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Extracting Test Problems

from Real Applications

John Harrison

Intel, USA

johnh@ichips.intel.com

Abstract. The HOL Light theorem prover has a number of automated

subsystems, e.g., a model elimination procedure for �rst order logic with

equality, and arithmetic provers for linear and non-linear arithmetic. The

sub-problems that are dealt with by these components can easily be ex-

tracted to give a good selection of the relatively easily decidable problems

that arise in \real" applications, such as formalizing mathematics and

performing industrial veri�cations. These can then be used as test prob-

lems for other automated provers, and possibly incorporated into stan-

dard test suites such as TPTP. We have already made available some

test problems generated in this way. This simple approach has the disad-

vantage that the problems tend to be relatively easy, and self-selected for

the particular methods used in HOL's own provers. However, since HOL

is an LCF-style prover, it is essentially trivial to capture all proofs in the

system, regardless of whether they are wholly or partly automated. Us-

ing this technique, we can generate realistic test problems of essentially

arbitrary diÆculty.
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Abstract

The assessment and comparison of automated theorem proving sys-
tems (ATPs) is important for the advancement of the �eld. At present,
the de facto assessment method is to test provers on the TPTP library
of nearly 6000 theorems. We describe here a project which aims to com-
plement the TPTP service by automatically generating theorems of suf-
�cient diÆculty to provide a signi�cant test for �rst order provers. This
has been achieved by integrating the HR automated theory formation
program into the MathWeb Software Bus. HR generates �rst order con-
jectures in TPTP format and passes them to a concurrent ATP service
in MathWeb. MathWeb then uses the tptp2X utility to translate the
conjectures into the input format of a set of provers. In this way, var-
ious ATP systems can be compared on their performance over sets of
thousands of theorems they have not been previously exposed to. Our
purpose here is to describe the integration of various new programs into
the MathWeb architecture, rather than to present a full analysis of the
performance of theorem provers. However, to demonstrate the potential
of the combination of the systems, we describe some preliminary results
from experiments in group theory.

1 Introduction

Automated Theorem Proving (ATP) is concerned with the development and use
of systems that automate sound reasoning: the derivation of conclusions that
follow inevitably from facts. A key concern of ATP research is the development
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of more powerful systems, capable of solving more diÆcult problems within the
same resource limits. In order to build more powerful systems, it is important
to understand which systems, and hence which techniques, work well for what
types of problems. This knowledge is a key to further development, as it precedes
any investigation into why the techniques and systems work well or badly. This
knowledge is also crucial for users: given a speci�c problem, a user would like
to know which systems are most likely to solve it. For classical �rst order ATP,
empirical evaluation is a necessary tool for obtaining this knowledge.

One way to evaluate and compare ATP systems is to use the TPTP problem
library [SS98], as discussed in x2.1 below. There are, however, some concerns
with developers' continual use of the TPTP. The most signi�cant concern is
that ATP researchers who always use this library for testing their systems run
the risk of producing systems that can solve only TPTP problems, and are weak
on new problems or applications. One way to counter this concern is to keep
adding new and increasingly more diÆcult theorems to the TPTP library. New
problems are continually being added to the TPTP library, and in [CSar] we
discuss how the HR program [CBW99] | as discussed in x3.1 below | has been
used to generate novel theorems for this library.

We discuss here another way to counter the problem of researchers �ne-
tuning their systems to perform well on a library of problems. We intend to
compliment the TPTP library with a new service available for ATP researchers.
This service will generate a set of theorems over a number of domains, which
are diÆcult enough to di�erentiate (in terms of eÆciency) a set of provers.
The analysis of why particular provers perform well over sets of (or individual)
theorems will give insight into the strengths and weaknesses of the provers,
which will drive their development. To achieve this, we have integrated the HR
program [CBW99] and the tptp2X utility (see x3.2 below) into the MathWeb
Software Bus [FK99]. In short, the integration is as follows: (i) HR generates
a conjecture in TPTP format which is empirically true over a certain number
of examples (ii) MathWeb employs the tptp2X utility to translate the theorems
into the input formats of a number of ATPs and (iii) MathWeb invokes the
provers to prove the theorems.

This project has three stages:
1. Integrate HR and tptp2X into MathWeb and demonstrate the system.

2. Make HR available as a service within MathWeb for ATP researchers.

3. Analyse the performance of a set of provers on sets of theorems.

We describe here the �rst stage of the project: how we have integrated HR and
tptp2X into MathWeb in order to generate and prove thousands of conjectures
using a variety of provers. To describe the integration, in x2 we discuss the
TPTP library and MathWeb. Following this, in x3 we discuss the integration of
the new additions to MathWeb, namely the E ATP system, HR and tptp2X. To
demonstrate the potential of this system for ATP researchers, in x4 we describe
some preliminary experiments using the provers Bliksem, E, Otter and Spass to
prove thousands of theorems in group theory, with the results given in x5. We
discuss the next stages of this project in x6.
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2 Background

2.1 The TPTP Library

The TPTP (Thousands of Problems for Theorem Provers) Problem Library
[SS98] is a library of test problems for ATP systems. It was developed in order
to move the testing and evaluation of ATP systems from the previously ad hoc
situation onto a �rm footing. Since the �rst release in 1993, many researchers
have used the TPTP library for testing their ATP systems and this is now the
de facto standard for testing �rst order ATP systems.

Problems in the TPTP library are in full �rst-order form (FOF problems) or
clause normal form (CNF problems). Each problem contains header information
that identi�es and describes the problem, provides information about occur-
rences of the problem in the literature and elsewhere, and gives the problem's
ATP status and a table of syntactic characteristics of the problem. A prob-
lem may include standard axiom sets, and all problems contain their speci�c
formulae. An important item of status information in each problem's header
is its diÆculty rating. This rating is computed using performance data from
state-of-the-art ATP systems [SS01], and is a value in the range 0 to 1. Prob-
lems with a rating of 0 are easy, and can be solved by all state-of-the-art ATP
systems. Problems with a rating between 0 and 1 are diÆcult. The rating value
is a measure of the fraction of state-of-the-art ATP systems that fail to solve
the problem within realistic resource limits. Problems with a rating of 1 are
unsolved by any ATP system, in normal testing. The ratings are important, as
they allow users to select problems according to their intentions.

The syntax of problems �les is that of Prolog, which makes it trivial to
manipulate the �les using Prolog. In particular, the TPTP comes with the
tptp2X utility (written in Prolog) that can convert problems from TPTP syntax
to the syntax used by existing ATP systems, as discussed in x3.2. Access to
the TPTP and related software is available at www.cs.miami.edu/~tptp/. In
particular, the SystemOnTPTP interface [Sut00] allows a TPTP problem to
be submitted in various ways to a range of ATP systems. In addition, the
interface will recommend which ATP systems are most likely to be able to solve
the problem. For example, for problems expressed in non-Horn pure equality,
E-SETHEO csp01, Gandalf c-1.9c, SCOTT 6.0.0, and Spass 1.03 are currently
recommended by SystemOnTPTP.

2.2 The MathWeb Software Bus

The MathWeb Software Bus (www.mathweb.org/mathweb/) is a platform for
distributed automated reasoning that supports the connection of a wide range
of mathematical services by a common software bus [FK99]. MathWeb provides
the functionality to turn existing theorem proving systems, computer algebra
systems (CAS), and other reasoning systems into mathematical services that
are homogeneously integrated into a networked proof development environment.
The environment thus gains the services from these particular modules, but each
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Figure 1: Current state of the MathWeb system

module in turn gains from using the features of other components in MathWeb.
MathWeb is implemented in the multi-paradigm programming language Mozart
(www.mozart-oz.org) which enables easy distribution of applications over a
LAN or the Internet [Smo95]. This enabled us to create a stable network of
mathematical services which is in every day use. Client applications can access
23 di�erent reasoning and computation systems: computer algebra systems such
as Maple, Magma and Cocoa, constraint solvers, mediators, model generators
such as Mace and Satchmo. Moreover, MathWeb integrates nine automated
theorem provers, such as Otter, Spass and Bliksem.

Mediators are mathematical services which transform mathematical knowl-
edge from one format to another. Currently, MathWeb integrates mediators to
translate (i) OpenMath formulae [CC98] into a variety of formats (ii) OmDoc
documents [Koh00] into the logic of the Omega system [BCF+97], and (iii) ATP
problems in DFG syntax into Otter input syntax. In addition to �rst order au-
tomated theorem provers, MathWeb also o�ers a concurrent ATP service which
calls a selection of ATPs concurrently on a given problem. An application using
this service can choose to see only the �rst result (i.e. the result of the fastest
prover) or all the results. The latter enables a runtime comparison and/or
several independent judgements about a given conjecture to be obtained.

The current architecture of the MathWeb system is depicted in �gure 1. We
see that local brokers provide routing and authentication information to the
mathematical services (see [FK99, SHS98] for details). So called meta-services,
o�er the mathematical services (e.g., an ATP, CAS or a model checker) to their
local broker. MathWeb brokers register with each other thus building a dynamic
web of brokers. Client applications such as the Omega system, LOUI (a GUI
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for Omega), or CGI-scripts connect to one of the MathWeb brokers and request
services. If the requested service is not o�ered by a local meta-service, the
broker forwards the request to all known brokers until the service is found. If
the requested service is found, the client application receives a reference to a
newly created service object and can send messages directly to the object. Some
service objects such as Omega also act as clients, and request other services
themselves.

3 Integration of New Systems into MathWeb

For this project, we have integrated three new systems into MathWeb:

� The automated theory formation system HR to generate theorems.
� The tptp2X utility to translate the theorems.
� The E automated theorem prover to prove the theorems.

HR was implemented as a new client and tptp2X as a mediator in order to
test the ATP systems in MathWeb with conjectures supplied by HR, and we
discuss these systems in this section. However, E was added as a new system
to test, and we discuss this in x4, along with the other provers employed in
the experiments. We also had to extend the existing MathWeb ATPs which
were used in the experiments | namely Bliksem, Otter and Spass | to accept
TPTP problem descriptions and to use the new tptp2X service. We discuss the
technical problems which arose in the integration of the new systems and the
adaptation of the current systems in x3.3.

3.1 The HR System

The HR program (named after mathematicians Hardy and Ramanujan) per-
forms automated theory formation in domains of pure mathematics such as
number theory, graph theory, and �nite algebras, such as group theory and ring
theory. The initial information about a domain supplied to HR include the
axioms of the domain and optionally some initial concepts (e.g., multiplication
and addition in number theory). The concepts are supplied with both a de�ni-
tion and some examples (e.g., triples of integers related by multiplication). In
�nite algebraic domains, HR can start with just the axioms of the theory, as
it extracts initial concepts from these, e.g., given the identity axiom in group
theory, HR extracts the concept of identity elements. HR operates by perform-
ing a theory formation step that attempts to invent a new concept from one
(or two) old ones. Concept formation is facilitated using one of a set of general
production rules that generate both a de�nition and set of examples for the new
concept, from the de�nition and examples of the old concept(s). The complex-

ity of a concept is measured as the number of production rule steps which were
used to construct the concept. The 10 production rules are described in detail
in [CBW99], [CBW00a] and [Col00], and include the following four:
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� Compose rule: uses conjunction to join the de�nitions of two previous concepts
� Exists rule: introduces existential quanti�cation
� Match rule: equates variables in a concept's de�nition
� Negate rule: negates predicates within a de�nition

A theory formation step will lead to either: (a) a concept that has no exam-
ples, (b) a concept that has exactly the same examples as a previous concept,
or (c) a concept that has non-trivial examples that di�er from those of all pre-
viously existing concepts. In the �rst case, there may be no examples for the
concept because of the lack of data given to HR, or it may be because the de�-
nition of the concept is inconsistent with the axioms of the domain. Hence, HR
makes a conjecture that no examples of the concept exist. In the second case,
HR makes an if-and-only-if conjecture, stating that the de�nitions of the new
concept and the previous one are equivalent. In the last case, the concept is
simply added to the theory.

When HR makes conjectures in �nite algebraic domains, it can invoke the
Otter theorem prover [McC94] to attempt to prove the conjecture. If Otter fails,
HR invokes the Mace model generator [McC01] to attempt to �nd a counterex-
ample. If neither Otter nor Mace are successful, then the conjecture remains
open. In cases where Otter proves an equivalence theorem, HR breaks this
into a set of implication theorems, where a set of premise predicates imply a
single goal predicate. Furthermore, HR extracts prime implicates from each
implication theorem, i.e. it takes ever-larger subsets of the premises from the
implication theorem and sees whether Otter can prove that they imply the goal.

3.2 The tptp2X Utility

The tptp2X utility is a multi-functional utility for reformatting, transforming,
and generating TPTP problem �les. In particular, tptp2X can be used to:

� Control the generation of TPTP problem �les from TPTP generator �les.
� Apply various transformations to TPTP problems.
� Convert problems in TPTP format to formats used by existing ATP systems.

The transformations currently available in tptp2X include conversion of FOF
problems to CNF, random reordering of formulae and literals (to test sensi-
tivity to the particular presentation in the TPTP), addition and removal of
equality axioms from problems (as required by many ATP systems), and to
apply Stickel's magic set transformation [Sti94]. The output format currently
available from tptp2X include the Bliksem, Dedam, DFG, DIMACS, KIF, Ot-
ter, Protein, PTTP, Setheo, and Waldmeister formats. The core of tptp2X is
written in Prolog, thus it can easily read and manipulate the Prolog format
syntax of TPTP problems. The core has a modular construction, and it is
easy for users to add new transformations and formats. The most common use
of tptp2X is from a terminal command prompt, and a shell script interface is
provided for this purpose. Direct use via Prolog is also possible, and various
features of tptp2X have been optimized for this style of use.
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3.3 Integration Details

We have integrated HR into MathWeb with the intention that HR will be both
a client (utilising other services in MathWeb) and a service (utilised by other
clients in MathWeb), with this latter aspect discussed in x6 below. Hence we
wrote a MathWeb wrapper that communicates with HR via two sockets (one
to handle service requests and the other to issue client commands). Due to the
high number of conjectures HR typically produces in a session, we preferred the
socket interface to the less eÆcient XML-RPC interface, which is also available
in MathWeb. The high numbers of conjectures being passed around MathWeb
caused many other problems, and we had to improve many aspects of Math-
Web, for instance the handling of temporary �les. HR was also improved. In
particular, we wrote two new classes (HR is a Java program) to handle the in-
teraction with MathWeb. The �rst class (MathWeb.class) abstracts the socket
communication details and o�ers an easy way for HR to access MathWeb ser-
vices, and for the user to choose which services to access. The second class
(MathWebProver.class) is able to translate HR's conjectures into TPTP �rst
order format, call MathWeb.class to employ tptp2X and the concurrent ATP
service, and read the results, which are returned to HR as Java objects.

The integration of the E ATP system was straight-forward, as there is a
standard MathWeb wrapper called ShellProver for automated theorem provers,
which only has to be adjusted for the particular output of the prover at hand.
First-order problems are written to (temporary) �les and the ATPs are called
as shell commands on the respective input �le. Finally, the ShellProver wrap-
per analyses the output of the prover. The analysis of the output is the most
diÆcult part of the integration of an ATP because automated theorem provers
are typically not designed to produce machine readable output, but rather to
inform a human user about their results. Hence we had to write bespoke algo-
rithms within the prover-calling wrappers to determine the status of a theorem,
extract a proof object and so on.

The integration of tptp2X was also a non-trivial task, because the standard
tptp2X shell command was not eÆcient enough for our purposes (it took be-
tween 3 and 4 seconds to translate each theorem, as the Prolog interpreter was
loaded, and tptp2X compiled each time). We therefore had to design and im-
plement a tptp2X servlet based on a permanently running Prolog process with
the pre-compiled tptp2X code that evaluates incoming transformation requests
immediately. With this new service, we reduced the transformation time to
100-200 ms (for an average sized problem). This speedup was crucial, as HR
produces thousands of conjectures in a short time, and we need n tptp2X trans-
formations for running n provers in parallel on a single TPTP problem. We also
upgraded how the runtime of the provers is recorded. All provers are started
directly in the shell without any intermediate scripts and we use the Unix time

command to record the CPU time of the prover process. We also recorded the
CPU time that was used for operating system calls and added the two values.
This gives an indication of the time required to prove a theorem, rather than
how fast the prover is after intermediate processes have been undertaken.
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4 Experiments

Our experiments were designed to show that a stable integration has been
achieved and to highlight the potential usage of HR within MathWeb. Our
aim here was to di�erentiate four �rst order theorem provers in terms of their
eÆciency proving a set of theorems generated by HR. The provers we employed
are described in x4.1, and we describe the sessions in x4.2.

4.1 ATP Systems Employed

We used the latest publicly available versions of four �rst-order theorem provers,
namely Bliksem 1.12, E 0.62, Otter 3.2, and Spass 1.03. These systems were
used for the CASC system competition in 2001 [Sut01].

� Bliksem 1.12

Bliksem [DeN] implements the ordered resolution + superposition calculus. It
supports many di�erent orders, including reduction orders, A-orders, and non-
liftable orders. Special attention has been given to resolution strategies that
provide decision procedures for certain subsets of �rst order logic. Bliksem is
able to transform �rst order formulae into clausal normal form, using di�erent
structural or non-structural clause transformations. The more recently added
features of Bliksem include a posteriori orders, equality factoring and tautology
elimination, optimized normal form transformations, non-unit demodulators,
and equality subsumption (which takes into account commutativity of equality).
High priority has been given to portability. The data structures have been
carefully chosen after benchmark tests on the basic operations.

� E 0.62

E 0.62 [Sch01] is a purely equational theorem prover. The calculus used by E
combines superposition (with selection of negative literals) and rewriting. No
special rules for non-equational literals have been implemented, i.e., resolution
is simulated via paramodulation and equality resolution. E 0.62 includes AC
redundancy elimination and AC simpli�cation for dynamically recognized asso-
ciative and commutative equational theories, as well as simulated clause split-
ting. E is based on the DISCOUNT-loop variant of the given-clause algorithm,
i.e., a strict separation of active and passive facts. Proof search in E is primar-
ily controlled by a literal selection strategy, a clause evaluation heuristic, and
a simpli�cation ordering. Supported term orderings are several parameterized
instances of Knuth-Bendix-Ordering (KBO) and Lexicographic Path Ordering
(LPO). The most unique feature of the implementation is the maximally shared
term representation. This includes parallel rewriting for all instances of a par-
ticular subterm. A second important feature is the use of perfect discrimination
trees with age and size constraints for rewriting and unit-subsumption.

