
http://www.hsinfosystems.com/taujay/doc/samples/testsJSP.html#Enderton
http://www.hsinfosystems.com/taujay/doc/samples/testsJSP.html#PAI

by definition and with axiomatization by primitives. For example, ‘<’ may be defined
axiomatically in an extension of the theory Succ; alternatively, it may be defined in
PrA. Tau also has sample problems which are extensions of PrA and PA: these involve
various definitions of the predicates ‘even’, ‘odd’, ‘=<’, and others.

See [Enderton, 2001] for further discussion.

5.4 Mathematical Induction

Mathematical induction may be used (see the checkbox on the Tau website) in Tau: (all
instances of)

(=> (and (F 0) (forall ?X (=> (F ?X) (F (succ ?X)))) (forall ?X (F ?X)))),

where F represents any formula with one free variable.
Note that some proofs in Peano arithmetic and Presburger arithmetic require that

Tau apply mathematical induction or use results which haven been previously proved by
induction, while others do not. It is a good exercise for the user or student to determine
what the dependencies are.

A sample proof using induction is may be run at http://hsinfosystems.com/
taujay/doc/samples/PALT.web/PALT02Ind.html. You will note that in this proof a
logical axiom for an identity substitution is also supplied as a premise. We have found
that, in some instances, the Brand transformations are speeded up thereby, when heuris-
tic search is also used.

Below is the ME proof, followed by statistics.

Proof Chain -- 5 steps:

Root:
{ (not (< (+ (succ $MVI-1) $UI-1) (* (succ $MVI-1) $UI-1))) }
Extend:
{ (not (< ?Fl1-17p ?Y-17q));

(< ?X-17r ?Y-17q);
(not (= ?Fl1-17p (succ ?X-17r))) }

[?X-17r -> (+ (succ $MVI-1) $UI-1), ?Y-17q ->
(* (succ $MVI-1) $UI-1)]

Clause:
{ [(not (< (+ (succ $MVI-1) $UI-1) (* (succ $MVI-1) $UI-1)))];

(not (< ?Fl1-17p (* (succ $MVI-1) $UI-1)));
(not (= ?Fl1-17p (succ (+ (succ $MVI-1) $UI-1)))) }

Extend:
{ (= ?Eq-2r0 ?Eq-2r0) }
[?Fl1-17p -> (succ (+ (succ $MVI-1) $UI-1)), ?Eq-2r0 ->

(succ (+ (succ $MVI-1) $UI-1))]

Clause:
{ [(not (< (+ (succ $MVI-1) $UI-1)

15

http://hsinfosystems.com/taujay/doc/samples/PALT.web/PALT02Ind.html
http://hsinfosystems.com/taujay/doc/samples/PALT.web/PALT02Ind.html

(* (succ $MVI-1) $UI-1)))];
(not (< (succ (+ (succ $MVI-1) $UI-1))

(* (succ $MVI-1) $UI-1))) }
Extend:
{ (not (< (succ 0) ?X-9tt));

(not (< (succ 0) ?Y-9tu));
(< (succ (+ ?X-9tt ?Y-9tu)) (* ?X-9tt ?Y-9tu)) }

[?X-9tt -> (succ $MVI-1), ?Y-9tu -> $UI-1]

Clause:
{ [(not (< (+ (succ $MVI-1) $UI-1) (* (succ $MVI-1) $UI-1)))];

[(not (< (succ (+ (succ $MVI-1) $UI-1))
(* (succ $MVI-1) $UI-1)))];

(not (< (succ 0) (succ $MVI-1)));
(not (< (succ 0) $UI-1)) }

Extend:
{ (< (succ 0) $UI-1) }

[<empty>]

Base step:

Clause:
{ [(not (< (+ (succ $MVI-1) $UI-1) (* (succ $MVI-1) $UI-1)))];

[(not (< (succ (+ (succ $MVI-1) $UI-1))
(* (succ $MVI-1) $UI-1)))];

(not (< (succ 0) (succ $MVI-1))) }

Extend:
{ (< (succ 0) (succ $MVI-1)) }
1
[<empty>]

Clause:
{ }

For the logical basis of this application, see, e.g.,: [Bundy, 2001]

5.5 Graph Theory

We have axiomatized in KIF several problems in finite graph theory. A sample can
be seen at http://hsinfosystems.com/taujay/doc/samples/GMGT.web/GM08d.html
. These problems are over very small domains, so the universal quantifiers are equivalent
to finite conjunctions of atomic sentences, and the existential quantifiers are equivalent
to finite disjunction of atomic sentences. Accordingly, we have taken advantage of these
equivalences to introduce corresponding proof rewrites into Tau, for such problems.

16

http://hsinfosystems.com/taujay/doc/samples/GMGT.web/GM08d.html

5.6 Sample Statistics

Through the command line interface, Proof statistics can be displayed for each sub-
mitted problem, as previously shown, or for each sub-proof in a submitted problem,
or collectively for batch runs of multiple problems. The sample statistics shown next
are for a batch test suite of 233 problems, many taken from . Note that the inferences
counted are complex Model Elimination inferences, including factorizations, subsump-
tions, reductions and extensions, not simply resolutions. Tau’s speed of inference upon
these problems runs from a few hundred per second up to tens of thousands per sec-
ond, depending upon the logical complexity of the clausal forms, and upon the specific
search mechanism invoked. The overall average for this test suite was about a thousand
inferences per second.

Proved: The number of problems successfully proved out of the total number of prob-
lems submitted followed by the total number of inference steps in the resulting
proofs and lastly the average length of the proofs obtained over the entire test run.

Roots: The number of root clauses used to prime the Model Elimination search tree.
This number is greater than or equal to the number of problems attempted because
each FOF in the conclusion in general produces multiple clauses, each of which
must be used as a root for a Model Elimination proof search.

Inputs: The total number of clauses submitted, whether they derive from conclusions
to prove or from the premises.

Horn / Definite / Other: Histogram of input clauses according to type. (Horn clauses
have at most one positive literal, Definite clauses have exactly one literal.)

Root Literals: The number of literals in the clauses used as Model Elimination proof
search tree roots.

Side Literals: The number of literals in clauses used as Model Elimination side or
auxiliary clauses.

Generated: The number of clauses produced before the proof attempt concluded,
whether successfully or not.

Expanded: The number of clauses processed by application of the Model Elimination
inference operations.

Derivations: The number of successful (new clause-producing) applications of Model
Elimination inference operations.

Factorizations: The number of successful applications of the Model Elimination fac-
torization operation.

Reductions: The number of successful applications of the Model Elimination reduction
operation.

Extensions: The number of successful applications of the Model Elimination extension
operation.

17

Totals: Proved: 216 of 233; 1755 inferences; 8.12 Inferences/Proof Elapsed Time:
708.54 sec; Roots: 977; Inputs: 8858; Horn / Definite / Other: 8101 / 6329 / 483;
Root Literals: 4001; Side Literals: 30841; Generated: 320434; Expanded: 276289;
Derivations: 319457; Factorizations: 1971; Reductions: 22414; Extensions: 295511;
Out-order: 1.16; Residual: 1651309; Too deep: 0; Unacceptable: 30051; XUnacceptable:
1815; Subsumed: 106; Vacuous: 7542;

6 Disproofs

Tau can in certain cases disprove theorems. A few of our tests are deliberate disproofs,
as a check on soundness. These tests are positively proved invalid and are noted as
such when they are run. The soundness of such disproof depends upon the prover’s
noticing in simple cases that it has exhausted all the possibilities for obtaining a proof
by contradiction. When the Model Elimination proof tree is finite and we can build it
fully without deriving the empty clause / chain, then we have disproved the conjecture.
Simple and not always possible, but when it is, that’s all there is to it when these
conditions are recognized. A refinement which Tau uses in certain cases is to notice
that a theorem has only a very small number of finite models, up to isomorphism, via
recognition of identity constraints. A typical disproof (from [Thomas, 1977]) may be
run at http://hsinfosystems.com/taujay/doc/samples/tests/Th267-gA.jsp.

7 Next Extensions of Tau

“De l’audace, encore de l’audace, et toujours de l’audace!” - Danton

Tau is an ongoing project and its authors plan to follow several paths, including:
implementation of MathML notation; implementation of notation for the treatment of
variable-binding operators in [Montague, Kalish, and Mar, 1980] (see Chapters X and
XI), and of theorem schemata; persistent KB storage across browser sessions; formal
language translation facilities; simplified English translation facilities; translation be-
tween systems of logic (i.e., intuitionistic and FOL); formal definitions (work partially
implemented); implementing the use of metalogical expressions in deduction, as axiom
schemata and, particularly, in forming inductive axioms (work now underway); imple-
mentation of HOL and the use of theorem schemata; implementation of sequent style
proofs (work now underway) [For an introduction to, and discussion of sequent calculi,
see, e.g., [Robinson and Voronkov (Eds.), 2002] or [Buss, 1998]]; further TPTP testing
(work now underway); graphical notations.

We hope that users will find Tau stimulating.

18

http://hsinfosystems.com/taujay/doc/samples/tests/Th267-gA.jsp

References

[Apache Jakarta Project] The Tomcat servlet container, a product of the Apache
Jakarta Project; http://jakarta.apache.org/tomcat/index.html.

[Bachmair and Ganzinger, 1998] Bachmair, Leo and Harald Ganzinger. “Equational
reasoning in saturation based theorem proving”, in Wolfgang Bibel and Peter H.
Schmidt, editors, Automated Deduction: A Basis for Applications. Volume I, Foun-
dations: Calculi and Methods, pages 353-398. Kluwer Academic Publishers, Dor-
drecht, 1998.

[Baaz et al, 2002] Baaz, Matthias, Uwe and Leitsch, “Normal Form Transformations”,
in Robinson and Voronkov (Eds), Handbook of Automated Reasoning (2 vols), MIT
Press, Cambridge, 2002.

[Brand, 1975] Brand, Daniel. “Proving theorems with the modification method”, SIAM
Journal on Computing, 4(4):412430, 1975.

[Bundy, 2001] Bundy, Alan. “The Automation of Proof by Mathematical Induction”,
Handbook of Automated Reasoning 2001: 845-911

[Buss, 1998] Buss, Samuel R. (Ed.), Handbook of Proof Theory, Elsevier, New York,
NY, 1998

[Chang and Lee, 1973] Chang, C.L., and R. C. T. Lee, Symbolic Logic and Mechanical
Theorem Proving, Academic Press, New York, 1973.

[Common Logic Standard] Common Logic Standard, an ISO effort towards an interna-
tional standard for Common Logic http://philebus.tamu.edu/cl/

[Degtyarev and Voronkov, 1999] Degtyarev, Anatoli and Andrei Voronkov. “Equality
reasoning in sequent-based calculi”. In Alan Robinson and Andrei Voronkov, edi-
tors, Handbook of Automated Reasoning, Elsevier Science Publishers, 1999.

[Enderton, 2001] Enderton, Herbert B., A Mathematical Introduction to Logic, 2nd
Ed., Harcourt Academic Press, New York, 2001

[Gottlob and Leitsch, 1985] Gottlob, G. and L. Leitsch. “On the efficiency of subsump-
tion algorithms”, Journal of the ACM, Volume 32, Issue 2, April 1985, pp. 280 -
295; http://doi.acm.org/10.1145/3149.214118

[Hooker, 1993] Hooker, J.N. “Solving the incremental satisfiability problem”, Journal
of Logic Programming 15 (1993) 177-186.

[Hooker, 1993a] Hooker, J.N. “New methods for computing inferences in first order
logic”, Annals of Operations Research (1993) 479-492.

[Inoue, 1992] Inoue, K. “Linear resolution for consequence finding”, Artificial Intelli-
gence, 56:301–353, 1992.

19

http://jakarta.apache.org/tomcat/index.html
http://philebus.tamu.edu/cl/
http://doi.acm.org/10.1145/3149.214118

[Loveland, 1968] Loveland, D.W. “Mechanical theorem-proving by model elimination,”
Journal of the ACM, Volume 15, Issue 2, April 1968, pp. 236-251; http://doi.
acm.org/10.1145/321450.321456,ACM DOI bookmark.

[Loveland, 1969] Loveland, D.W. “A simplified format for the model elimination proce-
dure”, Journal of the ACM, Vol. 15, Issue 2 1969, pp. 349-363; http://doi.acm.
org/10.1145/321526.321527,ACM DOI bookmark.

[Loveland, 1978] Loveland, D.W. Automated Theorem Proving: A Logical Basis, North-
Holland, Amsterdam, 1978.

[Martelli and Montanari, 1982] Martelli, Alberto and Ugo Montanari, “An Efficient
Unification Algorithm”, ACM Trans. Program. Lang. Syst. 4(2): 258-282 (1982).

[Martelli and Montanari, 1977] Martelli, A., and Montanari, U. “Theorem proving with
structure sharing and efficient unification”, Internal Rep. S-77-7, Ist. di Scienze
della Informazione, University of Pisa, Pisa, Italy; also in Proceedings of the 5th
International Joint Conference on Artificial Intelligence, Boston, 1977, p. 543.

[Kalish and Montague, 1964] Montague, Richard and Donald Kalish, Logic, Techniques
of Formal Reasoning, New York, Harcourt, Brace and World, Inc., 1964.

[Montague, Kalish, and Mar, 1980] Montague, Richard , Kalish, Donald, and Mar,
Gary (Ed. Robert Fogelin), Logic: Techniques of Formal Reasoning, Harcourt
Brace, New York, 1980.

[Nonnengart and Weidenbach, 2002] Andreas Nonnengart, Christoph Weidenbach,
“Computing Small Clause Normal Forms”, In Alan Robinson and Andrei Voronkov,
editors, Handbook of Automated Reasoning. Elsevier Science Publishers, 1999.

[Robinson, 1965] Robinson, J.A. “A machine-oriented logic based on the resolution prin-
ciple”, Jour. Assoc. for Comput. Mach., 1965, 23-41.

[Robinson, 1971] Robinson, J.A., “Computational logic: The unification computation”,
In Machine Intelligence, vol. 6, B. Meltzer and D. Michie (Eds.). Edinburgh Univ.
Press, Edinburgh, Scotland, 1971, pp. 63-72.

[Robinson and Voronkov (Eds.), 2002] Robinson and Voronkov (Eds), Handbook of Au-
tomated Reasoning (2 vols), MIT Press, Cambridge, 2002.

[Sun Microsystems] http://java.sun.com/.

[Stickel, 1984] Stickel, M.E., “A Prolog technology theorem prover”, New Generation
Computing, 1984, 371-383.

[Sutcliffe, 2001] Sutcliffe, Geoff and Suttner, Christian, “The TPTP (Thousands of
Problems for Theorem Provers) Problem Library”, http://www.cs.miami.edu/
∼tptp/.