� Otter 3.2

Otter [McC94] is designed to prove theorems stated in �rst-order logic with
equality. Otter's inference rules are based on resolution and paramodulation,
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and it includes facilities for term rewriting, term orderings, Knuth-Bendix com-
pletion, weighting, and strategies for directing and restricting searches for proofs.
Otter can also be used as a symbolic calculator and has an embedded equational
programming system. Otter is a fourth-generation Argonne National Labora-
tory deduction system whose ancestors (dating from the early 1960s) include
the TP series, NIUTP, AURA, and ITP.

� Spass 1.03

Spass [WAB+99] is an automated theorem prover for �rst-order logic with equal-
ity. It is a saturation based prover employing superposition, sorts and splitting.
In contrast to many approaches to order-sorted clausal reasoning, the calcu-
lus enables sort predicates and equations to occur arbitrarily within clauses.
Therefore, the sort theory is not separated from the problem clauses, but au-
tomatically and dynamically extracted. Spass also o�ers a variety of further
inference and reduction rules including hyper resolution, unit resulting reso-
lution, various variants of paramodulation and a terminator. Spass relies on
an internal library supporting speci�c data structures and algorithms like, for
example, indexing or orderings (KBO, RPOS).

4.2 Sessions with MathWeb

We ran HR for two sessions within MathWeb. In the �rst session, we supplied
conjectures to all four provers. In the second session, we employed only Bliksem,
E and Spass. The reason for the omission of Otter is that we wanted to perform
a much more extensive test of the system in the second session, and had found
that Otter was increasingly unable to prove the theorems produced. Otter
repeatedly timing out at 120 seconds meant that the session was very slow,
and so we removed Otter in order to increase the yield of theorems proved in a
reasonable time. Both sessions were undertaken in the domain of group theory,
and all conjectures HR produced were true of the groups up to order 8, as these
were supplied to HR. The provers were given two sets of axioms from the TPTP
library, namely GRP004+0.ax (group theory axioms) and EQU001+0.ax (axioms
of equality). With these axioms, all the theorems produced were expressed in
non-Horn pure equality. Each prover was run with the default settings and given
a 120 second time limit for each theorem.

In the �rst session, we ran HR until it produced 1500 equivalence conjectures
(with the four provers having attempted proofs). In the second session, we ran
HR until it produced 12000 equivalence conjectures (again with proof attempts
from the three provers). In both sessions, we ran HR with a random search,
but in the �rst session, we employed a complexity limit of 6, with a complexity
limit of 15 for the second session. Breadth �rst searches have been found to
produce conjectures that are too simple, while depth �rst searches specialize
the theory too much. In contrast, random searches | where, at each step, both
concept and production rule are randomly chosen | tend to produce fairly
complicated conjectures, without over-specializing the theory. We used only
the exists, compose, negate and match production rules in these sessions.
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5 Results

The �rst result to note is that the integration of HR and tptp2X into MathWeb
is clearly stable, as we were able to complete a session where 12000 theorems
were generated and proved. Moreover, there has been an increase in eÆciency,
with the four provers being called in roughly the same time as HR used to
call just Otter. This is due in part to the new socket interface rather than
the previous �le interface, and in part to a slow implementation of HR reading
the output �les from Otter. For the two sessions, we recorded the number of
theorems proved by each prover, the average time taken to prove those theorems
which were proved, and we identi�ed some theorems of interest, i.e. those which
di�erentiate the provers in a signi�cant way.

� Session 1

Prover No. Proved Av. Time to Prove (ms)

Bliksem 1.12 1500 188.94
E 0.62 1500 95.27
Otter 3.2 1445 633.90
Spass 1.02 1500 103.88

Table 1: Number proved and average time to prove - session 1

To produce 1500 theorems which were proved (or at least attempted) by all four
provers took around 90 minutes on a Sun Ultra 10 workstation. The results
from this session are given in table 1, and we see that Otter failed to prove 55
theorems. Of these, Otter timed out on 16, but returned `no solution' to the
other 39, and we are still investigating why Otter cannot �nd a solution to these.
The 16 theorems which Otter timed-out on took around a third of the overall
session time, which justi�es our reason to remove Otter for the second session.
For example, �gure 2 shows a theorem (number 493) which Otter 3.2 could
not prove in the 120 second limit, but all the other provers proved relatively
quickly. For completeness, we present the theorem in the TPTP format which
was passed to tptp2X, in addition to a more mainstream mathematical format.

include('Axioms/EQU001+0.ax').

include('Axioms/GRP004+0.ax').

input_formula(conjecture493,conjecture,(! [B,C,D] :

((equal(inverse(B),C) & equal(multiply(B,D),C) & equal(inverse(D),B)

& ? [E,F] : (equal(inverse(E),F) & equal(multiply(E,B),F))

& equal(multiply(D,C),B)) <=>

(equal(inverse(D),C) & equal(inverse(B),D) & equal(multiply(C,D),B))))).

8 b; c; d (b�1 = c & b�d = c & d�1 = b & 9 e; f (e�1 = f & e�b = f) & d�c = b

() d�1 = c & b�1 = d & c � d = b)

Figure 2: Theorem 493 in session 1, which Otter could not prove in 120 seconds
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Figure 3: Average times to prove theorems

� Session 2

This session took around 14 hours on a Sun Ultra 10 to produce the required
12000 theorems. All were proved by at least one prover, with 70 exceptions.
We have yet to determine which, if any, of the 70 were actually non-theorems.
More interesting from the perspective of comparing and contrasting the provers,
for each prover, there was at least one conjecture which it could not prove in
120 seconds, but both the others could. Speci�cally, there were 19 which were
proved by E and Spass, but not by Bliksem, 4 which were proved by E and
Bliksem, but not Spass and only 1 which Spass and Bliksem proved, but E did
not. In appendix A, we provide examples of these theorems.

The average time taken to prove the theorems by each prover are given in
table 2. These suggest that (with the default settings) E is most suited to
problems of this type, followed by Spass and then Bliksem. Also, Bliksem failed
to prove more theorems than E and Spass, although the di�erences are not great.
These results correlate with SystemOnTPTP, which | as mentioned in x2.1 |
recommends E (actually E-Setheo, a hybrid) and Spass, but not Bliksem, for
non-Horn pure equality theorems such as those HR produced. We also recorded
how the average time to prove a theorem changed as the session progressed (see
�gure 3). For all the provers, the average time to prove a theorem increased
in general as HR's theory progressed. This suggests that, given enough time,
HR can get to a stage where a theorem will, on average, take an arbitrarily
long time to prove by all provers. This is important, as discussed in x6 below,
although we need more experimentation to con�rm this observation.

Prover No. Proved Av. Time to Prove (ms)

Bliksem 1.12 11908 607.01
E 0.62 11931 132.32
Spass 1.02 11927 254.97

Table 2: Number proved and average time to prove - session 2
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6 Conclusions and Future Work

In previous work, we have used the HR system to produce many thousands
of group theory conjectures [CSar]. Human intervention was then required to
employ automated theorem provers to identify those conjectures which were (a)
theorems and (b) diÆcult for some of the provers. This has led to 184 theorems
produced by HR being added to the TPTP library. Hence we have shown that
HR can be used to improve the TPTP library and we are currently undertaking a
project using HR to discover theorems in more complicated algebraic domains, in
particular Zariski spaces, [MMS98]. We hope that results from this application
will also �nd their way into the TPTP library.

In addition to improving the TPTP library, we have concentrated here on
the potential of using HR to compliment the library. We have described the
integration of HR, the tptp2X utility and automated theorem provers into the
MathWeb software bus in such a way that HR generates, tptp2X translates and
the ATP systems prove conjectures. The implementation is stable enough to
process thousands of theorems, and initial experiments have demonstrated that
HR can produce theorems which are hard to prove for some of the ATPs but not
for others, which we suggest is a potential tool for di�erentiation the provers.
Furthermore, we have shown that the system as a whole (i.e. the integration
of HR, tptp2X and the provers in MathWeb) can identify the theorems which
only one prover �nds diÆcult. We have argued that the automated generation
of such theorems can be used to identify strengths and weaknesses in particular
provers, in much the same way as the TPTP library does. This in turn can be
used to drive the development of provers.

It is important to stress that we draw no conclusions here about the eÆcien-
cies of the provers on the theorems HR generated. For each prover, there are
many settings which can drastically improve settings, and we need to perform
much more extensive testing before we can make any detailed comparisons of
the provers. We have been more concerned here with detailing the integration
of the various systems and to demonstrate that the integration is stable and has
a potential application to the comparison of provers. By presenting the results
from a session where 12000 theorems were stated and proved, we have shown
that the system is indeed stable. Perhaps the most compelling demonstration of
the potential to compare provers are the theorems given in appendix A. While
these are syntactically fairly similar, the performance of the provers on them is
strikingly di�erent.

The next stage of this project is to o�er HR as a service within MathWeb,
both for users and for other applications. To allow other MathWeb applications
to use HR as a service, we will de�ne an interface which allows them to call HR's
conjecture generation mechanism on a given set of axioms in a speci�c theory.
We plan to o�er a service based on some standard encoding of mathematical
knowledge, such as OpenMath or OmDoc. We envisage users asking HR via
MathWeb to provide them with a certain number of theorems with a certain
average diÆculty (in terms of proof time and/or number of provers which are
successful) over a set of ATP systems. The fact that the average time to prove
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the theorems generally increased for each prover as HR's theory progressed (as
depicted in �gure 3) is encouraging. This means that we can run HR for a certain
amount of time before assessing the diÆculty of the theorems it produces using
the ATP systems. As discussed in [CSar], in a previous session, HR produced
46,000 syntactically di�erent group theory conjectures in just 10 minutes on a
500Mhz Pentium processor. Hence it is plausible that we could run HR for a
chosen amount of time, then start the provers and reasonably expect the average
proof time to be similar to the one requested by the user.

We also intend to add more intelligent ways for HR to choose the theorems
that it will pass to the provers for assessment of diÆculty. In [CSar], we showed
some corelation between the number of existential and universally quanti�ed
variables in a theorem and the diÆculty of that theorem. HR also has certain
measures of interestingness of both concepts and conjectures, and we will ex-
periment to see if there is any corelation between the value of the measures of
concepts in a theorem and/or the value of the measures of the overall theorem
and the time to prove it for particular provers. In particular | as discussed in
[CBW00b] | for equivalence conjectures, HR estimates the `surprisingness' by
looking at how di�erent the two concepts conjectured to be equivalence are (in
terms of how they were constructed).

The �nal stage of the project will be to systematically test a range of provers
with di�erent settings over large sets of conjectures produced in a variety of do-
mains by HR within MathWeb. By o�ering HR as a MathWeb service, we hope
to do this in conjunction with the developers of the ATP systems tested. Such
large-scale testing of the ATP systems will compliment the TPTP library, pro-
viding a new tool for developers of ATP systems, which will hopefully contribute
positively to the development of automated theorem proving in general.
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Appendix A - Example Theorems

The following examples are in TPTP format and require TPTP axiom �les
EQU001+0.ax and GRP004+0.ax.

� Proved by E in 0.9 seconds, Spass in 0.2 seconds, but not by Bliksem:

! [B,C,D] : ((equal(multiply(C,B),D) & equal(multiply(C,D),B) & ? [E,F] :

(equal(inverse(E),F) & equal(multiply(E,B),F)) & equal(inverse(B),D) &

equal(multiply(D,B),C)) <=> (equal(multiply(B,C),D) &

equal(multiply(C,B),D) & equal(multiply(C,D),B) & equal(multiply(B,D),C) &

? [E,F] : (equal(inverse(E),F) & equal(multiply(E,B),F)) &

equal(inverse(B),D) & ? [G,H] : (equal(inverse(G),H) &

equal(multiply(G,D),H)) & equal(multiply(D,C),B))).

� Proved by E in 1.4 seconds, by Bliksem in 5.0 seconds, but not by Spass:

! [B,C,D] :

((equal(multiply(B,C),D) & equal(inverse(B),C) & equal(multiply(B,D),C) &

? [E,F] : (equal(inverse(E),F) & equal(multiply(E,B),F)) &

? [G] : (~(equal(G,identity))) & equal(inverse(D),D) ) <=>

(equal(inverse(B),C) & equal(multiply(C,B),D) & equal(multiply(B,D),C) &

? [E,F] : (equal(inverse(E),F) & equal(multiply(E,B),F)) &

? [G] : (~(equal(G,identity))) & equal(multiply(D,B),C))).

� Proved by Spass in 0.9 seconds, by Bliksem in 16.1 seconds, but not by E:

! [B,C,D] : ((equal(inverse(B),C) & equal(multiply(B,D),C) &

? [E,F] : (equal(inverse(E),F) & equal(multiply(E,B),F)) &

? [G] : (~(equal(G,identity)))) <=> (equal(inverse(B),C) &

equal(multiply(B,D),C) & ? [E,F] : (equal(inverse(E),F) &

equal(multiply(E,B),F)) & ? [G] : (~(equal(G,identity))) &

equal(multiply(D,B),C) & ? [H,I] : (equal(inverse(H),I) &

equal(multiply(H,C),I)))).
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Abstract

A complete mapping of a group (G,+) is a permutation f(x) of G
with f(0) = 0 such that −x+f(x) is also a permutation of G. Given a
group G, the Complete Mappings Counting Problem is to find, if any,
the number of complete mappings of G. Complete mapping problems
are ideal for testing the strength of propositional solvers.

In this paper we describe various types of complete mapping prob-
lems, and their relationship with variations of the n-queen problems.
We also present several forms of symmetry operators which, in addition
to being theoretically interesting on their own, are crucial for improv-
ing the efficiency of the provers. Several classes of challenge problems
for propositional provers are given, so are the transformations of these
problems into propositional format.

1 Overview

A complete mapping of a group (G,+) is a permutation f(x) of G with
f(0) = 0 where 0 is the identity of (G,+) such that −x + f(x) is also a
permutation.

For example, (1, 2, 4)(3, 6, 5) is a complete mapping of (Z7,+).

x 0 1 2 3 4 5 6 cycle structure
f(x) 0 2 4 6 1 3 5 (1,2,4)(3,6,5)
−x+ f(x) 0 1 2 3 4 5 6

∗Research supported in part by Grant NSC 90-2213-E-002-110 of the National Science
Council of the Republic of China.
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The concept of complete mappings was first introduced by Mann [15],
and used to construct orthogonal Latin squares. It was later studied by
many people (e.g., [14, 19, 5, 10, 16]) under different names.

A strong complete mapping is a complete mapping f(x) such that x+f(x)
is also a permutation. The term strong complete mapping was first used
by Hsu and Keedwell [12]. They gave a construction for strong complete
mappings of odd order abelian groups. Earlier studies also include [2] and
[9]. A strong complete mapping can be seen as a solution of the toroidal
n-queen problem.

The relationship between the complete mapping problems and the n-
queen problems is worth investigating. In this paper we present a natural
extension of the toroidal n-queen problem (which, in itself, is a natural
extension of the n-queen problem), which we call the toroidal-semi n-queen
problem. We also establish correspondences between the class of complete
mapping problems and the n-queen problems.

Both n-queen problems and the complete mapping problems are good
challenge problems for propositional provers. They can easily be coded into
propositional expressions, but solving them requires more than sophisticated
data structures and clever programming. It also needs a good understanding
of how search works and how to eliminate redundancy in the search space.
Indeed, it would not have been possible for our own prover to produce some
impressive results (such as showing that the number of complete mappings
in Z23 is 19,686,730,313,955) if not for the symmetry cutting strategies and
partition techniques designed [13, 22] to utilize the symmetry operators in
search.

A symmetry operator Π on complete mappings is a function from GG to
GG such that f is a complete mapping if and only if Π(f) is also a com-
plete mapping. The operators {R,A,Hα, Tc} were described implicitly in
Singer(1960) [24] for cyclic groups. In 1991, Hsu [11] used a group of opera-
tors spanned by {R,A} to classify the set of complete mappings on a cyclic
group Zn. Moreover, Hsiang, Hsu, and Shieh [23] offered the numbers of
complete mappings for all abelian groups G with |G| ≤ 19 and the following
ones CM(n) for cyclic group Zn. (Remark: CM(n) = 0 for all even numbers
n.)

n 5 7 9 11 13
CM(n) 3 19 225 3441 79259

n 15 17 19 21 23
CM(n) 2424195 94417089 4613520889 275148653115 19686730313955

The rest of the paper is organized as follows. In Section 2 we give the
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basic definitions and list known results of various types of n-queen problems
and complete mapping problems, including some new ones. Section 3 intro-
duces the symmetry operators and their properties. Section 4 defines the
challenge problems for propositional provers, and Section 5 transforms the
problems into propositional expressions.

2 Complete mappings and the n-queen problems

The famous n-queen problem [3, 4] can be described as follows: Place n
queens on a n by n chessboard, one queen on each square, so that no queen
attacks any other. That is, there exists at most one queen on the same row,
column and diagonal. There are many different perspectives of the n-queen
problem described in Erbas, Sarkeshik, and Tanik [7]. One of the most basic
is to view a solution of n-queen problem as a function f(x) from Zn to Zn

such that f(x) = y if and only if position (x, y) is occupied by a queen.
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Figure 1: A solution of 8-queen problem.

Definition 1 (n-queen problem) Let Zn = {0, 1, 2, · · · , n − 1}. A solu-
tion of the n-queen problem is a permutation f(x) from Zn to Zn such that
∀i�=j∈Zni + f(i) �= j + f(j) and ∀i�=j∈Zn − i + f(i) �= −j + f(j) under the
natural number addition. We use Q̂(n) to denote the set of solutions of
n-queen problem and Q(n) the cardinality of Q̂(n).

Consider a modular chessboard, that is, a chessboard where the diagonals
continue on the other side as shown in Figure 2. This is a variation of the n-
queen problem called the modular n-queen problem. The concept of modular
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chessboards were introduced by Pólya [20]. There are different names for the
modular n-queen problem. We adopt the term toroidal n-queen problem [21]
in this paper. Another similar class of problems is the toroidal-semi n-
queen problem where the diagonal ”wrapping around” is assumed in only
one direction.

Definition 2 (toroidal n-queen problem) A solution of the toroidal n-
queen problem is a permutation f(x) from Zn to Zn such that (under the
cyclic group (Zn,+)), x + f(x) and −x + f(x) are both permutations. We
use T̂Q(n) to denote the set of solutions of the toroidal n-queen problem and
TQ(n) the cardinality of T̂Q(n).

Definition 3 (toroidal-semi n-queen problem) A solution of the toroidal-
semi n-queen problem is a permutation f(x) from Zn to Zn such that (under
the cyclic group (Zn,+)), −x+ f(x) is a permutation. We use T̂ SQ(n) to
denote the set of solutions of toroidal-semi n-queen problem and TSQ(n)
the cardinality of T̂ SQ(n).
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Figure 2: The left is one solution of toroidal 7-queen problem and the right
is one solution of toroidal-semi 7-queen problem.

Definition 4 (complete mapping problem) A complete mapping of a
group (G,+) is a permutation f(x) of G with f(0) = 0 such that −x+ f(x)
is also a permutation of G. A complete mapping is called strong if x+ f(x)
is also a permutation of G. Since in this paper we only discuss cyclic groups,
we may assume G = Zn. We use ŜCM(n) and ĈM(n) to denote the set of
(strong) complete mappings of Zn and SCM(n), CM(n) the cardinalities of
ŜCM(n) and ĈM(n), respectively.
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By the above definitions, if G is a cyclic group Zn, then a solution f(x) of
the toroidal-semi n-queen problem is also a solution of the complete mapping
problem if and only if f(0) = 0. There is a similar correspondence between
the toroidal n-queen problem and the strong complete mapping problem.
In Figure 3 we list some examples. For example, f1(x) is a solution of the
(toroidal)-(semi) 11-queen problem and a (strong) complete mapping of Z11,
and f4(x) is a solution of the 11-queen problem and the toroidal-semi 11-
queen problem but not a solution of the toroidal 11-queen problem and not
a (strong) complete mapping of Z11.

x 0 1 2 3 4 5 6 7 8 9 10 Q TQ TSQ SCM CM
f1(x) 0 2 4 6 8 10 1 3 5 7 9

√ √ √ √ √
f2(x) 1 3 5 7 9 0 2 4 6 8 10

√ √ √ × ×
f3(x) 0 2 5 8 1 7 10 3 6 4 9

√ × √ × √
f4(x) 1 3 6 9 2 8 0 4 7 5 10

√ × √ × ×
f5(x) 0 2 6 9 7 10 1 3 5 8 4

√ × × × ×
f6(x) 0 2 1 5 8 10 9 4 3 7 6 × × √ × √
f7(x) 1 3 2 6 9 0 10 5 4 8 7 × × √ × ×

Figure 3: Examples under Z11

Proposition 1 Given a cyclic group Zn,

1. a solution f(x) to the toroidal-semi n-queen problem is a complete
mapping if and only if f(0) = 0,

2. a solution f(x) to the toroidal n-queen problem is a strong complete
mapping if and only if f(0) = 0,

3. TSQ(n) = n× CM(n) and TQ(n) = n× SCM(n),

4. TQ(n) < TSQ(n) and SCM(n) < CM(n),

5. TQ(n) < Q(n).

2.1 The existence problems

Given Zn, the existence problem asks whether there exists a (toroidal)-(semi)
n-queen solution or a (strong) complete mapping. The existence problems
of the (toroidal)-(semi) n-queen problem have been completely solved. As
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a consequence of Proposition 1, the (strong) complete mapping existence
problems are also solved. We list the results here.

Theorem 2 (The toroidal n-queen existence problem [20]) TQ(n) =
0 if and only if 2 | n or 3 | n.

Theorem 3 (The complete mapping existence problem [18]) A finite
abelian group G admits complete mappings if and only if its Sylow 2-subgroup
is trivial or non-cyclic. This implies CM(n) = 0 if and only if 2 � n.

Theorem 4 (n-queen existence problem [25]) There are solutions to
the n-queen problem for all n ≥ 4.

2.2 The counting problems

The counting problems, on the other hand, are mostly open, due to the
tremendous complexity. The best known result for the n-queen problem is
n = 23. It was first solved by Pion and Fourre [1] (A000170) using bitwise
instructions, depth-first-search and was done in a distributed environment.
(The citation [1], a website with an impressive collection of number se-
quences, will be used extensively in the rest of this paper. The indicator
A000170 refers to the problem number given in that URL.) The best TSQ in-
dicated in [1] (A006717) is TSQ(17), done by Wanless. In last year, we ([22])
extended it to TSQ(23) (by successfully computing CM(23) = TSQ(23)

23 ). In
order to obtain these results, we used symmetry operators, to be introduced
in the next section, and partition strategies based on the symmetry opera-
tors to partition the search space. Engelhardt [1] (A007705) used symmetry
operators and depth-first-search to compute TQ(29) successfully. The fol-
lowings table (Table 1) are the known sequences of Q(n), CM(n), TSQ(n),
TQ(n), and SCM(n).

3 Symmetry operators

A symmetry operator of the (toroidal)-(semi) n-queen problem or the (strong)
complete mapping problem is a bijection Π from the solution space to the
solution space such that f(x) is a solution if and only if Π(f)(x) is also a so-
lution. For example, R(f) = f−1, and R90◦(f) = (−1−f)−1 are two symme-
try operators for the n-queen problem. The set of symmetry operators can
usually be defined through spanning a set of basic symmetry operators, and
we call the set a symmetry operator group. For example, span{R,R90◦} =
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n Q(n) CM(n) TSQ(n) TQ(n) SCM(n)
1 1 1 1 1 1
2 0 0 0 0 0
3 0 1 3 0 0
4 2 0 0 0 0
5 10 3 15 10 2
6 4 0 0 0 0
7 40 19 133 28 4
8 92 0 0 0 0
9 352 225 2025 0 0

10 724 0 0 0 0
11 2680 3441 37851 88 8
12 14200 0 0 0 0
13 73712 79259 1030367 4524 348
14 365596 0 0 0 0
15 2279184 2424195 36362925 0 0
16 14772512 0 0 0 0
17 95815104 94471089 1606008513 140692 8276
18 666090624 0 0 0 0
19 4968057848 4613520889 87656896891 820496 43184
20 39029188884 0 0 0 0
21 314666222712 275148653115 5778121715415 0 0
22 2691008701644 0 0 0 0
23 24233937684440 19686730313955 452794797220965 128850048 5602176
24 ? 0 0 0 0
25 ? ? ? 1957725000 78309000
26 ? 0 0 0 0
27 ? ? ? 0 0
28 ? 0 0 0 0
29 ? ? ? 605917055356 20893691564
30 ? 0 0 0 0

Table 1: The known sequences of Q(n), CM(n), TSQ(n), and TQ(n).
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{Identity,R90◦ , R90◦
2, R90◦

3, R,R90◦ ◦R,R90◦
2◦R,R90◦

3◦R} is a symmetry
operator group spanned from the basic operators R and R90◦ . The symme-
try operators generated from the basic operators are also called composite
operators.

The above 8 symmetry operators are all known ones for the n-queen
problem ([17, 6]). Singer (1960) [24] presented 6×n×φ(n) operators spanned
by {R,A,Hα, Tc} for complete mappings. Later in this section we will intro-
duce an operator R45◦ for the toroidal n-queen problem and strong complete
mapping problem that we believe is new.

A set of symmetry operators define a notion of equivalence classes. It
can reduce the problem of looking for all solutions into one that looks only
for the minimal one in each class. Huang [13] designed a symmetry-cutting
strategy that utilizes symmetry operators to significantly reduce the search
space in his propositional prover. We improved upon his method ([22]) and
successfully applied it to the complete mapping counting problems. Without
using the symmetry operators and the symmetry-cutting methods, we do
not think that computing TSQ(23) is possible. Here we list a summary of
symmetry operators, and then describe them in the following propositions
and theorems.

Problem Basic symmetry operators Number of known operators
Q(n) R,R90◦ 8
CM(n) R,A, Tc,Hα 6× n× φ(n)
TSQ(n) R,A, TS(c,d),Hα 6× n2 × φ(n)
SCM(n) R,R45◦ , Tc,Hα 8× n× φ(n)
TQ(n) R,R45◦ , TS(c,d),Hα 8× n2 × φ(n)

Proposition 5 ([17, 6]) The following are basic symmetry operators for
the n-queen problem: reflection R and rotation R90◦ .

1. R(f)(x) = f−1(x).

2. R90◦(f)(x) = (−1− f)−1(x).

Sometimes we also represent the behavior of R as R(x, y) = (y, x), that is,
R(f)(x) = R(x, f(x)) = (f(x), x) = f−1(x). So we rewrite them as follows.

1. R(x, y) = (y, x) and R(f)(x) = f−1(x)

2. R90◦(x, y) = (−1− y, x) and R90◦(f)(x) = (−1− f)−1(x)

Lemma 6 ([17, 6]) The basic symmetry operators (R, and R90◦) for the
n-queen problem satisfy the following properties. These properties are parts
of one proof of Theorem 7.

8



1. R2 = R90◦
4 = id.

2. R ◦R90◦ = R90◦
−1 ◦R.

Here id is the identity. That is, id(f) = f for all f ∈ ZZn
n .

Theorem 7 ([17, 6]) There are 8 symmetry operators for n-queen problem
spanned by R, and R90◦ .

Proposition 8 ([24, 8, 23]) The following are basic symmetry operators
for the complete mapping problem of the cyclic group Zn: reflection R, op-
erator A, homologies Hα, and translations Tc.

1. R(x, y) = (y, x) and R(f)(x) = f−1(x).

2. A(x, y) = (−x + y,−x) and A(f)(x) = −(−id + f)−1(x) where id is
the identity function id(x) = x.

3. Hα(x, y) = (αx,αy) and Hα(f)(x) = αf(α−1x) where α ∈ Zn and
gcd(α, n) = 1.

4. Tc(x, f(x)) = (x− c, f(x)−f(c)) and Tc(f)(x) = f(x+ c)−f(c) where
c ∈ Zn.

Lemma 9 ([8, 23]) The basic symmetry operators (R, A, Hα’s, and Tc’s)
for the complete mapping problem have the following properties. These prop-
erties are parts of one proof of Theorem 10.

1. R2 = A3 = T1
n = ID.

2. Hα ◦Hβ = Hα·β.

3. Tc ◦ Td = Tc+d.

4. R ◦A = A2 ◦R.

5. R ◦Hα = Hα ◦R.

6. (R ◦ Tc)(f) = (Tf(c) ◦R)(f).

7. A ◦Hα = Hα ◦ A.

8. (A ◦ Tc)(f) = (T−c+f(c) ◦ A)(f).

9. Hα ◦ Tc = Tc·α ◦Hα.
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Theorem 10 ([23]) There are 6×n×φ(n) symmetry operators for complete
mapping problem for cyclic group Zn spanned by R, A, Hα’s, and Tc’s where
φ(n) = |{x | 0 < x < n, gcd(x, n) = 1}|.

Proposition 11 The following are basic symmetry operators for the toroidal-
semi n-queen problem: reflection R, operator A, homologies Hα and toroidal
shiftings TS(c,d).

1. R, A, and Hα’s are defined as complete mapping problem (Definition
8).

2. TS(c,d)(x, y) = (x − c, y − d) and TS(c,d)(f)(x) = f(x + c) − d where
c, d ∈ Zn.

Lemma 12 The basic symmetry operators (R, A, Hα’s and TS(c,d)’s) for
the toroidal-semi n-queen problem have the following properties. These prop-
erties are parts of one proof of Theorem 13.

1. Relations between R, A, and Hα’s are the same as those in the com-
plete mapping problem (Lemma 9).

2. TS(c,d) ◦ TS(a,b) = TS(a+c,b+d).

3. R ◦ TS(c,d) = TS(d,c) ◦R.

4. A ◦ TS(c,d) = TS(d−c,−c) ◦ A.

5. Hα ◦ TS(c,d) = TS(αc,αd) ◦Hα.

Theorem 13 There are 6×n×n×φ(n) symmetry operators for the toroidal-
semi n-queen problem spanned by R, A, Hα’s and TS(c,d)’s.

Let Sd(x, y) = (x, y − d). We note that span{Tc, Sd | c, d ∈ Zn} =
span{TS(c,d) | c, d ∈ Zn} because the only difference between the toroidal-
semi n-queen problem and the complete mapping problem is the constraint
f(0) = 0.

Proposition 14 The following are basic symmetry operators for the strong
complete mapping problem: reflection R, translations Tc’s, homologies Hα

and rotation R45◦ .

1. R, Hα’s, and Tc’s are as defined in the complete mapping problem
(Proposition 8).
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2. R45◦(x, y) = (x−y√
2
, x+y√

2
) and R45◦(f)(x) =

√
2
−1

(id+f)(id−f)−1(
√
2x).

Lemma 15 The basic symmetry operators (R, R45◦, Hα’s, and Tc’s) for the
strong complete mapping problem have following properties. These properties
are parts of one proof of Theorem 16.

1. Relations between R, Tc’s, and Hα’s are the same as for complete
mappings (Lemma 9).

2. R45◦
8 = ID.

3. R ◦R45◦ = R45◦
−1 ◦R.

4. Hα ◦R45◦ = R45◦ ◦Hα.

5. (R45◦ ◦ Tc)(f) = (T c−f(c)√
2

◦R45◦)(f).

Theorem 16 There are 8×n×φ(n) symmetry operators for strong complete
mapping problem spanned by R, Tc’s, Hα’s and R45◦.

In the above statements,
√
2 is one solution of x2 = 2 in Z∗

n. Since√
2 does not exist for all Z∗

n, we can also use R′
45◦(x, y) = (x − y, x + y)

and R′
45◦(f)(x) = (id + f) ◦ (id − f)−1(x) to replace R45◦ . It is easy to

prove that span{R45◦ ,Hα | α ∈ Zn, gcd(α, n) = 1} = span{R′
45◦ ,Hα | α ∈

Zn, gcd(α, n) = 1} when n is an odd number. It is also interesting to observe
that the order of reflection R is 2, the order of translation T1 is n, the number
of homologies Hα is φ(n), and the order of rotation R45◦ is 8. Thus one may
tend to think that there are 16 × n × φ(n) symmetry operators. However,
note that R180◦(x, y) = (R45◦)4(x, y) = (−x,−y) = H−1(x, y). So there are
only 8×n×φ(n) different symmetry operators. We further note that in our
discussion here (R45◦)2(x, y) = R45◦ ◦R45◦(x, y) = (−y, x), which is different
from the R90◦(x, y) = (−1− y, x) in the n-queen problem.

Definition 5 The following are basic symmetry operators for the toroidal
n-queen problem: reflection R, rotation R45◦, homologies Hα, and toroidal
shifting TS(c,d).

1. R, R45◦ , and Hα’s are defined as in the strong complete mapping prob-
lem (Definition 14).

2. TS(c,d)’s are defined as in the toroidal-semi n-queen problem (Propo-
sition 11).

11



Lemma 17 The basic symmetry operators (R, R45◦ , Hα’s, and TS(c,d)’s)
for the toroidal n-queen problem have following properties. These properties
are parts of one proof of Theorem 18.

1. Relations between R, Hα’s, R45◦ are the same as ones in the strong
complete mapping problem (Lemma 15).

2. Relations between R, Hα’s, TS(c,d)’s are the same as ones in the
toroidal-semi n-queen problem (Lemma 12).

3. TS(c,d) ◦R45◦ = R45◦ ◦ TS(−c−d√
2

,−c+d√
2

).

Theorem 18 There are 8×n×n×φ(n) symmetry operators for the toroidal
n-queen problem spanned by R, R45◦ , Hα’s and TS(c,d)’s.

4 Challenge problems for propositional provers

Let P be a symbol in {Q,TSQ, TQ,CM,SCM}, Π be a symmetry operator,
and Γ be a symmetry operator group. We are interested in three types of
questions.

1. The first one is to evaluate the number of solutions of the original
problem. We use P (n) to denote them. For example, Q(n) is the
number of solutions of the n-queen problem.

2. The second one is to evaluate the number of solutions f(x)’s which are
fixpoints under the operator Π (Π(f) = f). We use PΠ(n) to denote
them. For example, QR90◦ (n) is the number of fixpoint solutions under
R90◦ .

3. The last one is to evaluate the number of equivalence classes up to
a symmetry operator group Γ. (Since Γ defines an equivalence rela-
tion on solution space , we are interested in the number of equivalence
classes.) We use PΓ(n) to denote them. For example, Qspan{R,R90◦}(n)
is the number of equivalence classes of n-queen problem for the sym-
metry operator group span{R,R90◦}.

Definition 6 We define the symbols for the fixpoints of the symmetry op-
erators.

1. QΠ(n) = |{f ∈ Q̂(n) | Π(f) = f}| for Π ∈ span{R,R90◦}
2. TQΠ(n) = |{f ∈ T̂Q(n) | Π(f) = f}| for Π ∈ span{R,R45◦ , TS(c,d),Hα}
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3. TSQΠ(n) = |{f ∈ T̂ SQ(n) | Π(f) = f}| for Π ∈ span{R,A, TS(c,d),Hα}

4. CMΠ(n) = |{f ∈ ĈM(n) | Π(f) = f}| for Π ∈ span{R,A, Tc,Hα}

5. SCMΠ(n) = |{f ∈ ŜCM(n) | Π(f) = f}| for Π ∈ span{R,R45◦ , Tc,Hα}

We are interested in the fixpoints defined by the basic symmetry oper-
ators. Shieh et al. [23] (2000) gave a solution for Tc by reducing CMTc(n)
and SCMTc(n) to CM(c) and SCM(c), as shown in the following theorem.

Theorem 19 ([23]) We have CMTc(c × a) = φ2(a) × ac−1 × CM(c) and
SCMTc(c× a) = φ3(a) × ac−1 × SCM(c) where φ2(a) = |{x ∈ Za | (x, a) =
(x− 1, a) = 1}| and φ3(a) = |{x ∈ Za | (x+1, a) = (x, a) = (x− 1, a) = 1}|.