[Thomas, 1977] Thomas, James A., “Symbolic Logic”, Merrill, Columbus, Ohio, 1977.

20

http://doi.acm.org/10.1145/321450.321456
http://doi.acm.org/10.1145/321450.321456
http://doi.acm.org/10.1145/321526.321527
http://doi.acm.org/10.1145/321526.321527
http://java.sun.com/
http://www.cs.miami.edu/~tptp/
http://www.cs.miami.edu/~tptp/

The implementation of Logiweb

Klaus Grue
Dept.Comp.Sci. University of Copenhagen

grue@diku.dk

Abstract

This paper describes the implementation of the ‘Logiweb’ system with emphasis
on measures taken to support classical reasoning about programs.

Logiweb is a system for authoring, storing, distributing, indexing, checking, and
rendering of ‘Logiweb pages’. Logiweb pages may contain mathematical definitions,
conjectures, lemmas, proofs, disproofs, theories, journal papers, computer programs,
and proof checkers.

Reading Logiweb pages merely requires access to the World Wide Web. Two
example pages are available on http://yoa.dk/. Writing, checking, and publishing
Logiweb pages requires Logiweb to be downloaded and installed.

Logiweb comes with a hierarchy of features: Lemmas and proofs are stated in
a theory named ‘Map Theory’, Map Theory is implemented on top of a calculus
named ‘Logiweb sequent calculus’, and Logiweb sequent calculus is implemented
on top of the ‘Logiweb reduction system’ (a version of λ-calculus). The Logiweb
reduction system is implemented in the Logiweb core software which is currently
implemented in Common Lisp.

The levels above the Logiweb core software are defined on Logiweb pages, al-
lowing users to use the features as they are or to define and publish new ones on
new Logiweb pages. As an example, a user may want to use ZFC in place of Map
Theory, in which case the easiest approach is to publish a Logiweb page that defines
ZFC in Logiweb sequent calculus and proceed from there.

The ‘base’ page on http://yoa.dk/, which is 180 pages long when printed
out, was checked in 40 seconds. This is non-trivial to achieve for a proof checker
implemented in lamdba calculus.

The Logiweb sequent calculus is defined on the base page mentioned above. A
user who wants to define e.g. ZFC set theory on top of that may publish a new
page, call it ‘zfc’, and let the ‘zfc’ page reference the ‘base’ page. That makes all
definitions on the ‘base’ page available to the ‘zfc’ page. After that, another user
may state and prove lemmas about e.g. real numbers on a third page, call it ‘real’,
which references the ‘zfc’ page. When the proofs on the ‘real’ page are checked,
Logiweb will arrange that the ‘zfc’ and ‘base’ pages are available in a predigested
form suitable for proof checking.

Seen from the point of view of proof checking and publication, the World Wide
Web has the drawback that once submitted pages can be modified after submission.
In the example above, modification of the ‘base’ page could ruin the correctness of
the ‘real’ page.

To avoid problems with pages being modified, Logiweb implements its own ref-
erencing system which forces immutability upon once submitted pages. Once a
Logiweb page is submitted, it cannot be changed, just like papers cannot change
after publication.

1

When a Logiweb page is submitted, a unique Logiweb ‘reference’ is computed
from its contents. The Logiweb system allows to look up a Logiweb page given its
reference.

Once a Logiweb page is submitted, it may be moved and duplicated such that
its http url may change and such that a page may be available many places in the
world under different urls, but the Logiweb reference remains constant. One of the
tasks of Logiweb is to keep track of the relation between the fixed references and
the associated, fluctuating set of http urls.

1 Introduction

Logiweb is a web-like system that allows mathematicians and computer scientists to
web-publish pages with high typographic quality and high human readability which
are also machine verifiable. Among other, Logiweb allows pages to contain definitions
of formal theories, definitions of new constructs, programs, lemmas, conjectures, and
proofs. Furthermore, Logiweb allows pages to refer to each other across the Internet,
and allows proof checking of proofs that span several pages that reside different places
in the world. As an example, a lemma on one page may refer to a construct which is
defined on another page situated elsewhere, in which case the proof checker must access
both pages to establish the correctness of the proof.

Logiweb is accumulative and provides a medium for archived mathematics. In con-
trast, the World Wide Web, which supports mathematics through MathML and OMDoc
[Koh03, MS01], is a medium suited for information in flux.

Like the Internet and the WWW, Logiweb is a robust, ‘anarchistic’ system that runs
without any central authority; it has been designed in the hope that such a system is
the missing piece of software for widespread usage of automated reasoning.

Currently, Logiweb is used as it is, but it also has the potential to run silently and
transparently underneath other systems like Mizar [Muz93, TB85]. Support for other
systems requires substantial effort, but the hooks for doing so in many different ways
are available in Logiweb.

Logiweb gives complete notational freedom to its users as well as complete freedom
to choose any axiomatic theory (e.g. ZFC) as basis for their work. Logiweb also allows
different notational systems and theories to co-exist and interact smoothly.

Logiweb was originally designed to support Map Theory [BG97, Gru92, Ska02, Val03]
which has the same power as ZFC but relies on very different foundations in that, e.g.,
it relies on λ-calculus instead of first order predicate calculus. However, Logiweb has
been designed such that it supports all axiomatic theories equally well so the ability to
support Map Theory should be seen as a widening rather than a narrowing of the scope.

Logiweb puts no restrictions on what logic is used in the sense that it can support
any theory for which one can program a mechanical proof checker. The ease with which
Logiweb supports highly distinct theories like ZFC and Map Theory indicates that use
of arbitrary logic is not only possible but also feasible. Logiweb supports classical as
well as intuitionistic logic, it supports theories built on first order predicate calculus as
well as other brands of theories, and it supports theories (such as Map Theory) which
admits general recursive definitions.

The absence of restrictions on the choice of logic of course makes it impossible to

2

supply a code-from-theorems extraction facility like term of of Nuprl [CAB+86], but
functions for manipulation of theorems and proofs of individual theories are expressible
in the programming language of Logiweb.

One goal of Logiweb was to design a simple proof system which allows to cope with
the complexity of mathematical textbooks. To ensure that the system can cope with
the complexity of a full, mathematical textbook in a human readable style, two books
[Gru01, Gru02] have been developed 1992-2002 to test the system.

Reference [Gru01] is a discrete math book for first year university students and is
of interest here because it has been possible to test the human readability of the book
in practice. The associated course has been given ten times with a total of more than
a thousand students. The course has been a success and runs as the first course on the
computer science curriculum at DIKU in parallel with a course on ML.

Reference [Gru02] is a treatise on Map Theory and is of interest here because it
contains a substantial proof (a proof of the consistency of ZFC expressed in Map Theory)
that can stress test Logiweb. To allow comparison with other proof systems and to
ensure correctness, [Gru02] has been ported by hand to Isabelle [Pau98a, Pau98b, Ska02].

At the time of writing, Logiweb is used on a graduate course in logic (c.f. http:
//www.diku.dk/~grue/logiweb/20050502/home/index.html) and Logiweb is being
adapted according to user requests. After that, it is the intension to run first [Gru02] and
then [Gru01] through the system. Running those two books through Logiweb requires
adaption of the books to the current syntax of the Logiweb compiler plus programming
of a number of proof tactics that are described but not formally defined in the books.
Running [Gru02] through Logiweb will also allow a comparison with Isabelle.

Map Theory essentially is the Logiweb programming language extended with a quan-
tifier. As a long term goal, this makes it interesting to use Map Theory to reason about
Logiweb, possibly leading to a situation where one can solve the academic exercise to
let a proof checker prove its own correctness. A more immediate application is to use
Map Theory to reason about code fragments expressed in the Logiweb programming
language as is done in [Gru01].

1.1 Overview of the paper

Logiweb is a simple system with a simple programming language, a simple macro ex-
pansion facility, a simple proof checking facility, a simple protocol for exchange of doc-
uments, a simple format for storing Logiweb pages and so on. While each feature is
simple in itself, the sum of features may make Logiweb look complex at first sight. For
a comprehensive introduction to Logiweb, consult Logiweb itself at http://yoa.dk/
and read the ‘base’ page.

The present paper gives an overview of the system from an implementation perspec-
tive in Section 1.2 and from a user perspective in Section 2. Then Section 3 describes
how Logiweb pursues its goal to allow classical reasoning about programs without sacri-
ficing generality and efficiency of computation. Section 4 describes the data structures
used for representing terms, lemmas, proofs, pages, and so on. Section 5 describes the
proof checking algorithm and Section 6 summarizes.

3

1.2 System overview

A user may use the World Wide Web as shown in Figure 1. In the figure, the user may
use the text editor to construct an html page and store it in the file system within reach
of the http server. Then the user (or another user) may use the html browser to request
the html page from the http server which in turn retrieves the html page from the file
system.

Internet

User

text
editor

file
system

http
server

html
browser

Figure 1: World Wide Web

Figure 2 shows how a user may use Logiweb. To write a Logiweb page, the user
prepares a source text and invokes the Logiweb compiler on it. This is similar to running
TEX on a TEX source [Knu83]. Actually, much of a Logiweb source consists of TEX source
code.

When and if the compiler succeeds in interpreting the source, it translates it to a
compressed format, checks its mathematical correctness, and stores it back in the file
system in the format of a Logiweb page within reach of the http server. The compiler
also renders the page in PDF so that users without a genuine Logiweb browser can view
it. After that, any user that knows the url of the page can retrieve it using an html
browser.

When the compiler succeeds in translating a Logiweb page, it also computes the
Logiweb reference of the page and notifies the Logiweb server (c.f. Figure 2). The
Logiweb server keeps track of the relationship between http urls and Logiweb references
and makes the relationship available via the Internet using the Logiweb protocol. The
Logiweb protocol allows Logiweb servers to cooperate on indexing pages such that each
server merely has to keep track of local pages plus some information about which other
Logiweb servers to refer non-local requests to.

A Logiweb reference contains a RIPEMD-160 [DBP96] hash key and a time stamp.
The RIPEMD-160 hash key is computed on basis of the bytes of the associated page.
As long as RIPEMD-160 stands up against collision attacks, not even a malicious user
can get away modifying as much as a single byte of a Logiweb page without getting

4

Internet

User

text
editor

file
system

http
server

html
browser

compiler

server

relay

¡
¡¡

@@

@@

@@

Figure 2: Logiweb

caught by a RIPEMD-160 check.
When the compiler translates a Logiweb page that references other Logiweb pages

(which is the normal case), it uses the Logiweb server to locate the references and then
transitively loads the referenced pages so that all definitions on transitively referenced
pages are available.

When referencing a Logiweb page from the World Wide Web, one may construct
an http url from the Logiweb reference by expressing the reference in hexadecimal and
prepending it with the url of a Logiweb relay (c.f. Figure 2). A Logiweb relay is a CGI-
program which, given a reference, contacts the nearest Logiweb server, translates the
reference to an ordinary url, and returns an html indirection to that url. This instructs
the html browser of the user to fetch the associated page. The net experience for the
user is that clicking a Logiweb reference in an html document makes the html browser
navigate to the referenced Logiweb page.

Referencing from Logiweb pages to html pages is trivial but not necessarily advisable
since the immutability of Logiweb pages makes it impossible to repair broken links.

In addition to the Logiweb server, compiler, and relay mentioned above, the cur-
rent implementation of Logiweb includes an ‘lgwping’ program which allows to ping a
Logiweb server to see if it is responding.

For more details on Logiweb see http://yoa.dk/ or [Gru04].

2 A Logiweb tutorial

2.1 Hello world

To give an overview of the system from a user perspective, we now follow the first steps
of a new user. The steps are close to the steps actually followed by the current users
(c.f. http://www.diku.dk/~grue/logiweb/20050502/home/index.html).

5

Previous versions of Logiweb offered a WYSIWYG authoring tool, but that has been
abandoned until further and replaced by a lean and mean compiler that offers high speed
and reasonably intelligible error messages, but no help beyond that. In other words, our
new user is in a situation that resembles the situation of the first time user of a new
programming language.

So a reasonable way to get started is to copy the source text of a “hello world”
Logiweb page and try to compile that. The source of a “hello world” page is available
at http://www.diku.dk/~grue/logiweb/20050502/home/grue/hello-world/fixed/
source/source.pyk. The essential lines read

\begin{document}
"[math pyk define hello world as "hello world" end define end math]"
\end{document}

which requires quite a lot of explanation to make sense. Instead of looking for an
explanation, our new user stores the source text in the file “page.pyk” and runs the
compiler by issuing a command like the following:

> pyk pyk=page url=http://my.domain/my/directory level=all

After that, our user starts an html browser and looks up http://my.domain/my/
directory/hello-world/fixed, then clicks “body”, and then clicks “PDF” to see the
following:

[hello world
pyk
= “hello world”]

2.2 A minor update

Our new user, encouraged by seeing output from the system, modifies the source:

\begin{document}
The definition "[math pyk define hello world as "hello world" end
define end math]" defines the name of {\em my} page.
\end{document}

Then the user reruns the compiler and asks the html browser to reload the page to get

The definition [hello world
pyk
= “hello world”] defines the name of my page.

A key feature of Logiweb is that pages are immutable, so it may seem peculiar how
easily the user changed http://my.domain/my/directory/hello-world/fixed above.
To Logiweb, however, the two pages have different Logiweb references and the first
“hello world” page was immutable as long as it existed. Immutability means that,
given a Logiweb reference, one can locate the associate page (if it exists anymore) and,
furthermore, one can check whether or not anybody has tampered with the page.

Our user invoked the compiler with a “level=all” argument. That indicates that the
backend of the compiler should render not only the page itself but also a lot of additional
material. A “level=submit” is equivalent to “level=all”, but in addition requests the

6

compiler to notify the nearest Logiweb server about the submission and to store the page
as http://my.domain/my/directory/hello-world/TIME where TIME is the date and
time of submission. This is useful for versions of a page that are expected to exist for
more than a debug round trip.

2.3 Guarding against haphazardness

Now our hopeful user is ready for doing some proof checking. However, suppose the
source text of the “hello world” page contains something like

BIBLIOGRAPHY
base: "http://yoa.dk/logiweb/page/base/fixed/vector/page.lgw"

These lines tell the compiler that the “hello world” page references whatever Logiweb
page happens to be at that particular URL at the moment the “hello world” page is
translated. The .lgw file is the real Logiweb page in a standardized, binary format. If
the referenced page is overwritten, and no copies of the page exists anymore, then the
“hello world” page will be ruined. So to guard against this, the user issues the following
command:

> pyk lgw=http://yoa.dk/logiweb/page/base/fixed/vector/page.lgw \
> url=http://my.domain/my/directory level=submit

That makes the compiler make a local copy of the given Logiweb page. The local copy
will have exactly the same reference as the original, and the local copy ensures that the
Logiweb page will remain in existence even if the original instance of the page ceases
to exist. Then the user may look up the raw Logiweb reference at http://yoa.dk/
logiweb/page/base/fixed/reference/kana.html and insert that in the bibliography:

BIBLIOGRAPHY
base:nani
nuse siti sete tiku kata sana susu siku kitu naku
kake sisu suni nusa tini tesa kika sutu siku neke
saku kesa keke seke kine suki sise nasa natu

This ensures that the “hello world” page will reference the same Logiweb page each time
the user re-translates the “hello world” page.