We calculate CMR(n), CMA(n), CMHα(n) and obtained the following
results. For complete mappings fixed under reflection R (CMR), Horton
calls them starters and calculates CMR(n) for n ≤ 28 in [1](A006204) and
[9].

n 7 9 11 13 15 17
CMR(n) 3 9 25 133 631 3857

n 19 21 23 25 27 29
CMR(n) 25905 188181 1515283 13376125 128102625 1317606101

(Remark: CMA(n) = 0 if 2 | n or n ≡ 2 (mod 3).)

n 1 7 13 19 25 31 37 43 49
CMA(n)

2
n−1

3
1 1 5 52 1055 31814 1403925 83999589 6567620752

n 3 9 15 21 27 33 39 45
CMA(n)

2
n−3

3
1 0 3 30 513 15996 718404 43148682

(Remark: We note that CMH−1(n) = CMR180◦ (n).)

n 3 5 7 9 11 13 15 17 19 21
CMR180◦ (n) 1 3 5 21 69 319 1957 12513 85445 656771

n 23 25 27 29 31
CMR180◦ (n) 5591277 51531405 509874417 5438826975 62000480093
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n 33 35 37
CMR180◦ (n) 752464463029 9685138399785 131777883431119

Szabo [1](A032522)(A033148) produced QR180◦ (n) for n = 1, 2, 3, · · · , 32
and QR90◦ (n) for n = 1, 2, 3, · · · , 47. In the following we also list some new
results of QR90◦ (n). The details will be described in forthcoming papers.
(Remark: QR90◦ (n) = 0 if n ≡ 2, 3 (mod 4).)

n 48 49 52 53
QR90◦ (n)

2�
n
4 � 5253278 8551800 49667373 79595269

n 56 57 60 61
QR90◦ (n)

2�
n
4 � 525731268 764804085 5932910966 8905825760

Definition 7 (equivalence classes counting problem) Let P be the prob-
lem Q,TQ, TSQ,CM or SCM , and let Γ be a symmetry operator group.

1. Γ define an equivalence relation ∼ on solution set: f ∼ g if and only
if there exists a Π ∈ Γ such that f = Π(g).

2. We define PΓ(n) be the number of equivalence classes.

For example, Qspan{R,R90◦}(n) is the number of equivalence classes of the
n-queen problem up to symmetry operator group span{R,R90◦}. For sim-
plicity, we may drop the word ”span”, and simply use Q{R,R90◦}(n) for
Qspan{R,R90◦}(n).

Engelhardt computed Q{R,R90◦}(23) [1](A002562) and
TQ{R,R90◦ ,TS(c,d)}(29) [1](A053994) successfully.

To summarize all the above, we suggest the following challenge prob-
lems to the propositional provers in the CADE community. They are good
test problems for incorporating symmetry elimination, an often encountered
technique, in propositional problem solving. In the following we give the
problems as well as the best known results, which are presented in the boxes.

Problem 1 Compute Q(n), TQ(n)(= n × SCM(n)), and TSQ(n)(= n ×
CM(n)).
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Q(23) = 24233937684440 in [1] (A000170)
TQ(29) = 605917055356 in [1] (A007705)
TSQ(17) = 1606008513 in [1] (A006717)
CM(23) = 19686730313955 in [22]

Problem 2 Compute QR90◦ (n), and QR180◦ (n).

QR90◦ (45) = 1795233792 in [1] (A033148)
QR90◦ (61) = 291826098503680 in this paper
QR180◦ (32) = 181254386312 in [1] (A032522)

Problem 3 Compute TQR45◦ (n)(= SCMR45◦ (n)),
TQR90◦ (n)(= SCMR90◦ (n)), and TQR180◦ (n)(= SCMR180◦ (n)).

Problem 4 Compute TSQR(n)(= n× CMR(n)), CMA(n), TSQA(n) and
TSQR180◦ (n)(= CMR180◦ (n)).

CMR(27) = 128102625 in [1] (A006204)
CMR(29) = 1317606101 in this paper
CMA(49) = 430415593603072 in this paper
CMR180◦ (37) = 131777883431119 in [22]

Problem 5 Compute Q{R,R90◦}(n).

Q{R,R90◦}(23) = 3029242658210 in [1] (A002562)

Problem 6 Compute TQ{R,R90◦ ,TS(c,d)}(n).

TQ{R,R90◦ ,TS(c,d)}(29) = 90120677 in [1] (A054500)

Problem 7 Compute TQ{R,R45◦}(n),
TQ{R,R45◦ ,TS(c,d),Hα}(n)(= SCM{R,R45◦ ,Tc,Hα}(n)),
and TSQ{R,A,TS(c,d),Hα}(n)(= CM{R,A,Tc,Hα}(n)).

5 Presenting the problems in propositional logic

In this section we give a translation of the problems proposed in Section
4 into propositional logic. We use the propositional symbols xi,j to denote
positions. That is, xi,j = true if and only if the place (i,j) is occupied by a
queen. Let P be a symbol in {Q,TSQ, TQ,CM,SCM}, Π be a symmetry
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operator, and Γ be a symmetry operator group. We use φ[P, n], φ[PΠ, n],
and φ[PΓ, n] to denote the propositional expressions corresponding to the
counting problems P (n), PΠ(n), and PΓ(n), respectively. In other words,
computing the numbers P (n), PΠ(n), and PΓ(n) is the same as comput-
ing the numbers of assignments that satisfy φ[P, n], φ[PΠ, n], and φ[PΓ, n],
respectively.

Proposition 20 The number of satisfiable assignments for the propositional
expression φ[Q,n] is the same as Q(n).

1. φ[F, n] =
∧

i∈Zn
(
∨

j∈Zn
xi,j).

2. φ[Horizontal, n] =
∧

i,j∈Zn
(xi,j ⇒

∧
j �=k∈Zn

¬xi,k).

3. φ[V ertical, n] =
∧

i,j∈Zn
(xi,j ⇒

∧
i�=k∈Zn

¬xk,j).

4. φ[Diagonal1, n] =
∧

i∈Zn

∧
i+j,j∈Zn

((xi+j,j ⇒
∧

j �=k,i+k∈Zn
¬xi+k,k)

∧
(xj,i+j ⇒

∧
j �=k,i+k∈Zn

¬xk,i+k)).

5. φ[Diagonal2, n] =
∧

i∈Zn

∧
i−j,j∈Zn

((xi−j,j ⇒
∧

j �=k,i−k∈Zn
¬xi−k,k)∧

(xn−1−j,i+j ⇒
∧

j �=k,i+k∈Zn
¬xn−1−k,i+k)).

6. φ[Q,n] = φ[F, n]
∧

φ[Horizontal, n]
∧

φ[V ertical, n]∧
φ[Diagonal1, n]

∧
φ[Diagonal2, n].

Example 1 Take Q(3) as an example.

φ[Q, 3] =
(x0,0 ∨ x0,1 ∨ x0,2) ∧ (x1,0 ∨ x1,1 ∨ x1,2) ∧ (x2,0 ∨ x2,1 ∨ x2,2) φ[F, 3]
∧(¬x0,0 ∨ ¬x0,1) ∧ (¬x0,0 ∨ ¬x0,2) ∧ (¬x0,1 ∨ ¬x0,2) φ[Horizontal, 3]
∧(¬x1,0 ∨ ¬x1,1) ∧ (¬x1,0 ∨ ¬x1,2) ∧ (¬x1,1 ∨ ¬x1,2) φ[Horizontal, 3]
∧(¬x2,0 ∨ ¬x2,1) ∧ (¬x2,0 ∨ ¬x2,2) ∧ (¬x2,1 ∨ ¬x2,2) φ[Horizontal, 3]
∧(¬x0,0 ∨ ¬x1,0) ∧ (¬x0,0 ∨ ¬x2,0) ∧ (¬x1,0 ∨ ¬x2,0) φ[V ertical, 3]
∧(¬x0,1 ∨ ¬x1,1) ∧ (¬x0,1 ∨ ¬x2,1) ∧ (¬x1,1 ∨ ¬x2,1) φ[V ertical, 3]
∧(¬x0,2 ∨ ¬x1,2) ∧ (¬x0,2 ∨ ¬x2,2) ∧ (¬x1,2 ∨ ¬x2,2) φ[V ertical, 3]
∧(¬x0,0 ∨ ¬x1,1) ∧ (¬x0,0 ∨ ¬x2,2) ∧ (¬x1,1 ∨ ¬x2,2) φ[Diagonal1, 3]
∧(¬x0,1 ∨ ¬x1,2) ∧ (¬x1,0 ∨ ¬x2,1) φ[Diagonal1, 3]
∧(¬x0,2 ∨ ¬x1,1) ∧ (¬x0,2 ∨ ¬x2,0) ∧ (¬x1,1 ∨ ¬x2,0) φ[Diagonal2, 3]
∧(¬x0,1 ∨ ¬x1,0) ∧ (¬x1,2 ∨ ¬x2,1) φ[Diagonal2, 3]

The main difference between the transformations of φ[Q,n] and φ[TQ,n]
or φ[TSQ,n] is the way the addition operator in the variable indices i and
j is defined. For the n-queen problem the addition ia natural addition. For
the others it is the cyclic group addition (Zn,+).
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Proposition 21 The number of satisfiable assignments in the expressions
φ[TQ,n], φ[TSQ,n], φ[CM,n] and φ[SCM,n] is the same as TQ(n), TSQ(n),
CM(n), and SCM(n), respectively.

1. φ[TDiagonal1, n] =
∧

i∈Zn

∧
j∈Zn

(xi+j,j ⇒
∧

j �=k∈Zn
¬xi+k,k).

2. φ[TDiagonal2, n] =
∧

i∈Zn

∧
j∈Zn

(xi−j,j ⇒
∧

j �=k∈Zn
¬xi−k,k).

3. φ[TQ,n] = φ[F, n]
∧

φ[Horizontal, n]
∧

φ[V ertical, n]∧
φ[TDiagonal1, n]

∧
φ[TDiagonal2, n].

4. φ[TSQ,n] = φ[F, n]
∧

φ[Horizontal, n]
∧

φ[V ertical, n]∧
φ[TDiagonal1, n].

5. φ[CM,n] = φ[TSQ,n]
∧

x0,0.

6. φ[SCM,n] = φ[TQ,n]
∧

x0,0.

The basic symmetry operators R, R90◦ , R45◦ , TSc,d, Tc, Hα, and A,
can be regarded as functions from Zn × Zn to Zn × Zn. (For example,
R(x, y) = (y, x)).

We remark that the operators Tc’s depend on the solution f(x) since
Tc(x, y) = (x − c, y − f(c)). Thus they cannot be used directly in the
formulation of the fixpoint sets that we are going to formulate. This problem
can be circumvented by using Theorem19, which reduced the computation
of CMTc and SCMTc to that of CM(c) and SCM(c), respectively.

We now give the transforation for the fixpoint counting problems.

Proposition 22 Let Π denote a basic symmetry operator mentioned above
other than Π �= Tc, where c ∈ Zn. Let P be a symbol in {Q,TSQ, TQ,CM,SCM}.
1. φ[f = Π(f), n] =

∧
i,j∈Zn

(xi,j ⇔ xΠ(i,j)).

2. φ[f = Tc(f), n] =
∧

v∈Zn
(xc,v ⇒ (

∧
i,j∈Zn

(xi,j ⇔ xi−c,j−v))).

3. φ[PΠ, n] = φ[P, n]
∧

φ[f = Π(f), n].

4. φ[PTc , n] = φ[P, n]
∧

φ[f = Tc(f), n].

In order to solve the equivalence classes counting problems, we use a
lexicographical ordering on the solutions: f < g if ∃k∈Zn((∀j<k∈Znf(j) =
g(j)) ∧ f(k) < g(k)). For each class, we choose the smallest solution to
be the representative. Then counting the number of equivalence classes is
the same as counting the number of the representatives. Now we show the
transformation of the equivalence classes counting problems as φ[PΓ, n] in
the following.
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Proposition 23 Let P be a symbol in {Q,TSQ, TQ,CM,SCM} and Γ be
a symmetry operator group. For any composite symmetry operator Π (not
including those defined using Tc), we have φ[f ≤ Π(f), n], and finally we
define φ[PΓ, n].

1. φ[f < Π(f), k, n] = (
∧

u<k∈Zn

∧
v∈Zn

(xu,v ⇔ xΠ−1(u,v)))
∧

(
∧

i∈Zn
(xk,i ⇒

∨
i≤j∈Zn

xΠ−1(k,j))).

2. φ[f < Π(f), n] =
∨

k∈Zn
φ[f < Π(f), k, n].

3. φ[f ≤ Π(f), n] = φ[f < Π(f), n]
∨

φ[f = Π(f), n].

4. φ[PΓ, n] = φ[P, n]
∧
(
∧

Π∈Γ φ[f ≤ Π(f), n]).

6 Discussion

In this paper we proposed seven series of challenge problems for propositional
provers. The series involve variations of the complete mapping problems and
the n-queen problems. We also established, in this paper, the relationship
between the complete mapping problems and the n-queen problems.

These proposed challenges are interesting in several aspects. First, they
are counting problems, not existence problems. Thus a straightforward im-
plementation of Davis-Putnam like procedures may not be sufficient. Sec-
ond, they require sophisticated search techniques, such as symmetry elimi-
nation and partitioning, in order to trim the search space effectively. Third,
the computational cost grows almost exponentially with every increment of
n. Of the three better known series, Q, CM , and TQ, the current magic
numbers are Q(24), CM(25), and TQ(31).

In the following we provide some data of our experiments. For the n-
queen problem, it took our program 20 days on a Pentium IV 1.8GHz PC
to compute Q(22) successfully. We estimate that we can get Q(24) in 1266
days using the same machine. Another way of making estimations is via
the number of computing cycles. We ran the program of Pion and Fourre
on the same machine, and made the following comparisons. Note that for
the n-queen problems (Q), our program uses about 1/10 of the cycles as
theirs. The saving is even more significant for the complete mapping prob-
lems (CM) due to the symmetry elimination and partition strategies that
we employed. (In our estimation the cycle-difference between our program
and Pion/Fourre will increase from 100 times to 1000 when n is 23.)
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Problem Pion and Fourre [1](A000170) Partition Strategies
Q(16) 4.7× 105megacycles/1 min 4.7× 104megacycles/26 sec
Q(18) 5.7× 106/ 53 min 1.4× 106/13 min
Q(20) 3.5× 108/ 2 days 5.2× 107/8 hours
Q(22) —— 3.2× 109/20 days
Q(24) 1.9× 1012/12104 days(estimate) 1.9× 1011/1266 days(estimate)
CM(17) 4.2× 106/237 sec 9.0× 103/5 sec
CM(19) 2.3× 107/220 min 2.4× 105/134 sec
CM(21) —— 8.5× 106/ 80 min
CM(23) —— 2.8× 108/ 43 hours
CM(25) —— 9.8× 109/ 63 days (estimate)

A number of results reported in this paper are new. While the num-
bers have already been given elsewhere in the paper, we now give a table
summarizing these results.

Problem Set Our results Note
1. CM(n) n = 19 ∼ 23 CM(n) = 0 for n ≡ 0 (mod 2)
2. QR90◦ (n) n = 49 ∼ 61 QR90◦ (n) = 0 for n ≡ 2, 3 (mod 4)
4. CMR(n) n = 29 CMR(n) = 0 for n ≡ 0 (mod 2)
4. CMA(n) n = 1 ∼ 49 CMA(n) = 0 for n ≡ 0, 2, 4, 5 (mod 6)
4. CMR180◦ (n) n = 1 ∼ 37 CMR180◦ (n) = 0 for n ≡ 0 (mod 2)

As another table, we list the largest number that we achieved in each
series, together with the computing time.

Problem Value Megacycles P4 1.8G
CM(23) 19686730313955 2.8× 108 43 hours
CMR(29) 1317606101 1.1× 108 17 hours
CMA(49) 6567620752 1.9× 108 30 hours
CMR180◦ (37) 131777883431119 1.5× 109 10 days
QR90◦ (61) 291826098503680 2.1× 108 33 hours

The binary of our program is publically available at
http://turing.csie.ntu.edu.tw/�arping/cm, together with a program that
transforms the problems indicated in this paper to propositional expressions
so that other researchers can test their own ATP systems.
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Abstract

This paper suggests a benchmark template for non-classical proposi-
tional reasoning systems, based on work done some twenty years ago in the
investigation of relevant logic. The idea is simple: generate non-equivalent
binary operations in the language of the logic and use an automated rea-
soning system to decide which ones satisfy given algebraic properties. Of
course, problem classes generated in this way are not in any sense uni-
formly distributed: indeed, they are highly structured and have special
features such as a low ratio of variables to length. Nonetheless, they have
the character of theorem proving “in the field”, and should be part of the
evaluation equipment for systems dealing with a wide range of nonclassical
logics.

1 Substructural reasoning: the impossible takes

a little longer

This paper is a response to an implicit challenge in the description of this work-
shop:

‘As the use of ATP systems expands to harder problems and new
domains, it is important to place new problems and problem types
in public view. . .

‘There will be no limitation to classical logics – problems and prob-
lem sets in other logics, e.g., modal and relevance logics, are of in-
terest. . . ’

PaPS 2002 CFP

My first recommendation to the automated reasoning community, addressed
especially to those of its members with interests in non-classical logics, is to
work on automating inference in a family of substructural logics which includes
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linear logic, the relevant logics, Lambek’s associative calculus, affine logic and
others. This is not merely a wish that more logicians and more system builders
would share my enthusiasm for these logics. They are of independent interest
for their applications (well-rehearsed in the case of linear logic, but also present
in other cases—see [7] for an account and many entry points into the literature)
and call for a community effort similar to that which has gone into SAT solving
for classical logic, and more recently into modal and temporal logics.

Automated theorem proving for some such substructural systems is enor-
mously hard [13, 5]—indeed, some of the propositional systems such as linear
logic and the original Anderson-Belnap relevant logics are undecidable—and
proof search in those logics is quite different from what is classically familiar, so
directing some of the effort of system developers into the deduction and deci-
sion problems for these logics is itself a goal in line with the sentiment expressed
above. I also believe that the step up in richness as we move from classical to
substructural reasoning will lead us to devise new algorithms and heuristics
which will ultimately feed back into the rest of what we do. Certainly, it leads
us to think differently in some respects: while boolean 3-SAT problems with
several hundred variables are routine fare for modern solvers, there are tough
decision questions for formulae of relevant logic which fit on one line of a page
and contain only 3 variables.

So the change of perspective is good for us, and anyway climbing fresh
mountains is excellent exercise. However, the literature lacks good benchmarks
for automated reasoning of this type. A major reason for this is that there is
little uniformity across the canvassed range of non-classical systems: what is
trivial given the proof mechanisms of one logic may be a severe test for those of
another. The challenge raised by the Call for Papers, therefore, is to devise a
benchmark template which can deliver worthwhile problem sets for a vast range
of propositional logics, with various sets of connectives and no uniform features
such as normal forms either for formulae or for inferences.

2 Logics

In order to sharpen the goal a little, it is necessary to delineate the class of logics
for which the technique is intended to work. Therefore, let logic L be a formal
system built up as follows. There is a denumerable set P of basic propositions
(or “propositional variables”) and a finite set C of finitary connectives. The
basic propositions and nullary connectives (“constants”) make up the set A of
atoms. For c ∈ C, let A(c) be the adicity (or “arity”) of c. The set F of formulae
is defined as usual:

F = P | c(FA(c)), c ∈ C

To sharpen still further, we are especially interested in a class of substructural
logics in the vicinity of linear logic. Their connectives include the constants t, f,
> and ⊥, negation ¬, conjunction and disjunction ∧ and ∨ , their intensional
counterparts fusion and fission ◦ and +, and implication operators → and ←.
Other connectives such as modalities (the “exponentials” of linear logic) may
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be added, as is done for the example in Section 6 below, but for the purposes
of this introduction we omit them. So the language of these systems is

A = P | t | f | > | ⊥

F = A | ¬F | F ∧ F | F ∨ F | F ◦ F | F+F | F→F | F←F

Next, since L is supposed to be a propositional logic, it should be a theory about
what follows from what in virtue of properties of the connectives. Hence there
is some notion of implication intended to capture the validity of inferences in
L. That is, there are structures of some kind built up out of the formulae—the
structures may be simply sets as in classical and intuitionist logic, or multisets
as in linear logic, or sequences as in the Lambek associative calculus, or more
exotic objects such as trees with several different labelled branching operations,
as in display logic for instance. Then there is a relation ` between structures,
satisfying some conditions related to deducibility—classically, enough conditions
to make it a consequence relation in the Gentzen-Tarski sense, but in the general
setting perhaps some weaker analogue of those.

In the particularly intended logics, the structures are binary trees. and the
implication relation is that given in Appendix A. For linear logic, the trees
can be “flattened” into multisets by adding structural rules of associativity and
commutativity. One effect of this is identify the two implication connectives. For
the relevant logic LR, add to linear logic the left and right rules of contraction:

Γ[X, X ] ` ∆

Γ[X ] ` ∆

Γ ` ∆[X, X ]

Γ ` ∆[X ]

To convert linear logic into affine logic, add instead the weakening rules:

Γ[X ] ` ∆

Γ[X, Y ] ` ∆

Γ ` ∆[X ]

Γ ` ∆[X, Y ]

This is not the place to lay down the law about what should or should not
count as a logic. The weak conditions to be met by L are only that implication
should be closed under uniform substitution of formulae for variables, and that
it should give rise at least to the special case in which the structures related by
` amount to single formulae: it should make sense to ask whether formula α

implies formula β in L. The relation between α and β such that α implies β

should be reflexive and transitive, and the corresponding equivalence relation
(that between α and β such that α implies β and β implies α) should be a
congruence on the formula algebra of L: that is, provable equivalents should be
replacable as subformulae in any context, preserving the relation ` .

These very weak conditions do not constrain L to be much like the standard
logics in the literature, and certainly do not suffice to place it within the scope
of familiar automated reasoning techniques. It is not stipulated that ` should
satisfy any form of the Cut rule beyond transitivity for single-formula structures,
or an interpolation theorem. Its sequent calculus or tableaux formulations need
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not be workable, therefore. It may also be inaccessible to translation methods,
unless it has some reasonable semantics into which its sequents may be trans-
lated. The range of mountains which automated reasoners are invited to scale,
therefore, is as varied and challenging as we could wish. It follows that the
problem sets to be described below cannot be focussed on any specific proof
technique or even family of techniques. Problem sets should be generated for
any L in the class and for any approach to automating it, in such a way as to
strike the middle ground of difficulty: it should be routine to find problems that
are feasible without being trivial.

3 Benchmarks

Devising suitable benchmark problem sets for non-classical logics is far from
easy. Even for classical logic, it is in some respects an unsolved problem: we
know about random k-SAT, of course, but we are also familiar with the com-
plaint that it is not a “typical” benchmark and that more meaningful measures
result from real-world problems (arising in hardware verification, for example)
or from hybrid randomised structured problems. In non-classical cases the situ-
ation is worse. There are three main techniques in the literature for generating
benchmarks:

1. Encodings of meaningful problems may be used. These may come from
standard application domains in software engineering; more often, they
tend to be rather artificial puzzles, like the queens problem or blocks-
world planning, presumably because these are easy to understand, trivial
to code, and readily scalable. The disadvantage of these scalable “toy”
problems is that they are typically too easy: a solution can be found in
polynomial time, and enumerating all solutions is harder only because
there are many of them. Hence the toys usually fail to force solvers to
confront the serious difficulty of proof search and model search in the
chosen logics, while the problems based on realistic applications do not
scale well and do not migrate well from one substructural logic to another.

Well-chosen real problems, however, are in the end the best of benchmarks,
so there is no need to disparage them, provided they meet the three criteria
of scalability, intrinsic hardness and adjustability to different logics.

2. Purely random problems may be generated, in the style of the random
k-SAT models for classical SAT. In practice, experiments in this direction
have mainly been confined to normal modal logics [3, 4, 6] and QSAT,
where it is relatively easy to determine the parameters within which to
randomise, though even in the normal modal case, it has proved far from
trivial to devise suitable definitions. In more general settings, where for-
mulae may not have suitable normal forms, for instance, it appears still
less trivial. For instance, should logical theorems like p→p be allowed to
occur as proper subformulae in the generated problems? It is in the spirit
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of relevant or linear logic to say yes, but this may greatly affect difficulty,
so there is no univocally indicated answer.

The great advantage of uniformly distributed random problems is that
they permit statistically sophisticated experiments to be performed. Their
main disadvantage, apart from the fact that for the logics in question
they do not exist, is that the results obtained have to be interpreted very

carefully in the light of the parameterisation decisions.

3. Another approach is to define particular sequences of problem instances,
where the difficulty may be stepped up to whatever level constitutes a
challenge for a particular solver just by increasing the number of variables.
A classic example is the sequence of formulae in variables p1, . . . , p2n−1:

(

∧

i<2n−1

((pi↔ pi+1)→
∧

k<2n

pk) ∧ ((p2n−1↔ p1)→
∧

k<2n

pk)

)

→
∧

k<2n

pk

due to de Bruijn and commonly used to test provers for intuitionist logic.

Problem sequences of this sort obviously offer scalable tests, and may
be designed to stress provers by emphasising certain features (e.g. their
heuristics for choosing which of two disjuncts to expand first, or their
dependence on a loop check). A drawback is that they are unsystematic:
they have to be designed afresh for every logic of interest, and there is
no good set of principles as to what features are worth emphasising by
this means. Indeed, there is a danger that sequences could be designed to
show off the good points of particular solvers, especially where there is a
trick such as a special way of ordering rule applications or a preprocessing
step that renders the problems in a sequence efficiently solvable.1

Perhaps the best and most careful attempt to provide good benchmarks for
non-classical provers is represented by TANCS, the competition associated with
TABLEAUX [14]. That uses a combination of random problem generation and
special sequences designed to stress the features most commonly found to be
critical to prover performance, in a system-neutral way. In TANCS-2000, the
logics in which problem sets were provided were mainly PSPACE-hard modal
logics, and the EXPTIME Converse PDL. It is especially good to see such a
competition concentrating on logics with hard decision problems. The TANCS
model might conceivably be adapted to the wide range of substructural logics
noted in the present paper, but since the logics differ so widely and since their
complexity is extreme, such an adaptation would present difficulties.

1The de Bruijn sequence is an example of a sequence that falls to a specific trick. It is a
fairly trivial fact about intuitionist logic that in the minimal Kripke model falsifying a sequent,
the succedent is true at all worlds except for the base one. Provers which exploit this fact can
solve the de Bruijn problems very easily; those which do not typically find them much harder.
But the presence or absence of that feature of a prover can be established by inspection of the
code and so hardly warrants a benchmark.
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4 Historical Interlude: The case of LR

Another way forward is suggested by some old work on relevant logic, carried
out mainly by Thistlewaite in collaboration with McRobbie and Meyer in the
early 1980s [11]. That work did not arise out of nothing. It was motivated by
an attempt to solve a long-standing open problem: the decision problem for
the Anderson-Belnap relevant logic R [1, 2]. R is a propositional logic which
differs from the additive-multiplicative fragment of linear logic by validating
both contraction (noted above) and the distribution of extensional (“additive”)
conjunction and disjunction over each other:

A ∧ (B ∨ C) ` (A ∧ B) ∨ (A ∧ C)

The main reasons for wanting distribution to hold were firstly that it captures
a common reasoning form which does not seem to be any sort of a “fallacy
of relevance”, and secondly that it is semantically natural. However, it com-
plicates the logic a good deal proof-theoretically, to the point that the decision
procedures which are available for LR (“Lattice R”, or R without distributivity)
cannot be adapted to decide R itself.2

Meyer’s plan at the time was to prove R undecidable by showing that the
word problem for semigroups could be coded into it. That required that the
logic contain a free associative operation, somehow definable in terms of the
connectives. “Free” here means that it does not satisfy any algebraic laws other
than those which follow from its associativity. Thus, for instance, while all of
the primitive connectives ∧ , ∨ , ◦ and + are indeed associative, they are also
all commutative, which rules out their freedom. The idea was to find candidate
binary operations, such as

f(A, B) = (A+A) ◦ (¬B ∨ (A ◦ B))

prove them associative in R, and pass them through a sanity check to ensure
that they do not fail freedom in any straightforward way. Any operation that
passed all the tests could be investigated in detail, with a view to showing
it to be really a free associative operation, thus establishing that R must be
undecidable. In the event, Meyer’s plan did not succeed, for two reasons: first,
all the operations found to be associative in R (such as f above) were also
proved to be associative in LR, which showed they were not free associative
since LR is decidable; second, the undecidability of R was shown independently,
by Urquhart [12], before the project was completed.

However, although the plan failed, it did generate interesting outcomes in
the form of a theorem prover KRIPKE based on analytic tableaux (or in another

2This is a convenient opportunity to commend the logic R (as opposed to LR) as a sub-
ject for research in automation. The undecidability of the propositional logic seems to have
discouraged work on it in the past, but obviously we should not regard undecidability as an
insuperable obstacle—after all, it does not inhibit work on first order logic. For first order
theories, indeed, undecidability is a virtue: a logic that can represent the halting problem for
Turing machines is undecidable, while one which cannot is a pretty crummy logic.
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view on the sequent calculus) and highly optimised for LR, and in the form of
a series of hard problems for it to solve. In the case of the above operation f ,
for example, KRIPKE had to prove the two sequents:

f(p, f(q, r)) ` f(f(p, q), r)

f(f(p, q), r) ` f(p, f(q, r))

It is reported in [11] that the first of these was proved in around 5 minutes (prob-
ably on a Sun 370 or similar hardware), the final proof tree after compression by
collapsing repeated subproofs having 97 nodes. The second could not be decided
by KRIPKE at the time of [11]. Altogether, 16 interesting candidate formulae
were investigated intensively using KRIPKE. The resulting 32 sequents became
known as ASSET (Asociativity Set) and KRIPKE was developed and refined
using ASSET as a testbed. On the hardware of the day, it proved 14 of the 32
within a time limit of one hour per proof search, leaving the other 18 undecided.
Later work by Riche [8] resulted in automatically generated proofs of 10 more of
the 18. All 32 were given human-generated proofs by McRobbie using KRIPKE
as an assistant. These sequents, then, constituted a stern test for relevant logic
theorem provers at least as late as 1991, and should still be addressed by any
system whose performance on such logics is claimed to be acceptable.

5 The General Case: Logical Groupoids

Provided L has at least one connective of arity greater than 1, it allows bi-
nary operations to be defined. In classical propositional logic, there are, up to
equivalence, only 16 such operations. Similar bounds apply to other finitely
many-valued logics. In weaker logics like LR or affine logic or any of their sub-
systems, however, there are infinitely many. Every binary operation defined by
a formula in two variables gives rise to a groupoid on the formula algebra of L
(and on any other algebra modelling L) and the question arises of what alge-
braic properties each such operation satisfies, or equivalently what its logic is.
That is, at the simplest, what inferences α ` β are valid in L where α and β are
built out of atoms using only the operation in question. The Modest Proposal
of the present paper is that we mine this inexhaustible seam for suitably hard
problems in every non-classical propositional logic of interest meeting the weak
conditions outlined above.

Let A(p, q) be a binary formula of logic L (i.e. a formula in two variables
p and q) and let τ be a (finite) binary tree whose terminal nodes are coloured
from a set {c1, . . . , ck} of colours. Then the formula FA

τ is defined recursively:

1. Where τ is a single node n coloured with ci, F
A
τ is the atom pi.

2. Where τ is a tree with root node n and nonempty left and right subtrees
τ1 and τ2, FA

τ is A(FA
τ1

,FA
τ2

). That is, it is A with the two subformulae
FA

τ1
and FA

τ2
substituted uniformly for the variables p and q respectively.

For example, let A(p, q) be the formula (p ◦ q) ∨ ¬p, and let τ be the tree
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Then FA
τ is the formula

(((p1 ◦ ((p2 ◦ p1) ∨ ¬p2)) ∨ ¬p1) ◦ p3) ∨ ¬((p1 ◦ ((p2 ◦ p1) ∨ ¬p2)) ∨ ¬p1)

The general scheme for devising problem sets is as follows:

1. Select two (finite) binary trees τ1 and τ2.

2. Begin enumerating the formulae in two variables (say, p and q). For each
formula A in the enumeration, problem 〈τ1, τ2, A〉 is to decide the L va-
lidity of the sequent FA

τ1
` FA

τ2
.

3. Stop enumerating when the problems become too hard for the provers
under test.

A nice refinement of the procedure is to omit problems 〈τ1, τ2, A〉 where A is
equivalent (in L) to some formula B which occurs earlier in the enumeration.
This requires decisions as to equivalence or non-equivalence at the generating
stage, giving rise to more L problems, though relatively easy ones since the for-
mula A is (in the interesting cases) much shorter than FA

τ . Of course, equivalent
formulae need not give rise to equally hard problems for theorem provers, but
removal of “duplicates” is a convenient way of thinning out the list of formulae
without omitting anything essential.

A useful technique for speeding up equivalence testing is to partition the for-
mulae into semantically based equivalence classes according to their behaviour
(their “truth tables”) in one or more small algebraic models of L. For example,
the following two 3-element algebras are both model structures for linear logic.
The constants > and ⊥ are interpreted as values 2 and 0 respectively, and both
algebras have the same matrices for ¬, ∧ and ∨ :

A ¬A

0 2

1 1

2 0

∧ 0 1 2

0 0 0 0

1 0 1 1

2 0 1 2

∨ 0 1 2

0 0 1 2

1 1 1 2

2 2 2 2

The difference between the two, RM3 and  L3, concern the intensional constants
t and f, and the intensional connectives ◦ and +:
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RM3:

t = 1

f = 1

◦ 0 1 2

0 0 0 0

1 0 1 2

2 0 2 2

+ 0 1 2

0 0 0 2

1 0 1 2

2 2 2 2

 L3:

t = 2

f = 0

◦ 0 1 2

0 0 0 0

1 0 0 1

2 0 1 2

+ 0 1 2

0 0 1 2

1 1 2 2

2 2 2 2

A and B cannot be equivalent in linear logic unless they have exactly the same
truth tables in both RM3 and  L3, so if they differ on that simple semantic test
there is no need to search for a proof of equivalence. Across a wide range of
substructural logics, such small models are readily available via tools such as
MaGIC [9] and render the equivalence test in the generating phase rather trivial
in comparison with the benchmark itself.

A recommended method of using the benchmark template with provers for
a particular logic is to experiment with different choices of τ until some are
found which result in problems of a “reasonable” hardness reasonably quickly,
and then to generate binary operations in levels, saturating each level (number
of connective occurrences) before proceeding to the next. It is then possible to
stop at the level that begins to stress the prover(s) in hand, and to pick out
the hardest problems from that level to form a fairly coherent test set. The
procedure, though not of course the problems, will be uniform across logics and
provers.

6 An example

By way of illustration, the following results were obtained by running the linear
logic solver provided with the Logics Workbench [15] on two sets of problems
for propositional linear logic.3 The first problem was to decide the associativity
of binary operations definable by formulae in negation normal form containing
(apart from sentential constants and negation in literals) exactly three connec-
tive occurrences. For example, the formula

?((a ◦ >)+b)

defines such an operation, and to decide whether it is associative is to prove or
disprove the two sequents

?((?((p0 ◦ >)+p1) ◦ >)+p2) ` ?((p0 ◦ >)+?((p1 ◦ >)+p2)) (1)

?((p0 ◦ >)+?((p1 ◦ >)+p2)) ` ?((?((p0 ◦ >)+p1) ◦ >)+p2) (2)

3All times were obtained on a Sparc Ultra 250.
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Clearly, the sequents generated in this way are not particularly long, and in
fact most of them can be decided by the LWB solver in less than 0.01 seconds.
Some, however, are surprisingly difficult.

In order to set the prover a slightly greater challenge, the experiment was
re-run with the same set of binary operations but with the equation

(a ? b) ? (a ? c) = (a ? c) ? (b ? c)

in place of associativity. The sequents still have only three variables, but the
operation being tested occurs more often and with more nesting than before.