2.4 Defining a theory

Having guarded against the haphazardness of the external world, our user may write

Propositional calculus "[intro prop pyk "prop" tex "L_p" end
intro]" as defined in \cite{mendelson} is defined thus:
"[math theory prop end theory end math]", "[math in theory
prop rule a one says all meta a indeed all meta b indeed meta
a imply meta b imply meta a end rule end math]", ...

7

to get

Propositional calculus [Lp] as defined in [Men87] is defined thus: [Theory
Lp], [Lp rule A1:∀A: ∀B:A ⇒ B ⇒ A], [Lp rule A2:∀A: ∀B: ∀C: (A ⇒ B ⇒
C) ⇒ (A ⇒ B) ⇒ A ⇒ C], [Lp rule A3:∀A: ∀B: (¬B ⇒ ¬A) ⇒ (¬B ⇒
A) ⇒ B], and [Lp rule MP:∀A: ∀B:A ` A ⇒ B ` B].

For a less cramped and more complete example see Section 1.6 of the body of http:
//yoa.dk/logiweb/page/check/fixed/.

The "[intro prop pyk "prop" tex "L_p" end intro]" in the source above
says that the construct named “prop” should be rendered as “L_p” in TEX and can
be referred to as “prop” on pages referencing the page. Normally, a construct should
have the same name on the page and on pages referencing the page, so the latter piece
of information is a bit redundant.

2.5 Proving something

Our user may now state a lemma and a proof:

[Lp lemma I:∀A:A ⇒ A]

Lp proof of I:
L01: Arbitrary À A ;
L02: A1 À A⇒ (A ⇒ A) ⇒ A ;
L03: A1 À A⇒ A⇒ A ;
L04: A2 À (A ⇒ (A ⇒ A) ⇒ A) ⇒

(A ⇒ A ⇒ A) ⇒ A⇒ A ;
L05: MP ¤ L02 ¤ L04 À (A ⇒ A ⇒ A) ⇒ A⇒ A ;
L06: MP ¤ L03 ¤ L05 À A⇒ A 2

2.6 How the page is verified

Logiweb pages are verified by the Logiweb core software. That software would fit nat-
urally into a Logiweb browser. But, at present, there is no such Logiweb browser since
Logiweb piggybacks the World Wide Web, and the core software actually resides in the
compiler, sandwiched between a frontend and a backend. When the “hello world” page
is translated, the compiler does as follows:

The frontend reads the source file and loads all Logiweb pages transitively referenced
by the page. During this process, all transitively referenced pages are processed and
verified by the core software unless they already reside in the cache of the compiler
(which may be saved to disk).

Then the compiler reads declarations of associativity and priority of all constructs
used and parses the source. The output from this process is a list of bytes called a
“Logiweb vector” in the format used for storing and transmitting Logiweb pages.

At this point, the compiler could store the vector and halt. Instead, the compiler
invokes the core software on the vector. The core software unpacks the vector into a
“body”, a “bibliography”, and a “dictionary”. The body essentially is one, big Lisp

8

S-expression, the bibliography is a list of pages directly referenced by the page, and the
dictionary contains the arities of all constructs introduced on the page.

Then the compiler invokes a macro engine. That engine is defined on the first, direct
reference of the page, i.e. on the “base” page in the case of “hello world”. The macro
engine on the base page happens to implement an outside-in macro expansion strategy
which supports but does not enforce recursive macro expansion. Among other, the base
page contains a macro defined by [(x)=̈x] which says that parentheses disappear during
macro expansion.

After macro expansion, the compiler “harvests” the page, i.e. collects all definitions
present on the page (including macro definitions). After harvesting, new macro def-
initions may affect how the page should have been expanded, so the compiler macro
expands the page once more from scratch. The compiler then alternates between ex-
pansion and harvesting until a fixed point is reached (if ever) or until the user kills the
compiler. The output from this process (if any) is a “codex” which contains all the
definitions and an “expansion” which is the macro expanded version of the page.

Then the compiler invokes a verifier. That verifier is also defined on the first direct
reference of the page. The verifier on the base page happens to be the conjunction of
two verifiers, one that verifies test cases like [2 + 3 = 5] and one that verifies proofs.

Since definitions is what Logiweb collects, anything interesting should be expressed
as definitions. As an example, [Lp lemma I: ∀A:A ⇒ A] macro expands into a defini-
tion that says that the “statement aspect” of [I] equals [Lp ` ∀A:A ⇒ A]. [Theory
Lp] is particularly complicated; it macro expands into a definition that says the the
statement aspect of [Lp] equals the intuitionistic conjunction of the four rules of [Lp].
The [Theory] macro finds the rules of [Lp] by scanning the codex of the page.

The proof of [I] above macro expands into a definition of the “proof aspect” of [I].
The right hand side of that definition comprises a “proof engine” applied to a quoted
version of the macro expanded proof. The proof verifier evaluates the right hand side
so that control is passed to the proof engine which in turn evaluates all constructs for
which a “tactic aspect” is defined. When all proof tactics are evaluated, the proof verifier
returns a term expressed in Logiweb sequent calculus to the proof verifier which then
evaluates that according to the rules of that calculus to see if the proof is correct and
proves what it is supposed to prove. The proof above uses a unification tactic [A À B]
which instantiates A to fit B.

After verification, regardless of whether the page is correct or not, the compiler
invokes the backend to render the body, bibliography, dictionary, codex, expansion,
diagnose (in case of errors), reference and vector of the page in a number of different
formats.

3 Classical reasoning about programs

Logiweb has been designed with the goal to support classical reasoning about programs.
At the same time, however, Logiweb has been designed to be as neutral as possible
with respect to choice of logic and notation. In other words, the requirement to support
classical reasoning about programs should be seen as a widening of the scope compared to
systems which focus on constructive reasoning or which focus on classical mathematics.

9

Constructive reasoning often leads to unnecessary complications. On the other hand,
classical reasoning about programs is non-trivial because general recursion and infinite
looping is cumbersome to deal with in classical theories like ZFC set theory. As an
example, if [n! .= if(n = 0, 1, n · (n−1)!)] then it is trivial that [(−1)!] loops indefinitely,
but that is non-trivial to express and prove in ZFC.

In Logiweb, the chosen solution to that problem is to base all computable definitions
on a version of λ-calculus that allows classical reasoning, and to ensure that Logiweb is
able to support such classical reasoning.

This is non-trivial for two reasons. Firstly, λ-calculus programs are inefficient com-
pared to programs expressed in other languages unless special measures are taken. Sec-
ondly, it is much easier to develop first order predicate calculus in lamdba calculus than
the other way round, so Logiweb must support classical logic that is not based on first
order predicate calculus (we consider a theory “classical” if it allows proof by cases such
as use of the law of excluded middle; the theory we shall arrive at also allows to use the
axiom of choice).

In the following we first introduce a version of λ-calculus which is suited to classical
reasoning and then deal with the efficiency problem.

3.1 λ-calculus for classical reasoning

Pure λ-calculus [Chu41] is inherently syntactic of nature and cumbersome to handle in
classical theories like ZFC. In contrast, impure λ-calculi do support classical reasoning
and have models that are classical of nature [BG97].

As an example, λ-calculus to which one adds integers is suited for classical reasoning.
λ-calculus enriched with truth values T and F also supports classical reasoning.

Hence, λ-calculus enriched with two or countably many new values is suited to
classical reasoning. Actually, λ-calculus enriched with any number of new values from
one and up are equally suited to classical reasoning.

To make matters as simple as possible, Logiweb is based on λ-calculus enriched with
just one new value plus an operation which makes the new value useful. We shall refer
to the new value as T. In terms of the C programming language, a lambda construct
corresponds to a pointer to a function and T corresponds to the NULL pointer. Among
many things, we shall use T to represent truth, which explains the choice of name.

The λ-calculus used by Logiweb is defined by the Logiweb reduction system λT:

(λx.y)z → 〈y|x:=z〉
Tz → T
if(T, y, z) → y
if(λu.v, y, z) → z

3.2 Equality of lambda terms

In pure λ-calculus, two terms are considered “equal” or “beta-equivalent” if they reduce
to the same term; this is what makes λ-calculus syntactic of nature and cumbersome to
deal with classically. In λT, equality is defined semantically as follows:

Define λT‖ as the system above extended with a new, binary operator x ‖ y and the
following reduction rules:

10

T ‖ x → T
x ‖ T → T
λu.v ‖ λx.y → λz.T

We say that a term t of λT‖ is a “true” term if it reduces to T, a “function” term
if it reduces to a term of form λx.y, and a “bottom” term if it is neither a true nor
a function term. We say that two terms s and t are “root equivalent”, written s ∼ t,
if they are both true, both function, or both bottom terms. We say that s and t are
“equal”, written s = t, if fs ∼ ft for all terms f of λT‖. Terms of λT are considered
equal if they are equal in λT‖.

Classical equality s = t is undecidable (since otherwise s = ⊥ could decide the
halting problem where ⊥ .= (λx.xx)(λx.xx)). Furthermore, s = t differs from βη-
equivalence s =η t. Actually, neither of the two relations imply the other. As an
example, (λx.λy.xy)T → λy.Ty whereas (λx.x)T → T so λx.λy.xy 6= λx.x even though
λx.λy.xy =η λx.x. As another example, Yλf.λx.λx.f = Yλf.λx.λx.λx.f (they both
equal λx.λx.λx. · · ·) but the two terms are not βη-equivalent. β-equivalence does imply
classical equality.

3.3 Classical reasoning about λT

In λT, any term f satisfies f = T or f = λx.fx or f = ⊥, there is no fourth possibility.
This ‘quartum non datur’ (QND) rule makes λT classical because it allows proof by
cases. A two-valued logic like ordinary propositional calculus satisfies a ‘tertium non
datur’ rule whereas a three valued logic like λT satisfies a ‘quartum non datur’ rule like
the one above. The proof-theoretic strength is the same.

As an example, if we define F
.= λx.T and x ∧ y

.= if(x, if(y, T, F), if(y, F,F)) then
QND allows to prove x ∧ y = y ∧ x. If x ∨ y

.= if(x, if(y, T, T), if(y, T, F)) and ¬x
.=

if(x,F,T) then x ∨ ¬x = T fails (counterexample: x = ⊥) but QND allows to prove
x ∨ ¬x = !x where !x .= if(x,T,T). In general, QND allows to translate lemmas and
proofs of classical propositional calculus to λT.

The QND-inference belongs to Map Theory. In Logiweb, Map Theory has four
connections to λT. Firstly, Map Theory allows to reason about λT. Secondly, the
reduction rules of λT are axioms of Map Theory. Thirdly, any λT program like x! .=
if(x = 0, 1, n · (n − 1)!) (where integers and = and · on integers is defined suitably)
automatically becomes a definition that can be used in Map Theory proofs. Fourthly,
the proof checker for Map Theory is implemented in λT.

3.4 Stress test of Map Theory

The ultimate test for a theory is to prove the consistency of ZFC set theory within
it. The result itself is not important since ZFC set theory is generally accepted to be
consistent, but proving the consistency of ZFC in a theory proves that that theory is as
powerful as ZFC theory which in turn is known to be sufficiently powerful to express all
of classical and most of modern mathematics.

For Map Theory, [Gru02] contains a formal proof of the consistency of ZFC within
Map Theory. Among other, [Gru02] was written to develop the language of Logiweb, so

11

[Gru02] was expressed in the language of Logiweb before Logiweb was implemented. The
correctness of [Gru02] has been established in Isabelle as reported in [Ska02]. Adaption
of [Gru02] to the final version of the Logiweb language and proof-checking in that
framework is the next, major task in the Logiweb project and will allow comparison
with the Isabelle implementation.

Note: If SI denotes the assumption that there exists a strongly inaccessible ordinal
then ZFC+SI can prove the consistency of Map Theory [BG97, Gru92] which in turn can
prove the consistency of ZFC [Gru92, Gru02]. This supports a claim that Map Theory
has strength between ZFC and ZFC+SI. But “strength” is defined on basis of Gödels
1931 paper [Göd31] which only considers theories that build on first order predicate
calculus so, for technical reasons, the “strength” of Map Theory is not defined. The
claim in Section 1 that Map theory has the “same” power as ZFC is imprecise but close
to the truth.

3.5 Efficiency of λT

The core software of Logiweb supports λT and no other programming language. Since
classical reasoning about λT is possible and rather straightforward ([Gru02], Chapter
6), this ensures the possibility to reason classically about any program expressed in
Logiweb.

This leaves two problems: How to handle programs expressed in other languages,
and how to ensure efficiency?

The first problem is trivial in principle. To handle e.g. C programs, define a compiler
from C to λT in λT. Such a compiler is typically referred to as a ‘semantics’ of C.

The second problem is non-trivial, and typical implementations of λ-calculus are
inefficient to a degree where a compiler from C to λT would be of little practical use.

Logiweb has a rather simple solution to the efficiency problem which is described in
the following.

3.6 Definitions

Logiweb allows Logiweb pages to contain definitions. As an example, consider the
following definitions:

x : : y .= λz.if(z, x, y)
xh .= xT
xt .= xF
F

.= λx.T

It is straightforward to prove (x : : y)h = x and (x : : y)t = y so x : : y is a pairing
construct and xh and xt are the associated ‘head’ and ‘tail’ operations.1

If the definitions above are stated on a Logiweb page P, then they will be available
in P as well as all pages referencing P. The definitions effectively extend the Logiweb
reduction system with new reduction rules like x : : y → λz.if(z, x, y).

1In Map Theory, which has inference rules of transitivity and substitution of equals and which has
all λT reduction rules and all valid λT definitions as axioms, a proof of (x : : y)h = x essentially reads
(x : : y)h = (x : : y)T = (λz.if(z, x, y))T = if(T, x, y) = x.

12

Computation of e.g. (x : : y)h = x will not be particularly efficient, however. It is pos-
sible to implement the pairing operation much more efficiently than using λz.if(z, x, y).