The language of linear logic has the connectives and constants noted above,
except that because of commutativity, the two arrows collapse into one, which
anyway is defined away in terms of ◦ and negation, and the usual linear logic
modalities (or “exponentials”) ! and ? are added. For this note, I have
transcribed the perverse linear logic notation into the more generally familiar
one used here (see Appendix B for details). Formulae were built up from atoms
(variables and constants) by applying the connectives ∧ , ∨ , ◦ , +, ¬, ! and
? in any order, up to a limit of three connective occurrences. The actual
problems were generated automatically, and each direction of each equivalence
formulated as a sequent like the two above. Certain formulae were eliminated
from the list at generation time as being trivially equivalent to simpler ones:
those containing subformulae of the form A ∧ A or A ∨ A, and those containing
subformulae which could be simplified by absorption laws for constants (A ∧ >,
A ∧ ⊥, A ∨ >, A ∨ ⊥, A ◦ t, A ◦ ⊥, A+ f, A+> and their converses which are
equivalent to them by commutativity). Each problem was converted by the LWB
solver to negation normal form and then to “commutative-associative normal
form” before solution.

Altogether, 666 binary operations were generated, giving rise to 13032 se-
quents in each problem set, each sequent with just 3 variables of course. The
first problem set, that of proving or disproving associativity, was attempted
twice, first with the default “Cdnr” setting of 3 and then with it set to 4. This
setting controls the maximum depth of the proof search in terms of applications
of the (left side) contraction-dereliction rule:

A, ?A, Γ

?A, Γ

whose uncontrolled operation could make proof searches infinite (linear logic
being undecidable). With the Cdnr setting of 3, the solver proved 3656 of the
13032 sequents, disproved 7989, and failed to reach a decision on the other 1387.
With Cdnr set to 4, just 16 of the previously undecided sequents were proved;
the number of disproved ones stayed the same. Thus even in this very simple
problem set, around 10% of problems cannot be solved by the LWB prover with
a search depth of less than 5. Running the solver with a search depth greater
than 4 takes much longer—at least on the order of hours for this problem.
Hence, despite the apparent simplicity of the formulae, a nontrivial proportion
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of them are genuinely hard for this prover.4

The times taken (with the higher Cdnr setting) are also interesting. For
almost every sequent that was proved, a proof was found in 0.02 seconds or less:
only 4 required more, and the hardest was proved in 1.05 seconds. In other
words, they are all easy problems with this Cdnr setting. Some of the disproved
sequents took longer, however: 79 of them took 0.1 seconds or more, and 3 of
them more than a second. The sequents that were neither proved nor disproved,
however, were much harder. 121 of the “fail” results took more than a second,
and 16 of them more than 10 seconds. The hardest of all was the example
given above, which caused the prover to run for 95 seconds before terminating
in failure to reach a decision.

For reference, here are 12 three-connective binary operations whose associa-
tivity in linear logic is surprisingly hard for the LWB prover to decide:

1. ?((a ◦ b)+ t)

2. ?a+(b ∨ t)

3. ?(a+b) ◦ >

4. !a ◦ (b ∧ f)

5. (a ◦ a)+?b

6. ?a+(b ◦ f)

7. ?((a ◦ b)+⊥)

8. ?a ∧ (b ◦ >)

9. (a ◦ b)+?b

10. (?a ∨ b)+a

11. (!a ∧ b) ◦ a

12. ?((a ◦ >)+b)

The results on the second problem set were quite similar overall, except
that the demonstrations of unprovability were as hard as the failures to reach a
decision. The prover was run with the default Cdnr setting of 3 only, since to
run with higher settings would have taken too long for the experiment. 2508 of
the 13032 sequents were proved, 8540 disproved, leaving 1984 undecided without
allowing deeper proof searches. Where proofs exist, they seem to be easy to find:
only 3 cases required more than 0.1 seconds. However, 139 of the disproofs took
more than a second, 16 of them requiring more than 10 seconds and the hardest

4The numbers have to be taken rather loosely, since they represent “raw” data. More
intensive cleaning-up would have deleted what were essentially duplicate results, where the
normal-forming process has produced trivially equivalent problems—in some cases even al-
phabetic variants. As an illustration of the problem generation method, however, the broad
features of the example are indicative enough.
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37 seconds. 111 of the “fails” took over a second, and 24 over 10 seconds,
the hardest taking 59 seconds. Undoubtedly, the times would have been much
greater had a Cdnr setting of 4 been used.

Finally, here are 13 binary operations ? for which the question of whether
(x ? y) ? (x ? z) is equivalent in linear logic to (x ? z) ? (y ? z) is particularly
challenging for LWB:

1. (!a ∧ a) ◦ b

2. (!a+⊥) ◦ b

3. (a ∨ b)+?a

4. (a ∧ b) ◦ !a

5. ?(a+b) ∨ f

6. ?(a+b) ∨ a

7. !(a ◦ b) ∧ a

8. ?(a+b) ∨ t

9. ?a+(b ◦ >)

10. !(a ◦ b) ∧ t

11. ?(a+b) ◦ >

12. !(a ◦ b) ∧ f

13. ?a+(b ◦ b)

7 Conclusion

The scheme presented in this note is of course not the only approach to bench-
marking provers for non-classical logics, whether for evaluating rival automated
systems or for software development purposes. Probably no all-purpose bench-
mark for such a wide range of logics as those considered here will ever be use-
ful. Nonetheless, as noted, the “logical groupoid” template adjusts itself quite
smoothly to very different logics and very different proof methods. It is more-
over easy to implement and reproduce, from a very compact description, and
largely impervious to “tinkering” to tilt the results towards one system rather
than another. It is hard to see what greater virtues such a scheme could have.
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A Sequent Calculus rules for the main target

substructural logics

The following rules are for the positive (negation-free) logics. Negative particles
may be introduced in a number of ways: as a boolean operation, by inferrential
definition as in minimal logic, as a primitive operation on atoms only, as is often
done in linear logic, or in other ways. Not all of them are easy to treat in the
proof-theoretic style of this note, so they are omitted from the present account.

Bunches of formulae on the left and right of ‘ ` ’ are to be read as binary
trees, written for the purposes of stating the rules in a one-dimensional form with
‘X, Y ’ representing the tree with principal subtrees X and Y . A formula is a
one-node tree. We write ‘Γ(X)’ to represent a tree with X in some distinguished
position as a subtree, and ‘Γ(Y )’ for the result of replacing that occurrence of
X by Y . We formulate the logics first without sentential constants, beginning
with the axiom scheme:

A ` A

The logical rules for connectives are as follows:

Γ(A) ` X
(∧ `)

Γ(A ∧ B) ` X

Γ(B) ` X
(∧ `)

Γ(A ∧ B) ` X

X ` Γ(A) X ` Γ(B)
(` ∧)

X ` Γ(A ∧ B)

Γ(A) ` X Γ(B) ` X
(∨ `)

Γ(A ∨ B) ` X

X ` Γ(A)
(` ∨)

X ` Γ(A ∨ B)

X ` Γ(B)
(` ∨)

X ` Γ(A ∨ B)

Γ(A,B) ` X
(◦ `)

Γ(A ◦ B) ` X

X ` Γ(A) Y ` Γ(B)
(` ◦)

X, Y ` Γ(A ◦ B)

Γ(A) ` X Γ(B) ` Y
(+ `)

Γ(A+B) ` X, Y

X ` Γ(A, B)
(` +)

X ` Γ(A+B)

X ` A Γ(B) ` Y
(→`)

Γ(A→B, X) ` Y

X, A ` B
(`→)

X ` A→B

X ` A Γ(B) ` Y
(←`)

Γ(X, B←A) ` Y

A,X ` B
(`←)

X ` B←A
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B Linear logic notation

The following is the “translation manual” for linear logic. There are three
versions: the operators used by Girard and other linear logicians (LL), those
used by everyone else (EE), and those required as ASCII input by the Logics
Workbench (LWB). The mapping between them is as follows:

LL EE LWB

> > top

⊥ f bot

1 t 1

0 ⊥ 0

& ∧ &

⊗ ◦ X

&

∨ |

⊕ + +

−◦ → --o

◦−◦ ↔ o--o
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1 Introduction

This paper contains a collection of theorems, nontheorems, and conjectures in first-order and equational
logic. These problems arose in our work on applications of automated deduction to mathematics and logic.
Some originated in our work, and others were sent to us as challenge problems or open questions.

There is no unifying theme to the mathematics and logic in the problems. It is simply a set of challenging
problems that might be useful in testing and developing theorem provers and related programs.

We have Otter [9] proofs (available on request) for all of the problems listed as “theorem”. That is
not to say we have a general strategy that causes Otter to find the proofs. In many cases very specialized
strategies, including lots of domain knowledge from the users, were used to find the proofs.

We have finite countermodels for all of the problems listed as “nontheorem”. These are not as difficult
as the theorems; in fact, most can be proved automatically by Sem[24] or Mace’s [11] successor.

These problems are available on the Web at www.mcs.anl.gov/~mccune/papers/paps-2002. Let us
know if you solve any of the open ones!

2 Problems

2.1 Condensed Detachment Problems

xcb-reflex [23, 3] Prove reflexivity from formula XCB by condensed detachment. This was long thought
to be a nontheorem and was first proved by Fitelson. Status: theorem (unsatisfiable).

-P(e(x,y)) | -P(x) | P(y). % condensed detachment
P(e(x,e(e(e(x,y),e(z,y)),z))). % XCB
-P(e(A,A)). % denial of reflexivity

xcb [23, 22] Show that formula XCB is a single axiom for the equivalential calculus by deriving the well
known single axiom WN by condensed detachment. This was the last remaining open candidate of length
11. It was first proved to be a single axiom by Wos in April 2002. Status: theorem (unsatisfiable).
∗This work was Supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office

of Advanced Scientific Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.
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-P(e(x,y)) | -P(x) | P(y). % condensed detachment
P(e(x,e(e(e(x,y),e(z,y)),z))). % XCB
-P(e(e(A,e(B,C)),e(C,e(A,B)))). % denial of single axiom WN

yqe [8, 16] Is formula YQE a single axiom for the right group calculus? Any countermodels must be
infinite. Status: open.

-P(e(x,y)) | -P(x) | P(y). % condensed detachment
P(e(e(x,y),e(e(x,z),e(y,z)))). % YQE
-P(e(A,e(A,e(e(B,C),e(e(B,D),e(C,D)))))). % denial of single axiom L2’

mv-dist-star [4, 18] From the axioms MV1–MV4 (many-valued sentential calculus), derive the distribu-
tivity properties AK1, AK2, KA1, and KA2. This is four separate problems. Status: all are theorems
(unsatisfiable).

-P(i(x,y)) | -P(x) | P(y). % condensed detachment

P(i(x,i(y,x))). % MV1
P(i(i(x,y),i(i(y,z),i(x,z)))). % MV2
P(i(i(i(x,y),y),i(i(y,x),x))). % MV3
P(i(i(n(x),n(y)),i(y,x))). % MV4

-P(i(i(i(A,n(i(i(n(B),n(C)),n(C)))),n(i(i(n(B),n(C)),n(C)))),n(i(i(n(i(i(A,B),B)),
n(i(i(A,C),C))),n(i(i(A,C),C)))))). % AK1

-P(i(n(i(i(n(i(i(A,B),B)),n(i(i(A,C),C))),n(i(i(A,C),C)))),i(i(A,n(i(i(n(B),n(C)),
n(C)))),n(i(i(n(B),n(C)),n(C)))))). % AK2

-P(i(n(i(i(n(A),n(i(i(B,C),C))),n(i(i(B,C),C)))),i(i(n(i(i(n(A),n(B)),n(B))),
n(i(i(n(A),n(C)),n(C)))),n(i(i(n(A),n(C)),n(C)))))). % KA1

-P(i(i(i(n(i(i(n(A),n(B)),n(B))),n(i(i(n(A),n(C)),n(C)))),n(i(i(n(A),n(C)),
n(C)))),n(i(i(n(A),n(i(i(B,C),C))),n(i(i(B,C),C)))))). % KA2

twoval-luka-23 [6] Show that the formula Luka-23 is a single axiom for two-valued logic by deriving the
 Lukasiewicz 3-basis. Status: theorem (unsatisfiable).

-P(i(x,y)) | -P(x) | P(y). % condensed detachment
P(i(i(i(x,y),i(i(i(n(z),n(u)),v),z)),i(w,i(i(z,x),i(u,x))))). % Luka-23

% denial of Lukasiewicz 3-basis
-P(i(i(A,B),i(i(B,C),i(A,C)))) | -P(i(i(n(A),A),A)) | -P(i(A,i(n(A),B))).

twoval-mer-21 [21] Show that the formula Mer-21 is a single axiom for two-valued logic by deriving the
 Lukasiewicz 3-basis. Status: theorem (unsatisfiable).

-P(i(x,y)) | -P(x) | P(y). % condensed detachment
P(i(i(i(i(i(x,y),i(n(z),n(u))),z),v),i(i(v,x),i(u,x)))). % Mer-21

% denial of Lukasiewicz 3-basis
-P(i(i(A,B),i(i(B,C),i(A,C)))) | -P(i(i(n(A),A),A)) | -P(i(A,i(n(A),B))).
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sheffer-org-d23 [5] Show that formula ORG-D23 is a single axiom for propositional calculus in terms of
the Sheffer stroke by deriving Nicod’s single axiom. The nice property of ORG-D23 is that it is organic; that
is, no subformula is a theorem. Status: theorem (unsatisfiable).

-P(d(x,d(y,z))) | -P(x) | P(z). % detachment rule for the Sheffer stroke
P(d(d(x,d(y,z)),d(d(x,d(y,z)),d(d(u,z),d(d(z,u),d(x,u)))))). % ORG-D23

% denial of Nicod’s original single axiom
-P(d(d(A,d(B,C)),d(d(E,d(E,E)),d(d(F,B),d(d(A,F),d(A,F)))))).

mingle-bci [1] Show that if the mingle formula is added to the logic BCI, the Karpenko formula can be
derived by condensed detachment. Status: theorem (unsatisfiable).

-P(i(x,y)) | -P(x) | P(y). % condensed detachment
P(i(i(x,y),i(i(z,x),i(z,y)))). % B
P(i(i(x,i(y,z)),i(y,i(x,z)))). % C
P(i(i(i(i(i(x,y),y),x),z),i(i(i(i(i(y,x),x),y),z),z))). % mingle

% denial of Karpenko formula
-P(i(i(A,i(i(B,B),A)),i(i(i(A,B),B),i(i(B,A),A)))).

mingle-concise [2] Show that the mingle axiom can be derived from the three formulas given below by
condensed detachment. This gives a simpler basis for the system RM→. Status: theorem (unsatisfiable).

-P(i(x,y)) | -P(x) | P(y). % condensed detachment
P(i(i(x,y),i(i(y,z),i(x,z)))). % suffixing
P(i(x,i(i(x,y),y))). % assertion
P(i(i(i(i(i(x,y),z),i(y,x)),z),z)). % candidate

% denial of mingle axiom
-P(i(i(i(i(i(A,B),B),A),C),i(i(i(i(i(B,A),A),B),C),C))).

intuit-imp [17] Show that the candidate formula is not a single axiom for intuitionistic implication by
finding a model in which the required property below fails. Status: nontheorem (satisfiable).

-P(i(x,y)) | -P(x) | P(y). % condensed detachment
P(i(i(x,y),i(i(y,i(i(z,x),u)),i(x,u)))). % candidate
-P(i(A,i(B,A))). % required property

2.2 Equational Bases for Boolean Algebra

ba-dn1 [14] Show that equation DN-1 is a single axiom for Boolean algebra in terms of disjunction and
negation by deriving the Huntington 3-basis. Status: theorem (unsatisfiable).

n(n(n(x + y) + z) + n(x + n(n(z) + n(z + u)))) = z. % DN-1

% denial of Huntington 3-basis
B + A != A + B | (A + B) + C != A + (B + C) | n(n(A) + B) + n(n(A) + n(B)) != A.
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sheffer-sh1 [14, 20] Show that equation Sh-1 is a single axiom for Boolean algebra in terms of the Sheffer
stroke by deriving the Meredith 2-basis. Status: theorem (unsatisfiable).

f(f(x,f(f(y,x),x)),f(y,f(z,x))) = y. % Sh-1

% denial of Meredith 2-basis
f(f(A,A),f(B,A)) != A | f(A,f(B,f(A,C))) != f(f(f(C,B),B),A).

sheffer-mstar [14] Show that each of the equations below is too weak to be a single axiom for Boolean
algebra in terms of the Sheffer stroke. This is 7 separate problems. Status: all are nontheorems (satisfiable).

f(f(y,f(f(x,z),y)),f(x,f(z,y))) = x. % M5A
f(f(f(y,f(x,z)),y),f(x,f(z,y))) = x. % M5B
f(f(f(y,f(x,y)),y),f(x,f(y,z))) = x. % M6A
f(f(y,f(y,f(x,y))),f(x,f(y,z))) = x. % M6B
f(f(f(y,f(x,x)),y),f(x,f(y,z))) = x. % M6C
f(f(y,f(y,f(x,x))),f(x,f(y,z))) = x. % M6D
f(f(f(y,f(z,x)),y),f(x,f(z,y))) = x. % M8A

% denial of Meredith 2-basis
f(f(A,A),f(B,A)) != A | f(A,f(B,f(A,C))) != f(f(f(C,B),B),A).

sheffer-cstar [14, 20] Which of equations C1–C16 are single axioms for Boolean algebra in terms of the
Sheffer stroke? There are 16 problems here: take each of the candidates and pair it with the denial. Status:
all are open.

f(f(y,f(f(x,y),y)),f(x,f(y,z))) = x. % C1
f(f(y,f(y,f(x,y))),f(x,f(z,y))) = x. % C2
f(f(y,f(y,f(y,x))),f(x,f(z,y))) = x. % C3
f(f(y,f(y,f(y,x))),f(x,f(y,z))) = x. % C4
f(f(y,f(y,f(x,z))),f(x,f(z,y))) = x. % C5
f(f(y,f(y,f(z,x))),f(x,f(y,z))) = x. % C6
f(f(y,f(y,f(x,x))),f(x,f(z,y))) = x. % C7
f(f(f(y,f(y,x)),y),f(x,f(z,y))) = x. % C8
f(f(f(y,f(x,x)),y),f(x,f(z,y))) = x. % C9
f(f(f(y,f(x,z)),y),f(x,f(y,z))) = x. % C10
f(f(f(y,f(z,x)),y),f(x,f(y,z))) = x. % C11
f(f(f(y,f(y,x)),y),f(x,f(y,z))) = x. % C12
f(f(f(f(y,x),y),y),f(x,f(z,y))) = x. % C13
f(f(f(f(y,x),y),y),f(x,f(y,z))) = x. % C14
f(f(f(f(y,x),z),z),f(x,f(y,z))) = x. % C15
f(f(f(f(y,x),z),z),f(x,f(z,y))) = x. % C16

% denial of Meredith 2-basis
f(f(A,A),f(B,A)) != A | f(A,f(B,f(A,C))) != f(f(f(C,B),B),A).

2.3 Equational Lattice Theory

ol-e51 [10] Show that equation E51 does not necessarily hold in ortholattices. Status: nontheorem (satis-
fiable).

x ^ y = y ^ x. % lattice axioms
(x ^ y) ^ z = x ^ (y ^ z).
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x ^ (x v y) = x.
x v y = y v x.
(x v y) v z = x v (y v z).
x v (x ^ y) = x.

c(x) ^ x = Zero. % add these for ortholattice
c(x) v x = One.
x ^ y = c(c(x) v c(y)).

% denial of E51
((A v c(B))^ (((A^B) v (c(A)^B)) v (c(A)^c(B)))) != ((A^B) v (c(A)^c(B))).

ol-e62 [10] Show that equation E62 does not necessarily hold in ortholattices. Status: nontheorem (satis-
fiable).

x ^ y = y ^ x. % lattice axioms
(x ^ y) ^ z = x ^ (y ^ z).
x ^ (x v y) = x.
x v y = y v x.
(x v y) v z = x v (y v z).
x v (x ^ y) = x.

c(x) ^ x = Zero. % add these for ortholattice
c(x) v x = One.
x ^ y = c(c(x) v c(y)).

% denial of E62
A ^ (B v (A ^ (c(A) v (A ^ B)))) != A ^ (c(A) v (A ^ B)).

ol-rw1 [15] Show that equation *3-68 does not necessarily hold in weak orthomodular lattices. Status:
nontheorem (satisfiable).

x ^ y = y ^ x. % lattice axioms
(x ^ y) ^ z = x ^ (y ^ z).
x ^ (x v y) = x.
x v y = y v x.
(x v y) v z = x v (y v z).
x v (x ^ y) = x.

c(x) ^ x = Zero. % add these for ortholattice
c(x) v x = One.
x ^ y = c(c(x) v c(y)).

(c(x) ^ (x v y)) v (c(y) v (x ^ y)) = One. % weak orthomodular law

A ^ (B v (A ^ (c(A) v (A ^ B)))) != A ^ (c(A) v (A ^ B)). % denial of *3-68

ol-rw2 [15] Show that equation 98A does not necessarily hold in ortholattices. Status: nontheorem (sat-
isfiable).

x ^ y = y ^ x. % lattice axioms
(x ^ y) ^ z = x ^ (y ^ z).
x ^ (x v y) = x.
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x v y = y v x.
(x v y) v z = x v (y v z).
x v (x ^ y) = x.

c(x) ^ x = Zero. % add these for ortholattice
c(x) v x = One.
x ^ y = c(c(x) v c(y)).

% denial of equation 98A.
A v (c(B) ^ (c(A) v (c(B) ^ (A v (c(B) ^ c(A)))))) !=
A v (c(B) ^ (c(A) v (c(B) ^ (A v (c(B) ^ (c(A) v (c(B) ^ A))))))).

oml-mod [15] Show that orthomodular lattices are not necessarily modular. This is well known, but it is
a good test problem for finite model search. Status: nontheorem (satisfiable).

x ^ y = y ^ x. % lattice axioms
(x ^ y) ^ z = x ^ (y ^ z).
x ^ (x v y) = x.
x v y = y v x.
(x v y) v z = x v (y v z).
x v (x ^ y) = x.

c(x) ^ x = Zero. % add these for ortholattice
c(x) v x = One.
x ^ y = c(c(x) v c(y)).

x v (c(x) ^ (x v y)) = x v y. % orthomodular law (OM)

A v (B ^ (A v C)) != (A v B) ^ (A v C). % denial of modularity

lattice-uc [13] Consider uniquely complemented (UC) lattices. We are looking for weak properties that
force them to be Boolean. Distributivity is well known to do the job, so we use it as our goal (denial).
There are six problems here. For the open ones, all counterexamples are infinite, because all finite uniquely
complemented lattices are Boolean. Status: three are theorems, three are open.

x ^ y = y ^ x. % lattice axioms
(x ^ y) ^ z = x ^ (y ^ z).
x ^ (x v y) = x.
x v y = y v x.
(x v y) v z = x v (y v z).
x v (x ^ y) = x.

x v c(x) = One. % complementation
x ^ c(x) = Zero.

x v y != One | x ^ y != Zero | c(x) = y. % complements are unique

A ^ (B v C) != (A ^ B) v (A ^ C). % denial of distributivity

% Take each of the following 6 with the preceding clauses.

% Each of these three gives a theorem.
x ^ (y v (z ^ (x v (y ^ z)))) = x ^ (y v (x ^ z)). % 94-6
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x ^ ((y ^ (z v (x ^ y))) v (z ^ (x v y))) = (x ^ y) v (x ^ z). % 94-37
x ^ (y v (z v (u ^ (x v (y ^ z))))) = x ^ (y v (z v (x ^ u))). % G61
% Each of these three is open.
x ^ (y v ((x v y) ^ (z v (y ^ (x v z))))) = x ^ (y v z). % 94-3
x ^ (y v (z ^ (u v (x ^ (y v z))))) = x ^ (y v (z ^ (x v u))). % F53
x ^ (y v (z ^ ((x ^ z) v (u ^ (y v z))))) = x ^ (y v ((x ^ z) v (z ^ u))). % G113

2.4 Miscellaneous Equality Problems

cs-comm-ad [7, 13] Assume a cancellative semigroup (CS) admits a commutator operation. Then the
following three properties are equivalent: (1) commutator is associative; (2) commutator distributes over
product; (3) the semigroup is nilpotent of class 2. This is a generalization of the corresponding theorem for
group theory. The problem here is to prove (1) implies (2). Status: theorem (unsatisfiable).

(x * y) * z = x * (y * z). % product is associative
x * y != x * z | y = z. % left cancellation
y * x != z * x | y = z. % right cancellation

x * y = y * (x * (x @ y)). % CS admits commutator
(x @ y) @ z = x @ (y @ z). % commutator is associative
(a * b) @ c != (a @ c) * (b @ c). % denial: commutator distributes over product

cs-comm-dn [7, 13] See the description of problem cs-comm-ad. The problem here is to prove that the
distributivity property (2) implies the nilpotent property (3). Status: theorem (unsatisfiable).

(x * y) * z = x * (y * z). % product is associative
x * y != x * z | y = z. % left cancellation
y * x != z * x | y = z. % right cancellation

x * y = y * (x * (x @ y)). % CS admits commutator
(x * y) @ z = (x @ z) * (y @ z). % commutator distributes over product
(a @ b) * c != c * (a @ b). % denial: nilpotent class 2

cs-comm-na [7, 13] See the description of problem cs-comm-ad. The problem here is to prove that the
nilpotent property (3) implies the associativity property (1). Status: theorem (unsatisfiable).

(x * y) * z = x * (y * z). % product is associative
x * y != x * z | y = z. % left cancellation
y * x != z * x | y = z. % right cancellation

x * y = y * (x * (x @ y)). % CS admits commutator
(x @ y) * z = z * (x @ y). % nilpotent class 2
(a @ b) @ c != a @ (b @ c). % denial: commutator is associative

hbck [12, 19] Axioms for the quasivariety HBCK are given below. Show that equation J follows. This
result has been known for some time by a model-theoretic argument. The first first-order proof was found
by Veroff in 2002. Status: theorem (unsatisfiable).

x * One = One. % M3
One * x = x. % M4
(x * y) * ((z * x) * (z * y)) = One. % M5
x * y != One | y * x != One | x = y. % M7

7



x * x = One. % M8
x * (y * z) = y * (x * z). % M9
(x * y) * (x * z) = (y * x) * (y * z). % H

(((A * B) * B) * A) * A != (((B * A) * A) * B) * B. % denial of J
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Abstract. The state of the art of automatic first order logic theorem
provers is advanced enough to be useful in a commercial context. This
paper describes a way in which first order logic and theorem provers are
used at the Swedish formal verification company Safelogic, to formally
verify properties of hardware systems. Two different verification methods
are discussed, which both make use of translations of formalisms into first
order logic. We draw some preliminary conclusions from our experiences
and provide problems sets and benchmarks.

1 Introduction

A common way in which descriptions of hardware systems have been verified in
the last decade, has been to translate finite-state instances of the system into
a finite state machine, and to verify properties about this state machine by, for
example, computing the reachable state space using Binary Decision Diagrams
(BDDs) [1].

More recently, an alternative method has become popular, which translates
the finite state machine into propositional logic, and uses a propositional the-
orem prover, or SAT solver, to verify properties [2,3]. Some form of time-level
reasoning, such as temporal induction has to be added in this case. Certain
properties that are out of reach for BDDs can then be solved by SAT solvers.

At Safelogic we decided to go one step further and to employ first order
(FO) theorem proving for verification of hardware systems. In the following sec-
tion we briefly motivate and discuss this decision. Then we proceed to describe
two different methods we used for generating first order verification conditions
from hardware designs and their requirements. This is done in Section 3 and 4,
respectively. We discuss some domain-specific “tricks” we did to make the gen-
erated problems easier to prove. In Section 5 we present a FIFO circuit, as an
example that is simple, yet incorporates many of the challenges that come up



during verification of hardware systems occurring at our industrial partners and
customers. This is followed by a brief concluding section. The first order logic
problems discussed in this paper as well as some experimental results can be
found at http://www.safelogic.se/problems/PaPS.

2 Why First Order Logic?

At first glance, the decision to use first order theorem proving for verification
of hardware designs may seem non-obvious. After all, hardware systems have
a finite number of states. It seems overkill and unnecessarily inefficient to use
an undecidable logic. In the following we argue that FO theorem proving has a
number of important advantages that can easily outweigh the drawbacks.

Lemmas One advantage of using theorem proving methods over, for example,
state machine building methods is that it is possible to add lemmas. Lemmas can
be suggested by a human user or a lemma-finding heuristic to make a problem
easier. Lemmas can also be used automatically to perform hierarchical verifica-
tion.

Compact Proof Objects Verification with theorem proving may result in a com-
pact proof that in itself is a certificate of correctness. In contrast to this, SAT
solvers usually don’t yield proof objects at all while BDD-based model checkers
often yield very large structures.

Proofs for Generic Designs State machine building and propositional theorem
proving have the common limitation that only instances of a system description
can be verified. In general, a hardware description can be generic in input sizes,
number of registers, etc. However, in order to verify properties, one is forced to
choose a particular combination of such parameters. On the other hand, in FO
logic it is possible to prove properties for generic designs.

State Space vs. Search Space Verification methods based on state space explo-
ration often face the problem of state space explosion. In this case theorem
proving may offer a workable alternative. Although there are complexity issues
also with theorem proving, they mostly have little to do with the size of the set
of reachable states. We do not represent the state space other than indirectly. In
FO theorem proving compact proofs often do exist. The challenge is to find these
proofs in an infinite set of possible derivations. State space explosion and com-
plexity due to large proof search spaces are in many cases orthogonal causes of
infeasibility, hence, theorem proving and state space exploration can be regarded
as complementary methods of verification.

Independence of Tools and Problems One drawback of BDD-based methods is
that algorithms and data structures usually have to be carefully matched against
the requirements property language at hand. Modern property languages (such



as [5], but also the language sketched below) tend to be rich and complex. It is a
non-trivial problem to design efficient model checkers for them. The translation
approach to FO logic is inherently more flexible and modular. New features in
the property language can be implemented and evaluated quickly. SAT solvers
also offer flexibility, but the inexpressiveness of propositional logic imposes severe
restrictions and leads to blow-up during translation.

Future Research Potential First order theorem proving tools are now approach-
ing a state of maturity comparable to SAT solvers and model checkers. One
has to concede, though, that FO theorem proving is no “pushbutton technol-
ogy” (which is not strictly true of model checking either): tuning is of critical
importance and expert knowledge is required to get out useful results from FO
theorem proving engines. Much less research has been spent in the FO theorem
proving community on problem generation and compilation of domain-specific
knowledge than on calculi and their implementation. (Possibly, the vision from
early AI days of theorem provers as general problem solvers still lingers on.) Our
experiences suggest that considerable gains are to be had, if FO theorem proving
experts and verification domain experts work closely together.

Limitations Theorem proving is an affirmation of FO logical consequence, be-
cause theorem provers enumerate the set of such consequences. It is well known
that the satisfiable FO formulas are not recursively enumerable, so there is no
general complete procedure for establishing non-consequence. Worse, even truth
in the intended system models cannot be effectively determined, because usually
there are no complete axiomatizable FO theories characterizing them [6]. Cer-
tain sublanguages of FO logic are decidable [7], but unfortunately the decidable
subclasses do not pertain to the problems considered here.

Certain temporal properties are not provable in FO logic, but in practice
the addition of suitable induction schemata goes a long way. This, however,
decreases the degree of automation. In Section 5 below we argue why even FO
logic without induction is quite useful.

Summing up, requirements verification by means of FO automatic theorem
proving is only a partial method in a sense, but still extremely useful. It does not
give a yes or no answer to any question about the system that can be rendered
as a FO formula, but in cases where the property actually holds it often gives a
positive answer, and in addition to this, a proof of this fact.

Summary Most current work in hardware verification employs propositional
logics as property description languages. On the other end of the spectrum, in-
teractive theorem proving is used for verification of complex hardware designs,
sometimes involving higher order logics. This involves a lower degree of automa-
tion and significantly increases the demands on the skill and education of users.

By using first order logic we keep a middle path and retain a lot of the benefits
of using a theorem proving method. At the same time we have the possibility of
verifying hardware descriptions at a much higher level of abstraction than with
propositional logic.



There are, of course, also practical limitations due to complexity issues. There
are intractable problems in automatic theorem proving, and we have encountered
such problems.

3 Requirements Verification by Translation to First

Order Logic

3.1 Requirements Verification

Requirements verification, in contrast to verification methods like equivalence
checking and refinement (see Section 4) consists in establishing whether a certain
property holds with respect to a certain system or not. A property of a system in
this sense is a partial description of the system in some logical formalism. Systems
are often specified algorithmically in some imperative formalism. How the system
will behave (in the long run) is not directly stated in such a specification, it is
something that, if at all, can only be computed from the specification. In contrast
to this a property description is not an algorithm but a statement about what
is true of the system and its behavior.

Example 1. To illustrate this we will look at a simple counter in pseudo-code
(resembling VHDL).

begin

if reset = ’1’ then

v <= 0;

elsif clock = ’1’ and clock_edge then

if v < max then

v <= v + 1;

else

v <= 0;

end if;

end if;

end

This system is assumed to be sensitive to changes in the reset and clock

signals. If there is a positive flank3 of the reset signal (or a flank of the clock
signal while reset is high) the variable v is set to 0, if there is a positive flank of
the clock signal when reset is low then if v < max, v is set to v + 1 otherwise
v is set to 0.

The specification does not say anything directly about the behavior of the
system over time. A typical behavioral property one would like to know is:

If started with a reset will v ever have a value exceeding the
value of max?

(1)

3 A flank is the change of a signal value to its opposite between two successive time
points. A positive flank is a change from low to high value.



Further examples of properties are: Will a certain value of v recur in some regular
way (e.g. every n time steps, where n is a multiple of max + 1)? Will v assume
every value in the set [0..max]? Will v assume the value 0 infinitely many times
if run for ever? And so on.

Verifying a system with respect to behavioral properties of this kind amounts
to establishing that the properties in question are true of (all) systems that con-
form to the system specification. This is, in effect, the notion of logical conse-
quence. We have chosen to verify systems by establishing logical consequence by
means of automatic theorem proving in first order logic.

Definition 1 (First order logic). The language of first order (FO) logic is
inductively defined by:

φ := P | P (t1, . . . , tn) | ¬φ | φ ∧ φ | ∃xφ ,

where P is a member of a nonempty set of predicate symbols, x is a variable,
and the ti are terms inductively defined by

t := v | c | f(t1, . . . , tn) ,

where v is a variable, c is a constant and f is a function symbol. Disjunction ∨,
implication ⇒, equivalence ⇔, and universal quantification ∀ are defined from
these in the usual way.

The semantics is defined in the standard way. The equality predicate = is
interpreted as equality on the domain elements. A first order approximation of
the natural numbers (written as 0, 1, . . .) including the function symbols +, ∗,
and inequality predicates <, ≤ is built-in as well.

It is well known that built-in support of the particular semantics of equality
and other symbols can greatly improve the efficiency of theorem provers (as
opposed to the explicit addition of axioms). At the moment we use theorem
provers that have built-in support for efficient handling of equality and we add
explicit axioms for the remaining function and predicate symbols. It would be
very desirable to integrate special rules besides those for equality, but it is not
obvious how to do this for current high-performance theorem provers.

3.2 Translation into First Order Logic

Notwithstanding the principal difference between algorithmic specification and
behavioral description, both can be expressed in FO logic. We developed a trans-
lator from a subset of the hardware system specification or description language
VHDL (see, e.g., [8]) into first order logic.



Example 2. A simple example of translation from VHDL into FO logic follows.
It is similar (though simplified) to what the translator would output when trans-
lating the VHDL equivalent of the specification in Example 1.

∀t (reset(t) ⇒ v(t) = 0∧

(¬reset(t + 1) ⇒

(¬max ≤ v(t) ⇒ v(t + 1) = v(t) + 1∧

max ≤ v(t) ⇒ v(t + 1) = 0)

)))

Here the binary reset signal is represented by means of a unary predicate symbol
with the same name (the signal clock is assumed to define the time-step and
does not occur other than indirectly in the translation output). These predicates
take a time argument. If t is a term denoting a time point, then the intended
semantics of reset(t) is that the reset signal is high at that time point. The
integer valued signal (variable) v, on the other hand, is represented by a unary
function symbol with the same name. Intuitively, v is interpreted as a function
from time points to integers.

Property specification language We use a linear time temporal property speci-
fication language developed at Safelogic that extends FO logic with embedded
temporal constructs that are useful for specifying behavioral properties. Like
other recent property specification languages [5] it contains a rich set of con-
structs, which is motivated by practical usefulness in expressing the required
properties of industrial designs.