To allow efficient implementation without affecting the ability of classical reasoning,
Logiweb has two definition constructs, which we shall refer to as .= and =́. Formally,

x : : y .= λz.if(z, x, y)

and

x : : y =́ λz.if(z, x, y)

mean exactly the same. Backstage, however, Logiweb has a finite list of ‘optimized
functions’ which Logiweb can compute efficiently. For each optimized function, Logiweb
stores both the efficient version of the function and the ‘semantics’ of the function. The
‘semantics’ of an optimized function is a definition of the function expressed in λT.
When Logiweb sees a definition like

x : : y =́ λz.if(z, x, y)

it searches its list of optimized functions for one whose ‘semantics’ is identical to

λz.if(z, x, y)

(except for naming of bound variables). If Logiweb finds a match, it translates x : : y
to the optimized function found. Otherwise, Logiweb treats =́ like .=. A “match”
must be exact (modulo naming). As an example, λz.if(z, (λx.x)x, y) does not match
λz.if(z, x, y).

The .= and =́ constructs are identical from the point of view of reasoning as long as
optimized functions behave exactly as specified by their semantics. It is the responsi-
bility of the implementer of the core software to ensure this correspondence.

Distinct implementations of Logiweb may have different lists of optimized functions;
that may affect the speed of a computation but not the result of a computation.

Actually, the current implementation of Logiweb has no optimized function for the
untagged pair construct x : : y above. Instead, that implementation has an optimized
function for a particular tagged pair construct, and also has optimized functions for
handling cardinals (i.e. non-negative integers). Finally, the current implementation of
Logiweb does some type inference and strictness analysis to make programs run fast (c.f.
Section 3.6 of the base page). All that is invisible from the point of view of reasoning
about programs.

3.7 Feasibility

The measures above and those mentioned in Section 4 have proven sufficient to make it
feasible to implement macro expansion and proof checking on top of λT. As mentioned
in the abstract, the ‘base’ page on http://yoa.dk/, which is 180 pages long when
printed out, was macro expanded and checked in 40 seconds.

Each time an efficiency enhancement was implemented, the efficiency gain was mea-
sured in a rather crude way (with a manual stop watch on an otherwise unloaded

13

machine). The product of efficiency gains indicate a total speed-up around 109 with an
uncertainty of several orders of magnitude. If the 109 figure is correct, the base page
would take around 1200 years to macro expand and check without optimizations.

The 40 second measure is just a feasibility demonstration, not one suited for com-
parison with other systems. The measure shows that Logiweb can survive a 180 page
document with around 1500 definitions, 180 test cases, and 10 proof lines. The 40 sec-
onds are mainly spent on macro expanding the rather complex base page seven times
(for macro expansion iteration see Section 2.6). Applying Logiweb to longer proofs is
currently done by about ten students on a graduate course.

4 Data structures

In this section we describe the data structures Logiweb uses when verifying pages.
The choice of such data structures has proven to impact the efficiency of verification
considerably.

4.1 Terms

The current implementation of Logiweb has a pairing function and support for cardinals
(non-negative integers) among its optimized functions. We shall refer to the pairing
function as x : : y even though it differs from the particular pairing function defined in
Section 3.

The term is one of the most fundamental data structures of a system for formal
logic. Logiweb terms are data structures implemented using cardinals, x : : y, and T.

Logiweb terms are used for representing ordinary terms like 2 + 3. But they are also
used for representing formulas like ∀x: x + 1 = 1 + x. Furthermore, Logiweb terms are
used for representing lemmas and proofs. Actually, an entire Logiweb page is one big
term as seen from the point of view of Logiweb.

Logiweb terms are trees whose nodes are labeled by ‘Logiweb symbols’. A Logiweb
term with root r and subterms t1, . . . , tn is represented by

r : : t1 : : · · · : : tn : : T

This representation of terms is effectively the same as a Lisp S-expression [McC60].
The differences are (1) Logiweb symbols differ from Lisp symbols/Lisp atoms, (2) Logi-
web terms are terminated by T where Lisp S-expressions are terminated by NIL, and
(3) each Logiweb symbol has an arity which must match the n above.

As mentioned previously, each Logiweb page has a reference r. That reference is a
sequence of bytes when stored on disk or transmitted via a network, but when handled
inside Logiweb software, it is a cardinal.

Each Logiweb page declares a finite number of Logiweb symbols. Each Logiweb
page has a unique reference r and each symbol declared by a page has an identifier i
which is unique within the page, so a Logiweb symbol is uniquely determined by r and
i together.

A Logiweb symbol with reference r and identifier i is represented by a structure of
form r : : i : : d. The last item d in a Logiweb symbol comprises debugging information

14

which is irrelevant to formal reasoning. The debugging information notes where the
term was located before macro expansion and thus allows to produce meaningful error
messages.

The term that makes up a Logiweb page can only contain symbols from the page
itself and pages directly referenced by the page. After macro expansion, the term can
contain symbols from the page itself and pages transitively referenced by the page.

Large parts of a Logiweb page typically consists of ordinary text. Ordinary text
is encoded as terms inside the Logiweb software. When stored on disk or transmitted
over a network, care has been taken to encode text efficiently. In particular, Unicode
characters below 128 (i.e. ASCII characters) take up one byte each. Ordinary text of
Logiweb pages is expressed as TEX source text.

4.2 Arrays

Concerning efficiency, the main drawback of pure functional programming is the lack of
constant time array access. Logiweb is based on λT which certainly is a pure functional
programming language, and constant time array access is not tenable. Fortunately, it
is not important whether or not array access is constant in time. It is more important
that array access is fast.

Apart from terms, the main data structures of Logiweb are based on ‘Logiweb arrays’.
A Logiweb array a represents a function f from cardinals to arbitrary data which has
the property that f(n) 6= T holds for at most finitely many cardinals n.

We shall refer to the value associated to the cardinal n by the array a as a[n] and
to the set {n|a[n] 6= T} as the ‘domain’ of a.

A Logiweb array a is represented as a binary tree whose leafs have form n : : x where
x 6= T. A leaf of form n : : x represents the information that a[n] = x.

A leaf of form n : : x is placed at a location in a which depends on the index n and
on what other indices are stored in the array. As an example, consider a leaf of form
6 : : F which indicates that a[6] = F. The binary expansion of 6, written with the least
significant bit first, reads 01100000 · · ·. The address at which the leaf 6 : : F is placed in
a is the shortest prefix of 01100000 · · · which distinguishes 6 from all other indices of
the array a.

As a result, the access time of an array a with a contiguous domain depends on the
logarithm of the size of the domain. The access time of a sparse array with randomly
distributed indices also depends on the logarithm of the size of the domain.

The arrays used in Logiweb are typically accessed either by small cardinals (e.g.
identifiers of Logiweb symbols) or by randomly distributed cardinals (e.g. references of
Logiweb symbols).

4.3 Logiweb codices

A definition like F
.= λx.T defines the value of F, and a system for mathematical reason-

ing certainly must keep track of such definitions. Logiweb collects all definitions present
on a Logiweb page in a data structure which we shall refer to as a Logiweb codex, c.f.
Section 2.6.

A value definition like F
.= λx.T is what one normally thinks of as a definition. But

a computational system must handle many other kinds of definitions: definitions of how

15

constructs macro expand, how they should be rendered, how a user should input them
via a keyboard, and many other things.

Logiweb handles different kinds of definitions by the introduction of Logiweb ‘as-
pects’. Each definition in Logiweb consists of a left hand side, a right hand side, and an
aspect. As an example, definition of three aspects of F could read

F
val= λx.T

F
tex= “\mathsf{F}”

F
pyk
= “false”

The first definition defines the value aspect of F. Or, stated in a more straightforward
way, it defines the value of F. The second definition defines how F should be rendered and
the third definition states what a user should type on a keyboard or say in a microphone
to enter an F to an authoring tool. On traditional, site based proof checkers one typically
stores “pyk”- and “tex”-like information separately, but when sending pages around on
the internet, each page must be a capsule containing all information needed to e.g.
render the page. The latter two definitions above form a convenient way to include
information that is normally hidden away. The “intro” construct in Section 2.4 macro
expands into pyk and tex definitions (see the base page for a precise definition).

The macro facility allows to keep the de Bruijn factor2 low. The macro facility
allows authors to write pages in a style that is appealing to the human reader but still
macro-reduces into a more machine understandable form. The author of a page can
define a construct to be a macro by defining its macro aspect.

In Logiweb, aspects are represented by symbols. Definitions contain a left hand side
(which may contain parameters), an aspect (which may also contain parameters), and
a right hand side. When Logiweb “codifies” a Logiweb page, it macro expands it and
collects definitions from it, leading to a “codex” and a macro expanded version of the
page. The macro expanded version is a term whereas the codex is an array c with the
property that

c[rs][is][ra][ia]

is the definition of the aspect with reference ra and identifier ia for the symbol with
reference rs and identifier is.

The codex allows fast access to any aspect of any symbol during verification.

4.4 Logiweb racks

We shall refer to an array that contains heterogeneous data as a ‘rack’ and to each index
of a rack as a ‘hook’.

Logiweb assigns a rack r to each Logiweb page. The hooks of the rack are various
cardinals that represent various concepts. As an example, Logiweb hangs the codex
c of a page on the ‘codex’ hook, meaning that a particular cardinal c′ represents the
concept of a codex and meaning that r[c′] = c. The hooks of a Logiweb rack include
the following:

2the ratio by which formalization increases the length of a text [dB80]

16

vector The list of bytes that makes up the Logiweb page when it is stored on disk
or transmitted over a network.

bibliography The list of pages directly referenced by the present page. Reference
number zero (the first reference) is the reference of the page itself.

cache Explained later.
dictionary Symbol declarations of the page, represented as an array d. A symbol

with identifier i ‘exists’ if d[i] 6= T in which case d[i] is the arity of the symbol.
body The term that makes up the page.
codex The codex of the page as explained previously.
expansion The macro expanded version of the body.
diagnose Logiweb hangs T on this hook if the page passes verification. Otherwise,

the diagnose will be a term which, when typeset, is supposed be be a meaningful error
message.

code A compiled version of the codex (for an example of use see the base page,
Section 4.4.1)

4.5 Logiweb caches

As explained previously, there is a one-to-one correspondence between Logiweb refer-
ences and immutable Logiweb pages. The correctness of a Logiweb page only depends
on the contents of the page, which is immutable, and the contents of transitively refer-
enced pages, which are also immutable. For that reason, each Logiweb page only needs
to be verified once. The current implementation of the compiler verifies each page the
first time it is referenced within a session.

Independently of any caches maintained by Logiweb software for efficiency reasons,
Logiweb also defines a “Logiweb cache” for each Logiweb page. The cache of a page
collects information about a page and all its transitively referenced pages.

The cache of a Logiweb page is an array c for which c[r] is the rack of the page with
Logiweb reference r. The domain of the cache c comprises the references of the page
itself and pages transitively referenced by the page. As a dirty trick, c[0] contains the
reference of the page itself so that e.g. c[c[0]] is the rack of the page.

Racks and caches are defined mutually recursively. A cache is an array that maps
references to racks. A rack maps the previously mentioned ‘cache’ hook to an array
which maps references of transitively referenced pages to their caches. The resulting
structure is a non-cyclic one with considerable sharing which gives efficient access to all
data needed during verification and during all other activities undertaken by Logiweb.

5 Verification

5.1 Page symbols

Each Logiweb page implicitly declares a symbol whose identifier is zero, and the arity
of that symbol is forced to be zero. We shall refer to that symbol as the ‘page symbol’
of the page. The reference of a page symbol equals the reference of the page so there is
a one-to-one correspondence between pages and page symbols, c.f. Section 4.1.

17

Each Logiweb definition assigns an aspect to a symbol. Aspects assigned to a page
symbol, however, should be interpreted as aspects of the page. As an example, the name
of a page symbol effectively becomes the name of the page.

5.2 Verification

From the point of view of the Logiweb core software, verification of a Logiweb page is
trivial. The core software just codifies the page, looks up the ‘claim’ aspect of the page
symbol (which, if defined, is a term), applies that term to the cache of the page, and
considers the page correct if the result is T. Otherwise, Logiweb hangs the result of the
computation on the ‘diagnose’ hook of the page. The diagnose is supposed to be a term
which, when typeset, is supposed to explain what went wrong. Supplying meaningful
diagnoses is the responsibility of programmers of claims, proof tactics, etc.

If a page makes no claim (i.e. if no claim aspect is defined for its page symbol)
then Logiweb uses the claim of reference number one of the page, and if that reference
makes no claim either, then the page is considered trivially correct. In the “hello world”
example in Section 2.6, the “hello world” page makes no claim but reference number
one (the base page) does make a claim.

The claim made by the base page is a substantial one. It scans the codex of the
page for all proof definitions, invokes proof compilers which in turn invoke proof tactics,
verifies the proofs, checks for cyclic references between proofs, and checks that the proofs
prove the statement aspects they are supposed to prove.

It is an important feature of Logiweb that a complex beast like a proof checker is
not included in the core software. Firstly, it reduces the complexity of the core software.
Secondly, at gives the users of the system the flexibility to use the proof checker that
comes with logiweb (simply by referencing the ‘base’ page as reference number one) or
to define another one.

To establish confidence in the formal correctness of a Logiweb page, a human reader
can check that it has been verified by a proof checker that the reader trusts. That can
be done by inspecting the claim aspect of the relevant page symbol.

Proof checkers are faced with the same problem as the human reader. The proof
checker that comes with Logiweb is ‘arrogant’ in the sense that it only trusts lemmas
that it has checked itself. When a proof being checked references a lemma on another
page, the proof checker looks up the claim of the other page, which is supposed to
be a conjunction, and then checks that the proof checker itself is a member of that
conjunction. The proof checker also checks that the diagnose of referenced pages equals
T. Hence, the proof checker that comes with Logiweb only trusts itself but is willing to
coexist with other checkers. On the base page, the proof checker coexists with a test
case verifier, c.f. Section 2.6.

One can easily adapt any TEX source to the format of Logiweb and get it accepted
as a trivially correct page, simply because TEX sources make no claims that Logiweb
can understand. That is useful for communication to readers but of course such trivially
correct pages are of no formal use.

Macro expansion is just as simple as verification from the point of view of the Logiweb
core software. Logiweb pages are macro expanded by applying the macro aspect of the
page symbol of a page to the body of the page and hanging the result on the ‘expansion’

18

hook of the page, c.f. Section 2.6..

6 Status

Logiweb allows users to publish, verify, retrieve, and read pages that contain formal
mathematics.

The Logiweb core software comprises about 900 kilobyte of source code (including
comments). It implements the features described in the present paper. It also imple-
ments many other features like features for rendering. The core software is kept simple
by moving essential features like the definition of the proof checker from the core software
to Logiweb pages.