Formulas in this specification language are then translated into FO logic
along with the system that is to be verified. For example, the formula

v ≤ max whenever (¬reset since reset)

in the property specification language, expressing property (1) translates into
the following FO formula:

∀t0 (∃t1 (t1 ≤ t0 ∧

reset(t1)∧

∀t2 ((t1 < t2 ∧ t2 ≤ t0) ⇒ ¬reset(t2))

) ⇒ v(t0) ≤ max)

If one can establish that the formula expressing the property is a logical
consequence of the formula expressing the system specification (possibly, with
the help of additional axioms or lemmas), then one has shown that the property
formula is true of every system that realizes the system description.

Axioms Formulas that are needed besides the formulas specifying the system
are e.g., those axiomatizing discrete time. At this point we only translate syn-
chronous designs in which there is a common clock signal for the whole design



and assignments are assumed to take place only at a (positive) flank of this
signal. We are thus able to conceptualize time as a discrete succession of time
points, i.e. essentially a structure isomorphic to that of N or Z with the linear
order <. Additionally, we have a kind of polymorphic addition on those struc-
tures for taking us a certain number of time steps along the time line. We need
theories that axiomatize the different types of the design and also theories that
axiomatize the operations that are defined on objects of those types. Impor-
tant examples are theories of integers, bit vectors, etc., with <, addition and
multiplication, and other arithmetical operators on those objects.

We experimented with different FO theories for such structures. It is well
known that these structures are not FO characterizable (up to isomorphy), there
are not even complete axiomatizable FO theories for most of them [6], so we have
to use incomplete approximations. For Z with <, addition, and multiplication,
we simply used standard theories containing irreflexivity, transitivity and tri-
chotomy for <, straightforward inductive definitions of + (and, where needed
∗), associative and commutative laws, definition of − in terms of +, as well as
axioms relating + and < such as:

∀n ∀m ∀k (n < m ⇒ n + k < m + k)

∀n ∀m (m < n ⇒ ∃k (m + k = n))

Our axiomatization is not minimal. Redundant axioms were added liberally
provided that they sped up the theorem proving process.

We start out with formulas produced by the VHDL-translation, add the arith-
metical axioms, the other axioms, and finally the negation of the requirement to
be verified. All these formulas are converted to clause normal form required by
the translation procedures that come with the resolution based theorem provers
we use. In many cases we apply additionally disjunctive splitting (sometimes
asymmetrical) on the negated requirement (see Section 4).

Problem Characteristics Much can be done to make proof search more effec-
tive. Designers of ATP systems furnish those systems with a large number of
search heuristics. Some of these are especially suited for problems generated
from industrial designs. We observed that such problems are often structured
quite differently from the problems theorem provers are usually optimized for
(including the majority of the problems found in the TPTP problem library4).

One such difference is that mathematical problems are often characterized
by few and small axioms, a minimal axiomatization, and often fairly long proofs,
whereas the industrial problems we have worked with show the opposite charac-
teristics: the axioms are numerous, lengthy, redundant, and typical proofs (when
found) are quite short, although we have also encountered longer proofs.

Redundancy Redundancy of problem formulations stems from several sources,
and we think it should be given more attention in automated theorem proving.

4 http://www.cs.miami.edu/~tptp/



First, the axiomatization of a theory might be redundant in the sense that
the set of axioms is not minimal. For complex theories, minimality can be hard
to show. Second, as is typical for interactive theorem proving (but also for chal-
lenging problems in automated theorem proving), one tries to tackle problems
with elusive proofs by proving lemmas first that constitute intermediate steps.
These lemmas are then added to the axioms. Third, even when the require-
ments specification and theories are expressed minimally, only a small subset of
them might actually be needed to prove a particular claim. We have found this
situation very often in our problems.

In our experience, FO theorem provers do not behave very robustly with
respect to redundancy, so it would be important to identify parts of a problem
formulation that are not required to prove a given conjecture. If theories are
hierarchically defined and fulfill certain restrictions, it is possible to reduce the
number of axioms by analyzing the symbols occurring in the conjecture [9].
Unfortunately, this kind of analysis is not implemented in current ATP systems.
Otherwise, one has to resort to the users’ insight into a problem domain who
might be able to pinpoint properties that are unlikely to play a role in the proof.
But even for this the user interface of current ATP systems forces one one to
add and remove comments tediously by hand in the input files.

4 Verification by Refinement

A different way of specifying the behavior of a system than giving an explicit
model consists in using the notion of refinement. One starts with a complete
specification of all admissible/correct behaviors of a system. Then one refines
this specification, i.e., one makes decisions on how to implement certain aspects,
and on which particular behavior we want (if there is a choice).

In systems of non-trivial size, refinement steps are iterated, eventually leading
to an implementation. For each refinement step, of course, one has to show that
it is correct, i.e., all behaviors permitted by a refinement are also permitted by
its specification.

One practical way of employing the refinement methodology in circuit verifi-
cation uses a so-called reference implementation of the circuit which is believed
to be correct (e.g., [10]). The actual implementation of the circuit is then shown
to be a correct refinement of the reference implementation.

For the following somewhat informal presentation of verification refinement
we borrowed some notions from the B-method [11]. For simplicity, we assume
that our behavioral description language is similar to a simple imperative pro-
gramming language.

Definition 2 (System description). A system description S consists of four
parts: a finite number of state variables vS

1
, . . . , vS

n ; a behavioral description T S

of a circuit called the transition; a logical formula IS called the invariant; and a
logical formula BS called the initialization.



We use system descriptions to describe specifications, refinements and im-
plementations. The idea is that a system description S corresponds to a circuit,
the state of which is represented by the state variables vS

i , the behavior of which
is described by T S, and in every reachable state, the invariant IS should hold.
The initial states of the circuit are described by the formula BS .

Correctness of specification When we create a system description S that cor-
responds to a specification, we need, of course, to prove that the invariant in
fact is an invariant. This is done by proving the following two formulas, which
together amount to an inductive proof:

BS ⇒ IS (S-init)

IS ⇒ [T S ]IS (S-trans)

We use the notation [P ]F , where P is a behavioral description and F is a formula,
to express “after performing P , the formula F must hold”, in other words, F is
a postcondition of P .

Hence, the formula (S-init) above can be read as: “The invariant holds for
any initial state”. The second formula (S-trans) above means: “If the invariant
holds, then the transition will take us to a state where the invariant holds again”.

Establishing postconditions The operator [ ] is formally defined by a set of rewrite
rules. These rules are applied automatically. Here are some example rules:

[x := e]F −→ F [e/x]

[P ; Q]F −→ [P ][Q]F

[if G then P else Q]F −→ (G ⇒ [P ]F ) ∧ (¬G ⇒ [Q]F )

And so on. Further, we use abbreviation 〈P 〉F to mean ¬[P ]¬F , which can be
read as “when we perform P , the formula F possibly holds”.

Example 3. As an example, consider the following system specification S of a
2-bit counter circuit, which has one state variable v:

T S ≡ if v < 3 then v := v + 1 else v := 0

IS ≡ 0 ≤ v ≤ 3

BS ≡ v = 0

The initialization part (S-init) of correctness amounts to:

v = 0 ⇒ 0 ≤ v ≤ 3

The transition part (S-trans) amounts to:

0 ≤ v ≤ 3 ⇒ [if v < 3 then v := v + 1 else v := 0]0 ≤ v ≤ 3

After some rewriting, this becomes:

0 ≤ v ≤ 3 ⇒ (v < 3 ⇒ 0 ≤ v + 1 ≤ 3 ∧ (¬(v < 3) ⇒ 0 ≤ 0 ≤ 3))

Both parts are easily shown to be valid under most standard FO integer axiom-
atizations.



Correctness of Refinement Suppose we have a system description S, which is
a specification, and a system description R, which is a refinement of S. The
invariant IR of R should not only express the invariant of the transition T R, but
also how the state variables of R relate to the state variables of S. The proof
obligation of showing that R really is a refinement of S amounts to proving the
following two formulas:

BR ⇒ (BS ⇔ IR) (R-init)

(IS ∧ IR) ⇒ [T R]〈T S〉IR (R-trans)

The first formula, (R-init), stipulates that initializing the state in the refine-
ment establishes the invariant in correspondence with the initialization of the
specification. The second formula, (R-trans), says that if both systems are in a
corresponding good state, then for any R-transition there exists an S-transition
such that the systems are in a corresponding state again, i.e., R only makes
transitions which are permitted by S.

Example 4 (Example 3 cont’d). Consider the following system specification R,
which is a refinement of the 2-bit counter circuit specified above. It has state
variables b0 and b1 (we assume to have standard operators inv and xor of bit
arithmetic).

T R ≡ b1 := (b0 xor b1) ; b0 := inv(b0)

IR ≡ 0 ≤ b0, b1 ≤ 1 ∧ v = b0 + 2 ∗ b1

BR ≡ b0 = 0 ∧ b1 = 0

The initialization part (R-init) of correctness amounts to:

(b0 = 0 ∧ b1 = 0) ⇒ (v = 0 ⇔ (0 ≤ b0, b1 ≤ 1 ∧ v = b0 + 2 ∗ b1))

The transition part R-trans amounts to:

(0 ≤ v ≤ 3 ∧ 0 ≤ b0, b1 ≤ 1 ∧ v = b0 + 2 ∗ b1) ⇒

[b1 := (b0 xor b1) ; b0 := inv(b0)]〈 if v < 3 then v := v + 1 else v := 0〉

(0 ≤ b0, b1 ≤ 1 ∧ v = b0 + 2 ∗ b1)

Both parts can be rewritten and simplified to valid formulas.

Automation All of the above formulas become formulas in FO logic after (auto-
matic) rewriting. The proving process can be automated by producing the proof
obligations together with a suitable theory about integers and other operations
in a suitable input format to a FO theorem prover, and searching for a proof.
However, even for simple systems this turned out to be not that easy. We apply
a number of “tricks” on the resulting FO formulas to render them provable more
easily by a theorem prover.

First, we implemented a simplifier that works on the formulas before clausi-
fying them. In addition, we perform case splitting and special axiomatizations.



Case splitting Formulas stemming from refinement followed by rewriting can
become very large. Luckily, in many cases one can identify smaller parts that
deal with a particular aspect of a proof obligation independently. For example,
the invariant is often a big conjunction, hence, a proof obligation relating to
an invariant can be split up into the elements of the conjunction. Likewise, a
transition often consists of a number of nested if − then− else statements, leading
to a number of control paths which can be considered separately.

The following rewrite rules for case splitting generalize these considerations:

A ∧ B −→ A , B

A ⇒ (B ∧ C) −→ A ⇒ B , A ⇒ C

A ⇔ B −→ A ⇒ B , B ⇒ A

We found that, typically, a proof obligation can be split up into 100 to 1000
separate proof obligations, and 40–80% can usually be simplified away by the
simplifier, hence, they generate no FO theorem proving problem at all.

Axiomatization of arrays One datatype occurring often in hardware descriptions
is the array type. We deal with arrays in the following way. When an array update
of the form

a[i] := e

occurs, it is treated as if it were the statement

a := override(a, i, e)

Furthermore, indexing in an array a[i] is translated into index(a, i). The core of
the axiomatization of the theory of arrays looks as follows:

index(override(A, I, X), I) = X (Index-1)

I 6= J ⇒ index(override(A, I, X), J) = index(A, J) (Index-2)

Unfortunately, this theory turned out to be very difficult to deal with for current
FO theorem provers. Normally, when encountering an indexing operation in an
overridden array, the theorem prover should initiate a case split on the two cases
amounting to (Index-1) and (Index-2). It is not possible to configure current FO
theorem provers in such a way that this happens.

To express the possibility of this case split explicitly in the logic a special
if − then− else connective was used in [12] in a similar situation. We chose a some-
what different solution which turns out to be useful in other contexts as well: an
if − then− else on terms in FO logic (not to be confused with the if − then− else

in the behavioral descriptions introduced earlier). This allows us to embed for-
mulas inside terms!

The meaning of if − then− else on the term-level is given by the following
rewrite rule. For any predicate symbol P :

P (. . . if F then e1 else e2 . . . ) −→

(F ⇒ P (. . . e1 . . . )) ∧ (¬F ⇒ P (. . . e2 . . . ))



Using the new if − then− else construct, one can axiomatize arrays differently:

index(override(A, I, X), J) = if I = J then X else index(A, J) (Index)

Now, the equality above can be seen as yet another rewrite rule which can be
used to demodulate the proof obligations. For each array building construct we
have a rewrite rule similar to (Index), which says what happens when indexing
is performed on that construct. After demodulation, all occurrences of index and
the other array operators, like in this case override, disappear from the proof
obligation. If we do this before case splitting, this leads to a lot of particularly
powerful case splits.

5 Example: Requirements Verification of a FIFO Buffer

We applied the method sketched in Section 3 successfully to verify various prop-
erties of VHDL designs from industry. Unfortunately, we cannot disclose any of
this work at this point; instead, we exemplify our method with a simple (although
far from trivial) VHDL design of a FIFO buffer.

The FIFO Buffer The FIFO buffer is implemented as an array mem of length
fifo length, the elements of which are bit vectors of length fifo width. The
parameters fifo length and fifo width are generic positive integer parameters
which need not be instantiated in FO verification, which is a great advantage.
Properties can thus be verified uniformly for FIFOs of any length and width.

The design also has integer valued signals level, wr level and rd level that
keep track of the number of items recorded in the FIFO, the write index, and the
read index in the main array mem. (See http://www.safelogic.se/problems/

PaPS for the VHDL code of this design). The in signal reset initializes these
three signals to 0.

In addition to the binary clock signal the incoming signals are the binary
wr and rd signals used for controlling whether a value should be written into the
FIFO or whether a value should be read from (and thus be taken away from)
the FIFO.

The data in bit vector of length fifo width carries the value that is written
into the FIFO. In addition to level there are the out signals data out which
is a bit vector of length fifo width that carries the value that is read off the
FIFO, and the binary signals rd error and wr error.

When there is a successful write the value of data in should have been
written to the mem array at the index indicated by wr level and the latter
signal should have been incremented (modulo fifo length), so that the next
successful write will take place at the next index of mem

Successful reads write the value at index rd level of mem to data out. Then
rd level is incremented in a similar fashion to wr level.

The level signal keeps track of the number of values that have been success-
fully written to and not yet been successfully read from the FIFO, in other words,



the number of values in the buffer. Provided that simultaneous read is not imple-
mented, writing should not be allowed as soon as level reaches fifo length, as
in this case every index of the mem array holds a written value that is not already
read from the FIFO. On the other hand, reading should not be allowed when
level is 0, because then there is no written value in mem that is not already
read.

Properties of the FIFO Buffer Obviously, there is some control logic to verify
with respect to this design. We exemplify this by giving some of the desirable
requirements in our property language. Most of these properties can be veri-
fied without using induction of any kind, since they are robust with respect to
reachable states. Put equivalently, they hold in all possible states of the design
regardless of whether the signals were properly initialized. These are properties
like:

next level = level+ 1

whenever

¬reset∧

level < fifo length∧

¬rd∧

wr

This states that whenever level is less than fifo length, the rd signal is low
and the wr signal high, then level is incremented. This is true of the design
regardless of how signals like level are initialized.

There are also properties not being robust in the above sense, for example:

(level ≤ fifo length) always

namely the property that level should never assume a value greater than
fifo length. This was verified with induction of step length 1 over the suc-
cession of time points, with an arbitrary time point when reset is high as base
case. In effect the following two requirements were proved:

(next level ≤ fifo length) whenever reset (Base Case)

namely that at a time point following a reset, level should not be greater than
fifo length. which is the base case and then the step case:

next(level ≤ fifo length)

whenever (level ≤ fifo length)
(Step Case)

namely that if level is not greater than fifo length at any time point then
this is also true of the next time point.



Challenging requirements Even with respect to this relatively simple design there
are behavioral properties on a higher level in the sense that they not only relate
adjacent time points (or time points with a given distance). For example, they
might say something about the behavior of the design in a non-deterministic
environment, such as the property of being a FIFO: if v is successfully written
to the FIFO before v′ then v should be read from the FIFO before v′. Such prop-
erties can be formalized in FO logic and in our property specification language.
They involve time spans of flexible length. Specification and verification of such
properties is work in progress.

Significance of the Example The design described above is too simple and regular
to be really representative of the examples emanating from industry that we have
been working with. Nevertheless, requirements similar to those given above tend
to recur in more complicated designs as well.

Requirements of this kind turned out to be feasible to verify with the theorem
provers we use. (Experimental results with different theorem provers can be
found at http://www.safelogic.se/problems/PaPS.) And this holds not only
for this simple FIFO but also for more complicated real-life systems we have
been working with.

One recurring aspect of FO verification that is already visible in the FIFO is
that parameterized designs can often be verified simultaneously for all possible
values of the parameters. This works, because often the value of the parameters
do not affect the proof. This is an aspect of a more general phenomenon: such
aspects of a design that do not affect the proof of a property need not be brought
into the verification process. In this way, the complexity of a problem may often
be cut down.

What is absent from the FIFO example is data manipulation. Data are only
shuffled around in the FIFO but not modified or inspected. Other absent features,
which are ubiquitous in real-world VHDL designs, are type conversions and
polymorphic application of operators: bit vectors may be added to or compared
to integers, for example.

All recursive functions and properties are representable in the arithmetical
theories we use [6], but it offers a considerable challenge to represent the needed
functions and predicates in a way that is suitable for automatic theorem proving.

6 Conclusion

In this paper we argued for using first order theorem proving in verification of
hardware systems. There are a number of strong advantages to use expressive
logics such as FO logic, despite its main drawback, which is semi-decidability.
We believe there is considerable unexplored potential from FO theorem proving
in this area, in particular, if theorem proving specialists and domain experts
work together on problem representation and translation.

We had to learn that existing methods to axiomatize data structures, to
translate from temporal to first order logic, to compute normal form, and the



configuration possibilities of existing theorem provers do not suffice for automatic
verification of interesting properties.

On the other hand, it was possible to adapt the existing technologies in such
a way that interesting results could be proved. On the web page corresponding
to this paper we contribute some first order problems that give a flavor of what
is required. It is our hope that the FO theorem proving community finds them
stimulating.
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