In particular, the measures taken to allow λ-calculus programs to be efficient have
been implemented with success. Also, the data structures of codices, racks, and caches
have proven to support proof checking well.

At the time of writing, Logiweb allows referencing within a single site covered by a
single Logiweb server. The Logiweb protocol allows cooperation among Logiweb servers.
When that is implemented, the web-part of the system will allow a single formal devel-
opment to consist of papers that reside different places in the world. Until then, users
are forced to copy referenced papers to their own site. Section 2.3 describes copying as
a convenient possibility, but until further copying is a necessity.

At the time of writing, 600 kilobyte of Logiweb source text has been verified by
Logiweb. Those 600 kilobyte define the computing machinery, the macro expansion
facility, and the proof checker, and verify the feasibility of the system (c.f. Section 3.7).
800 kilobyte of formal proofs [Gru02] await verification.

References

[BG97] C. Berline and K. Grue. A κ-denotational semantics for Map Theory in
ZFC+SI. Theoretical Computer Science, 179(1–2):137–202, June 1997.

[CAB+86] Robert L. Constable, S. Allen, H. Bromly, W. Cleaveland, J. Cremer,
R. Harper, D. Howe, T. Knoblock, N. Mendler, P. Panangaden, J. Sasaki,
and S. Smith. Implementing Mathematics with the Nuprl Proof Development
System. Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

[Chu41] A. Church. The Calculi of Lambda-Conversion. Princeton University Press,
1941.

[dB80] Nicolaas Govert de Bruijn. A survey of the project AUTOMATH. In J.P.
Seldin and J. R. Hindley, editors, To H. B. Curry: Essays in Combinatory
Logic, Lambda Calculus and Formalism, pages 579–606. Academic Press,
1980.

[DBP96] Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-160: A
strengthened version of RIPEMD. In Fast Software Encryption, pages 71–
82, 1996. http://citeseer.nj.nec.com/dobbertin96ripemd.html.

19

[Göd31] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathemati-
ca und verwandter Systeme I. Monatshefte für Mathematik und Physik,
12(XXXVIII):173–198, 1931.

[Gru92] K. Grue. Map theory. Theoretical Computer Science, 102(1):1–133, July
1992.

[Gru01] K. Grue. Mathematics and Computation, volume 1–3. DIKU (lecture notes),
7. edition, 2001. http://www.diku.dk/~grue/papers/mac0102/.

[Gru02] K. Grue. Map theory with classical maps. Technical Report 02/21, DIKU,
2002. http://www.diku.dk/publikationer/tekniske.rapporter/2002/.

[Gru04] Klaus Grue. Logiweb. In Fairouz Kamareddine, editor, Mathematical Knowl-
edge Management Symposium 2003, volume 93 of Electronic Notes in Theo-
retical Computer Science, pages 70–101. Elsevier, Feb 2004.

[Knu83] D. Knuth. The TeXbook. Addison Wesley, 1983.

[Koh03] Michael Kohlhase. OMDoc: An open markup format for mathematical doc-
uments (version 1.1), 2003. http://www.mathweb.org/omdoc.ps.

[McC60] J. McCarthy. Recursive functions of symbolic expressions and their compu-
tation by machine. Communications of the ACM, pages 184–195, 1960.

[Men87] E. Mendelson. Introduction to Mathematical Logic. Wadsworth and Brooks,
3. edition, 1987.

[MS01] Robert Miner and Jeff Schaeffer. A gentle introduction to MathML, 2001.
http://www.dessci.com/en/support/tutorials/mathml/default.htm.

[Muz93] MichaÃl Muzalewski. An Outline of PC Mizar. Foundation of Logic, Mathe-
matics and Informatics, Mizar User Group, Brussels, 1993.

[Pau98a] Lawrence C. Paulson. Introduction to Isabelle. Technical report, University
of Cambridge, Computer Laboratory, 1998.

[Pau98b] Lawrence C. Paulson. The Isabelle reference manual. Technical report,
University of Cambridge, Computer Laboratory, 1998.

[Ska02] Sebastian C. Skalberg. An Interactive Proof System for Map Theory. PhD
thesis, University of Copenhagen, October 2002. http://www.mangust.dk/
skalberg/phd/.

[TB85] Andrzej Trybulec and Howard Blair. Computer assisted reasoning with
MIZAR. In Aravind Joshi, editor, Proceedings of the 9th International Joint
Conference on Artificial Intelligence, pages 26–28, Los Angeles, CA, August
1985. Morgan Kaufmann. http://www.mizar.org/.

[Val03] Thierry Vallée. “Map Theory” et Antifondation, volume 79 of Electronic
Notes in Theoretical Computer Science. Elsevier, 2003.

20

Things to know when implementing KBO

Bernd Löchner

Technische Universität Kaiserslautern

loechner@informatik.uni-kl.de

Abstract

The Knuth-Bendix Ordering (KBO) is one of the term orderings in widespread
use. We present a new algorithm to compute KBO, which is (to our knowledge) the
first asymptotically optimal one. Starting with an “obviously correct” version we
use the method of program transformation to stepwise develop an efficient version,
making clear the essential ideas, while retaining correctness. By theoretical analysis
we show that the worst-case behavior is thereby changed from quadratic to linear.
Measurements show the practical improvements of the different variants.

1 Introduction

For the development of a practically successful prover it is important to have efficient
implementations of the most time-consuming subtasks. Recently the efficient imple-
mentation of term orderings has received attention [Löc04, RV04]. Having decent im-
plementations of indexing techniques available, the time that is spent on determining
ordering relations can amount to a significant part of the overall running time. Schulz
gives an estimation of up to 35 % for the prover E [Sch02] (personal communication).
In [RV04], Riazanov and Voronkov give a figure of about 40 % on the average for the
prover Vampire [RV02] and their straightforward implementation, with up to 80 % for
the hardest problems. For Waldmeister [LH02] we observe a more modest figure of
typically 5–10 % as rewriting with unorientable equations is very restricted in the default
settings [BH96]. Even so, for some proof tasks nearly 50 % are needed by the orderings.

The aim of this work is the development of an efficient version of the Knuth-Bendix
Ordering (KBO) [KB70], one of the orderings in widespread use. It is widely believed
that an implementation of KBO is asymptotically optimal if it shows quadratic worst-
case behavior. In the following, however, we will show the derivation of a variant that
needs only linear time. Similar to previous work, where we investigated the efficient
implementation of the Lexicographic Path Ordering [Löc04], our approach is based on
program transformations [BD77, PP93]: Using a language that is close to functional
programming or algebraic specification, we start with some “obviously correct” imple-
mentation, which is as close as possible to the original definition of the ordering. Then
we refine the implementation in several small steps that preserve correctness. To keep
the presentation concise (and interesting to read) we omit intermediate steps that oc-
curred in our paper-and-pencil use of a program transformation calculus. Instead, for
each function we present its initial specification and its final version. The advantage of

1

this detailed approach is that the central ideas and their influence on the running time
become very clear.

To measure the progress between the different versions we translate them in a
straightforward way into the programming language C and integrate them into Wald-

meister. This allows us to test and compare them on thousands of test cases occurring
in real proof-attempts and shows the impact of the different optimizations on a real
prover running on real hardware. All experiments were performed on machines equipped
with 1GHz Pentium III processors and 1GByte RAM.

2 The definition of the Knuth-Bendix Ordering

We use standard concepts from term rewriting (see e. g. [DP01]). The set Term(F ,V)
denotes the set of (first-order) terms built over the set of function symbols F and the
set of variables V. In the following we assume that F contains function symbols of fixed
arity only. The length |t| of a term t is the number of function symbols and variables it
contains. The x-length |t|x of a term t is the number of x-symbols it contains. The set
of variables occurring in term t is written as Var(t).

The KBO is named after its first use by Knuth and Bendix in [KB70]. Since then
its definition has been slightly generalized by relaxing the variable condition. The KBO
is parameterized by a precedence >F , that is a partial ordering on F , and a weight
function ϕ : F ∪ V → N. A weight function ϕ is admissible to a precedence >F if there
is some µ > 0 such that ϕ(x) = µ for all x ∈ V, ϕ(c) ≥ µ for all constants c ∈ F , and if
f ∈ F is a unary function symbol with ϕ(f) = 0 then f >F g for all g ∈ F − {f}. The
weight function ϕ is extended to terms by ϕ(f(t1, . . . , tn)) = ϕ(f) + ϕ(t1) + · · ·+ ϕ(tn).

Definition 1 Let >F be a precedence on F , ϕ a weight function admissible to >F , and
s, t ∈ Term(F ,V). Then s �kbo t iff

• s ≡ f(s1, . . . , sn), t ≡ g(t1, . . . , tm), and

(1) |s|x ≥ |t|x for all x ∈ V and

(2a) ϕ(s) > ϕ(t) or

(2b) ϕ(s) = ϕ(t), f >F g or

(2c) ϕ(s) = ϕ(t), f = g, and there is some k with

s1 ≡ t1, . . . , sk−1 ≡ tk−1, sk �kbo tk,

• or s ≡ f(s1, . . . , sn), t ≡ x ∈ V, and x ∈ Var(s).

The main idea of the KBO is that larger terms are greater than smaller terms; weight
function ϕ allows to differentiate between the different symbols (case (2a)). This weight-
based ordering is then refined by the precedence (case (2b)) and a recursive comparison
(case (2c)). The purpose of the variable condition (1) is to make �kbo stable against
substitutions (i. e., s �kbo t implies σ(s) �kbo σ(t) for any substitution σ).

Theorem 1 The Knuth-Bendix ordering �kbo to precedence >F and weight function
ϕ admissible to >F is a reduction ordering. If >F is total on F then �kbo is total on
ground terms. ut

2

3 Implementing the Knuth-Bendix Ordering

We describe the different implementations in a small algebraic specification language.
For boolean values it has a sort Bool with the two constructors true, false : Bool. For
natural numbers it has a sort Nat. Sorts Vid and Fid represent variables V and function
symbols F . We define the data type Term via two constructors using an additional sort
Termlist for lists of terms.

V : Vid → Term [] : Termlist

F : Fid Termlist → Term � : Term Termlist → Termlist

Note that for a term F(f, ts) there is no relationship encoded in the data type between
the arity of f and the length of ts. It is therefore possible to construct Terms that are
not well-formed, that is, they do not represent elements of Term(F ,V).

3.1 The reference implementation

By Definition 1, there are three sub-problems to solve for implementing KBO: the vari-
able condition (1), the computation of the weight ϕ(s), and the lexicographic compari-
son. Of these, the variable condition is the most complex, whereas implementing ϕ(s)
is straightforward:

phi : Term → Nat

phi(V(x)) = µ
phi(F(f, ss)) = ϕ(f) + phitl(ss)

phitl : Termlist → Nat

phitl([]) = 0
phitl(s � ss) = phi(s) + phitl(ss)

The variable condition (i. e., condition (1) of Def. 1) is not effective in that the set V
is infinite by definition. Therefore, several authors restrict the test to Var(s, t). As this
complicates later optimizations, we use a different approach. Whereas V is infinite, for
any invocation of the ordering there exists only a finite subset Vfin in the state of the
prover. Let K = |Vfin|. We assume that the module implementing the KBO can access
K and that there is a function index : Vid → Nat that transforms efficiently (i. e., in
constant time) a variable identifier into a natural number between 1 and K . Then the
following function xlen computes the x-length of a term: xlen(s, i) = |s|x iff index(x) = i .

xlen : Term Nat → Nat

xlen(V(x), i) = if index(x) = i then 1 else 0
xlen(F(f, ss), i) = xlentl(ss , i)

xlentl : Termlist Nat → Nat

xlentl([], i) = 0
xlentl(s � ss , i) = xlen(s, i) + xlentl(ss , i)

We use xlen in function varCheck1 which checks the variable condition:

varCheck1 : Term Term → Bool

varCheck1(s, t) = varCheck′(s, t, 1)
varCheck′ : Term Term Nat → Bool

varCheck′(s, t, i) = if i > K then true

elif xlen(s, i) 6≥ xlen(t, i) then false

else varCheck′(s, t, i + 1)

As xlen(s, i) needs O(|s|) steps, varCheck1(s, t) needs O(K · (|s| + |t|)) steps.
With the auxiliary functions available the implementation of KBO is straightfor-

ward. We call it the reference implementation.1 Functions >F, =t, and =tl compute the

1The subscript 1 denotes that this is the first version we consider. It will increase subsequently.

3

precedence, syntactic equality on Term, and syntactic equality on Termlist. Function
contains tests whether a variable symbol occurs in a term.

kbo1 : TermTerm → Bool

kbo1(F(f, ss), F(g, ts)) = varCheck1(F(f, ss), F(g, ts)) ∧
(phi(F(f, ss)) > phi(F(g, ts)) ∨
phi(F(f, ss)) = phi(F(g, ts)) ∧ f >F g ∨
phi(F(f, ss)) = phi(F(g, ts)) ∧ f = g ∧ kbolex1(ss , ts))

kbo1(F(f, ss), V(y)) = contains(F(f, ss), y)
kbo1(V(x), t) = false

kbolex1 : TermlistTermlist → Bool

kbolex1([], []) = false

kbolex1(s � ss, t � ts) = if s =t t then kbolex1(ss , ts) else kbo1(s, t)

Note that kbolex1 is a partial function, it is only defined if the arguments have the
same length. This reflects that F contains function symbols of fixed arity only. In a
theorem prover it is useful to have also a bidirectional version ckbo(s, t) available. Its
result sort Res has four constructors E,G, L,N which encode whether s ≡ t, s �kbo t,
t �kbo s, or whether s and t are not comparable.

ckbo1 : Term Term → Res

ckbo1(s, t) = if s =t t then E

elif kbo1(s, t) then G

elif kbo1(t, s) then L

else N

When we analyze the worst-case running time of kbo1, we see that it is quadratic in
the size of the arguments:

Theorem 2 Let s and t be well-formed Terms. Then kbo1(s, t) = true iff s �kbo t. The
worst-case running time of kbo1(s, t) is O(KN 2) where K = |Vfin| and N = |s| + |t|.

Proof The correctness of the implementation is easy to see as it closely follows Def-
inition 1. It remains to consider the worst-case running time. If s is a variable then
kbo1 performs one step. If t is a variable then the function performs O(|s|) steps. In
the remaining case, performing the variable check needs O(KN) steps and determining
the weights of the terms needs O(N) steps. Furthermore, after testing some subterms
for syntactic equality, which is bound linearly in N , the evaluation of kbolex1 may per-
form one recursive call to kbo1. In the worst case, the top-symbol of both terms is a
unary function symbol. Hence, for the recursive call the size of each argument is only
reduced by one. Therefore, we can estimate the costs of kbo1(s, t) by the recurrence
C(N) = c1KN + c2N + c3 + C(N − 2), where c1, c2 and c3 are some constants. Solving
this recurrence leads to C(N) ≤ c′1KN2 + c′2N

2 + c′3N + c′4 for some suitable constants
c′1, . . . , c′4. This implies that the worst-case running time of kbo1(s, t) is O(KN 2). ut

By this analysis, it is easy to come up with instances that show the quadratic be-
havior of kbo1. As the number of recursive calls is bound by the depth of the terms, the
worst case occurs for terms consisting mostly of unary function symbols. We use kbo1

to refer to the C-implementation of kbo1.

4

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 50 100 150 200 250 300 350 400

|un| + |vn|

K = 1

K = 100

K = 200

K = 300

K = 400

K = 500

ru
n
n
in

g
ti
m

e
in

m
ic

ro
se

co
n
d
s

Figure 1: Time needed to evaluate kbo1(un, vn) with n = 1, . . . , 200 and six different
values of K (cf. Example 1)

Example 1 Let f >F a >F b and ϕ return 1 for each symbol. Let un ≡ fn(a) and
vn ≡ fn(b). Then kbo1(un, vn) needs time that grows linearly in K and quadratically
in n to determine un �kbo vn. Figure 1 depicts the running times of kbo1(un, vn) for
n = 1, . . . , 200 and six different values of K .

Of course, the definition of kbo1(F(f, ss),F(g, ts)) can easily be optimized by extract-
ing common subexpressions into let-variables and re-bracketing the main expression:

kbo(F(f, ss), F(g, ts)) =

let vc = varCheck1(F(f, ss), F(g, ts))
ws = phi(F(f, ss))
wt = phi(F(g, ts))

in vc ∧ (ws > wt ∨ (ws = wt ∧ (f >F g ∨ (f = g ∧ kbolex(ss , ts)))))

However, this modification only improves the constants, the asymptotic running time
is still O(KN 2) in the worst case. The main problems are the expensive check of the
variable condition and the repeated work induced by recursive calls.

Standard techniques to avoid repeated computations such as dynamic programming
or memoization use an additional data structure to store intermediate results. This is
unproblematic for the weights of the subterms. However, to implement the variable
condition, we have to store the multisets of variables occurring in a subterm. The
following example shows that this may lead to space problems.

Example 2 Let g >F a >F b and ϕ return 1 for each symbol. The terms un are
given by u0 ≡ a and un+1 ≡ g(un, xn, yn). The terms vn are given by v0 ≡ b and
vn+1 ≡ g(vn, yn, xn). Then un �kbo vn. However, the multisets of variables for un

and vn contain 2n different variables. This means that simply storing the multisets of
variables for each term leads to a quadratic memory requirement.

5

It is easy to develop representations of the multisets that circumvent the quadratic
memory requirement for this example. To find general solutions, however, is quite
challenging. As it turns out, we can derive an efficient version of KBO without the use
of a memo-table. First, we want to improve the check of the variable condition.

3.2 Implementing the variable condition with arrays

The main problem with function varCheck1 is that it needs K traversals of each term.
An obvious way to avoid this is to compute the multisets of variables contained in s
and t and to test whether the multiset belonging to t is a sub-multiset of the multiset
belonging to s. This needs only one traversal per term. However, the use of multisets
complicates later transformations. Hence, we use a different approach which is based
on arrays and which is also closer to an imperative implementation. The arrays contain
one entry for each variable which we can efficiently access by using function index.

In the imperative implementation arrays are modified destructively. To model this,
we thread arrays as additional parameters through the function calls and require that
a variable bound to an array must be used exactly once in each branch of the function
definition.2 This facilitates a linearity analysis that some compilers of functional lan-
guages use as an optimization. Instead of being copied, linearly used data structures
can be modified destructively.

It is therefore convenient to reduce the number of arrays. Instead of two arrays of
naturals for the number of variables in s and the number of variables in t we can use one
single array of integers which stores for each variable x the variable balance |s|x − |t|x.
The test of condition (1) of Definition 1 is then replaced by |s|x−|t|x ≥ 0 for all x ∈ Vfin.

To enhance modularity and ease later optimizations we use a dedicated data type
VarBal for variable balances with corresponding methods. We use 1 to denote the type
of the empty tuple with the single value 〈〉, which plays the same role as void in the
C language. The following two functions allocate and deallocate an instance of VarBal.
We assume that newArray(Int, 1,K) returns a new array of integers with indices ranging
from 1 to K such that all entries are initialized to 0. We write vb = ~0 to denote that all
entries of vb have value 0. Function freeArray frees in some unspecified way the memory
occupied by the array passed as parameter.

newVB : 1 → VarBal

newVB(〈〉) = newArray(Int, 1,K)
freeVB : VarBal → 1

freeVB(vb) = freeArray(vb)

A conservative estimation is that both functions run in O(K) time. We will discuss
later about how to improve on this (see Section 3.5).

To increment and decrement the entry for a given variable in a VarBal we use the
following two functions:

inc : VarBal Vid → VarBal

inc(vb, x) = let i = index(x)
〈vb′,n〉 = read(vb, i)

in update(vb ′, i ,n + 1)

dec : VarBal Vid → VarBal

dec(vb, x) = let i = index(x)
〈vb ′,n〉 = read(vb, i)

in update(vb ′, i ,n − 1)

Functions read and update are standard functions to read and modify entries of an
array. We assume that they need constant time. Therefore, functions inc and dec need

2The cognoscenti will recognize a state monad [Wad92].

6

constant time as well. Note the explicit threading of the array, even read returns it.
This facilitates the aforementioned linearity analysis.

The following function noNeg tests whether for all variables the balance is not neg-
ative (i. e., |s|x − |t|x ≥ 0 for all x ∈ Vfin). Function noPos tests whether for all variables
the balance is not positive. This is useful for the bidirectional version of KBO.

noNeg : VarBal → VarBal × Bool

noNeg(vb) = noNeg′(vb, 1)

noNeg′ : VarBal Nat → VarBal × Bool

noNeg′(vb, i) =
if i > K then 〈vb, true〉
else let 〈vb ′,n〉 = read(vb, i)

in if n < 0 then 〈vb ′, false〉
else noNeg′(vb ′, i + 1)

noPos : VarBal → VarBal × Bool

noPos(vb) = noPos′(vb, 1)

noPos′ : VarBal Nat → VarBal × Bool

noPos′(vb, i) =
if i > K then 〈vb, true〉
else let 〈vb ′,n〉 = read(vb, i)

in if n > 0 then 〈vb ′, false〉
else noPos′(vb ′, i + 1)

It is easy to see that the worst-case running time of both functions is O(K). Note that
only functions newVB, freeVB, inc, dec, noNeg and noPos rely on the knowledge how the
data type VarBal is represented.

Function mdfyVB modifies the variable balances in one traversal. The argument pos
indicates whether mdfyVB has to increase or to decrease the entries in vb.

mdfyVB : VarBal Term Bool → VarBal

mdfyVB(vb, V(x), pos) = if pos then inc(vb, x)
else dec(vb, x)

mdfyVB(vb, F(f, ss), pos) = mdfyVBtl(vb, ss , pos)

mdfyVBtl : VarBalTermlist Bool → VarBal

mdfyVBtl(vb, [], pos) = vb
mdfyVBtl(vb, s � ss , pos) = let vb ′ = mdfyVB(vb, s, pos)

in mdfyVBtl(vb
′, ss , pos)

The running time of both functions is linear in the size of the second argument.
With these functions it is possible to implement function varCheck2:

varCheck2 : Term Term → Bool

varCheck2(s, t) = let vb = newVB(〈〉)
vb′ = mdfyVB(vb, s, true)
vb′′ = mdfyVB(vb ′, t, false)

〈vb ′′′, res〉 = noNeg(vb ′′)
〈〉 = freeVB(vb ′′′)

in res

Taking into account the running times of the functions concerning VarBal it is clear that
the worst-case running time of varCheck2(s, t) is in O(K + |s| + |t|).

Function kbo2 (and hence ckbo2) differs from function kbo1 in using varCheck2 in-
stead of varCheck1 and having the improved definition for kbo(F(f, ss),F(g, ts)), thereby
avoiding the multiple computations of identical weights.

Theorem 3 Let s and t be well-formed Terms. Then kbo2(s, t) = kbo1(s, t). The worst-
case running time of kbo2(s, t) is O(KN + N 2) where K = |Vfin| and N = |s| + |t|.

Proof It is easy to see that varCheck2(s, t) = varCheck1(s, t) and that the modified
definition for kbo2(F(f, ss),F(g, ts)) is equivalent to the original one. It remains to
consider the worst-case running time. If at least one of the arguments is a variable
then kbo2(s, t) behaves identical to kbo1(s, t): Its running time is either O(1) or O(|s|).

7

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300 350 400

|un| + |vn|

K = 1

K = 100

K = 200

K = 300

K = 400

K = 500

ru
n
n
in

g
ti
m

e
in

m
ic

ro
se

co
n
d
s

Figure 2: Time needed to evaluate kbo2(un, vn) with n = 1, . . . , 200 and six different
values of K (cf. Example 1)

In the remaining case, performing the variable check with varCheck2 needs O(K + N)
steps. Determining the weights of the terms still is O(N). (However, the constants
are smaller than for kbo1 as repeated work is avoided). For the evaluation of kbolex

nothing changes. Therefore, we can estimate the costs of kbo2(s, t) by the recurrence
C(N) = c1K + c2N + c3 + C(N − 2), where c1, c2 and c3 are some constants. Solving
this recurrence leads to C(N) ≤ c′1KN +c′2N

2 +c′3N +c′4 for some suitable constants c′1,
. . . , c′4. This implies that the worst-case running time of kbo2(s, t) is O(KN + N 2). ut

Revisiting Example 1, we see in Figure 2 that kbo2, the C-implementation of kbo2,
is significantly faster than kbo1 for these test cases. (Figure 2 has a significantly smaller
scale than Figure 1). Note the different slope of the graphs depicted in Figures 1 and 2
which indicates the different dependency on K of the two implementations.

3.3 Deriving a linear version

The tupling strategy is a standard approach in program transformations [PP93]. The
key insight in optimizing kbo2 is that the tupling strategy allows us not only to combine
the calculation of the variable balances and the weights, which is straightforward, but
also to include the lexicographic comparison. Hence, all three sub-computations are
combined into one traversal of the terms. As this avoids the iterated computations of
variable balances and weights it leads to an algorithm that is linear in |s| + |t|.

To achieve the desired result we need a variant of kbo that incorporates the tests
for syntactic equality. As it turns out, developing a version for the bidirectional ckbo

is only slightly more involved than developing a version for a three-valued unidirec-
tional variant. For the presentation, we therefore prefer the bidirectional variant for its
greater symmetry. The unidirectional variant can easily be derived by simplifying the
bidirectional one.

8

Because of the variable balances, we have to thread some state through the com-
putation. By the tupling strategy the state is extended to incorporate the weights of
the terms and the result of the lexicographic comparison. To reduce the number of
components of the state, we therefore combine both weights into one weight balance wb
which is defined as wb = ϕ(s) − ϕ(t). Analogously to the variable balances, the test
ϕ(s) ≥ ϕ(t) is then replaced by wb ≥ 0. To get used to the tupling approach we first
define some auxiliary functions. Function mdfyVWB combines the modification of the
variable balances with the modification of the weight balance. Its initial definition is
the following:

mdfyVWB(vb,wb, s, pos) = let vb ′ = mdfyVB(vb, s, pos)
w = phi(s)

in if pos then 〈vb′,wb + w〉 else 〈vb ′,wb − w〉

With the tupling strategy we can avoid the multiple traversals of the term:

mdfyVWB : VarBal Int Term Bool → VarBal × Int

mdfyVWB(vb,wb, V(x), pos) = if pos then 〈inc(vb, x),wb + µ〉
else 〈dec(vb, x),wb − µ〉

mdfyVWB(vb,wb, F(f, ss), pos) = let 〈vb ′,wb′〉 = mdfyVWBtl(vb,wb, ss , pos)
in if pos then 〈vb ′,wb′ + ϕ(f)〉

else 〈vb ′,wb ′ − ϕ(f)〉

mdfyVWBtl : VarBal Int Termlist Bool → VarBal × Int

mdfyVWBtl(vb,wb, [], pos) = 〈vb,wb〉
mdfyVWBtl(vb,wb, s � ss , pos) = let 〈vb ′,wb′〉 = mdfyVWB(vb,wb, s, pos)

in mdfyVWBtl(vb
′,wb′, ss , pos)

Obviously, evaluating mdfyVWB(vb,wb, s, pos) needs O(|s|) steps.
Function mdfyVWBc integrates in addition the test whether some variable symbol y

is contained in the term s:

mdfyVWBc(vb,wb, s, y, pos) = let 〈vb ′,wb ′〉 = mdfyVWB(vb,wb, s, pos)
res = contains(s, y)

in 〈vb ′,wb ′, res〉

With tupling we get the following variant:

mdfyVWBc : VarBal Int Term Vid Bool → VarBal × Int × Bool

mdfyVWBc(vb,wb, V(x), y, pos) = if pos then 〈inc(vb, x),wb + µ, x = y〉
else 〈dec(vb, x),wb − µ, x = y〉

mdfyVWBc(vb,wb, F(f, ss), y, pos) = let 〈vb ′,wb′, res〉 = mdfyVWBctl(vb,wb, ss, y, pos)
in if pos then 〈vb ′,wb ′ + ϕ(f), res〉

else 〈vb ′,wb ′ − ϕ(f), res〉

mdfyVWBctl : VarBal Int Termlist Vid Bool → VarBal × Int

mdfyVWBctl(vb,wb, [], y, pos) = 〈vb,wb, false〉
mdfyVWBctl(vb,wb, s � ss , y, pos) = let 〈vb ′,wb′, res〉 = mdfyVWBc(vb,wb, s, y, pos)

in if ¬res then mdfyVWBctl(vb
′,wb ′, ss , y, pos)

else let 〈vb ′′,wb ′′〉 = mdfyVWBtl(vb
′,wb′, ss , pos)

in 〈vb ′′,wb ′′, true〉

As each symbol in the term is considered once at constant costs, the evaluation of
mdfyVWBc(vb,wb, s, y, pos) needs O(|s|) steps.

9

The tupled variant of ckbo modifies the given variable and weight balances and
computes ckbo of the terms:

tckbo(vb,wb, s, t) = let 〈vb ′,wb ′〉 = mdfyVWB(vb,wb, s, true)
〈vb ′′,wb ′′〉 = mdfyVWB(vb ′,wb ′, t, false)

res = ckbo(s, t)
in 〈vb ′′,wb ′′, res〉

Note that if s =t t then vb′′ = vb and wb ′′ = wb (i. e., the possible modifications of each
variable balance and the weight balance cancel each other).

Similar to tckbo, we need a tupled variant of the lexicographic comparison. We first
specify a Res-valued variant of the lexicographic comparison. Like function kbolex it is
only defined for Termlists of the same length.

ckbolex(ss , ts) = if ss =tl ts then E

elif kbolex(ss , ts) then G

elif kbolex(ts, ss) then L

else N

It is easy to see that the following variant is equivalent:

ckbolex([], []) = E

ckbolex(s � ss , t � ts) = let res = ckbo(s, t)
in if res = E then ckbolex(ss , ts)

else res

The tupled variant tckbolex takes into account the variable and weight balances. It
must be called only with Termlists of the same length as otherwise it is undefined.

tckbolex(vb,wb, ss, ts) = let 〈vb ′,wb ′〉 = mdfyVWBtl(vb,wb, ss , true)
〈vb′′,wb′′〉 = mdfyVWBtl(vb

′,wb ′, ts, false)
res = ckbolex(ss , ts)

in 〈vb′′,wb′′, res〉

Note that tckbolex(vb,wb, s � ss , t � ts) returns the same result as tckbolex(vb,wb, ss , ts)
if s =t t.

In the specification of tckbo and tckbolex the calculation of the ordering relation and
the modification of the variable and weight balances occur independently. However,
the whole point of the optimizations is to perform them simultaneously and to use the
variable and weight balances for computing the ordering relations. To get correct results
we therefore have to establish the following invariant I: At each invocation of tckbo and
tckbolex both functions are called with vb = ~0 and wb = 0. Thus, it is sufficient that
the optimized versions of tckbo and tckbolex give the same results as the unoptimized
versions only if called with vb = ~0 and wb = 0.

The optimized version of tckbolex is called tckbolex3. Note the close relationship to
the second variant of ckbolex.

tckbolex3 : VarBal Int Termlist Termlist → VarBal × Int × Res

tckbolex3(vb,wb, [], []) = 〈vb,wb, E〉
tckbolex3(vb,wb, s � ss , t � ts) = let 〈vb ′,wb ′, res〉 = tckbo3(vb,wb, s, t)

in if res = E then tckbolex3(vb
′,wb ′, ss , ts)

else let 〈vb ′′,wb ′′〉 = mdfyVWBtl(vb
′,wb ′, ss , true)

〈vb′′′,wb ′′′〉 = mdfyVWBtl(vb
′′,wb ′′, ts , false)

in 〈vb′′′,wb ′′′, res〉

10

In the following, we describe the optimized version of tckbo, which admittedly looks
rather complex. However, most of the complexity comes from the threading of the state.
The complicated-looking if -elif -expression simply checks the different possibilities in a
systematic way.

tckbo3 : VarBal Int Term Term → VarBal × Int × Res

tckbo3(vb,wb, V(x), V(y)) = let vb ′ = inc(vb, x)
vb′′ = dec(vb ′, y)
res = if x = y then E else N

in 〈vb ′′,wb, res〉
tckbo3(vb,wb, V(x), F(g, ts)) = let 〈vb ′,wb′, ctn〉 = mdfyVWBc(vb,wb, F(g, ts), x, false)

res = if ctn then L else N

vb′′ = inc(vb ′, x)
in 〈vb ′′,wb ′ + µ, res〉

tckbo3(vb,wb, F(f, ss), V(y)) = let 〈vb ′,wb′, ctn〉 = mdfyVWBc(vb,wb, F(f, ss), y, true)
res = if ctn then G else N

vb′′ = dec(vb ′, y)
in 〈vb ′′,wb ′ − µ, res〉

tckbo3(vb,wb, F(f, ss), F(g, ts)) = let 〈vb ′,wb′, lex 〉 = tckbo′
3
(vb,wb, f, g, ss, ts)

wb′′ = wb′ + ϕ(f) − ϕ(g)
〈vb ′′,nNeg〉 = noNeg(vb ′)
〈vb ′′′,nPos〉 = noPos(vb ′′)

G-or-N = if nNeg then G else N

L-or-N = if nPos then L else N

in if wb ′′ > 0 then 〈vb ′′′,wb ′′,G-or-N 〉
elif wb ′′ < 0 then 〈vb ′′′,wb ′′,L-or-N 〉
elif f >F g then 〈vb ′′′,wb ′′,G-or-N 〉
elif g >F f then 〈vb ′′′,wb ′′,L-or-N 〉
elif f 6= g then 〈vb ′′′,wb ′′, N〉
elif lex = E then 〈vb ′′′,wb ′′, E〉
elif lex = G then 〈vb ′′′,wb ′′,G-or-N 〉
elif lex = L then 〈vb ′′′,wb ′′,L-or-N 〉
else 〈vb ′′′,wb′′, N〉

tckbo′
3

: VarBal Int Fid Fid Termlist Termlist → VarBal × Int × Res

tckbo′
3
(vb,wb, f, g, ss, ts) = if f = g then tckbolex3(vb,wb, ss , ts)

else let 〈vb ′,wb′〉 = mdfyVWBtl(vb,wb, ss, true)
〈vb ′′,wb′′〉 = mdfyVWBtl(vb

′,wb′, ts , false)
in 〈vb ′′,wb′′, N〉

Note that tckbolex3 is only called if f = g which implies that ss and ts have the same
length. Analogously, the value of lex is only considered if f = g (i. e., results from
invoking tckbolex3).

Lemma 1 Let vb = ~0 and wb = 0. If s=t t then tckbo3(vb,wb, s, t) = 〈~0, 0,E〉. If ss=tl ts
then tckbolex3(vb,wb, ss , ts) = 〈~0, 0,E〉.

Proof Simultaneous induction on |s|+ |t| and |ss |+ |ts |. If s=t t then either s = V(x),
t = V(y), and x = y, or s = F(f, ss), t = F(g, ts), f = g, and ss =tl ts . In the first case,
tckbo3 first increments, then decrements the same entry of vb, then sets res to E and

11

uses wb unmodified. Hence, it returns 〈~0, 0,E〉. In the second case, tckbo′3 calls tckbolex3

which returns 〈~0, 0,E〉 by induction hypothesis. By adding and subtracting the same
value the weight balance is not changed. Hence, tckbo3 returns 〈~0, 0,E〉.

If ss =tl ts then either both lists are [] or ss = s � ss ′, ts = t � ts ′, s=t t, and ss ′ =tl ts
′.

In the first case, tckbolex3 lets vb and wb unmodified. Hence, it returns 〈~0, 0,E〉. In
the second case, it calls tckbo3 which by induction hypothesis returns 〈~0, 0,E〉. Then
tckbolex3 calls itself with vb ′ = ~0 and wb ′ = 0. Hence, induction hypothesis applies, the
result is 〈~0, 0,E〉. ut

Because recursive calls of tckbo3 and tckbolex3 occur only as long as the symbols of
s and t are identical, we immediately get the following corollary.

Corollary 1 The invariant I is established by tckbo3 and tckbolex3. ut

Lemma 2 Let vb = ~0 and wb = 0. Then tckbo3(vb,wb, s, t) = tckbo(vb,wb, s, t). If
length(ss) = length(ts) then tckbolex3(vb,wb, ss , ts) = tckbolex(vb,wb, ss , ts).

Proof Simultaneous induction on |s| + |t| and |ss | + |ts |. Lemma 1 covers the cases
where s =t t and ss =tl ts . Hence, it suffices to consider the remaining cases.

If s and t are different variables then the variable balances are updated accordingly
and N is determined for the ordering relation. As ϕ maps all variables to µ, wb remains
unchanged. If one term is a variable and the other is not then mdfyVWBc modifies the
balances for the nonvariable terms. Furthermore, it tests whether the variable occurs
in the term which determines the value of res . Finally, the balances are updated to
take the variable into account. It remains the case where s and t are both nonvariable
terms. If both top-symbols are identical then tckbolex3 is called which by induction
hypothesis returns the correct result for the comparison of the arguments. Otherwise,
tckbo′3 updates the balances for the arguments by calling mdfyVWBtl. Handling the
weights of the top-symbols is the duty of tckbo3. Variables G-or-N and L-or-N record
whether or not the variable balances approve a possible G or L result. The if -elif -
expression then simply follows the definition of KBO and considers first the weights,
then the precedence, and finally the result of the lexicographic comparison.

If ss and ts are not identical then, after considering some possibly empty prefix,
tckbolex3 calls tckbo3 with vb = ~0, wb = 0, and two different terms. Hence, by induction
hypothesis, res 6= E and the balances are updated accordingly. ut

With the help of tckbo3 it is easy to compute ckbo3 which is mainly a wrapper that
handles the allocation and deallocation of the array for the variable balances.

ckbo3(s, t) = let vb = newVB(〈〉)
〈vb ′,wb, res〉 = tckbo3(vb, 0, s, t)

〈〉 = freeVB(vb ′)
in res

Theorem 4 Let s and t be well-formed Terms. Then ckbo3(s, t) = ckbo2(s, t). The
worst-case running time of ckbo3(s, t) is O(KN) where K = |Vfin| and N = |s| + |t|.

Proof Function ckbo3 calls newVB, tckbo3, and freeVB. Lemma 2 ensures the correct-
ness of ckbo3. The costs for newVB and freeVB are O(K). During the evaluation of

12

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350 400

|un| + |vn|

K = 1

K = 100

K = 200

K = 300

K = 400

K = 500

ru
n
n
in

g
ti
m

e
in

m
ic

ro
se

co
n
d
s

Figure 3: Time needed to evaluate kbo3(un, vn) with n = 1, . . . , 200 and six different
values of K (cf. Example 1)

tckbo3(vb,wb, s, t) each symbol in s and t is considered once. Except functions noNeg

and noPos all operations need constant time. Functions noNeg and noPos need O(K)
time for each invocation. In the worst case, both functions are called N/2 times. Hence,
tckbo3(vb,wb, s, t) needs at most O(KN) steps. Therefore, the worst-case running time
of ckbo3(s, t) is O(KN). ut

Revisiting Example 1 again, we can see in Figure 3 that the running time of kbo3,
the C-implementation of kbo3, depends linearly on the size of its arguments. It is also
considerably faster than kbo2 for these test cases. (Note the different scale of Figures 2
and 3). The slope of the lines is linear with K .

3.4 Optimizing the variable test

By using the tupling strategy we have successfully avoided the quadratic behavior.
However, as can be seen in Figure 3, the running time of kbo3 still depends noticeably
on K , the number of different variables in the prover’s state. Each invocation of noNeg

and noPos tests for each of the K variables its balance, which apparently is in O(K).
The main idea to transform both operations into tests with constant costs is to keep
counters for the number of positive variable balances and for the number of negative
variable balances. Let getPC and getNC return the values of these counters. Then we
can implement noNeg and noPos in the following way:

noNeg : VarBal → VarBal × Bool

noNeg(vb) = let 〈vb ′,n〉 = getNC(vb)
in 〈vb ′,n = 0〉

noPos : VarBal → VarBal × Bool

noPos(vb) = let 〈vb ′,n〉 = getPC(vb)
in 〈vb ′,n = 0〉

A nice effect of this change is that functions noNeg and noPos are now independent from
the representation of VarBal. This knowledge is hidden in getNC and getPC.

13

We keep the two counters in two extra entries of the array that represents the vari-
able balances. We use entry 0 to count the negative variable balances and entry K + 1
to count the positive variable balances. We therefore have to change function newVB:

newVB : 1 → VarBal

newVB(〈〉) = newArray(Int, 0,K + 1)

To increment or decrement the counters we use functions incNC, incPC, decNC, and
decPC, which all have straightforward constant-time definitions.

We modify the counters each time the variable balance for a variable x leaves or
reaches 0. Thus, we treat the variable balance for x as the following finite automaton:

S−
x S0

x
S+

x

decNC(vb)

incNC(vb)

incPC(vb)

decPC(vb)

Functions inc and dec are then defined accordingly:

inc : VarBal Vid → VarBal

inc(vb, x) = let i = index(x)
〈vb ′,n〉 = read(vb, i)

vb ′′ = update(vb ′, i ,n + 1)
in if n = 0 then incPC(vb ′′)

elif n = −1 then decNC(vb ′′)
else vb ′′

dec : VarBal Vid → VarBal

dec(vb, x) = let i = index(x)
〈vb ′,n〉 = read(vb, i)

vb′′ = update(vb ′, i ,n − 1)
in if n = 0 then incNC(vb ′′)

elif n = 1 then decPC(vb ′′)
else vb′′

Keeping the two counters has a profound influence on the running time. As getNC

and getPC both need constant time, functions noNeg and noPos are both in O(1).
Functions inc and dec need more time than before, but are still in O(1). Hence, we get
the following result for function ckbo4 which differs from ckbo3 by using the counter-
based variable tests:

Theorem 5 Let s and t be well-formed Terms. Then ckbo4(s, t) = ckbo3(s, t). The
worst-case running time of ckbo4(s, t) is O(K + N) where K = |Vfin| and N = |s| + |t|.

Proof It is easy to see that the counter-based variable test is equivalent to the previ-
ous one. For determining the costs, recall that function ckbo4 invokes newVB, tckbo4,
and freeVB. The costs for newVB and freeVB are O(K). During the evaluation of
tckbo4(vb,wb, s, t) each symbol in s and t is considered once. Including functions
noNeg and noPos the operations performed for each symbol need constant time. Hence,
tckbo4(vb,wb, s, t) needs O(N) time. Therefore, the worst-case running time of ckbo4(s, t)
is O(K + N). ut

We denote the C-implementation of kbo4 with kbo4. Revisiting Example 1 again,
its dependency on K shows as a small constant offset in the two graphs depicted in
Figure 4. (For clarity reasons, we have omitted the data for the other values of K). For
K = 500, kbo4 is also considerably faster than kbo3, whereas for K = 1 the differences
are tiny, as can be seen by comparison with Figure 3.

14

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350 400

|un| + |vn|

K = 1

K = 500

ru
n
n
in

g
ti
m

e
in

m
ic

ro
se

co
n
d
s

Figure 4: Time needed to evaluate kbo4(un, vn) with n = 1, . . . , 200 and two different
values of K (cf. Example 1)

3.5 One final modification

The optimized handling of the variable test has successfully avoided the dependency
on K of functions noNeg and noPos. However, functions newVB and freeVB may still
depend on K . The aim of our final modification is to change that. As a result, the
evaluation of ckbo5(s, t) is independent of the number of variables in the prover’s state.
The practical improvements we can expect are rather small, as Figure 4 indicates. The
real importance of this result is that it is asymptotically optimal: the running time of
ckbo5(s, t) solely depends on |s| and |t|, the size of its actual arguments.

A general observation with the theorem prover Waldmeister is that calls to the
ordering occur much more frequently than changes of K . We therefore make the follow-
ing modification: the memory for the variable balances is not allocated and deallocated
for each invocation of ckbo5. Instead, this memory is handled outside the ordering in
some global variable globalVB . If Vfin changes then the size of globalVB is adjusted
accordingly.3 This is not the duty of the module implementing the ordering. Therefore,
we have to establish some invariant about the contents of globalVB . We assume that all
entries of globalVB are zero at the invocation of ckbo5. Hence, we have to ensure that
this holds true when ckbo finishes.

The task of function freeVB is therefore to zero out all entries that are modified during
the evaluation of tckbo5(vb,wb, s, t). To do this independently of K , we have to record
the modified entries during the computation. Therefore, we change the representation
of variable balances. Data type VarBal is now an array of pairs of integers with indices

3It is not strictly necessary to keep a global array for that purpose. Many theorem provers keep for
each variable a structure for recording its name, sort, etc. Given a certain variable, the corresponding
structure is usually quickly accessible. We could therefore avoid globalVB by storing its contents in these
structures. It is easy to adapt the simpler array-based formulation we have chosen to such a setting.

15

ranging from 0 to K + 1. Of each entry, the first component keeps the variable balance
as before. With the second component we establish a singly-linked list of the modified
entries.4 We use functions read1 and update1 to read and modify the first component of
an entry, and similarly read2 and update2 for the second component.

The new versions of functions getNC, getPC, incNC, decNC, incPC, and decPC are
identical to the old ones, except that read is replaced by read1 and update is replaced
by update1. Hence, their running times remain constant. Functions inc and dec are
changed analogously. In addition, they call function record to indicate that the entry is
changed:

inc : VarBal Vid → VarBal

inc(vb, x) = let i = index(x)
〈vb ′,n〉 = read1(vb, i)

vb ′′ = update
1
(vb ′, i ,n + 1)

vb′′′ = record(vb′′, i)
in if n = 0 then incPC(vb ′′′)

elif n = −1 then decNC(vb ′′′)
else vb ′′′

dec : VarBal Vid → VarBal

dec(vb, x) = let i = index(x)
〈vb ′,n〉 = read1(vb, i)

vb′′ = update
1
(vb ′, i ,n − 1)

vb′′′ = record(vb ′′, i)
in if n = 0 then incNC(vb ′′′)

elif n = 1 then decPC(vb ′′′)
else vb′′′

The singly-linked list is handled by the following functions. We use the value K + 1
as sentinel for the end of the list. The anchor of the list is the second component
of the zeroth array entry. We assume that variable globalVB contains the result of
newArray(Int × Int, 0,K + 1).

newVB : 1 → VarBal

newVB(〈〉) = let vb = globalVB
vb ′ = update

2
(vb, 0,K + 1)

in vb ′

clear : VarBal Int → VarBal

clear(vb, i) = let 〈vb ′, i ′〉 = read2(vb, i)
vb′′ = update(vb ′, i , 〈0, 0〉)

in if i = K + 1 then vb ′′

else clear(vb ′′, i ′)

freeVB : VarBal → 1

freeVB(vb) = let vb ′ = clear(vb, 0)
in 〈〉

record : VarBal Int → VarBal

record(vb, i) = let 〈vb ′, i ′〉 = read2(vb, i)
in if i ′ = 0 then record′(vb′, i)

else vb ′

record′ : VarBal Int → VarBal

record(vb, i) = let 〈vb ′, i ′〉 = read2(vb, 0)
vb ′′ = update

2
(vb ′, i , i ′)

vb ′′′ = update
2
(vb ′′, 0, i)

in vb′′′

Functions newVB and record need constant time. Hence, functions inc and dec need
constant time, too. The running time of freeVB is determined by the length of the list.
If there are M different variables in s and t then function clear overwrites M +2 entries
of the array: In addition to the entries representing variable balances the two entries at
position 0 and K + 1 which represent the counters. Let N = |s| + |t|. Then M ≤ N .
This leads to the desired result for function ckbo5 which uses the new versions of the
functions handling the variable balances.

Theorem 6 Let s and t be well-formed Terms. Then ckbo5(s, t) = ckbo4(s, t). The
worst-case running time of ckbo5(s, t) is O(|s| + |t|).

4This is a simple way to achieve the desired result. There are other sensible approaches.

16

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350 400

|un| + |vn|

K = 1

K = 500

ru
n
n
in

g
ti
m

e
in

m
ic

ro
se

co
n
d
s

Figure 5: Time needed to evaluate kbo5(un, vn) with n = 1, . . . , 200 and two different
values of K (cf. Example 1)

Proof The different memory management does not affect correctness as all modified
entries are zeroed out by clear. Concerning the costs, function ckbo5 calls besides tckbo5

the new versions of newVB and freeVB. The costs for newVB are O(1). The costs for
freeVB are O(M) where M = |Var(s, t)| ≤ |s|+|t|. Except calling the new versions of the
auxiliary functions, function tckbo5 is identical to function tckbo4. As these auxiliary
functions all need constant time, evaluating tckbo5(vb,wb, s, t) needs O(|s| + |t|) time.
Therefore, the worst-case running time of ckbo5(s, t) is O(|s| + |t|). ut

kbo5 is our C-implementation of kbo5. Figure 5 depicts the running times of kbo5

for the test cases of Example 1 and two different values of K . The two graphs are
practically indistinguishable, which indicates that the running time of kbo5 does not
depend on K . The differences to kbo4 are, however, rather small, cf. Figure 4.

4 Experimental evaluation

During the development of the different versions of kbo we presented experimental data
for a well chosen worst-case example to illustrate the different asymptotic running time
behavior. Unfortunately, such experiments tell us nothing about the improvements we
can expect in practice: the terms tested for their ordering relations in real proof attempts
do not follow such simple patterns.

To capture ordering tests originating from real proof attempts, we performed two
kinds of experiments: For five individual examples we measured the time for the calls
to the ordering until Waldmeister finished successfully. The examples belong to dif-
ferent domains of TPTP [SS98]. Furthermore, we made measurements for all 722 UEQ-
problems of TPTP-2.7.0. For that, we first ran Waldmeister using kbo1 with a time
limit of 10 seconds and recorded how often the ordering routines were called. We then

17

problem number of

calls to

ordering

time needed by ordering

kbo1 kbo2 kbo3 kbo4 kbo5

BOO031-1 455754 1.500 0.613 0.477 0.531 0.401

GRP179-1 436624 0.881 0.527 0.433 0.463 0.324

LCL109-2 106160 0.337 0.166 0.107 0.121 0.081

LAT085-1 195780 1.370 0.356 0.258 0.287 0.185

ROB006-1 511148 2.544 0.894 0.757 0.767 0.590

TPTP10 64 151129 307.800 114.400 85.400 97.350 77.660

Table 1: Time (in seconds) needed for ordering comparisons

performed the actual measurements by running the prover with the different versions
kboi and by aborting the run after the corresponding number of calls is reached. We
use TPTP10 to refer to the summarized results.

As we can learn from Table 1, the optimizations usually improve the time needed for
the ordering comparisons. However, the improvements are rather moderate compared
to our running example. An interesting observation is that kbo4 usually needs more
time than kbo3. This means that in these experiments the counter-based variable test
is inferior to simply checking the variable balances individually. The reason is that in
Waldmeister the number of different variables is kept as small as possible. Therefore,
we can observe rather small values of K . For the runs of TPTP10 the average value of
K is 9.5, and for only 13 of the 722 problems it is greater than twenty. Therefore, only
few comparisons can be saved, whereas for each invocation of inc and dec additional
comparisons are necessary. The potential of the optimization lies in cases where K is
greater than the number of variables occurring in the terms. In the test runs of TPTP10

these cases are too rare to lead to speed-ups. Considering the small average value of
K , we have to attribute the improvements of kbo5 to the significantly reduced number
of allocations and deallocations. The linear dependency on K of kbo4 does not seem
relevant for such small values of K .

5 Related work

We are unaware of any work discussing the efficient implementation of the basic KBO
test. The thesis of Steinbach contains a short overview about the time complexities of
orderings [Ste94, Chap. 6.2]. He shows that KBO can be evaluated in O(|s| · |t|) time.
Unfortunately, his discussion does not cover the variable test. Weidenbach suggests to
implement the KBO straight after its definition [Wei01].

We analyzed the KBO-implementations of several systems that participated in CASC,
the system competition of automated theorem provers affiliated with the Conference on
Automated Deduction (see http://www.tptp.org/CASC). Typically, a recursive vari-
ant similar to kbo2 is employed performing the variable test with the help of some data
structure. We find the use of arrays, hash tables, and association lists. An important
variation is to delay the variable test, that is, it is only performed after the tests belong-

18

ing to part (2) of Definition 1 have been checked successfully. This helps to reduce the
costs for the variable test. Some systems do not implement the full KBO, but use simple
weight-based orderings instead thus avoiding the recursive calls in the lexicographic part
and therefore the quadratic worst-case behavior.

A different approach is used in the Vampire system where the variable test and the
weight-based test are combined by using (linear) polynomials. Recurring tests with
two terms under different substitutions are optimized by using a specialized partial
evaluation technique (see [RV04]). This is beneficial, because most invocations of the
ordering test do not only concern two terms s and t but in addition some substitution σ.
The simplest way to determine whether σ(s) � σ(t) holds is to apply the substitution
and to call the basic ordering tests on the instances. However, explicitly constructing
the instantiated terms is rather costly. By passing σ as an additional parameter in the
recursive calls and looking up bindings of variables if necessary, we can improve on that
considerably. The modification to our implementations is straightforward, but has the
disadvantage that for some variable x the term σ(x) may be traversed several times in
case x occurs more than once. It will be interesting to see how our linear version of KBO
can be combined with the technique of [RV04] which avoids this multiple traversal.

6 Conclusions

Starting from an “obviously correct”, but inefficient variant, we developed step-by-
step an efficient implementation of KBO. From an initially quadratic algorithm, which
depends furthermore on the number of variables in the system K , we derive a linear
one which is independent of K . The key is to use techniques known from the program-
transformation community and appropriate data structures. To our knowledge, this is
the first linear implementation of KBO. At least, several developers of CASC-systems
were surprised to hear that KBO can be implemented in linear time.

For developing the different versions we used the paradigm of program transforma-
tions. This helped not only to focus on the essential ideas, but also to prevent errors in
the implementation – even by doing it by hand without a dedicated system. The manual
proofs revealed two bugs in the derivation of kbo3. In our C translations we found about
a dozen bugs; most of them occurred in the development of kbo3. This indicates that
the step between kbo2 and kbo3 is too wide to do without machine support. With a
proper program transformation system it should be easy. Nevertheless, this low num-
ber of errors is far better than what is usually achieved by traditional coding practice,
especially when we take into account the intricacy of the algorithms. We are convinced
that the chosen step-by-step approach is superior to presenting the final algorithm and
proving its correctness at once. Our experience suggests to use this two-level develop-
ment approach for other subtasks in a prover, especially when they need a significant
amount of the running time and an efficient implementation is not obvious.

Acknowledgments: Thomas Hillenbrand was the first who made me aware of the
difficulties with the variable check. Some e-mail discussion with Alexandre Riazanov
and Andrei Voronkov stimulated me to properly write down my rough ideas about
efficiently implementing KBO.

19

References

[BD77] R. M. Burstall and J. Darlington. A transformation system for developing
recursive programs. Journal of the ACM, 24(1):44–67, 1977.

[BH96] A. Buch and T. Hillenbrand. Waldmeister: Development of a High Perfor-
mance Completion-Based Theorem Prover. SEKI-Report 96-01, Universität
Kaiserslautern, 1996.

[DP01] N. Dershowitz and D.A. Plaisted. Rewriting. In A. Robinson and A. Voronkov,
eds., Handbook of Automated Reasoning, vol. I, ch. 9. Elsevier, 2001.

[KB70] D.E. Knuth and P.B. Bendix. Simple Word Problems in Universal Algebras.
In J. Leech, ed., Computational Algebra, pp. 263–297. Pergamon Press, 1970.

[LH02] B. Löchner and T. Hillenbrand. A phytography of Waldmeister. AI Com-
munications, 15(2–3):127–133, 2002. See http://www.waldmeister.org.

[Löc04] B. Löchner. Things to know when implementing LPO. In G. Sutcliffe, S. Schulz,
and T. Tammet, editors, Proc. of the 1st Workshop on Empirically Successful
First Order Reasoning (ESFOR ’04), 2004. Extended version to appear in
International Journal on Artificial Intelligence Tools.

[PP93] A. Pettorossi and M. Proietti. Rules and Strategies for Program Transfor-
mation. In B. Möller, H. Partsch, and S. Schuman, eds., Formal Program
Development, volume 755 of LNCS, pp. 263–304. Springer, 1993.

[RV02] A. Riazanov and A. Voronkov. The design and implementation of Vampire.
AI Communications, 15:91–110, 2002. See http://www.vampire.fm.

[RV04] A. Riazanov and A. Voronkov. Efficient checking of term ordering constraints.
In D. Basin and M. Rusinowitch, eds., Proc. 2nd International Joint Confer-
ence on Automated Reasoning, LNCS, pp. 60–74. Springer, 2004.

[Sch02] S. Schulz. E – A Brainiac Theorem Prover. AI Communications, 15:111–126,
2002. See http://www.eprover.org.

[SS98] G. Sutcliffe and C.B. Suttner. The TPTP Problem Library: CNF Release
v1.2.1. Journal of Automated Reasoning, 21(2):177–203, 1998. See http:

//www.tptp.org.

[Ste94] J. Steinbach. Termination of Rewriting. PhD thesis, Universität Kaiser-
slautern, 1994. See http://www-madlener.informatik.uni-kl.de/seki/

1994/Steinbach.PhDThesis.ps.Z.

[Wad92] P. Wadler. Comprehending monads. Mathematical Structures in Computer
Science, 2:461–493, 1992.

[Wei01] C. Weidenbach. Combining superposition, sorts and splitting. In A. Robinson
and A. Voronkov, eds., Handbook of Automated Reasoning, vol. II, ch. 27.
Elsevier Science, 2001.

20

	Introduction: How Tau Works
	Tau and the KIF Language
	The Logical Theory of Tau
	Algorithms
	Resolution
	Model Elimination and Proof Search
	Heuristic Search
	Brand Transformations
	Martelli and Montanari
	Stillman's Subsumption Algorithm

	Computational Results
	Logic Theorems
	Identity Problems
	Theory of a Successor, Presburger and Peano Arithmetic
	Mathematical Induction
	Graph Theory
	Sample Statistics

	Disproofs
	Next Extensions of Tau

